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Abstract: We obtain an asymptotic expansion for the solution of the Cauchy problem
for the Korteweg-de Vries (KdV) equation

ut + 6uux + ε2uxxx = 0, u(x, t = 0, ε) = u0(x),

for ε small, near the point of gradient catastrophe (xc, tc) for the solution of the disper-
sionless equation ut + 6uux = 0. The sub-leading term in this expansion is described
by the smooth solution of a fourth order ODE, which is a higher order analogue to the
Painlevé I equation. This is in accordance with a conjecture of Dubrovin, suggesting
that this is a universal phenomenon for any Hamiltonian perturbation of a hyperbolic
equation. Using the Deift/Zhou steepest descent method applied on the Riemann-Hilbert
problem for the KdV equation, we are able to prove the asymptotic expansion rigorously
in a double scaling limit.

1. Introduction

It is well-known that the solution of the Cauchy problem for the Hopf equation

ut + 6uux = 0, u(x, t = 0) = u0(x), x ∈ R, t ∈ R
+, (1.1)

reaches a point of gradient catastrophe in a finite time. The solutions of the dissipative
and conservative regularizations of the above hyperbolic equation display a considerably
different behavior. Equation (1.1) admits a Hamiltonian structure

ut + {u(x), H0} ≡ ut + ∂x
δH0

δu(x)
= 0,

with Hamiltonian and Poisson bracket given by

H0 =
∫

u3 dx, {u(x), u(y)} = δ′(x − y),
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respectively. The conservative regularization of (1.1) can be obtained by perturbing the
Hamiltonian H0 to the form H = H0 + εH1 + ε2 H2 + · · · [23] (see also [10,19]). All
the Hamiltonian perturbations up to the order ε4 of the hyperbolic equation (1.1) have
been classified in [17,30] and the Hamiltonian is equal to

Hε =
∫ [

u3 − ε2 c(u)

24
u2

x + ε4 p(u)u2
xx

]
dx,

where c(u), p(u) are two arbitrary functions of one variable. The equation
ut + {u(x), Hε} = 0 takes the form

ut + 6u ux +
ε2

24

[
2c uxxx + 4c′ux uxx + c′′u3

x

]
+ ε4

[
2p uxxxxx

+ 2p′(5uxx uxxx + 3ux uxxxx ) + p′′(7ux u2
xx + 6u2

x uxxx ) + 2p′′′u3
x uxx

]
= 0, (1.2)

where the prime denotes the derivative with respect to u. For c(u) = 12, p(u) = 0, one
obtains the Korteweg - de Vries (KdV)

ut + 6uux + ε2uxxx = 0, (1.3)

and for c(u) = 48u and p(u) = 2u, one has the Camassa-Holm equation [7] up to
order ε4. For generic choices of the functions c(u), p(u) Eq. (1.2) is apparently not an
integrable PDE, but however it admits an infinite family of commuting Hamiltonians up
to order O(ε6).

The case of small dissipative perturbations of one-component hyperbolic equations
has been well studied and understood (see [4] and references therein), while the behavior
of solutions to conservative perturbations (1.2) to the best of our knowledge has not been
investigated after the point of gradient catastrophe of the unperturbed equation except
for the KdV case. The solution of the Cauchy problem for KdV in the limit ε → 0, has
been studied in the works of Gurevich and Pitaevskii, [26], Lax and Levermore [29],
Venakides [36], and Deift, Venakides and Zhou [14,15]. The asymptotic description
of [14,29] gives in general a good approximation of the KdV solution, but it is less
satisfactory near the point of gradient catastrophe for the Hopf equation (1.1). Before
this break-up time, solutions to the KdV equation are, in the small dispersion limit
ε → 0, well approximated by solutions to the Hopf equation. After the time of gradient
catastrophe, solutions to the Hopf equation cease to be well-defined for all x , while for
any ε > 0, solutions to the KdV equation remain well-defined for all x and t and are
characterized by an oscillatory region after the gradient catastrophe. In this oscillatory
region, small dispersion asymptotics for KdV solutions turn out to be elliptic [36]. The
transition from the asymptotic regime described by (1.1) to the elliptic regime has not
been rigorously described yet in the literature. For numerical comparisons we refer to
[24,25].

This problem has been addressed by Dubrovin in [17], where he formulated the
universality conjecture about the behavior of a generic solution to any Hamiltonian
perturbation of a hyperbolic equation (1.1) near the point (xc, tc, uc = u(xc, tc, 0)) of
gradient catastrophe for (1.1). Dubrovin argued that, up to shifts, Galilean transforma-
tions and rescalings, the behavior of the solution of (1.2) as ε → 0 near the point of
gradient catastrophe for the Hopf equation (1.1) essentially depends neither on the choice
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of the solution nor on the choice of the equation. Moreover, the solution near the point
(xc, tc, uc) is given by

u(x, t, ε) � uc +

(
ε2c0

k2

)1/7

U

(
x − xc − 6uc(t − tc)

(kc3
0ε

6)1/7
,

6(t − tc)

(k3c2
0ε

4)1/7

)
+ O

(
ε4/7

)
,

(1.4)

where c0 is a constant that depends on the equation, while k depends on the initial data,
and U = U (X, T ) is the unique real smooth solution to the fourth order ODE

X = T U −
[

1

6
U 3 +

1

24
(U 2

X + 2U UX X ) +
1

240
UX X X X

]
, (1.5)

which is the second member of the Painlevé I hierarchy. In what follows, we will call
this equation P2

I . The relevant solution is characterized by the asymptotic behavior

U (X, T ) = ∓(6|X |)1/3 ∓ 1

3
62/3T |X |−1/3 + O(|X |−1), as X → ±∞, (1.6)

for each fixed T ∈ R. The uniqueness of a smooth solution to (1.5) for all X, T ∈ R

satisfying (1.6) follows from earlier results [32,33], while the existence has been proven
in [8].

The aim of this paper is to prove rigorously that the expansion (1.4) holds indeed in
the particular case of the small dispersion limit of the KdV equation near the point of
gradient catastrophe for the Hopf equation (1.1). More precisely the solution u(x, t, ε)
of the KdV equation in the neighborhood of (xc, tc, uc) has an asymptotic expansion as
follows,

u(x, t, ε) � uc +

(
2ε2

k2

)1/7

U

(
x − xc − 6uc(t − tc)

(8kε6)
1
7

,
6(t − tc)

(4k3ε4)
1
7

)
+ O

(
ε4/7

)
. (1.7)

This expansion holds in the double scaling limit where we let ε → 0 and at the same
time x → xc and t → tc in such a way that

lim
x − xc − 6uc(t − tc)

(8kε6)1/7 = X, lim
6(t − tc)

(4k3ε4)1/7 = T,

with X, T ∈ R. The constant k is given by

k = − f ′′′− (uc),

where f− is the inverse function of the decreasing part of the initial data u0(x), which
is assumed to be real analytic and with a single negative bump.

The universality conjecture of Dubrovin should be seen in comparison to the known
universality results in random matrix theory. For large unitary random matrix ensembles,
local eigenvalue statistics turn out to be, to some extent, independent of the choice of the
ensemble and independent of the reference point chosen [11–13]. Critical break-up times
occur when the eigenvalues move from a one-cut regime to a multi-cut regime. These
transitions can take place in the presence of singular points, of which three different
types are distinguished [12]. Singular interior points show remarkable similarities with
the leading edge of the oscillatory region for the KdV equation, while singular exterior
points should be compared to the trailing edge of the oscillatory region. Our focus is on
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the point of gradient catastrophe, i.e. the break-up point where the oscillations start to
set in. This situation is comparable to a singular edge point in unitary random matrix
ensembles. It was conjectured by Bowick and Brézin, and by Brézin, Marinari, and
Parisi [5,6] that local eigenvalue statistics in this regime should be given in terms of the
Painlevé I hierarchy. In [9], it was proven that indeed double scaling limits of the local
eigenvalue correlation kernel are given in terms of the Lax pair for the P2

I equation (1.5).
In addition, an expansion similar to (1.4) was obtained for the recurrence coefficients of
orthogonal polynomials related to the relevant random matrix ensembles.

In the setting of PDEs a universality result similar to the KdV case has been conjec-
tured for the semiclassical limit of the focusing nonlinear Schrödinger equation [18].
In this case the limiting equations are elliptic and the focusing nonlinear Schrödinger
equation in the semiclassical limit is considered as a Hamiltonian perturbation of the
elliptic system.

1.1. Statement of result. Our goal is to find asymptotics as ε → 0 for the solution
u(x, t, ε) of the KdV equation

ut + 6uux + ε2uxxx = 0, u(x, 0, ε) = u0(x),

when x, t are close to the point and time of gradient catastrophe xc, tc for the Hopf
equation

ut + 6uux = 0.

For convenience later on, we assume ε > 0 throughout the paper. By the method of
characteristics, the solution of the Hopf equation takes the form

u(x, t) = u0(ξ), x = 6tu0(ξ) + ξ,

so that

ux (x, t) = u′
0(ξ)

1 + 6tu′
0(ξ)

, x = 6tu0(ξ) + ξ,

from which one observes that a gradient catastrophe is reached for

tc = 1

maxξ∈R[−6u′
0(ξ)] .

We impose the following conditions on the initial data u0.

Assumptions 1.1.

(a) u0(x) is real analytic and has an analytic continuation to the complex plane in the
domain

S = {z ∈ C : |Im z| < tan θ0|Re z|} ∪ {z ∈ C : |Im z| < σ },
where 0 < θ0 < π/2 and σ > 0;

(b) u0(x) decays as |x | → ∞ in S such that

u0(x) = O
(

1

|x |3+s

)
, s > 0, x ∈ S, (1.8)
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(c) for real x, u0(x) < 0 and has a single local minimum at a certain point xM , with

u′
0(xM ) = 0, u′′

0(xM ) > 0,

u0 is normalized such that u0(xM ) = −1.

Condition (b) is necessary to apply the inverse scattering transform [3], while condition
(a) is requested in order to get some analyticity properties of the reflection and trans-
mission coefficients for the scattering problem (see below in Sect. 2). Condition (c) is
imposed in order to have the simplest situation in the study of the semiclassical limit of
the reflection coefficient of the associated Schrödinger equation.

Let xM (t) be the x-coordinate where u(x, t) reaches the minimum value −1. Then
for t < tc we have that

ux (x, t) = 1

6t + f ′−(u(x, t))
< 0, for x < xM (t), (1.9)

ux (x, t) = 1

6t + f ′
+(u(x, t))

> 0, for x > xM (t), (1.10)

where f± are the inverses of the increasing and decreasing part of the initial data u0(x),

f±(u0(x)) = x, f−(−1, 0) = (−∞, xM ), f+(−1, 0) = (xM , +∞).

Since f ′− is negative, it follows that there exists a time t = tc for which (1.9) goes to
infinity. This happens at the time

tc = −1

6
max

ξ∈(−1,0)
f ′−(ξ). (1.11)

The above relation shows that the point of gradient catastrophe is characterized also by

f ′′−(uc) = 0.

Since we have assumed that u′′
0(xM ) 	= 0, it follows that xc < xM (tc). Summarizing,

the point of gradient catastrophe is characterized by (1.11) and the three equations

xc = 6tcuc + f−(uc), 6tc + f ′−(uc) = 0, f ′′−(uc) = 0. (1.12)

The point of gradient catastrophe is generic if

f ′′′− (uc) 	= 0. (1.13)

Our main result is the following.

Theorem 1.2. Let u0(x) be initial data for the Cauchy problem of the KdV equation
satisfying the conditions described in Assumptions 1.1, and satisfying the genericity
assumption (1.13). Write uc = u(xc, tc, 0), with xc and tc the point and time of gradient
catastrophe given by (1.12) and (1.11). Now we take a double scaling limit where we
let ε → 0 and at the same time we let x → xc and t → tc in such a way that, for some
X, T ∈ R,

lim
x − xc − 6uc(t − tc)

(8kε6)1/7 = X, lim
6(t − tc)

(4k3ε4)1/7 = T, (1.14)
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where

k = − f ′′′− (uc),

and f− is the inverse function of the decreasing part of the initial data u0(x). In this
double scaling limit the solution u(x, t, ε) of the KdV equation (1.3) has the following
expansion,

u(x, t, ε) = uc +

(
2ε2

k2

)1/7

U

(
x − xc − 6uc(t − tc)

(8kε6)
1
7

,
6(t − tc)

(4k3ε4)
1
7

)
+ O

(
ε4/7

)
. (1.15)

Here U (X, T ) is the unique real pole-free solution to the P2
I equation (1.5) satisfying

the asymptotic condition (1.6).

Remark 1.3. The expansion (1.15) is very similar to the one obtained in [9] for the
recurrence coefficients of orthogonal polynomials with respect to a weight e−nV (x) on
the real line, in a double scaling limit where the potential V tends, in a double scaling
limit, to a critical potential with a singular edge point.

It should also be noted that the error term in (1.15) is of order ε4/7. It will follow in
a nontrivial way from our analysis that the term of order ε3/7, which a priori seems to
be present when proving Theorem 1.2, vanishes.

Remark 1.4. If we would consider initial data that do not satisfy the generic condition
(1.13), our result is not valid any longer. It is likely that the role of the P2

I solution U
would then be taken over by a smooth solution to a higher member of the Painlevé I
hierarchy.

The proof of our result goes via the Riemann-Hilbert (RH) approach. The starting
point of our analysis will be the RH problem for the KdV equation, developed in [3,35]
using inverse scattering. The Deift/Zhou steepest descent method [16] has been shown
to be a powerful tool in order to obtain asymptotics for solutions of RH problems.
The strategy of this method is to simplify the RH problem in several steps by applying
some invertible transformations to it. At the end this leads to a RH problem for which
asymptotics can be easily found. The Deift/Zhou steepest descent method has not only
been fruitful in the field of integrable systems, it lead also to universality results in
random matrix theory [11–13] and to remarkable combinatorial results such as in [2].
For the KdV equation, a steepest descent analysis was carried out by Deift, Venakides,
and Zhou [14,15]. We will follow the main lines of their approach, but however with
some important modifications which are necessary to perform the analysis near the point
of gradient catastrophe. The first modification is to perform the steepest descent analysis
of the RH problem associated to the initial data u0(x) and to the corresponding reflection
coefficient itself, while in [14,15] the reflection coefficient was identified with its WKB
approximation before carrying out the RH analysis. Also in the works by Lax and
Levermore [29] the analysis was performed on some approximate initial data ũ0(x, ε)

for which ũ0(x, ε) → u0(x) as ε → 0, such that the reflection coefficient identifies with
its WKB approximation. The second modification concerns the so-called G-function,
which we need to modify in order to have a RH problem that behaves smoothly in the
double scaling limit. The third and probably most essential new feature is the construction
of a local parametrix built out of the �-functions for the P2

I equation.
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1.2. Outline for the rest of the paper. In Sect. 2, we give a short overview of the inverse
scattering approach in order to arrive at the RH problem for the KdV equation. We
also recall some previously known asymptotic results on the reflection and transmission
coefficients, which will be necessary in Sect. 3 when performing the Deift/Zhou steepest
descent analysis of the RH problem. In the asymptotic analysis of the RH problem,
we will construct a G-function which is slightly modified compared to the one used
in [14,15]. After the opening of the lens, the crucial part of Sect. 3 consists of the
construction of a local parametrix near the critical point uc. Here we will use a model
RH problem associated to the P2

I equation. Accurate matching of the local parametrix
with the parametrix in the outside region will provide asymptotics for the solution of the
RH problem. In Sect. 4 finally, we collect the asymptotic results obtained in the previous
section to prove Theorem 1.2.

2. Inverse Scattering Transform

2.1. Construction of the RH problem. In the first part of this section, we recall briefly
the construction of the RH problem associated to the KdV equation, as it was done in
e.g. [3,35]. The RH problem is constructed by inverse scattering and will be the starting
point of our asymptotic analysis in the next section. Recall that we consider initial data
satisfying Assumptions 1.1 (a)-(c).

The initial value problem for the KdV equation

ut + 6uux + ε2uxxx = 0, u(x, 0, ε) = u0(x), (2.1)

can be solved by the inverse scattering transform [22]. Introducing the operators L and
A, depending on x and also on t through u = u(x, t),

L = ε2 d2

dx2 + u, A = 4ε2 d3

dx3 + 3

(
u

d

dx
+

d

dx
u

)
,

the KdV equation can be written in the Lax form [28]

L̇ = [L , A], (2.2)

where L̇ = d L

dt
is the operator of multiplication by ut . The Schrödinger equation with

potential u

(ε2 d2

dx2 + u) f = λ f,

can be re-written as the first order differential equation

DF = J F + QF, D = ε
d

dx
,

J =
(

0 1
λ 0

)
, Q

(
0 0

−u 0

)
, F =

(
f
g

)
. (2.3)

There are two fundamental 2×2 matrix solutions � =�(λ; x, t, ε) and 
=
(λ; x, t, ε)
to the Schrödinger equation (2.3), with the following normalizations as x → ±∞,

�(λ; x, t, ε)e
i
ε
(−λ)1/2xσ3 ∼ �(λ), as x → +∞,

(2.4)

(λ; x, t, ε)e

i
ε
(−λ)1/2xσ3 ∼ �(λ), as x → −∞,



986 T. Claeys, T. Grava

where

�(λ) =
(

1 1
−i(−λ)1/2 i(−λ)1/2

)
, σ3 =

(
1 0
0 −1

)
. (2.5)

Here we take the principal branch of the square root, such that (−λ)1/2 is analytic in
C\[0, +∞) and positive for λ < 0. We denote by �1, �2, 
1, and 
2 the columns of
the matrices � and 
 respectively. It is known that the vectors �1 and 
2 are analytic
for Im λ > 0 and continuous for Im λ ≥ 0, and that �2 and 
1 are analytic for Im λ < 0
and continuous for Im λ ≤ 0 [31]. Since � and 
 form two fundamental bases of
solutions to the Schrödinger equation, they are related to each other by a constant matrix
(independent of x)

�(λ; x, t, ε) = 
(λ; x, t, ε)

(
a(λ; t, ε) b̄(λ̄; t, ε)
b(λ; t, ε) ā(λ̄; t, ε)

)
. (2.6)

For analytic initial data satisfying Assumptions 1.1, the components a(λ; t, ε) and
b(λ; t, ε) (and also a∗, b∗) are holomorphic with respect to λ ∈ �θ0 [21], where

�θ0 = {λ ∈ C\{0}, −2θ0 + π < arg λ < 2θ0 + π}. (2.7)

Since det � = det � = det 
, we have that

aa∗ − bb∗ = 1, (2.8)

and, for real λ < 0,

|a|2 − |b|2 = 1,

which shows that a 	= 0 for real λ < 0. Therefore we can divide by a obtaining

�11

a
∼

⎧⎪⎨
⎪⎩

e− i
ε
(−λ)1/2x +

b

a
e

i
ε
(−λ)1/2x , as x → −∞,

1

a
e− i

ε
(−λ)1/2x , as x → +∞.

(2.9)

The quantities

r(λ; t, ε) := b(λ; t, ε)

a(λ; t, ε)
, T (λ; t, ε) := 1

a(λ; t, ε)
,

are called reflection and transmission coefficients (from the left) for the potential u(x, t, ε).
For an arbitrary dependence of u(x, t, ε) on t , it is not possible in general to find the
time-dependence of a and b. If however u(x, t, ε) evolves according to the KdV equation,
the Gardner-Greene-Kruskal-Miura equations [22]

da

dt
= 0,

db

dt
= 8i

ε
(−λ)3/2b, (2.10)

hold so that the reflection coefficient evolves according to

r(λ; t, ε) = r(λ; 0, ε)e
8i
ε

(−λ)3/2t .

In what follows we write r(λ; ε) = r(λ; 0, ε) for the reflection coefficient at time t = 0.
For λ → −∞ we have [31]

lim
λ→−∞ r(λ; ε) = 0.
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Remark 2.1. For analytic initial data satisfying Assumptions 1.1, the reflection
coefficient r(λ; ε) and the transmission coefficient T (λ; ε) are meromorphic functions
in the sector �θ0 defined in (2.7). The possible poles occur at the zeros of a(λ; ε). For
initial data satisfying Assumptions 1.1, the zeros of a(λ; ε) lie in the sector [21]

π < arg λ < π + 2θ0.

The time evolution of the scattering data now leads us to the inverse scattering problem
to recover the KdV solution u(x, t, ε) from the reflection coefficient at time t . This brings
us to the RH boundary value problem for the initial value problem of the KdV equation.
The 2 × 2 matrix-valued function M defined by

M(λ; x, t, ε)=

⎧⎪⎪⎨
⎪⎪⎩

(

2(λ; x, t, ε)e−i(−λ)1/2x �1(λ; x, t, ε)

a(λ; t, ε)
ei(−λ)1/2x

)
, as λ∈C

+,

(
�2(λ; x, t, ε)

a(λ; t, ε)
e−i(−λ)1/2x 
1(λ; x, t, ε)ei(−λ)1/2x

)
, as λ∈C

−,

(2.11)

where� j and
 j denote the jth column of� and
, satisfies the following RH conditions
[3,35].

RH problem for M

(a) M(λ; x, t, ε) is analytic for λ ∈ C\R,
(b) M has continuous boundary values M+(λ) and M−(λ) when approaching

λ ∈ R\{0} from above and below, and

M+(λ) = M−(λ)

(
1 r(λ; ε)e2iα(λ;x,t)/ε

−r̄(λ; ε)e−2iα(λ;x,t)/e 1 − |r(λ; ε)|2
)

, for λ < 0,

M+(λ) = M−(λ)σ1, σ1 =
(

0 1
1 0

)
, for λ > 0,

(c) M(λ; x, t, ε) ∼
⎛
⎝ 1 1

i
√−λ −i

√−λ

⎞
⎠ , for λ → ∞.

Here α is given by

α(λ; x, t) = 4t (−λ)3/2 + x(−λ)1/2.

The solution of the KdV equation can be recovered from the RH problem by the following
formula, see e.g. [3]:

u(x, t, ε) = −2iε∂x M1
11(x, t, ε), (2.12)

where M11(λ; x, t, ε) = 1 +
M1

11(x, t, ε)√−λ
+ O(1/λ) as λ → ∞.
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2.2. Semiclassical limit of the reflection and transmission coefficients. In order to study
the limit as ε → 0 of the Riemann-Hilbert problem, it is necessary to obtain semiclassical
asymptotics for the reflection coefficient r(λ; ε).

Under the validity of Assumptions 1.1, the WKB approximation of the reflection
coefficient as ε → 0 is the following, see [20,34].

(i) For any positive constant δ, we have the following WKB asymptotics for −1 + δ ≤
λ < 0,

r(λ; ε) = ie− 2i
ε

ρ(λ)(1 + εh1(λ; ε)),

T (λ; ε) = e−τ(λ)/εei(ρ(λ)−ρ̃(λ))/ε(1 + εh2(λ; ε)). (2.13)

Here ρ(λ) and ρ̃(λ) are defined by

ρ(λ)= x−(λ)
√−λ+

∫ x−(λ)

−∞
[√u0(x)−λ−√−λ]dx = 1

2

∫ 0

λ

f−(u)du√
u − λ

, (2.14)

ρ̃(λ) = x+(λ)
√−λ −

∫ ∞

x+(λ)

[√u0(x) − λ − √−λ]dx = 1

2

∫ 0

λ

f+(u)du√
u − λ

,

(2.15)

where x−(λ) < x+(λ) are the solutions of the equation u0(x±(λ)) = λ and f∓
are the inverse function of the decreasing and increasing part of the initial data
respectively. The function τ is defined as

τ(λ) =
x+(λ)∫

x−(λ)

√
λ − u0(x)dx =

∫ λ

−1

√
λ − u f ′

+(u)du +
∫ −1

λ

√
λ − u f ′−(u)du.

(2.16)

The functions h1 and h2 are classical analytic symbols of nonnegative order.1

If we continue ρ analytically to a strip in the complex plane of the form

�+
θ0

= �θ0 ∩ {−1 +
δ

2
< Re (z) < 0} ∩ {0 ≤ Im (z) < σ̃ }, (2.17)

for sufficiently small positive σ̃ and with �θ0 given by (2.7), the expansions in
(2.13) are valid in the strip �+

θ0
.

(ii) For any fixed δ > 0, there is a constant c2 > 0 such that for λ ≤ −1 − δ, we have
that

r(λ; ε) = O(e− c2
ε ), as ε → 0. (2.18)

1 A function h(z; ε) defined in U × (0, ε0), where U is an open set in C, and ε0 > 0, is called a classical
analytic symbol of order m if h is an analytic function of z in U and if there is a sequence of analytic functions
a j (z) such that h(z; ε) admits the series

∑
j≥0 a j (z)ε

j+m as an asymptotic expansion as ε → 0 ∀z ∈ U and

for all compact K ⊂ U there exists a constant C > 0 such that |a j (z)| ≤ C j+1 j j ∀z ∈ K .
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(iii) Near −1, for sufficiently small δ > 0, we have the following asymptotics for
λ ∈ D+(−1, δ) with

D+(−1, δ) = {λ ∈ C : |λ + 1| < δ, Im λ ≥ 0}, (2.19)

r(λ; ε) = i
exp[−2iρ(λ)/ε]

N

(
− iτ(λ)

πε

) (1 + O(ε)), as ε → 0, (2.20)

where

N (z) =
√

2π

�(1/2 + z)
ez log(z/e), (2.21)

and �(z) is the standard �-function. The functions ρ(λ) and τ(λ) are the analytic
continuations to D+(−1, δ) of the corresponding functions defined on the interval
−1 ≤ λ < 0.

Remark 2.2. For complex values of λ close to −1, the two simple turning points x±(λ)

near x = xM are x±(λ) ≈ xM ±s
√

λ + 1, with s2 = 2/u′′
0(xM ). In particular for λ > −1,

these turning points are real, and for λ < −1, they are purely imaginary. Choosing the
branch cut of ρ for λ < −1, we can, for δ sufficiently small, extend ρ to an analytic
function in D+(−1, δ).

Remark 2.3. We note that the function N (z) defined in (2.21) is analytic in C\(−∞, 0]
and it has zeros on the negative axis. Using properties of the �-function, one can recover
the limits

lim|z|→∞ N (z) = 1, | arg z| < π, (2.22)

lim
z→0

N (z) = √
2. (2.23)

The poles of the reflection coefficient r(λ; ε) in a neighborhood of −1 correspond to the

poles of the function �

(
1

2
− iτ(λ)

πε

)
. Since τ(λ) ≈ πs

2
(λ + 1) as λ → −1, it is clear

that the poles of r(λ; ε) occur only for Im λ < 0 (cf. Remark 2.1), although as ε → 0
they are getting closer to −1.

Remark 2.4. Observe that formula (2.20) for r(λ; ε) interpolates between the exponential
decay given by (2.18) and the oscillations described by (2.13). Indeed for δ

2 < |λ+1| < δ,
the quantity |τ(λ)/ε| → ∞ when ε → 0. In this case the denominator of (2.20) tends
to one by (2.22) and r(λ; ε) ∼ i exp[−2iρ(λ)/ε], which gives (2.13) for λ > −1 + δ

2 .
For λ < −1 − δ

2 , it can be checked that the imaginary part of ρ+(λ) is negative, so that
one obtains (2.18).

Remark 2.5. Applying the condition (2.8) we obtain for real λ < 0,

|r(λ; ε)|2 + |T (λ; ε)|2 = 1,

which shows that

1 − |r(λ; ε)|2 = e−2τ(λ)(1 + O(ε)), as ε → 0, (2.24)
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where τ has been defined in (2.16). Therefore for −1 < λ < 0, |r(λ; ε)|2 is equal to one
modulo exponentially small terms. We also remark that for λ off the real line, namely
−1 < Re λ < 0 and Im λ small, r(λ; ε) is in general not bounded as ε → 0 because of
the factor e−2iρ/ε in (2.13) and (2.20).

Let us now define

κ(λ; ε) = −r(λ; ε)ie
2i
ε

ρ(λ), as λ ∈ V+ := �+
θ0

∪ D+(−1, δ), (2.25)

where ρ, has been defined in (2.14).
It then follows that κ(λ) → 1 uniformly in �+

θ0
. In D+(−1, δ), one obtains by (2.20)

that

κ(λ; ε) = 1

N (− iτ(λ)
πε

)
(1 + O(ε)).

For λ ∈ D+(−1, δ), we have that Re (−iτ(λ)) ≥ 0, so that by (2.22), κ(λ; ε) is
bounded as ε → 0.

Summarizing we can conclude from the above discussion that

κ(λ; ε) = 1 + O(ε), uniformly for λ ∈ �+
θ0

, (2.26)

|κ(λ; ε)| ≤ M, as λ ∈ V+. (2.27)

Example 2.6. Let us consider the potential u0(x) = −1/cosh2x . In this particular case,
the Schrödinger equation

ε2 fxx − 1

cosh2 x
f = λ f, (2.28)

has a solution of the following form,

f (x; λ) = 2−k(1 − ξ2)k/2
2F1(k − s, k + s + 1, k + 1; 1

2
(1 − ξ)),

where

ξ = tanh x, k = i

ε

√−λ, s = −1

2
+

i

ε

√
1 − ε2

4
,

and where 2F1(a, b, c; z) is a hypergeometric function [1] solving the equation
z(1 − z)w′′ + [c − (a + b + 1)z]w′ − abw = 0. As x → +∞, we observe that ξ → 1,
so that

f (x; λ, ε) ∼ e− i
ε

√−λx x → +∞.

Transforming the hypergeometric function

2F1(a, b, c; z) = �(c)�(c − a − b)

�(c − a)�(c − b)
2F1(a, b, a + b + 1 − c; 1 − z)

+
�(c)�(a + b − c)

�(a)�(b)
(1−z)c−a−b

2F1(c − a, c − b, c + 1 − a − b; 1 − z),
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one obtains for x → −∞ that

f (x; λ, ε) ∼ �(k + 1)�(−k)

�(s + 1)�(−s)
e

i
ε

√−λx +
�(k + 1)�(k)

�(k − s)�(k + s + 1)
e− i

ε

√−λx , as x →−∞.

Therefore the reflection coefficient is equal to

r(λ; ε) = �( i
ε

√−λ − s)�( i
ε

√−λ + s + 1)�(− i
ε

√−λ)

�(s + 1)�(−s)�( i
ε

√−λ)
. (2.29)

Using well-known asymptotic properties of the �-function [1], it is a straightforward
calculation to check that (2.13), (2.18), and (2.20) hold for this example.

3. Asymptotic Analysis of the RH Problem near the Gradient Catastrophe

We will apply the Deift/Zhou steepest descent method on the RH problem for the KdV
equation. The main lines of this method have been developed in [14,15], but the analysis
near the time and point of gradient catastrophe has not been established yet. The starting
point of our analysis is the RH problem for M given in Sect. 2.

RH problem for M.

(a) M(λ; x, t, ε) is analytic for λ ∈ C\R,
(b) M satisfies the following jump conditions:

M+(λ) = M−(λ)

(
1 r(λ; ε)e2iα(λ;x,t)/ε

−r̄(λ; ε)e−2iα(λ;x,t)/ε 1 − |r(λ; ε)|2
)

, for λ < 0,

M+(λ) = M−(λ)σ1, σ1 =
(

0 1
1 0

)
, for λ > 0,

(c) M(λ; x, t, ε) ∼
⎛
⎝ 1 1

i
√−λ −i

√−λ

⎞
⎠ , for λ → ∞.

Our goal is to find asymptotics for M(λ; x, t, ε) in the small dispersion limit where
ε → 0, while x, t tend at an appropriate rate to the point and time of gradient catastrophe
xc, tc for the Hopf equation ut + 6uux = 0.

3.1. Construction of the G-function. A first crucial issue in the asymptotic analysis is the
construction of an appropriate G-function. In [14], a G-function has been constructed
when taking the small dispersion limit ε → 0 for fixed x and t . However we will,
later on, take a double scaling limit where x and t tend to the critical values xc and tc
simultaneously with ε → 0. For this purpose we need to modify the G-function in such
a way that we will be able to construct a local parametrix for λ near the critical point uc.

Let G be defined as follows, with uc = u(xc, tc):

G(λ; x, t) =
√

uc − λ

π

∫ 0

uc

ρ(η) − α(η; x, t)

(η − λ)
√

η − uc
dη, (3.1)
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where ρ and α are defined as before by

ρ(λ) = x−(λ)
√−λ +

∫ x−(λ)

−∞
[√u0(x) − λ − √−λ]dx,

α(λ; x, t) = 4t (−λ)3/2 + x(−λ)1/2,

and
√

uc − λ is analytic off [uc, +∞), positive for λ < uc. Now G is analytic in
C\[uc, +∞) and G(λ) = O(λ−1/2) as λ → ∞. One checks directly that

G1(x, t) := lim
λ→∞(−λ)1/2G(λ; x, t) = 1

π

∫ 0

uc

ρ(η) − α(η; x, t)√
η − uc

dη. (3.2)

Since ρ(η) is independent of x , we obtain

∂xG1(x, t) = −1

π

∫ 0

uc

√ −η

η − uc
dη

= uc

2
. (3.3)

In the following proposition, we collect two boundary value relations for the
G-function. Together with the asymptotic behavior of G, we could have considered
those as the defining properties for the G as well, instead of defining it explicitly by
means of (3.1) and deriving the properties afterwards.

Proposition 3.1. G is analytic in C\[uc, +∞), and we have

G+(λ) + G−(λ) = 0, for λ ∈ (0, +∞),

G+(λ) + G−(λ) − 2ρ(λ) + 2α(λ) = 0, forλ ∈ (uc, 0),

G+(λ) − G−(λ) = 0, forλ ∈ (−∞, uc).

Proof. The first statement is immediate since
√

uc − λ+ = −√
uc − λ− and since λ > 0

does not belong to the interval of integration. For the second statement, note that as
λ ∈ (uc, 0), G+ + G− is equal to a contour integral around λ. A simple residue argument
gives us the required result. The last statement is obvious because

√
uc − λ is branched

for λ > uc and λ < uc does not belong to the interval of integration. ��

3.2. First transformation of the RH problem. In this section we perform a first transfor-
mation of the RH problem for M . The goal of this transformation is to simplify the jump
matrices for the RH problem, using the properties of the G-function in an appropriate
way.

We define

T (λ; x, t, ε) = M(λ; x, t, ε)e− i
ε
G(λ;x,t)σ3 . (3.4)

From the RH conditions for M and the definition of T , we can now derive the RH
conditions for T .
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RH problem for T

(a) T is analytic in C\R,
(b) T+(λ) = T−(λ)vT (λ), as λ ∈ R,

vT (λ) = e
i
ε
G−(λ)σ3vM (λ)e− i

ε
G+(λ)σ3 ,

(c) T (λ) ∼
(

1 1
i
√−λ −i

√−λ

)
as λ → ∞.

Using Proposition 3.1, one checks that the jump matrix vT transforms to

vT (λ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1, as λ > 0,
(

1 r(λ)e
2i
ε

(G(λ)+α(λ))

−r̄(λ)e− 2i
ε

(G(λ)+α(λ)) 1 − |r(λ)|2
)

, as λ ∈ (−∞, uc),

⎛
⎝e− i

ε
(G+(λ)−G−(λ)) r(λ)e

2i
ε

ρ(λ)

−r̄(λ)e− 2i
ε

ρ(λ) (1 − |r(λ)|2)e i
ε
(G+(λ)−G−(λ))

⎞
⎠ , as λ ∈ (uc, 0).

(3.5)

It is important that we can express the KdV solution u(x, t, ε) in terms of the new RH
problem for T . Using (2.12), (3.3), and (3.4), the solution of the KdV equation can now
be obtained from

u(x, t, ε) = 2∂xG1(x, t) − 2iε∂x T 1
11(x, t, ε)

= uc − 2iε∂x T 1
11(x, t, ε), (3.6)

where T 1
11 is given by

T11(λ; x, t, ε) = 1 +
T 1

11(x, t, ε)√−λ
+ O(λ−1), as λ → ∞.

Let us define an auxiliary function φ in V = V+ ∪V−, where V+ is the region defined
in (2.25) and (2.17), and V− = V+, by

φ(λ; x, t) = G(λ; x, t) − ρ(λ) + α(λ; x, t), for λ ∈ V+, (3.7)

φ(λ; x, t) = φ∗(λ; x, t) = φ(λ̄; x, t), for λ ∈ V−. (3.8)

Note that because of reality, φ is analytic across (−1, uc), but not on (−1 − δ,−1),
because this is a part of the branch cut for ρ, as we discussed in Sect. 2. On (uc, 0),
φ is not analytic because of the branch cut for G. We obtain from Proposition 3.1 that
the following equation holds:

2φ+(λ; x, t) = G+(λ; x, t) − G−(λ; x, t), for λ ∈ (uc, 0). (3.9)

Lemma 3.2. The function φ defined in (3.7)-(3.8) takes the form

φ(λ; x, t) = √
uc − λ(x − xc − 6uc(t − tc)) +

∫ uc

λ

( f ′−(ξ) + 6t)
√

ξ − λdξ. (3.10)
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Proof. Using the definition (3.1) of G and (2.14), it follows that

G(λ) =
√

uc − λ

π

∫ 0

uc

1
2

∫ 0
η

f−(ξ)dξ√
ξ−η

− 4t (−η)3/2 − x(−η)1/2

(η − λ)
√

η − uc
dη.

For λ /∈ (uc, 0) one uses the residue theorem to integrate the terms linear in x and t
while for the double integral we exchange the order of integration obtaining

G(λ) = √
uc − λ(x − 6uct) + 4t (uc − λ)3/2 − α(λ; x, t)

+

√
uc − λ

2π

∫ 0

uc

f−(ξ)

∫ ξ

uc

dη√
ξ − η(η − λ)

√
η − uc

dξ.

Applying the residue theorem to the last integral one obtains

G(λ) = √
uc − λ(x − 6uct) + 4t (uc − λ)3/2 − α(λ; x, t)

+
1

2

∫ 0

λ

f−(ξ)dξ√
ξ − λ

+
1

2

∫ λ

uc

f−(ξ)dξ√
ξ − λ

.

Integrating by parts the last term of the l.h.s. of the above relation and using the identity
xc = 6uctc + f−(uc), one arrives at the statement. In the case λ ∈ (uc, 0) one has to
evaluate the principal value of the integral defining G in the same way as done above.

��
The introduction of φ enables us to rewrite the jump matrix vT in a more convenient

form.
Indeed we have that

vT (λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1, as λ > 0,⎛
⎝ 1 r(λ)e

2i
ε (G(λ)+α(λ))

−r̄(λ)e− 2i
ε (G(λ)+α(λ)) 1 − |r(λ)|2

⎞
⎠, as λ < −1 − δ,

⎛
⎝ 1 iκ+(λ)e

2i
ε

φ+(λ)

iκ∗−(λ)e− 2i
ε

φ−(λ) 1 − |r(λ)|2

⎞
⎠ , as λ ∈ (−1 − δ, uc),

⎛
⎝e− 2i

ε
φ+(λ) iκ(λ)

i κ̄(λ) (1 − |r(λ)|2)e 2i
ε

φ+(λ)

⎞
⎠ , as λ ∈ (uc, 0).

(3.11)

As before we have written κ for

κ(λ; ε) = −ir(λ; ε)e
2i
ε

ρ(λ), as λ ∈ V+, (3.12)

with boundary values on R denoted by κ+. We have written κ∗−(λ) = κ̄+(λ). In particular
near uc, where our main focus is, the introduction of φ will turn out to be convenient.

In the following proposition, we discuss the behavior of φ in different regions of V .
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Proposition 3.3. For sufficiently small δ > 0, there exists δ1 > 0 and there exists a
neighborhood W of (−1 − δ, uc − δ) such that for |x − xc| < δ1, |t − tc| < δ1, the
following holds:

Im φ(λ; x, t) > 0, as λ ∈ W ∩ {z ∈ C : Im z > 0},
Im φ(λ; x, t) < 0, as λ ∈ W ∩ {z ∈ C : Im z < 0},
±Im φ±(λ; x, t) > 0, for λ ∈ [−1 − δ,−1),

Im φ+(λ; x, t) < 0, as λ ∈ [uc + δ, 0],
−τ(λ) + iφ+(λ; x, t) < 0, as λ ∈ [uc + δ, 0].

(3.13)

Proof. Taking the derivative of (3.10) one obtains

φ′(λ; x, t) = − 1

2
√

uc − λ
(x − xc − 6uc(t − tc)) − 1

2

∫ uc

λ

f ′−(ξ) + 6t√
ξ − λ

dξ. (3.14)

Since f ′−(ξ) + 6tc < 0 for ξ ∈ (−1, 0), it follows that

φ′(λ; xc, tc) > 0, for λ ∈ [−1, uc − δ].
By continuity there exists δ1 > 0 such that for |x − xc| < δ1, |t − tc| < δ1,

φ′(λ; x, t) > 0, as λ ∈ [−1, uc − δ]. (3.15)

From the above inequality, by the Cauchy-Riemann relations, it follows that

Im φ(λ; x, t) > 0, for λ ∈ W ∩ {λ ∈ C : Re λ > −1, Im λ > 0}, (3.16)

Im φ(λ; x, t) < 0, for λ ∈ W ∩ {λ ∈ C : Re λ > −1, Im λ < 0}, (3.17)

at least if the neighborhood W is chosen sufficiently small.
In the case Re λ < −1, we need to be a little bit more careful because of the branch

cut for φ. The function f−, the inverse of the decreasing part of the initial data, now
assumes the form

f−(λ) = xM −
√

λ + 1√
u′′

0(xM )/2
(1 + O(λ + 1)), as λ → −1, (3.18)

where
√

λ + 1 is analytic in C\(−∞,−1] and positive for λ > −1. Inserting (3.18) into
(3.10), it then follows immediately that

Im φ(λ; x, t) > 0, for λ ∈ W ∩ {λ ∈ C : −1 − δ ≤ Re λ < −1, Im λ > 0}, (3.19)

Im φ(λ; x, t) < 0, for λ ∈ W ∩ {λ ∈ C : −1 − δ ≤ Re λ < −1, Im λ < 0}, (3.20)

again for a suitably chosen W , and also

Im φ+(λ; x, t) > 0, for λ ∈ [−1 − δ,−1), (3.21)

Im φ−(λ; x, t) < 0, for λ ∈ [−1 − δ,−1), (3.22)

so that the first, second, and third inequalities in (3.13) hold true.
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Regarding the fourth inequality in (3.13) we have for λ ∈ [uc + δ, 0] that

iφ+(λ; x, t) = √
λ − uc(x − xc − 6uc(t − tc)) −

∫ λ

uc

( f ′−(ξ) + 6t)
√

λ − ξdξ.

This means that iφ+(λ; xc, tc) > 0 for λ ∈ [uc +δ, 0]. When |x −xc| < δ1, |t − tc| < δ1
with δ1 > 0 sufficiently small, it follows that iφ+(λ; x, t) > 0 for λ ∈ [uc + δ, 0].

For proving the last inequality of Proposition 3.3, with τ defined as in (2.16), it is
straightforward to verify that for λ ∈ [uc + δ, 0],

−τ(λ) + iφ+(λ; x, t) = √
λ − uc[x − xc − 6uc(t − tc)] − 4t (λ − uc)

3
2

+
∫ uc

−1

√
λ − ξ f ′−(ξ)dξ −

∫ λ

−1

√
λ − ξ f ′

+(ξ)dξ,

where f+ is the inverse function of the increasing part of the initial data u0(x). Since

−τ(λ; xc, tc) + iφ+(λ; xc, tc) < 0, as λ ∈ [uc + δ, 0],
there exists δ1 > 0 sufficiently small, such that −τ(λ; x, t) + iφ+(λ; x, t) < 0 when
|x − xc| < δ1 and |t − tc| < δ1. ��

As ε → 0, the above proposition shows us exponential decay of the diagonal entries of
vT on [uc+δ, 0], and oscillating behavior of the off-diagonal entries of vT on (−1−δ, uc).
Performing a next transformation will enable us to deform the oscillatory entries to
exponentially decaying entries as well.

3.3. Opening of the lens. We are able to factorize the jump matrix in the following way
for −1 − δ < λ < uc,

vT (λ) =
(

1 0

iκ∗−(λ)e− 2i
ε

φ−(λ) 1

) (
1 iκ+(λ)e

2i
ε

φ+(λ)

0 1

)
. (3.23)

Furthermore the first factor can be extended analytically to the lower half plane and the
second factor can be extended to the upper half plane. This observation enables us to
move the jump contour, which coincided with the real line so far, into the complex plane.
The spirit of the Deift/Zhou steepest descent method is that, deforming the contours,
one can deform oscillatory jump matrices (on the real line) to exponentially decaying
jump matrices (in the complex plane).

We will use the factorization of the jump matrix to open lenses along the interval
(−1 − δ, uc) for some sufficiently small but fixed δ > 0. It is not necessary to open
lenses elsewhere on the real line, because there the jump matrices will turn out to be
exponentially small already without deforming the contour. However it is necessary
to open the lens starting from some point slightly to the left of −1. Opening the lens
exactly at −1 would not lead to exponentially small jump matrices near −1. Let us
consider a lens-shaped region as shown in Fig. 1. We retain the freedom to specify the
precise choice of the lens later on, but for now we assume that �1 is, except near uc,
contained in W ∩ {z ∈ C : Im z > 0}, and that �2 is, except near uc, contained in
W ∩ {z ∈ C : Im z < 0}, where W is a region for which Proposition 3.3 is valid.
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Fig. 1. The jump contour �S and the jumps for S

Define S as follows:

S(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (λ)

⎛
⎜⎝

1 −iκ(λ)e
2i
ε

φ(λ)

0 1

⎞
⎟⎠ , in region I,

T (λ)

(
1 0

iκ∗(λ)e− 2i
ε

φ(λ) 1

)
, in region II,

T (λ), elsewhere,

(3.24)

with κ∗(λ) = κ̄(λ̄).
Now the RH problem for S takes the following form.

RH problem for S.

(a) S is analytic in C\�S .
(b) S+(λ) = S−(λ)vS for λ ∈ �S , with

vS(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

1 iκ(λ)e
2i
ε

φ(λ)

0 1

⎞
⎟⎠ , on �1,

(
1 0

iκ∗(λ)e− 2i
ε

φ(λ) 1

)
, on �2,

(
e− 2i

ε
φ+(λ) iκ(λ)

i κ̄(λ) (1 − |r(λ)|2)e 2i
ε

φ+(λ)

)
, as λ ∈ (uc, 0),

vT (λ), as λ ∈ (−∞,−1 − δ) ∪ (0, +∞).

(3.25)

(c) S(λ) ∼
(

1 1
i
√−λ −i

√−λ

)
as λ → ∞.

Since S(λ) = T (λ) for large λ, formula (3.6) remains valid for S, so that we can retrieve
the KdV solution by

u(x, t, ε) = uc − 2iε∂x S1
11(x, t, ε), (3.26)

where

S11(λ; x, t, ε) = 1 +
S1

11(x, t, ε)√−λ
+ O(λ−1), as λ → ∞. (3.27)
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In the following proposition, we show that the jump matrix vS converges to a constant
matrix uniformly fast as ε → 0, except for in a neighborhood of uc. We should note that
this is only true because of the semiclassical limit of the reflection coefficient described
in Sect. 2, so indirectly this relies on Assumptions 1.1.

Proposition 3.4. We can choose a suitable contour �S such that for any neighborhood
U of uc,

vS(λ) = v(∞)(λ)(I + O(ε)), as ε → 0, (3.28)

uniformly for λ ∈ �S\U , with v(∞) defined by

v(∞)(λ) =

⎧⎪⎪⎨
⎪⎪⎩

σ1, for λ > 0,

iσ1, for λ ∈ (uc, 0),

I, elsewhere.

(3.29)

Proof. (i) For λ > 0, vS(λ) = v(∞)(λ) so that the result holds trivially here.
(ii) For λ ∈ (uc, 0)\U , it follows from (2.26) that the off-diagonal entries of vS(λ)

tend to i with uniformly small error of order ε. The 11-entry and the 22-entry of
vS(λ) are exponentially small because of (2.16) and Proposition 3.3.

(iii) For λ ∈ (�1 ∪ �2)\U , under the assumption of a well chosen contour in view of
Proposition 3.3, it follows from (2.27) and Proposition 3.3 that

vS(λ) = v(∞)(λ)(I + O(e− c3
ε )), asε → 0,

for some constant c3 > 0.
(iv) For λ < −1 − δ, vS(λ) → I because of the uniform convergence of the reflection

coefficient, see (2.18), together with the reality of G and α. ��
Remark 3.5. Note that the error term of the jump matrices is exponentially small everyw-
here except for on the interval (uc, 0), where the WKB approximation for the reflection
coefficient causes the O(ε)-error.

3.4. Outside parametrix. Ignoring the exponentially small jumps and a small neigh-
borhood U of uc, where the uniform exponential decay of the jump matrices does not
remain valid, our RH problem reduces to the following RH problem for P(∞).

RH problem for P(∞).

(a) P(∞) : C\[uc, +∞) → C
2×2 is analytic,

(b) P(∞) satisfies the following jump conditions on (uc, +∞):

P(∞)
+ = P(∞)

− σ1, as λ ∈ (0, +∞), (3.30)

P(∞)
+ = i P(∞)

− σ1, as λ ∈ (uc, 0), (3.31)

(c) P(∞) has the following behavior as λ → ∞:

P(∞)(λ) ∼
(

1 1

i(−λ)1/2 −i(−λ)1/2

)
. (3.32)
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We can construct the solution of this RH problem explicitly as follows:

P(∞)(λ) = (−λ)1/4(uc − λ)−σ3/4
(

1 1
i −i

)
, (3.33)

from which it follows directly that the asymptotic condition (3.32) can be strengthened
to

P(∞)(λ) =
(

I +
uc

4λ
σ3 + O(λ−2)

) (
1 1

i(−λ)1/2 −i(−λ)1/2

)
, as λ → ∞. (3.34)

In the outside region away from uc, the leading order asymptotics of S will be
determined by P(∞). To obtain uniform asymptotics and asymptotics beyond the leading
term, we still need to construct a local parametrix near uc which matches with the outside
parametrix at ∂U . This is the goal of the next section. Note also that the uniform decay of
the jump matrices remains valid near −1 and 0, so that there is no necessity to construct
local parametrices near those points.

3.5. Local parametrix near uc. The uniform convergence of the jump matrices as ε → 0
breaks down near uc. Here we need to construct a local parametrix by mapping a suitable
model RH problem onto a neighborhood U of uc. We will use a model RH problem which
is associated with a fourth order analogue of the Painlevé I equation, the P2

I equation
(1.5). The aim of this section is to construct a local parametrix P in U which has
approximately the same jumps as S has in U , and which ‘matches’ with P(∞) at ∂U .
With ‘matching’ we mean that P(λ)P(∞)(λ)−1 tends to the identity matrix in a suitable
double scaling limit. The appropriate double scaling limit will turn out to be the one
where we let ε → 0 and in the same time we let x → xc and t → tc in such a way that
t − tc = O(ε4/7) and x − xc − 6uc(t − tc) = O(ε6/7). More precisely, we want P to
satisfy a RH problem of the following form.

RH problem for P.

(a) P : U\�S → C
2×2 is analytic,

(b) P satisfies the following jump condition on U ∩ �S :

P+(λ) = P−(λ)vP (λ), (3.35)

with vP given by

vP (λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

1 ie
2i
ε

φ(λ;x,t)

0 1

⎞
⎟⎠, as λ ∈ �1,

(
1 0

ie− 2i
ε

φ(λ;x,t) 1

)
, as λ ∈ �2,

(
e− 2i

ε
φ+(λ;x,t) i
i 0

)
, as λ ∈ (uc, 0),

(3.36)
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Fig. 2. The jump contour for P

(c) if we perform the double scaling limit where we let ε → 0 and at the same time
we let x → xc and t → tc in such a way that

lim
x − xc − 6uc(t − tc)

(8kε6)1/7 = X, lim
6(t − tc)

(4k3ε4)1/7 = T, X, T ∈ R, (3.37)

the following matching condition holds:

P(λ)P(∞)(λ)−1 → I, for λ ∈ ∂U . (3.38)

We will show later on that vP approximates vS in the following sense:

vS(z)v−1
P (z) = I + O(ε), uniformly for z ∈ U ∩ �S as ε → 0. (3.39)

3.5.1. Model RH problem associated with P2
I . Recall that the P2

I equation is the follo-
wing fourth order differential equation for U = U (X, T ):

X = T U −
[

1

6
U 3 +

1

24
(U 2

X + 2UUX X ) +
1

240
UX X X X

]
. (3.40)

It was conjectured in [17] and proven in [8] that this equation has a real pole-free solution
U (X, T ) with asymptotics given by (1.6). The RH problem characterizing this solution
is the following, see [8,27].

RH problem for �.

(a) � = �(ζ ; x, t) is analytic for ζ ∈ C\�, with � as shown in Fig. 3.
(b) � satisfies the following jump relations on �:

�+(ζ ) = �−(ζ )

(
0 1

−1 0

)
, for ζ ∈ �3, (3.41)

�+(ζ ) = �−(ζ )

(
1 1
0 1

)
, for ζ ∈ �1, (3.42)

�+(ζ ) = �−(ζ )

(
1 0
1 1

)
, for ζ ∈ �2 ∪ �4. (3.43)



Universality of Break-up Profile for KdV Equation in Small Dispersion Limit 1001

Fig. 3. The jump contour for � for �

(c) � has the following behavior at infinity, uniformly for (X, T ) in compact subsets
of C

2\P , where P denotes the set of poles of U :

�(ζ) = ζ− 1
4 σ3 N

(
I + Qσ3ζ

−1/2 +
1

2

(
Q2 iU

−iU Q2

)
ζ−1

+Rσ3ζ
−3/2 + O(ζ 2)

)
e−θ(ζ ;X,T )σ3 , (3.44)

where U = U (X, T ) is the real pole-free solution of the P2
I equation (3.40),

∂X Q(X, T ) = U (X, T ), R is some unimportant function of X and T , and N and
θ are given by

N = 1√
2

(
1 1

−1 1

)
e− π i

4 σ3 , θ(ζ ; X, T ) = 1

105
ζ 7/2 − T

3
ζ 3/2 + Xζ 1/2. (3.45)

Remark 3.6. It is important for us that, for each (X, T ) ∈ R
2, there is a neighborhood

A ⊂ C
2 of (X, T ) such that �(.; x, t) is well-defined for all (x, t) ∈ A and such that

the asymptotic condition (3.44) holds uniformly for (x, t) ∈ A. This is only guaranteed
by the fact that U (X, T ) has no real poles [8].

Remark 3.7. There is some freedom in choosing the angles that �2 and �4 make with the
negative real axis, as long as those angles are in absolute value smaller than 2π

7 (which
is the angle for the Stokes lines closest to the negative real line). For simplicity, we fix
�2 = {z ∈ C : arg z = 6π

7 } and �4 = {z ∈ C : arg z = −6π
7 } to be the so-called

anti-Stokes lines.

The RH solution � provides in each sector fundamental bases of solutions to the Lax
equations associated to the P2

I equation. Those equations are

�ζ = A�, �X = B�, �T = C�, (3.46)

where the matrices A, B, and C are polynomials in ζ , given by

A = 1

240

(
−4UXζ − (12UUX + UX X X ) 8ζ 2 + 8Uζ + (12U 2 + 2UX X − 120T )

A21 4UXζ + (12UUX + UX X X )

)
,

A21 = 8ζ 3 − 8Uζ 2 − (4U 2 + 2UX X + 120T )ζ + (16U 3 − 2U 2
X + 4UUX X + 240X),

B =
(

0 1
ζ − 2U 0

)
, C = 1

6

(
UX −2ζ − 2U

−2ζ 2 + 2Uζ + c(X, T ) −UX

)
.
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Compatibility of the first and the second equation in (3.46) shows (after a not so short
derivation) that U solves the P2

I equation, while compatibility of the first and the third
equation in (3.46) shows that U (X, T ) solves the KdV equation normalized to the form
UT + UUX + 1

12UX X X = 0, see also [17]. One can make the rescalings as in formula
(1.7) to obtain the KdV equation in the form (1.3).

Using this relation between the P2
I equation and the KdV equation, it follows from a

result of Menikoff [32] that the pole-free solution to P2
I with asymptotic behavior (1.6)

is unique. Later on, this uniqueness (without existence) was also proven by Moore [33]
using WKB techniques.

3.5.2. Modified model RH problem. In order to obtain a RH problem that we can use to
construct the local parametrix near uc, we transform the RH problem for � by defining

 in the following way:


(ζ ; X, T ) =

⎧⎪⎪⎨
⎪⎪⎩

e
π i
4 σ3�(ζ)eθ(ζ ;X,T )σ3

(
0 −1
1 0

)
e

π i
4 σ3 , as Im ζ > 0,

e− π i
4 σ3�(ζ)eθ(ζ ;X,T )σ3e

π i
4 σ3 , as Im ζ < 0.

(3.47)

Clearly 
 is analytic in C\�, where � is the jump contour for � shown in Fig. 3.
Using the fact that θ+(ζ ; X, T ) = −θ−(ζ ; X, T ) for ζ ∈ (−∞, 0) and (3.41), one can
check using the definition (3.47) that 
 has no jump on (−∞, 0) and is thus analytic
on (−∞, 0). Using (3.42), (3.43), and (3.47), one checks that the jumps along the other
rays in the contour do not vanish but are modified by the transformation. By (3.44) and
(3.47), also the asymptotic behavior of 
 is different from the asymptotic behavior of �.

 satisfies the following RH problem.

RH problem for 
.

(a) 
 is analytic for ζ ∈ C\�̂, with �̂ = �1 ∪ �2 ∩ �4.
(b) 
 satisfies the following jump relations on �̂:


+(ζ ) = 
−(ζ )

(
e−2θ(ζ ;X,T ) i

i 0

)
, for ζ ∈ �1, (3.48)


+(ζ ) = 
−(ζ )

(
1 ie2θ(ζ ;X,T )

0 1

)
, for ζ ∈ �2, (3.49)


+(ζ ) = 
−(ζ )

(
1 0

ie2θ(ζ ;X,T ) 1

)
, for ζ ∈ �4. (3.50)

(c) 
 has the following behavior at infinity,


(ζ) = e− π i
4 σ3ζ− 1

4 σ3 N

×
(

I + Qσ3ζ
−1/2 +

1

2

(
Q2 iU

−iU Q2

)
ζ−1 + Rσ3ζ

−3/2 + O(ζ 2)

)

×

⎧⎪⎪⎨
⎪⎪⎩

(
0 −1
1 0

)
e

π i
4 σ3 , as ζ → ∞ with Im ζ > 0,

e
π i
4 σ3 , as ζ → ∞ with Im ζ < 0,

(3.51)
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which can be rewritten in the following way, both for ζ → ∞ in the upper and the
lower half plane:


(ζ) = 1√
2
(−ζ )−

1
4 σ3

(
1 1

−1 1

) (
I + i Qσ3(−ζ )−1/2 − 1

2

(
Q2 U
U Q2

)
(−ζ )−1

+ i Rσ3(−ζ )−3/2 + O(ζ−2)
)

. (3.52)

This behavior holds uniformly for (X, T ) in compact subsets of C
2\P , where P is

the set of poles of U .

3.5.3. Construction of the parametrix. We are now ready to specify the form of the
parametrix P . Let P be of the following form:

P(λ) = E(λ; ε)
(ε−2/7 f (λ); ε−6/7g1(λ; x̃), ε−4/7g2(λ; t)), (3.53)

where E , f , g1, and g2 are analytic in U and x̃ = x − 6uct . Furthermore we require
that f (R ∩ U) ⊂ R with f (uc) = 0 and f ′(uc) > 0, in other words f is a conformal
mapping from U to a neighborhood of the origin. We will determine the precise form of
E , f , g1, and g2 later.

First we specify our choice of the contour �S ∩U by requiring that f (�S ∩U) ⊂ �̂,
which we can do since f is a conformal mapping. By this construction P and S have their
jumps on the same contour in U . We will now use the freedom we still have in defining
f , g1, and g2 in order to create jumps for P that are the same as the ones specified in
(3.35)–(3.36). Afterwards we will define E in such a way that the matching condition
(3.38) is satisfied as well.

3.5.4. Definition of f , g1, and g2. Our goal is to define f , g1, and g2 in such a way that

θ(ε−2/7 f (λ); ε−6/7g1(λ; x̃), ε−4/7g2(λ; t)) = i

ε
φ+(λ; x̃, t), for λ ∈ (uc, 0) ∩ U ,

θ(ε−2/7 f (λ); ε−6/7g1(λ; x̃), ε−4/7g2(λ; t)) = i

ε
φ(λ; x̃, t), for λ ∈ �1 ∩ U ,

θ(ε−2/7 f (λ); ε−6/7g1(λ; x̃), ε−4/7g2(λ; t)) = − i

ε
φ(λ; x̃, t), for λ ∈ �2 ∩ U ,

(3.54)

with φ and θ defined by (3.7) and (3.45). For simplicity, we changed variables for φ and
consider it now as a function of x̃ instead of x , with

x̃ = x − 6uct.

We should now compare the jump matrices (3.36) for P to the ’model’ jump matrices
(3.48)–(3.50) for 
. The above conditions (3.54) imply that the parametrix P , defined
as in (3.53), satisfies the requested jump condition (3.35).

With θ(ζ ) having its branch cut along the negative real line, one verifies that the
equations in (3.54) are satisfied if

θ(− f (λ);−g1(λ; x̃), g2(λ; t)) = −φ(λ; x̃, t), for λ ∈ U . (3.55)
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In agreement with this condition, we first define f in such a way that

1

105
(− f (λ))7/2 = −φ(λ; x̃c, tc). (3.56)

Using (1.9) and (3.10), integrating by parts twice leads to

φ(λ; x̃, t) = √
uc − λ(x̃ − x̃c) + 4(uc − λ)

3
2 (t − tc)

+
4

15

∫ uc

λ

f ′′′− (ξ)(ξ − λ)
5
2 dξ. (3.57)

Keeping track of the branch cuts for the fractional powers, this implies that f is analytic
in U with

f (uc) = 0, f ′(uc) = (8k)
2
7 , k = − f ′′′− (uc) > 0. (3.58)

Now we can define g2 by requiring that

1

3
g2(λ; t)(− f (λ))3/2 = φ(λ; x̃c, t) − φ(λ; x̃c, tc) = 4(uc − λ)

3
2 (t − tc). (3.59)

Since f is a conformal mapping, this defines g2 analytically in U , with

g2(uc; t) = 6(t − tc)

(4k3)1/7 . (3.60)

Finally we define g1 by the equation

g1(λ; x̃, t)(− f (λ))1/2 = φ(λ; x̃, t) − φ(λ; x̃c, t) = √
uc − λ(x̃ − x̃c). (3.61)

Again using the fact that f is a conformal mapping, g1 is analytic in U , with

g1(uc; x̃, t) = x − xc − 6uc(t − tc)

(8k)
1
7

. (3.62)

Summing up (3.56), (3.59), and (3.61), we find using (3.45) that indeed condition (3.55)
is satisfied. This means that the jump conditions (3.35)–(3.36) for P are valid.

The function 
(ζ ; X, T ) is not defined for values of X and T , where U (X, T ) has a
pole. In order to ensure that the parametrix is well-defined, we need to know that U has
no pole at (ε−6/7g1(λ; x̃, t), ε−4/7g2(λ; t)). In the double scaling limit where ε → 0
and at the same time x → xc and t → tc in such a way that

lim
x − xc − 6uc(t − tc)

(8kε6)1/7 = X, lim
6(t − tc)

(4k3ε4)1/7 = T, X, T ∈ R,

it follows from (3.59)-(3.62) that

ε−6/7g1(λ; x̃, t) → X, ε−4/7g2(λ; t) → T, as λ → uc.

From the fact that U (X, T ) is meromorphic both in X and T and that it has no poles
for real values of X, T , it follows that there is a pole-free neighborhood of (X, T ) in C

2

(cf. Remark 3.6), in which (ε−6/7g1(λ; x̃, t), ε−4/7g2(λ; t)) is contained for sufficiently
small ε, provided that λ lies in a sufficiently small neighborhood U of uc.
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In order to satisfy also the matching condition (3.38), we define the analytic pre-factor
E by

E(λ; ε) = 1√
2

P∞(λ)

(
1 −1
1 1

)
(−ε−2/7 f (λ))

σ3
4 . (3.63)

Using the definition (3.33) of P(∞), one checks directly that E is analytic in U , as it
should be in order to have a suitable parametrix. The matching condition (3.38) for
λ ∈ ∂U in the double scaling limit can now be specified as follows:

P(λ)P(∞)(λ)−1 = P∞(λ)
(

I + i Qσ3(− f (λ))−1/2ε1/7

−1

2

(
Q2 U
U Q2

)
(− f (λ))−1ε2/7 + i Rσ3(− f (λ))−3/2ε3/7 + O(ε4/7)

)
P∞(λ)−1.

(3.64)

Here we used the abbreviations

U = U (ε−6/7g1(λ; x̃, t), ε−4/7g2(λ; t)), (3.65)

Q = Q(ε−6/7g1(λ; x̃, t), ε−4/7g2(λ; t)), (3.66)

R = R(ε−6/7g1(λ; x̃, t), ε−4/7g2(λ; t)). (3.67)

This ends the construction of the local parametrix.

3.6. Final transformation. We define

R(λ) =
{

S(λ)P(∞)(λ)−1, as λ ∈ C\U ,
S(λ)P(λ)−1, as λ ∈ U .

(3.68)

Note first that outside parametrix has been constructed in such a way that R has no jump
on (0, +∞). For z ∈ U ∩ �S , we have that

R−1− (z)R+(z) = P−(z)vS(z)v
−1
P (z)P−1− (z). (3.69)

On one hand it follows from the construction of the parametrix that P−(z) is uniformly
bounded for z ∈ U ∩ �S . On the other hand

vSv−1
P =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

1 i(κ − 1)e
2i
ε

φ

0 1

⎞
⎟⎠ , on �1 ∩ U ,

(
1 0

i(κ∗ − 1)e− 2i
ε

φ 1

)
, on �2 ∩ U ,

(
κ i(κ − 1)e− 2i

ε
φ+

−i(1 − |r |2)e 2i
ε

φ+ κ∗ + (1 − |r |2)

)
, on (uc, 0) ∩ U .

(3.70)

Except for the 21-entry on (uc, 0), the exponentials in the above matrices are uniformly
bounded on the jump contours inside U because of (3.54) and the fact that the jumps for

 are uniformly bounded on the jump contour �̂. Here the WKB approximation (2.26)
for κ ensures that vSv−1

P = I + O(ε). If in addition we use (2.24) and Proposition 3.3,
the same follows for the 21-entry on (uc, 0) ∩ U . By Proposition 3.4, one checks that
the RH problem for R has the following form:
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Fig. 4. The contour �R after the third and final transformation

RH problem for R.

(a) R is analytic in C\�R , with �R = (�S ∪ ∂U)\(0, +∞) as shown in Fig. 4.
(b) R+(λ) = R−(λ)vR(λ), where the jump matrix vR has the following double scaling

asymptotics:

vR(λ) =
{

P(λ)P(∞)(λ)−1, as λ ∈ ∂U ,

I + O(ε), as λ ∈ �R\∂U .
(3.71)

(c) R(λ) → I as λ → ∞.

This is the final RH problem in our analysis. In the next section, we will obtain
uniform asymptotics for R which will enable us to prove Theorem 1.2.

4. Proof of Theorem 1.2

Using (3.64), we can expand the jump matrix vR in fractional powers of ε in the double
scaling limit,

vR(λ) = I + ε1/7�(1)(λ) + ε2/7�(2)(λ) + O(ε3/7), (4.1)

with

�(1)(λ) = i Q · (− f (λ))−1/2 P(∞)(λ)σ3 P(∞)(λ)−1, (4.2)

�(2)(λ) = −1

2
(− f (λ))−1 P(∞)(λ)

(
Q2 Y

Y Q2

)
P(∞)(λ)−1, (4.3)

for λ ∈ ∂U , and

�(1)(λ) = �(2)(λ) = 0, for λ ∈ �R\∂U , (4.4)

since the jump matrices are equal to I up to an error of O(ε) on the other parts of the
contour. Note that the functions �(1) and �(2) are meromorphic functions in U with
poles at uc.

It is a well-known result that the uniform asymptotic expansion (4.1) for the jump
matrix yields an asymptotic expansion of the same form for the RH solution R, uniformly
for λ ∈ C\�R ,

R(λ) = I + ε1/7 R(1)(λ) + ε2/7 R(2)(λ) + O(ε3/7). (4.5)

This can be proven exactly as in [11,13] by estimating Cauchy-type operators associated
to the RH problem.
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Remark 4.1. We should note that, in [11–13], the local parametrices erase the jumps
inside disks near the special points completely. Because of the O(ε)-error of the reflection
coefficient to its WKB approximation, we have not been able to remove the jumps in U
completely. This leads to a final RH problem which is similar to the one in [2]. However
the remaining jumps in the interior of U are of smaller order than the relevant jumps on
∂U , and therefore this does not cause any further problems.

The compatibility of the expansion (4.1) for the jump matrix with the expansion
(4.5) for the RH solution leads, using the jump relation R+(λ) = R−(λ)vR(λ), to the
following conditions for λ ∈ ∂U :

R(1)
+ (λ) = R(1)

− (λ) + �(1)(λ), (4.6)

R(2)
+ (λ) = R(2)

− (λ) + R(1)
− (λ)�(1)(λ) + �(2)(λ). (4.7)

Note in addition that R(λ) → I as λ → ∞, and thus also R( j)(λ) → 0 for j = 1, 2.
The jump and asymptotic conditions constitute additive RH problems for R(1) and R(2).
By inspection we see that their unique solutions are given by

R(1)(λ) =
{ 1

λ−uc
Res(�(1); uc), as λ ∈ C\U

1
λ−uc

Res(�(1); uc) − �(1)(λ), as λ ∈ U ,
(4.8)

R(2)(λ) =
{ 1

λ−uc
Res(R(1)�(1) + �(2); uc), as λ ∈ C\U ,

1
λ−uc

Res(R(1)�(1) + �(2); uc) − R(1)�(1)(λ) − �(2)(λ), as λ ∈ U .

(4.9)

After a straightforward calculation we find using (4.2), (4.3), and (3.33) that, for
λ ∈ C\U ,

R(1)(λ) = −Q f ′(uc)
−1/2 1

λ − uc

(
0 1
0 0

)
, (4.10)

R(2)(λ) =
(∗ 0

∗ ∗
)

, (4.11)

where the ∗’s denote unimportant entries, and where we have now written

Q = Q(ε−6/7g1(uc; x̃, t), ε−4/7g2(uc; t)).

We observe already that the main sub-leading terms in the asymptotic expansion for R
are determined completely by the matching of the local parametrix P with the outside
parametrix P(∞).

Besides the expansion in negative powers of ε, R admits also an expansion in negative
powers of λ as λ → ∞ [11],

R(λ) = I +
R1

λ
+ O(λ−2), as λ → ∞. (4.12)

Compatibility of the small ε-expansion (4.5) with the large λ-expansion (4.12) shows
us the following in the double scaling limit:

R1,12(x, t, ε) = −ε1/7 Q f ′(uc)
−1/2 + O(ε3/7). (4.13)
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Now it turns out that the KdV solution u(x, t, ε) is contained in R1. Indeed by (3.68),
we have that S(λ) = R(λ)P(∞)(λ) for large λ, which means by (3.34) and (4.12) that

S11(λ) = 1 − i
R1,12

(−λ)1/2 + O(λ−1), as λ → ∞. (4.14)

In view of (3.26) we obtain using ∂X Q = U that

u(x, t, ε) = uc − 2ε∂x R1,12(x̃, t, ε)

= uc + 2 f ′(uc)
−1/2ε8/7∂x Q(ε−6/7g1(uc; x̃, t), ε−4/7g2(uc; t)) + O(ε4/7)

= uc +

(
2ε2

k2

)1/7

U (ε−6/7g1(uc; x̃, t), ε−4/7g2(uc; t)) + O(ε4/7).

By (3.60) and (3.62), this completes the proof of Theorem 1.2.
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