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Abstract: We consider an aggregation equation in R
n , n ≥ 2 with fractional dissipation,

namely, ut + ∇ · (u∇K ∗ u) = −ν(−�)γ/2u , where 0 ≤ γ < 1 and K is a nonnegative
decreasing radial kernel with a Lipschitz point at the origin, e.g. K (x) = e−|x |. We prove
that for a class of smooth initial data, the solutions develop blow-up in finite time.

1. Introduction and Main Results

We consider the following aggregation equation in R
n with fractional dissipation:

ut + ∇ · (u∇K ∗ u) = −ν(−�)γ/2u, (1)

where K is a nonnegative radial decreasing kernel with a Lipschitz point at the origin, e.g.
K (x) = e−|x |. As usual, ∗ denotes spatial convolution. Here ν ≥ 0 and 0 ≤ γ < 1 are
parameters controlling the strength of the dissipative term. For any (reasonable) function
f on R

n , the fractional Laplacian (−�)γ/2 is defined via the Fourier transform:

̂(−�)γ/2u(ξ) = |ξ |γ û(ξ).

Aggregation equations of the form (1), with more general kernels (and other mod-
ifications) arise in many problems in biology, chemistry and population dynamics. In
particular, these types of equations have applications in modeling the swarming phe-
nomenon in biology. We use the term swarm here to describe the collective behavior
of an aggregation of similar biological individuals cruising in the same direction. An
overview of the modeling aspects of swarming can be found in [15,32 and 36]. Some
Lagrangian type models in which each individual is regarded as a discrete point are
studied in [1,11,13,14,26,30,41,44 and 45]. In the Eulerian setting, in which the indi-
viduals are approximated by a continuum population density field, several earlier models
are constructed in [16,17,26,31,32,44 and 35]. As it has already been pointed out by
several authors (see [43 and 39] ) the challenge with these continuum models has been
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obtaining biologically realistic swarm solutions with sharp boundaries (often referred to
as clumping, see [40 and 39]), relatively constant internal population densities and long
life times.

In one space dimension, some analytic studies have been conducted by Mogilner and
Edelstein-Keshet [31], where they considered an integro-differential population model
of the form (based on traditional population models, see [32,35 and 18]):

∂ f

∂t
= ∂

∂x

(
D( f )

∂ f

∂x

)
− ∂

∂x
(V ( f ) f ) + B( f ), (2)

where D( f ) is the density-dependent diffusion coefficient, B( f ) is the growth-rate of
the population and V ( f ) is the advection velocity which takes the form

V ( f ) = ae f + Aa(Ka ∗ f ) − Ar f (Kr ∗ f ),

with constants ae, Aa and Ar representing density-dependent motion, attraction and
repulsion respectively. Here the kernels Ka and Kr are called attraction and repulsion
kernels (they belong to the so-called social interaction kernels). Based on perturbation
analysis and numerical studies, they identified the conditions when aggregation occurs
and also the stability of travelling swarm profiles. As noted in [31], the clumping behavior
does not seem to be supported in the one-dimensional model (2) under realistic assump-
tions on the social interaction kernels. We refer the reader to [16,19–23,31,33,38,46
and 34] and the references therein for more extensive background and reviews on these
one-dimensional models.

As a multi-dimensional generalization of the model (2), Topaz and Bertozzi [43]
constructed a kinematic two-dimensional swarming model which takes the form

ut + ∇ · (u (G ∗ u)) = 0, (3)

where the (vector-valued) kernel G is called the social interactional kernel which is
spatially decaying. By applying the Hodge decomposition theorem [29], one can write

G = G(I ) + G(P) := ∇⊥N + ∇ P,

where N and P are scalar functions. In the language of [43], the kernel G(I ) introduces
incompressible motion which leads to pattern formation (e.g. vortex patterns), while the
potential kernel G(P) models repulsion or attraction between biological organisms which
in turn leads to either dispersion or aggregation. In a related paper, Topaz, Bertozzi and
Lewis [42] modified the classical model of Kawasaki [23] and derived a model similar
to [31], which takes the form

ut + ∇ · (uK ∗ ∇u − ru2∇u) = 0, (4)

where the kernel K has fast decay in space. We remark that the clumping can be observed
in these two-dimensional models (3) and (4) which were also found numerically in
Levine, Rappel and Cohen [26]. We refer the reader to [24 and 3] and references therein
for more details about aggregation models in this context. Aggregation equations have
also been applied to image processing (see for example [2 and 37] for more details).

From the mathematical point of view the aggregation equations have been studied
extensively (see e.g. [3,5–8,24 and 43]). In one space dimension with C1 initial data,
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Bodnar and Velázquez [6] proved global well-posedness for some classes of interaction
potentials and finite-time blow-up for others. Burger and Di Francesco [7] and also
Burger, Capasso and Morale [8] studied the well-posedness of the model with an addi-
tional smoothing term. In connection with the problem we study here, Laurent [24] has
developed the existence theory for a general class of equations containing the nondis-
sipative version of (1) (i.e. ν = 0) and studied the connections between the regularity
of the potential K and the global existence of the solution. More recently, Bertozzi and
Laurent [3] have obtained finite-time blow-up of solutions for (1) without dissipation
(ν = 0). The goal of this paper is to extend this result to the dissipative equation for the
range 0 ≤ γ < 1. Additionally, we show that if the dissipation is sufficiently strong,
i. e., 1 < γ ≤ 2, the solutions don’t develop any singularities.

Aggregation equations with a dissipation term have been considered by several
authors (see [24] and references therein for more details). For example, Topaz, Bertozzi
and Lewis [42] have considered the equation

ut = −∇ · [u(u ∗ ∇G)] + ∇ · (u2∇u) (5)

in cell-based models for the case in which we have a long range social attraction and
short range dispersal. We remark that (5) contains the same type of aggregation term
considered here and a local, nonlinear, diffusion term.

We have chosen a diffusion term that contains different features, namely it is lin-
ear (which will translate into a milder diffusion process) and nonlocal. We believe the
nonlocality should be an interesting feature for many applications. It is the interest in
these features, linearity and nonlocality that leads directly into the use of the Laplacian
for the dissipative term. We introduce fractional powers of the Laplacian to have a scale
of strength for the dissipative terms against which we can study well-posedness. Given
the natural scales of Eq. (1) we have 3 different ranges to the parameter γ . Namely
0 ≤ γ < 1, γ = 1 and 1 < γ ≤ 2, known as the supercritical, critical and subcritical
regimes. We motivate the choice of the three regimes as follows. Since the kernel ∇K
scales as x

|x | near the origin, heuristically our Eq. (1) which is not scale invariant can be
approximated by the homogeneous version

ut + ∇ ·
(

u
x

|x | ∗ u

)
= −ν(−�)

γ
2 u. (6)

Equation 6 has a scaling symmetry in the sense that if u is a solution, then for any λ > 0,

uλ(t, x) = λn+γ−1u(λγ t, λx)

is also a solution with initial data uλ(0, x) = λn+γ−1u0(λx). Here n is the space dimen-
sion where we are considering the problem. For positive initial data, it follows from
Lemma 1 that the L1

x norm of the solutions of Eq. (1) is preserved for all time. The
critical threshold of γ is then determined by the relation

‖uλ‖L∞
t L1

x
= ‖u‖L∞

t L1
x
.

Solving this equations yields γ = 1, which is then referred to as the critical case. For
γ > 1, the a priori control of the L1

x norm then allows us to prove the global well-
posedness of the solution (with L1

x initial data, see Theorem 3 below) and hence the
name subcritical. In the supercritical case γ < 1, we prove the blow up of solutions in
finite time (see Theorem 2 below). We refer the reader to [9,10 and 27] where this type
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of dissipation has been used in the context of the surface quasi-geostrophic equation
and other one dimensional models, for a more detailed explanation of the 3 regimes. A
detailed study of the well-posedness issues, regularity of solutions will be contained in
a forthcoming paper [28].

We state our results starting with an extension of the local existence theorem and
continuation result proved by Bertozzi and Laurent [3] in the case ν = 0. It is an anal-
ogy of the Beale-Kato-Majda result for the 3D Euler case [4]. In this case we have the
following

Theorem 1 (Local existence and continuation [3]). Let ν ≥ 0 and 0 ≤ γ ≤ 2. Given
initial data u0 ∈ Hs(Rn), n ≥ 2, for positive integer s ≥ 2, there exists a unique solution
u of (1) with life span [0, T ∗) such that either T ∗ = +∞or limt→T ∗ sup0≤τ≤t ‖u(τ, ·)‖Lq

x= +∞. The result holds for all q ≥ 2 for n > 2 and q > 2 for n = 2.

Proof. We refer the reader to [3] for the proof of the inviscid case ν = 0. We sketch
here the main modification needed to prove the general result. Notice that the changes
needed are very similar to the ones used to prove local existence and continuation for
Euler and Navier-Stokes. We refer the reader to [28] for a detailed explanation of the
necessary modifications introduced by the presence of viscosity. As in the case of Euler
and Navier-Stokes, the main difference appears at the level of energy estimates. The
presence of the viscosity term produces a regularizing effect and consequently a gain of
derivatives. More precisely we have the following energy estimates for the approximate
solutions uε

d

dt

1

2
‖uε‖2

H2 + ν‖uε‖2

Hs+ γ
2

≤ cs‖uε‖Hs−1‖uε‖2
Hs , (7)

which provides control of a higher norm, ‖u‖
Hs+ γ

2
, than in the inviscid case (see Propo-

sition 1 in [3] for the inviscid energy estimate). From these estimates, Theorem 1 follows
easily.

In the inviscid case ν = 0, Bertozzi and Laurent [3] proved the existence of finite-
time blow up for a class of compactly supported smooth initial data. It is conceivable that
when there is some amount of weak diffusion term, the blow-up phenomenon should
still persist. Indeed we show that, in the case of supercritical dissipation 0 ≤ γ < 1,
there exist finite-time singularities of Eq. (1) for a suitable class of initial conditions
(subset of Hs, s ≥ 2). Postponing the definition of this class of initial data (denoted
below by Aδ,C,w, see (26), (27)) and the technical definition of admissible weight (see
1) we state our result in the supercritical case

Theorem 2 (Blow-up for the supercritical case). Let w be an admissible weight func-
tion and let ν ≥ 0 and 0 ≤ γ < 1. There exist constants δ = δ(n) > 0, C =
C(n, w, ν, γ ) > 0 such that if u0 ∈ Hs ∩ Aδ,C,w, s ≥ 2, then there exists a finite
time T ∗ and a unique local solution u ∈ C([0, T ∗); Hs) ∩ C1([0, T ∗); Hs−1) for (1)
that blows up at time T . Furthermore, we have, for every q ≥ 2 (q > 2 for n = 2),
sup0≤τ≤t ‖u(·, τ )‖Lq → ∞, as t ↑ T ∗.

In contrast with the above theorem, when the dissipation power is bigger, that is, in
the subcritical regime, the solutions don’t develop a singularity. More precisely, we have
the following result.
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Theorem 3 (Global wellposedness for positive initial data in the subcritical case).
Let ν > 0 and 1 < γ ≤ 2. Assume the initial data u0 ∈ L1

x (R
n) and u0 ≥ 0 for a.e.

x. Then there exists a unique global solution u ∈ C([0,∞), L1
x ) ∩ C((0,∞), W 1,1

x ) of
Eq. (1).

2. Proof of Theorem 2

We will argue by contradiction. Under the assumption that there is global existence for
all initial data in Hs, s ≥ 2 we will prove contradicting estimates for the energy of the
system. As in the context of gradient flows and following Bertozzi and Laurent [3] (see
also Topaz, Bertozzi and Lewis [42]), it is convenient to define the (free) energy as

E(t) =
∫

u(x, t)(K ∗ u)(x, t)dx . (8)

We will restrict our attention to positive initial data, and since the kernel K is positive,
E is also positive. We recall the following lemma

Lemma 1 (Persistence of positivity and L1 norm [24]). Let ν ≥ 0 and 0 ≤ γ ≤ 2.
Assume u0 ≥ 0 for a.e. x. Let u be the solutions as described in Theorem 1. Then for
each t ∈ [0, T ∗), the solution u is nonnegative and ‖u(t)‖L1

x
= ‖u0‖L1

x
.

By using Hölder’s inequality, together with Young’s inequality and Lemma 1, it is
easy to see that the energy has an a priori bound E(t) ≤ ‖u‖2

L1 . The main estimate that
we will obtain is a growth estimate for the energy, more precisely we will prove

E ′(t) > c(‖u0‖L1) > 0, for t up to some time T . (9)

We will arrive at a contradiction by showing that at time T (from (9)) the energy E(T )

exceeds the a priori bound.
In order to obtain (9) we notice that an elementary calculation yields (using the fact

that K is radial)

E ′(t) = 2
∫

Rn
u|∇K ∗ u|2dx − 2ν

∫
Rn

(−�)γ/2u(K ∗ u)dx . (10)

We will explicitly describe a set of initial conditions for which the first term dominates
the second, that is the nonlinear term controls the difussion.

The bulk of estimate (9) is obtaining a lower bound for the first integral coming from
the nonlinear term. Dealing with the second integral, involving the diffusion term is
elementary. We have

∣∣∣∣2ν

∫
Rn

(−�)γ/2u(K ∗ u)dx

∣∣∣∣ ≤ 2ν

∣∣∣∣
∫

u‖(−�)γ/2 K‖L∞‖u‖L1 dx

∣∣∣∣
≤ 2ν‖(−�)γ/2 K‖L∞‖uo‖L1 ≤ CK ‖uo‖L1 , (11)

where

2ν‖(−�)γ/2 K‖L∞ ≤ 2ν ‖ |ξ |γ K (ξ)‖L1 =: CK . (12)
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Remark 1. We notice that CK , given by ‖ |ξ |γ K (ξ)‖L1 , is only finite for 0 ≤ γ < 1.
This is precisely where the argument for the existence of singularities breaks down for
γ = 1. Notice that if we take K to be exactly e−|x |, its Fourier transform is given by the
Poisson Kernel, which up to a constant multiple equals

((2π)−2 + (ξ)2)−
n+1

2 ,

making the function (γ = 1)

|ξ |1 K (ξ)((2π)−2 + (ξ)2)−
n+1

2

not integrable in R
n .

We return now to the estimate for the first term in (10). Since we are only considering
potentials K that are nonnegative, decreasing, radial and with a Lipschitz point at the
origin, we can rewrite the gradient of K as

∇K (x) = a
x

|x | + S(x), (13)

where a 
= 0 is a constant, S ∈ L∞(Rn) is continuous at x = 0 with S(0) = 0.
In order for the nonlinearity to generate a singularity it is clear we need ∇K ∗ u

sufficiently large. Since for positive functions the L1 norm is preserved, the main problem
is the cancellation arising in x

|x | ∗ u if u is essentially constant over a large ball centered
at the origin. It is clear from this observation, and the work of Bertozzi and Laurent [3]
on the inviscid equation that we need to consider solutions that are highly concentrated
near the origin.

We will now estimate several integrals arising in the evolution of E involving x
|x | ∗ u

and ∇K ∗ u, for functions highly concentrated around the origin. The right definition of
highly concentrated is made precise in Lemma 3.

Define N (x) = x
|x | . We have the following lemma which gives a lower bound of the

contribution due to the homogeneous kernel N (a multiple of the homogeneous part of
∇K (see (13)).

Lemma 2 (Lower bound for the homogenous kernel). There exists a constant
C1 = C1(n) > 0 such that for any nonnegative radial function g ∈ L1

rad(Rn) we
have ∫

g(x)|(N ∗ g)(x)|dx ≥ C1‖g‖2
L1 .

Proof. It is clear that we can assume that ‖g‖L1 = 1. By the Cauchy-Schwartz inequality
we have ∫

g(x)|(N ∗ g)(x)|dx

≥
∫

g(x)〈(N ∗ g)(x),
x

|x | 〉dx

=
∫ ∫

g(x)g(y)
(x − y) · x

|x − y| · |x |dxdy. (14)

By symmetrizing in the integral in x and y and using the fact that g is nonnegative, we
obtain
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RHS of (14) = 2
∫ ∫

g(x)g(y)
x − y

|x − y| ·
(

x

|x | − y

|y|
)

dxdy

=
∫ ∫

|y|≤|x |
g(x)g(y)

x − y

|x − y| ·
(

x

|x | − y

|y|
)

dxdy

=
∫ ∫

|y|≤|x |
g(x)g(y)

(|x | + |y|) · (1 − x ·y
|x ||y| )

|x − y| dxdy

≥ C2

∫ ∫
|y|≤|x |
x ·y≤0

g(x)g(y)dxdy

≥ C2

2

∫ ∫
x ·y≤0

g(x)g(y)dxdy, (15)

where C2 is a constant depending only on n. In the last inequality we symmetrized
again in the variables x, y. To bound this last integral, we now use the fact that g is a
radial function. Denoting by dσ as the surface measure on Sn−1, with a simple scaling
argument we obtain

RHS of (15) = C2

2

∫ ∞

0

∫ ∞

0
g(ρ1)g(ρ2)

∫
|x |=ρ1, |y|=ρ2

x ·y≤0

dσ(x)dσ(y)dρ1dρ2

≥ C2

2

(∫ ∞

0
g(ρ)ρn−1dρ

)2 ∫
|x |=1, |y|=1

x ·y≤0

dσ(x)dσ(y)

≥ C1‖g‖2
L1

x
, (16)

where C1 is a positive constant depending only on n.

Remark 2. The proof of Lemma 2 is the only place in our blow-up argument where we
need the radial assumption of the solution u. It is possible to remove the radial assumption
although we shall not do it here.

In the next lemma we establish a similar conclusion for the whole kernel ∇K . Because
of the presence of the inhomogeneous part, we need to consider functions having mass
localized near the origin so that the contribution due to S(x) (see (13)) is small and the
whole integral is still bounded below by a large constant.

Lemma 3 (Lower bound for the kernel ∇K for mass localized functions). There
exists a constant δ = δ(n, K ) > 0 such that the following holds true: For any nonneg-
ative radial function f on R

n with the property∫
|x |≥δ

f (x)dx ≤ δ‖ f ‖L1 , (17)

we have ∫
Rn

f |∇K ∗ f |2dx ≥ (aC1)
2

2
‖ f ‖3

L1 ,

where C1 is the same constant as in Lemma 2 and a is defined in the decomposition (13).
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Proof. Without loss of generality we will assume that ‖ f ‖L1 = 1. Recall the
decomposition (13), since S(x) is continuous at x = 0 with S(0) = 0, we know that for
any ε1 > 0, there exists δ1 = δ1(K , ε1), such that

|S(x)| ≤ ε1, ∀ |x | ≤ δ1.

On the other hand since S is assumed to be bounded, we have

|S(x)| ≤ D1, ∀ |x | ≥ 0, (18)

where D1 is another constant depending only on K . Take ε1 = aC1
100 and let δ > 0 be

sufficiently small such that

δ < min

{
aC1

100D1
,

δ1(ε1, K )

4

}
. (19)

Fix this δ and assume that f satisfies the localization property (17). For |x | ≤ δ, by
splitting the integral and using the fact that ‖ f ‖L1 = 1, we have

|(S ∗ f )(x)| ≤
∫

|x |≤2δ

| f (x − y)||S(y)|dy +
∫

|y|>2δ

| f (x − y)||S(y)|dy

≤ ε1 + D1

∫
|y|>δ

| f (y)|dy

≤ ε1 + δD1, (20)

where the last inequality follows from the localization assumption (17). For any |x | ≥ 0,
we have by Young’s inequality and (18),

|(S ∗ f )(x)| ≤ D1. (21)

In view of our choice of ε1, δ (see (19)) and the pointwise bounds on (S ∗ f )(x) (20)
(21), we have∫

Rn
f |(S ∗ f )(x)|dx ≤

∫
|x |≤δ

| f (x)|dx(ε1 + δD1) +
∫

|x |≥δ

| f (x)|dx D1

≤ ε1 + 2δD1

≤ aC1

10
. (22)

Now by the Cauchy-Schwartz inequality and Lemma 2, we have
(∫

Rn
f |∇K ∗ f |2dx

) 1
2

=
(∫

Rn
f |∇K ∗ f |2dx

) 1
2 ( ∫

Rn
f dx

) 1
2

≥
∫

Rn
f |∇K ∗ f |dx

≥ aC1 −
∫

Rn
f |S ∗ f |dx

≥ aC1√
2

,

where the last inequality follows from the bound (22). The lemma is proved.
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We remark that both Lemma 2 and Lemma 3 deal with time independent estimates
but require high concentration of mass near the origin. It is crucial for our proof that we
show that if u0 is concentrated near the origin, then the solution u(·, t) remains concen-
trated near the origin for at least some short time t . In the inviscid case ν = 0, Bertozzi
and Laurent [3] showed that if one starts with compactly supported data then it remains
compactly supported during the time of existence. The situation changes dramatically
in the dissipative case ν > 0. In the case we considered here, even if the initial data
is compactly supported, the solution at any t > 0 will have nonzero support on the
whole space due to the infinite speed of propagation of the fractional heat semigroup
e−t (−�)γ/2

. It is for this reason that we need to prove the non-evacuation of mass for
a short time. As we shall see later, the mass localization will follow from a weighted
estimate for u. To this end, we need the following definition

Definition 1 (Admissible weight functions). A function w ∈ C∞(Rn) is said to be an
admissible weight function if w is a nonnegative radial function such that w(0) = 0 and
w(x) = 1 for all |x | ≥ 1.

An admissible weight function can be regarded as a smoothed out version of the
spatial cut-off function χ{|x |≥1}. Let w be an admissible weight function and let δ > 0
be the same constant as in Lemma 3. We define

I (t) =
∫

Rn
u(t, x)w

( x

δ

)
dx .

Intuitively speaking, the integral I (t) quantifies the mass of u outside of a small ball
of size δ near the origin. The growth of I (t) provides an upper bound of the mass of u
away from the origin. Let w1(x) = w(x) − 1. Clearly by definition w1 ∈ C∞

c (Rn). By
integration by parts, Young’s inequality and Lemma 1, we compute

d

dt
I (t) = −

∫
Rn

∇ · (u∇K ∗ u)w(
x

δ
)dx − ν

∫
Rn

(−�)γ/2u(x)w(
x

δ
)dx

=
∫

Rn
u∇K ∗ u · 1

δ
(∇w1)(

x

δ
)dx − ν

∫
Rn

u(x)
1

δγ

(
(−�)

γ
2 w1

)
(

x

δ
)dx

≤ 1

δ
‖∇w1‖L∞

x

∫
Rn

|u∇K ∗ u|dx − ν‖u‖L1
x

1

δγ
‖(−�)

γ
2 w1‖L∞

x

≤ 1

δ
‖∇w1‖L∞

x
‖∇K‖L∞

x
‖u0‖2

L1
x
− ‖u0‖L1

x
· ν

δγ
‖|ξ |γ ŵ1(ξ)‖L1

ξ

≤ C3 · (‖u0‖2
L1 + 1), (23)

where C3 = C3(n, ν, γ,w, δ) is a constant.
Now if we choose

T = δ‖u0‖L1

2C3 · (‖u0‖2
L1 + 1)

,

then we have

sup
0≤t≤T

I (t) ≤ I (0) +
δ

2
‖u0‖L1 , (24)
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where

I (0) =
∫

Rn
u0(x)w(

x

δ
)dx .

Since w(x/δ) = 1 for |x | ≥ δ, (24) implies the bound,

sup
0≤t≤T

∫
|x |≥δ

u(t, x)dx ≤
∫

Rn
u0(x)w(

x

δ
)dx +

δ

2
‖u0‖L1 .

Now if we choose u0 such that
∫

Rn
u0(x)w(

x

δ
)dx ≤ δ

2
‖u0‖L1 ,

then clearly

sup
0≤t≤T

∫
|x |≥δ

u(t, x)dx ≤ δ‖u0‖L1 . (25)

This is the mass localization property we need.
Based on the results above we will specify the set of initial conditions for which

one can easily obtain blow-up. Let δ > 0, C > 0 be two constants. We define A =
Aδ,C,w ⊂ L1

rad(Rn) to be the class of nonnegative radial functions u satisfying the
following properties:

1. The mass of u is comparable to its energy:

|K (0)|‖u‖2
L1 <

∫
Rn

u(K ∗ u)dx + 1. (26)

2. u is localized near the origin:
∫

Rn
u(x)w(

x

δ
)dx <

δ

2
‖u‖L1 . (27)

3. The mass of u is sufficiently large: ‖u‖L1 > C .

For any δ > 0, C > 0 and any admissible weight w, it is not too difficult to see that the
class Aδ,C,w is nonempty. Indeed one can take any f ∈ L1

rad(Rn) such that ‖ f ‖L1 > C ,
then define fλ(·) = λ−n f (λ−1·). For all sufficiently small λ > 0, one can check
directly that u = fλ satisfies (26) and (27) due to the assumption that K (0) = ‖K‖L∞
and w(0) = 0.

We are now ready to complete the proof of the main theorem.

Proof. (Proof of Theorem 2) Take δ to be the same constant as in Lemma 3 and choose
a constant C sufficiently large such that

C > max{4C3 + CK

(a C1)2 , 1}, (28)

where C3 was defined in (23) and CK is given in (12) in the estimate for the difussion
term.
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Take u0 ∈ Hs ∩ Aδ,C,w and recall that

E(t) =
∫

Rn
u(t, x)(K ∗ u)(t, x)dx .

Then obviously

E(t) ≤ ‖u0‖2
L1‖K‖L∞ = ‖u0‖2

L1 K (0).

On the other hand we have

d

dt
E(t) = 2

∫
Rn

u|∇K ∗ u|2dx − 2ν

∫
Rn

(−�)γ/2u(K ∗ u)dx .

Let

T = δ‖u0‖L1

2C3 · (‖u0‖2
L1 + 1)

,

then by the mass localization property (25) and Lemma 3, together with the estimate
(11) for the diffusion term we have

d

dt
E(t) ≥ (a C1)

2‖u0‖3
L1 − CK ‖u0‖2

L1 .

By our choice of u0 and the choice of the constant C (see (28)), it is not difficult to
check that

(a C1)
2‖u0‖3

L1 − CK ‖u0‖2
L1 >

1

T
= 2C3 · (‖u0‖2

L1 + 1)

δ‖u0‖L1
.

This gives us

E(T ) ≥ E(u0) + 1.

But this is impossible since we have

E(T ) ≤ ‖u0‖2
L1‖K‖L∞ = ‖u0‖2

L1 K (0) < E(u0) + 1,

where the last inequality is due to the fact that u0 ∈ Aδ,C,w. The theorem is proved.

3. Global Well-Posedness and Smoothing for the Subcritical Case 1 < γ ≤ 2

In this section we consider the aggregation equation in the subcritical regime 1 < γ ≤ 2.
We first prove local well-posedness in L1

x (R
n). We shall do this by constructing mild

solutions. This is

Theorem 4 (Local well-posedness in L1
x for the subcritical case). Let ν > 0 and

1 < γ ≤ 2. Assume the initial data u0 ∈ L1
x (R

n). Then there exists a time T =
T (‖u0‖L1

x
, ν, γ, ‖∇K‖L∞

x
) > 0 and a unique mild solution of (1) in the space C([0, T ),

L1
x (R

n)). In fact the uniqueness of mild solutions holds in a slightly stronger sense: for
any T ′ > 0, there exists at most one solution in the space C([0, T ′), L1

x (R
n)) with initial

data u0 ∈ L1
x .
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Remark 3. As we shall see in the proof of Theorem 4, the time of existence of the
constructed mild solution has an upper bound of the form

T <

(
γ − 1

γ

) γ
γ−1 · ν

1
γ−1 ·

(
‖∇K‖L∞

x
‖u0‖L1

x

)− γ
γ−1

,

provided of course ‖u0‖L1
x


= 0.

We shall prove Theorem 4 by the classical fixed point theorem for general Banach
spaces. We state it as the following lemma.

Lemma 4 ([25]). Let X be a Banach space endowed with norm ‖ · ‖X and let B :
X × X → X be a bilinear map such that for any x1, x2 ∈ X, we have

‖B(x1, x2)‖X ≤ C‖x1‖X‖x2‖X .

Then for any y ∈ X such that

4C‖y‖X < 1,

the equation

x = y + B(x, x)

has a solution in X with ‖x‖X ≤ 2‖y‖X . Moreover the solution is unique in the ball
B̄(0, 2

C ).

Proof. The proof can be found in [25]. We reproduce it here for the sake of complete-
ness and also for comparison with the two-normed version Lemma 6 (see below). Define
x0 = y and xn = y+B(xn−1, xn−1). By induction it is easy to show that ‖xn‖X ≤ 2‖y‖X ;
moreover,

‖xn+1 − xn‖X ≤ ‖B(xn, xn − xn−1)‖X + ‖B(xn − xn−1, xn−1)‖X

≤ 4C‖y‖X‖xn − xn−1‖X .

Since 4C‖y‖X < 1, this shows that (xn) is a Cauchy sequence and hence has a limit x .
The uniqueness of x in the ball B̄(0, 2

C ) is obvious.

As we shall see below, we only need the existence part of Lemma 4. The uniqueness
of the constructed mild solution will be proved independently. We now write S(t) =
e−ν(−�)

γ
2 t . Our Eq. (1) in the mild formulation can be written as

u(t) = S(t) ∗ u0 −
∫ t

0
∇S(τ ) ∗ (u∇K ∗ u) (t − τ)dτ

= S(t) ∗ u0 + B(u, u)(t), (29)

where for any two functions f, g, we define the Bilinear form B( f, g)(t) as

B( f, g)(t) = −
∫ t

0
∇S(τ ) ∗ ( f ∇K ∗ g) (t − τ)dτ. (30)

We shall consider our Eq. (29) in the Banach space XT = C([0, T ), L1
x ). The following

simple lemma gives the boundedness of the bilinear operator (30) on XT × XT .
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Lemma 5 (Boundedness of the bilinear operator). The bilinear operator (30) is
continuous on XT × XT , more precisely, we have

‖B( f, g)‖XT ≤ γ

γ − 1
ν

− 1
γ T 1− 1

γ ‖∇K‖L∞
x

‖ f ‖XT ‖g‖XT .

Proof. By Minkowski’s inequality and Young’s equality we have

‖B( f, g)‖XT ≤
∥∥∥∥
∫ t

0
(ντ)

− 1
γ ‖ f ∇K ∗ g‖XT dτ

∥∥∥∥
L∞

t

≤ (ν)
− 1

γ

∫ T

0
(τ )

− 1
γ dτ‖ f ‖XT ‖g‖XT ‖∇K‖L∞

x

≤ (ν)
− 1

γ
γ

γ − 1
T 1− 1

γ ‖∇K‖L∞
x

‖ f ‖XT ‖g‖XT .

The lemma is proved.

We are now ready to complete the proof of Theorem 4.

Proof. (Proof of Theorem 4) We choose T > 0 such that

4 · γ

γ − 1
· ν

− 1
γ T 1− 1

γ ‖∇K‖L∞
x

‖u0‖L1
x

< 1.

Then by the inequality ‖S(t) ∗ u0‖XT ≤ ‖u0‖L1
x
, the strong continuity of the semi-

group S(t) in L1
x , the boundedness of the bilinear operator Lemma 5 and the fixed point

Lemma 4, we conclude that there exists a solution of Eq. (29) in the space XT . It only
remains for us to prove the uniqueness part of Theorem 4. Let T ′ > 0 be arbitrary and
u1, u2 be two solutions of (29) with the same initial data u0. Denote

M = max
{‖u1‖XT ′ , ‖u2‖XT ′

}
.

Let T ′′ be sufficiently small such that

γ

γ − 1
· ν

− 1
γ (T ′′)1− 1

γ ‖∇K‖L∞
x

M <
1

10
.

Then since u1 and u2 has the same initial data u0, we have by Lemma 5,

‖u1 − u2‖XT ′′ ≤ ‖B(u1, u1 − u2)‖XT ′′ + ‖B(u1 − u2, u2)‖XT ′′

≤ 1

2
‖u1 − u2‖XT ′′ .

This implies that u1 ≡ u2 on [0, T ′′). A finite iteration of the argument then gives
u1 ≡ u2 on the whole time interval [0, T ′). The theorem is proved.

We now show that our constructed mild solution has additional regularity. This is
achieved by another contraction argument in the subspace of XT . We first formulate a
two-normed version of the fixed point Lemma 4.
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Lemma 6 (Two-normed fixed point lemma). Assume that Z is a Banach space endowed
with the norms ‖ · ‖Z , ‖ · ‖X and seminorm ‖ · ‖Y such that

‖ · ‖Z = max{‖ · ‖X , ‖ · ‖Y }.
Let B : Z × Z → Z be a bilinear map such that for any x1, x2 ∈ Z, we have

‖B(x1, x2)‖Z ≤ C(‖x1‖Z‖x2‖X + ‖x1‖X‖x2‖Z ),

and

‖B(x1, x2)‖X ≤ C‖x1‖X‖x2‖X .

Then for any y ∈ Z such that

8C‖y‖X < 1,

the equation x = y + B(x, x) has a solution in Z with ‖x‖Z ≤ 2‖y‖Z . Moreover by
Lemma 4 the solution is unique in the ball {z : ‖z‖X ≤ 2

C }.
Proof. Again we construct the solution x by iteration. Define x0 = y and
xn = y + B(xn−1, xn−1) for n ≥ 1. Then since

‖xn‖Z ≤ ‖y‖Z + 2‖xn−1‖Z‖xn−1‖X

≤ ‖y‖Z + 4C‖y‖X‖xn−1‖Z ,

it is easy to prove by induction that ‖xn‖Z ≤ 2‖y‖Z . To show (xn) is Cauchy in Z we
calculate

‖xn+1 − xn‖Z ≤ ‖B(xn, xn − xn−1)‖Z + ‖B(xn − xn−1, xn−1)‖Z

≤ 4C‖y‖Z ‖xn − xn−1‖X + 4C‖y‖X‖xn − xn−1‖Z .

From the proof of Lemma 4 we know that ‖xn − xn−1‖X ≤ θn for some constant
0 < θ < 1. This together with the fact that 4C‖y‖X < 1 and a few elementary manip-
ulations implies that ‖xn+1 − xn‖Z ≤ (θ ′)n for another constant 0 < θ ′ < 1. This
immediately shows that xn is Cauchy in Z and hence converges to a fixed point x .

In what follows, it is useful to consider the ‖ · ‖YT norm of u defined by

‖u‖YT := ‖t
1
γ ∇u‖L∞

t L1
x ([0,T )×Rn).

We first prove that the ‖ · ‖YT norm of the bilinear operator (30) is bounded.

Lemma 7 (‖·‖YT norm boundedness of the bilinear operator). The bilinear operator
(30) is bounded in the following sense:

‖B( f, g)‖YT ≤ (‖ f ‖YT ‖g‖XT + ‖ f ‖XT ‖g‖YT

) · ‖∇K‖L∞
x

· C1ν
− 1

γ · T
γ−1
γ ,

where C1 = C1(γ ) is a positive constant depending only on γ .
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Proof. We have

‖B( f, g)‖YT = ‖t
1
γ ∇B( f, g)‖L∞

t L1
x ([0,T )×Rn)

≤ ν
− 1

γ

∥∥∥∥t
1
γ

∫ t

0
(t − τ)

− 1
γ ‖(∇ f · ∇K ∗ g)(τ )‖L1

x
dτ

∥∥∥∥
L∞

t ([0,T ))

+ ν
− 1

γ

∥∥∥∥t
1
γ

∫ t

0
(t − τ)

− 1
γ ‖( f ∇K ∗ ∇g)(τ )‖L1

x
dτ

∥∥∥∥
L∞

t ([0,T ))

≤ (‖ f ‖YT ‖g‖XT + ‖ f ‖XT ‖g‖YT

) · ‖∇K‖L∞
x

·ν− 1
γ

∥∥∥∥t
1
γ

∫ t

0
(t − τ)

− 1
γ τ

− 1
γ dτ

∥∥∥∥
L∞

t ([0,T ))

≤ (‖ f ‖YT ‖g‖XT + ‖ f ‖XT ‖g‖YT

) · ‖∇K‖L∞
x

· C1ν
− 1

γ T
γ−1
γ ,

where C1 is an constant depending only on γ . The lemma is proved.

We can now upgrade the regularity of our constructed mild solution. We define ZT ⊂
C([0, T ), L1

x ) as a Banach space with the norm

‖u‖ZT = max{‖u‖XT , ‖u‖YT }
= max{‖u‖L∞

t L1
x ([0,T )×Rn), ‖t

1
γ ∇u‖L∞

t L1
x ([0,T )×Rn)}.

Theorem 5 (Local well-posedness in ZT for the subcritical case). Let ν > 0 and
1 < γ ≤ 2. Assume the initial data u0 ∈ L1

x (R
n). Then there exists a time T =

T (‖u0‖L1
x
, ν, γ, ‖∇K‖L∞

x
) > 0 and a unique mild solution of (1) in the space ZT .

By Theorem 4 the uniqueness of the mild solutions holds in a larger space: for any
T ′ > 0, there exists at most one solution in the space C([0, T ′), L1

x (R
n)) with initial

data u0 ∈ L1
x .

Remark 4. As we will see in the proof below, the time of existence of the constructed
mild solution has an upper bound of the form

T < C2 · ν
1

γ−1 ·
(
‖∇K‖L∞

x
‖u0‖L1

x

)− γ
γ−1

,

where C2 = C2(γ ) is a positive constant depending only on γ .

Proof. (Proof of Theorem 5) We only need to prove the existence. The uniqueness part
is already in Theorem 4. Choose T > 0 such that

8C1 · ν
− 1

γ T 1− 1
γ ‖∇K‖L∞

x
‖u0‖L1

x
< 1,

where C1 is the same constant as in Lemma 7. By the inequality ‖∇S(t) ∗ u0‖L1
x

≤
t−

1
γ ‖u0‖L1

x
, the boundedness of the bilinear operator Lemma 7 and the two-normed

fixed point Lemma 6, we conclude that there exists a solution of Eq. (29) in the space
ZT .

By a standard bootstrap argument, we can obtain the following corollary.
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Corollary 1 (Maximal time of existence of solutions). Let ν > 0 and 1 < γ ≤ 2.
Assume the initial data u0 ∈ L1

x (R
n). Then there exists a maximal time of existence

T ∗ ∈ (0,∞] and a unique solution u ∈ C([0, T ∗), L1
x ) ∩ C((0, T ∗), W 1,1

x ). Moreover
if T ∗ < ∞, then necessarily limt→T ∗ ‖u(·, t)‖L1

x
= ∞.

Proof. This is a standard argument which follows from Theorem 5.

By Corollary 1, to obtain a global solution, it suffices for us to control the L1
x (R

n).
Concerning positive initial data, the following result was originally proved by Laurent
[24] for the inviscid case ν = 0 and with different assumptions on the initial data. By
using the time splitting approximation, it is straightforward to obtain the same result for
the dissipative case ν > 0. By another approximation argument, we obtain the following

Lemma 8 (Persistence of positivity and L1 norm [24]). Let ν ≥ 0 and 1 < γ ≤ 2.
Assume u0 ∈ L1

x and u0 ≥ 0 for a.e. x. Then for each t ∈ [0, T ∗), the solution u is
nonnegative and ‖u(t)‖L1

x
= ‖u0‖L1

x
.

We are now ready to complete

Proof. (Proof of Theorem 3) It follows directly from Corollary 1 and Lemma 8.
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