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Abstract: We introduce a model whose thermal conductivity diverges in dimension
1 and 2, while it remains finite in dimension 3. We consider a system of oscillators
perturbed by a stochastic dynamics conserving momentum and energy. We compute
thermal conductivity via Green-Kubo formula. In the harmonic case we compute the
current-current time correlation function, that decay like t−d/2 in the unpinned case and
like t−d/2−1 if an on-site harmonic potential is present. This implies a finite conductivity
in d ≥ 3 or in pinned cases, and we compute it explicitly. For general anharmonic
strictly convex interactions we prove some upper bounds for the conductivity that behave
qualitatively as in the harmonic cases.

1. Introduction

The mathematical deduction of Fourier’s law and heat equation for the diffusion of
energy from a microscopic Hamiltonian deterministic dynamics is one of the major
open problems in non-equilibrium statistical mechanics [6]. Even the existence of the
thermal conductivity defined by the Green-Kubo formula, is a challenging mathematical
problem and it may be infinite in some low dimensional cases [13]. Let us consider the
problem in a generic lattice system where dynamics conserves energy (between other
quantities like momentum, etc.). For x ∈ Z

d , denote by Ex(t) the energy of atom x. To
simplify notations let us consider the 1-dimensional case. Since the dynamics conserves
the total energy, there exist energy currents jx,x+1 (local functions of the coordinates of
the system), such that

d

dt
Ex (t) = jx−1,x (t)− jx,x+1(t). (1)

Another consequence of the conservation of energy is that there exists a family of
stationary equilibrium measures parametrized by temperature value T (between other
possible parameters). Let us denote by < · > = < · >T the expectation of the
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system starting from this equilibrium measure, and assume that parameters are set so
that < jx,y > = 0 (for example if total momentum is fixed to be null). Typically these
measures are Gibbs measure with sufficiently fast decay of space correlations so that
energy has static fluctuation that are Gaussian distributed if properly rescaled in space.
Let us define the space-time correlations of the energy as

S(x, t) =< Ex (t)E0(0) > − < E0 >
2 .

If thermal conductivity is finite, S(x, t) should be solution of the diffusion equation (in
a proper large space-time scale) and thermal conductivity (TC) can be defined as

κ(T ) = lim
t→∞

1

2tT 2

∑

x∈Z

x2S(x, t). (2)

By using the energy conservation law (1), time and space invariance (see Sect. 3), one
can rewrite

κ(T ) = lim
t→∞

1

2tT 2

∑

x∈Z

〈⎛

⎝
t∫

0

jx,x+1(s)ds

⎞

⎠

⎛

⎝
t∫

0

j0,1(s
′)ds′

⎞

⎠
〉

= 1

T 2

∑

x∈Z

∞∫

0

〈
jx,x+1(t) j0,1(0)

〉
dt, (3)

which is the celebrated Green-Kubo formula for the thermal conductivity (cf. [17]).
One can see from (3) why the problem is so difficult for deterministic dynamics: one

needs some control of time decay of the current-current correlations, a difficult problem
even for finite dimensional dynamical systems. Furthermore in some one–dimensional
systems, like the Fermi-Pasta-Ulam chain of unpinned oscillators, if total momentum is
conserved by the dynamics, thermal conductivity is expected to be infinite (cf. [13] for
a review of numerical results on this topic). Very few mathematically rigorous results
exist for deterministic systems ([8,15]).

In this paper we consider stochastic perturbations of a deterministic Hamiltonian
dynamics on a multidimensional lattice and we study the corresponding thermal con-
ductivity as defined by (3). The stochastic perturbations are such that they exchange
momentum between particles with a local random mechanism that conserves total energy
and total momentum.

Thermal conductivity of Hamiltonian systems with stochastic dynamical perturba-
tions have been studied for harmonic chains. In [5,7] the stochastic perturbation does
not conserve energy, and in [3] only energy is conserved. The novelty of our work is
that our stochastic perturbations conserve also momentum, with dramatic consequences
in low dimensional systems. In fact we prove that for unpinned systems (where also the
Hamiltonian dynamics conserve momentum, see the next section for a precise defini-
tion) with harmonic interactions, thermal conductivity is infinite in 1 and 2 dimensions,
while it is finite for d ≥ 3 or for pinned systems. Notice that for stochastic perturbations
of harmonic systems that do not conserve momentum, thermal conductivity is always
finite [3,7].

This divergence of TC in dimension 1 and 2 is expected generically for a deterministic
Hamiltonian non-linear system when unpinned. So TC in our model behaves qualitatively
like in a deterministic non-linear system, i.e. these stochastic interactions reproduce some
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of the features of the non-linear deterministic hamiltonian interactions. Also notice that
because of the conservation laws, the noise that we introduce is of multiplicative type, i.e.
intrinsically non-linear (cf. (6) and (7)). On the other hand, purely deterministic harmonic
chains (pinned or unpinned and in any dimension) have always infinite conductivity [15].
In fact in these linear systems energy fluctuations are transported ballistically by waves
that do not interact with each other. Consequently, in the harmonic case, our noise is
entirely responsible for the finiteness of the TC in dimension 3 and for pinned systems.
Also in dimension 1 and 2, the divergence of TC for unpinned harmonic systems is due
to a superdiffusion of the energy fluctuations, not to ballistic transport (see [2,12] where
this behavior is explained with a kinetic argument).

For anharmonic systems, even with the stochastic noise we are not able to prove the
existence of thermal conductivity (finite or infinite). If the dimension d is greater than 3
and the system is pinned, we get a uniform bound on the finite size system conductivity.
For low dimensional pinned systems (d = 1, 2), we can show the conductivity is finite if
the interaction potential is quadratic and the pinning is generic. For the unpinned system
we have to assume that the interaction between nearest-neighbor particles is strictly
convex and quadratically bounded at infinity. This is because we need some information
on the spatial decay of correlations in the stationary equilibrium measure, that decay
slow in the unpinned system [9]. In this case, we prove the conductivity is finite in
dimension d ≥ 3 and we obtain upper bounds in the size N of the system of the form√

N in d = 1 and (log N )2 in d = 2 (see Theorem 3 for precise statements).
The paper is organized as follows. Section 2 is devoted to the precise description of

the dynamics. In Sects. 3, we present our results. The proofs of the harmonic case are
in Sect. 4 and 5 while the proofs of the anharmonic case are stated in Sect. 6. The final
section contains technical lemmas related to equivalence of ensembles.

Notations. The canonical basis of R
d is noted (e1, e2, . . . , ed) and the coordinates of a

vector u ∈ R
d are noted (u1, . . . ,ud). Its Euclidean norm |u| is given by

|u| = √(u1)2 + . . . + (ud)2 and the scalar product of u and v is u · v.
If N is a positive integer, Z

d
N denotes the d-dimensional discrete torus of length N

and we identify x = x + k Ne j for any j = 1, . . . , d and k ∈ Z.
If F is a function from Z

d (or Z
d
N ) into R then the (discrete) gradient of F in the

direction e j is defined by (∇e j F)(x) = F(x + e j ) − F(x) and the Laplacian of F is

given by (�F)(x) =∑d
j=1

{
F(x + e j ) + F(x − e j )− 2F(x)

}
.

2. The Dynamics

In order to avoid difficulties with definitions of the dynamics and its stationary Gibbs
measures, we start with a finite system and we will define thermal conductivity through
an infinite volume limit procedure (see sect. 3).

We consider the dynamics of the system of length N with periodic boundary con-
ditions. The atoms are labeled by x ∈ Z

d
N . Momentum of atom x is px ∈ R

d and its
displacement from its equilibrium position is qx ∈ R

d . The Hamiltonian is given by

HN =
∑

x∈Z
d
N

⎡

⎣ |px|2
2

+ W (qx) +
1

2

∑

|y−x|=1

V (qx − qy)

⎤

⎦ .



70 G. Basile, C. Bernardin, S. Olla

We assume that V and W have the following form:

V (qx − qy) =
d∑

j=1

Vj (q
j

x − q j
y ), W (qx) =

d∑

j=1

W j (q
j

x ),

and that Vj ,W j are smooth and even. We call V the interaction potential, and W the
pinning potential. The case where W = 0 will be called unpinned.

We consider the stochastic dynamics generated by the operator

L = A + γ S . (4)

The operator A is the usual Hamiltonian vector field

A = ∑
x

{
px · ∂qx − ∂qxHN · ∂px

}
,

while S is the generator of the stochastic perturbation and γ > 0 is a positive parameter
that regulates its strength. The operator S acts only on the momentums {px} and generates
a diffusion on the surface of constant kinetic energy and constant momentum. This is
defined as follows. If d ≥ 2, for every nearest neighbor atoms x and z, consider the d −1
dimensional surface of constant kinetic energy and momentum

Se,p =
{
(px,pz) ∈ R

2d : 1

2

(
|px|2 + |pz|2

)
= e ; px + pz = p

}
.

The following vector fields are tangent to Se,p:

Xi, j
x,z = (p j

z − p j
x)(∂pi

z
− ∂pi

x
)− (pi

z − pi
x)(∂p j

z
− ∂

p j
x
),

so
∑d

i, j=1(X
i, j
x,z)

2 generates a diffusion on Se,p (see [11]). In d ≥ 2 we define

S = 1

2(d − 1)

∑

x

d∑

i, j,k

(
Xi, j

x,x+ek

)2

= 1

4(d − 1)

∑

x,z∈Z
d
N|x−z|=1

∑

i, j

(
Xi, j

x,z

)2
,

where e1, . . . , ed is canonical basis of Z
d .

Observe that this noise conserves the total momentum
∑

x px and energy HN , i.e.

S
∑

x

px = 0 , S HN = 0.

In dimension 1, in order to conserve total momentum and total kinetic energy, we
have to consider a random exchange of momentum between three consecutive atoms
(because if d = 1, Se,p has dimension 0), and we define

S = 1

6

∑

x∈Z
d
N

(Yx )
2,
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where

Yx = (px − px+1)∂px−1 + (px+1 − px−1)∂px + (px−1 − px )∂px+1

which is vector field tangent to the surface of constant energy and momentum of the
three particles involved.

The corresponding Fokker-Planck equation for the time evolution of the probability
distribution P(q,p, t), given an initial distribution P(q,p, 0) is given by

∂P

∂t
= (−A + γ S)P = L∗ P, (5)

where L∗ is the adjoint of L with respect to the Lebesgue measure.
Let {wi, j

x,y; x, y ∈ Z
d
N ; i, j = 1, . . . , d; |y − x| = 1} be independent standard

Wiener processes, such that wi, j
x,y = w

i, j
y,x. Equation (5) corresponds to the law at time t

of the solution of the following stochastic differential equations:

dqx = px dt,

dpx = −∂qxHN dt + 2γ�px dt

+
√
γ

2
√

d − 1

∑

z:|z−x|=1

d∑

i, j=1

(
Xi, j

x,zpx

)
dwi, j

x,z(t). (6)

In d = 1 these are:

dpx = −∂qx HN dt +
γ

6
�(4px + px−1 + px+1)dt

+

√
γ

3

∑

k=−1,0,1

(Yx+k px ) dwx+k(t), (7)

where here {wx (t), x = 1, . . . , N } are independent standard Wiener processes.
Defining the energy of the atom x as

Ex = 1

2
p2

x + W (qx) +
1

2

∑

y:|y−x|=1

V (qy − qx),

the energy conservation law can be read locally as

Ex(t)− Ex(0) =
d∑

k=1

(
Jx−ek ,x([0, t])− Jx,x+ek ([0, t]) ) ,

where Jx,x+ek ([0, t]) is the total energy current between x and x + ek up to time t . This
can be written as

Jx,x+ek ([0, t]) =
t∫

0

jx,x+ek (s) ds + Mx,x+ek (t). (8)
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In the above Mx,x+ek (t) are martingales that can be written explicitly as Itô stochastic
integrals

Mx,x+ek (t) =
√

γ

(d − 1)

∑

i, j

t∫

0

(
Xi, j

x,x+ek Ex

)
(s) dwi, j

x,x+ek (s). (9)

In d = 1 these martingales are written explicitly as

Mx,x+1(t) =
√
γ

3

t∫

0

∑

k=−1,0,1

(Yx+kEx ) dwx+k(t). (10)

The instantaneous energy currents jx,x+ek satisfy the equation

LEx =
d∑

k=1

(
jx−ek ,x − jx,x+ek

)
,

and it can be written as

jx,x+ek = ja
x,x+ek

+ γ j s
x,x+ek

. (11)

The first term in (11) is the Hamiltonian contribution to the energy current

ja
x,x+ek

= −1

2
(∇V )(qx+ek − qx) · (px+ek + px)

= −1

2

d∑

j=1

V ′
j (q

j
x+ek − q j

x )(p
j
x+ek + p j

x) (12)

while the noise contribution in d ≥ 2 is

γ j s
x,x+ek

= −γ (∇ek p2)x (13)

and in d = 1 is

γ j s
x,x+1 = −γ∇ϕ(px−1, px , px+1),

ϕ(px−1, px , px+1) = 1

6
[p2

x+1 + 4p2
x + p2

x−1 + px+1 px−1 − 2px+1 px − 2px px−1].

In the unpinned case (W = 0), given any values of E > 0, the uniform probability
measure on the constant energy-momentum shell

�N ,E =

⎧
⎪⎨

⎪⎩
(p,q) : HN = NE,

∑

x∈Z
d
N

px = 0,
∑

x∈Z
d
N

qx = 0

⎫
⎪⎬

⎪⎭

is stationary for the dynamics, and A and S are respectively antisymmetric and symmetric
with respect to this measure. For the stochastic dynamics, we believe that these measures
are also ergodic, i.e. total energy, total momentum and center of mass are the only
conserved quantities. Notice that because of the periodic boundary conditions, no other
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conserved quantities associated to the distortion of the lattice exist. For example in d = 1
the total length of the chain

∑
x (qx+1 − qx ) is automatically null.

In the pinned case, total momentum is not conserved, and the ergodic stationary
measures are given by the uniform probability measures on the energy shells

�N ,E = {(p,q) : HN = NE } .
In both cases we refer to these measures as microcanonical Gibbs measures. We

denote by < · >N ,E the expectation with respect to these microcanonical measures.
We will also consider the dynamics starting from the canonical Gibbs measure

< · >N ,T with temperature T > 0 defined on the phase space (R2d)Z
d
N by

< · >N ,T = e−HN /T

Z N ,T

dq dp.

To avoid confusion between these measures we restrict the use of the subscript E for the
microcanonical measure and the subscript T for the canonical measure.

3. Green-Kubo Formula and Statement of the Results

In the physical literature several variations of the Green-Kubo formula (3) can be found
([13,7]). As in (3), one can start with the infinite system and sum over all x ∈ Z

d . One
can also start working with the finite system with periodic boundary conditions and sum
over x ∈ �d

N , where �d
N is a finite box of size N and take the thermodynamic limit

N → ∞ (before sending the time to infinity). In the finite case there is a choice of the
equilibrium measure. If < · > is the canonical measure at temperature T , one refers to
the derivation à la Kubo. If < · > is the microcanonical measure at energy E N d , one
refers to the derivation à la Green. Because of the equivalence of ensembles one expects
that these different definitions give all the same value of the conductivity, provided that
temperature T and energy E are suitably related by the corresponding thermodynamis
relation. Nevertheless a rigorous justification is absent in the literature.

In the sequel we will consider the microcanonical Green-Kubo formula (noted κ)
and the canonical Green-Kubo formula (noted κ̃) starting from our finite system.

In the harmonic case we work out the microcanonical Green-Kubo version that we
compute explicitly. Similar computations are valid (with less work) for the canonical
version of the Green-Kubo formula and will give the same result. In the anharmonic case
equivalence of ensembles is less developed and we deal only with the canonical version
of the Green-Kubo formula.

The microcanonical Green-Kubo formula for the conductivity in the direction e1 is
defined as the limit (when it exists)

κ1,1(T ) = lim
t→∞ lim

N→∞
1

2T 2t

∑

x∈Z
d
N

EN ,E
[
Jx,x+e1([0, t]) J0,e1([0, t])] , (14)

where EN ,E is the expectation starting with the microcanonical distribution< · >N ,E , and
the energy E = E(T ) is chosen such that it corresponds to the thermodynamic energy
at temperature T (i.e. the average of the kinetic energy in the canonical measure). In the
harmonic case T = E .
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Similarly the canonical version of the Green-Kubo formula is given by

κ̃1,1(T ) = lim
t→∞ lim

N→∞
1

2T 2t

∑

x∈Z
d
N

EN ,T

[
Jx,x+e1([0, t])J0,e1([0, t]) ] (15)

when this limit exists. Here EN ,T indicates the expectation with respect to the equilib-
rium dynamics starting with the canonical measure < · >N ,T at temperature T . These
definitions are consistent with (2)–(3) as we show at the end of this section.

Our first results concern the (α, ν)-harmonic case:

Vj (r) = αr2, W j (q) = νq2, α > 0, ν ≥ 0. (16)

Theorem 1. In the (α, ν)-harmonic case (16), the limits defining κ1,1 and κ̃1,1 exist.
They are finite if d ≥ 3 or if the on-site harmonic potential is present (ν > 0), and are
infinite in the other cases. When finite, κ(T ) and κ̃(T ) are independent of T , coincide
and the following formula holds:

κ̃1,1(T ) = κ1,1(T ) = 1

8π2dγ

∫

[0,1]d

(∂k1ω)2(k)

ψ(k)
dk +

γ

d
, (17)

where ω(k) is the dispertion relation

ω(k) =
⎛

⎝ν + 4α
d∑

j=1

sin2(πk j )

⎞

⎠
1/2

(18)

and

ψ(k) =
{

8
∑d

j=1 sin2(πk j ), if d ≥ 2
4/3 sin2(πk)(1 + 2 cos2(πk)), if d = 1.

(19)

Consequently in the unpinned harmonic cases in dimension d = 1 and 2, the con-
ductivity of our model diverges. In order to understand the nature of this divergence we
define the (microcanonical) conductivity of the finite system of size N as

κ
1,1
N (T ) = 1

2T 2tN

1

N d
EN ,E

⎛

⎜⎝

⎡

⎢⎣
∑

x∈Z
d
N

Jx,x+e1([0, tN ])
⎤

⎥⎦

2⎞

⎟⎠ , (20)

where tN = N/vs with vs = limk→0 |∂k1ω(k)| = 2α1/2 the sound velocity. This defini-
tion of the conductivity of the finite system is motivated by the following consideration:
∇kω(k) is the group velocity of the k-mode waves, and typically vs is an upper bound
for these velocities. Consequently tN is the typical time a low k (acoustic) mode takes
to cross around the system once. One defines similarly κ̃1,1

N (T ) by

κ̃
1,1
N (T ) = 1

2T 2tN

1

N d
EN ,T

⎛

⎜⎝

⎡

⎢⎣
∑

x∈Z
d
N

Jx,x+e1([0, tN ])
⎤

⎥⎦

2⎞

⎟⎠ . (21)
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We conjecture that κN (resp. κ̃N ) has the same asymptotic behavior as the conducti-
vity defined in the non-equilibrium stationary state on the open system with thermostats
at the boundary at different temperature, as defined in eg. [3,6,15].

With these definitions we have the following theorem:

Theorem 2. In the harmonic case, if W = 0:

(1) κN ∼ N 1/2 if d = 1,
(2) κN ∼ log N if d = 2.

In all other cases κN is bounded in N and converges to κ . Same results are valid for κ̃N .

In fact we show that, in the harmonic case, we have

lim
N→∞

κ̃
1,1
N (T )

κ
1,1
N (T )

= 1. (22)

This is a consequence of Eq. (51) that one can easily check is also valid if the micro-
canonical measure is replaced by the canonical measure.

In the anharmonic case we cannot prove the existence of either κ̃1,1(T ) or κ1,1(T ),
but we can establish upper bounds for the canonical version of the finite size Green-
Kubo formula (21). Extra assumptions on the potentials V and W assuring a uniform
control on the canonical static correlations (see (86–89)) have to be done. In the unpinned
case W = 0, (89) is valid as soon as V is strictly convex. In the pinned case W > 0,
(86) is “morally” valid as soon as the infinite volume Gibbs measure is unique. Exact
assumptions are given in [4], Theorem 3.1 and Theorem 3.2. In the sequel, “the general
anharmonic case” will refer to potentials V and W such that (86) (or (89)) is valid.

Theorem 3. Consider the general anharmonic case. There exists a constant C (depend-
ing on the temperature T ) such that

• For d ≥ 3,
(1) either W > 0 is general
(2) or if W = 0 and 0 < c− ≤ V ′′

j ≤ C+ < ∞ for any j , then

κ̃
1,1
N (T ) ≤ C.

• For d = 2, if W = 0 and 0 < c− ≤ V ′′
j ≤ C+ < ∞ for any j , then

κ̃
1,1
N (T ) ≤ C(log N )2.

• For d = 1, if W = 0 and 0 < c− ≤ V ′′ ≤ C+ < ∞, then

κ̃
1,1
N (T ) ≤ C

√
N .

• Moreover, in any dimension, if Vj are quadratic and W > 0 is general then

κ̃
1,1
N (T ) ≤ C.
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The proof of this statement is in Sect. 6.
We now relate the definition of the Green-Kubo (14) and (15) to the variance of the

energy-energy correlations function (2).
Consider the infinite volume dynamics on Z

d under the infinite volume canonical
Gibbs measure with temperature T > 0. The expectation is denoted by ET . Fix t > 0
and assume that the following sum makes sense:

Di, j
T (t) =

∑

x∈Zd

xi x j
ET [ (Ex(t)− T )(E0(0)− T ) ] =

∑

x∈Zd

xi x j S(x, t). (23)

If x �= 0, by space and time invariance of the dynamics, we have

ET [(Ex(t)− T )(E0(0)− T )] = −1

2
ET [ (Ex(t)− Ex(0)) (E0(t)− E0(0)) ] . (24)

By definition of the current, we have for any y ∈ Z
d :

Ey(t)− Ey(0) =
d∑

k=1

(
Jy−ek ,y([0, t])− Jy,y+ek ([0, t])) . (25)

By two discrete integration by parts one obtains

Di, j
T (t) =

∑

x∈Zd

ET
[
Jx,x+ei ([0, t]) J0,e j ([0, t])] (26)

so that the thermal conductivity is equal to the space-time correlations of the total current

κ i, j (T ) = δ0(i − j) lim
t→∞

1

2T 2t

∑

x∈Zd

ET

[
Jx,x+ei ([0, t]) J0,e j ([0, t])] . (27)

Of course this derivation is only formal even for fixed time t > 0. The problem is to
define the infinite volume dynamics and to show S(x, t) has a sufficiently fast decay in
x. For the purely Hamiltonian dynamics, it is a challenging problem. For the stochastic
dynamics it seems less difficult but remains technical. To avoid these difficulties we
adopt a finite volume limit procedure starting from (3). This explains the definitions (14)
and (15).

Consider now the closed dynamics on Z
d
N starting from the microcanonical state.

The rest of the section is devoted to the proof of the following formula:

1

2T 2t

1

N d
EN ,E

⎛

⎜⎝

⎡

⎢⎣
∑

x∈Z
d
N

Jx,x+e1([0, t])
⎤

⎥⎦

2⎞

⎟⎠

= (2T 2t N d)−1
EN ,E

⎛

⎜⎝

⎡

⎢⎣
∑

x∈Z
d
N

t∫

0

ja
x,x+e1

(s)ds

⎤

⎥⎦

2⎞

⎟⎠ +
γ

d
+

ON

N d
, (28)

and an identical formula in the canonical case (with EN ,E substituted by EN ,T ).
The term γ /d in (28) is the direct contribution of the stochastic dynamics to the

thermal conductivity. In the microcaconical case we actually prove that is equal to
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γ /d only for the harmonic case. A complete proof of (28) for anharmonic interaction
demands an extension of the equivalence of ensembles estimates proven in Sect. 7. In
the grancanonical case this problem does not appear.

Starting in the microcanonical case, remark that the first term on the RHS of (28) can
be written as

(2T 2t N d)−1
EN ,E

⎛

⎜⎝

⎡

⎢⎣
∑

x∈Z
d
N

t∫

0

ja
x,x+e1

(s)ds

⎤

⎥⎦

2⎞

⎟⎠

= 1

T 2

∞∫

0

(
1 − s

t

)+ ∑

x∈Z
d
N

EN ,E
(

ja
x,x+e1

(s) ja
0,e1
(0)
)

ds. (29)

If γ = 0, which corresponds to the purely Hamiltonian system, as N and then t
goes to infinity, and if one can prove that the current-current correlation function has a
sufficiently fast decay, then one recovers the usual Green-Kubo formula (3).

To prove (29) one uses space and time translation invariance of the dynamics

(2T 2t N d)−1
EN ,E

⎛

⎜⎝

⎡

⎣
∑

x

t∫

0

ja
x,x+e1

(s)ds

⎤

⎦
2
⎞

⎟⎠

= (2T 2t N d)−1
∑

x,y

t∫

0

ds

t∫

0

du EN ,E
(

ja
x,x+e1

(s) ja
y,y+e1

(u)
)

= (T 2t N d)−1
∑

x,y

t∫

0

ds

s∫

0

du EN ,E
(

ja
x,x+e1

(s) ja
y,y+e1

(u)
)

= (T 2t N d)−1
∑

x,y

t∫

0

ds

s∫

0

du EN ,E
(

ja
x−y,x−y+e1

(s − u) ja
0,e1
(0)
)

= 1

T 2

∞∫

0

(
1 − s

t

)+∑

x

EN ,E
(

ja
x,x+e1

(s) ja
0,e1
(0)
)

ds.

We now give the proof of (28). Because of the periodic boundary conditions, since
j s if a gradient (cf. (13)), the corresponding terms cancel, and we can write

∑

x

Jx,x+e1([0, t]) =
t∫

0

∑

x

ja
x,x+e1

(s) ds +
∑

x

Mx,x+e1(t)

=
t∫

0

Je1(s) ds + Me1(t) (30)
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so that

(t N d)−1
EN ,E

⎛

⎝
[
∑

x

Jx,x+e1([0, t])
]2
⎞

⎠

= (t N d)−1
EN ,E

⎛

⎜⎝

⎡

⎣
t∫

0

Je1(s)ds

⎤

⎦
2
⎞

⎟⎠ + (t N d)−1
EN ,E

(
M2

e1
(t)
)

+2(t N d)−1
EN ,E

⎛

⎝

⎡

⎣
t∫

0

Je1(s) ds

⎤

⎦Me1(t)

⎞

⎠ . (31)

The third term on the RHS of (31) is shown to be zero by a time reversal argument
and the second term on the RHS of (31) gives in the limit a contribution equal to γ /d.

To see the first claim let us denote by {ω(s)}0≤s≤t the process {(px(s),qx(s));
x ∈ Z

d
N , 0 ≤ s ≤ t} arising in (6) or in (7) for the one-dimensional case. The

reversed process {ω∗
s }0≤s≤t is defined as ω∗

s = ωt−s . Under the microcanonical mea-
sure, the time reversed process is still Markov with generator −A +γ S. The total current
Jt (ω·) = ∑x Jx,x+e1([0, t]) is a functional of {ωs}0≤s≤t . By (6–7), we have in fact that
Jt (·) is an anti-symmetric functional of {ωs}0≤s≤t , meaning

Jt ({ω∗
s }0≤s≤t ) = −Jt ({ωs}0≤s≤t ). (32)

In fact, similarly to (8), we have

Js(ω
∗· ) =

s∫

0

(Je1)
∗(ω∗(v))dv + M∗

e1
(s), 0 ≤ s ≤ t, (33)

where (M∗
e1
(s))0≤s≤t is a martingale with respect to the natural filtration of (ω∗

s )0≤s≤t

and (Je1)
∗ =∑x( ja)∗x,x+e1

is equal to −Je1 = −∑x ja
x,x+e1

.
We have then by time reversal

EN ,E[Jt (ω·)Je1(ω(t))] = −EN ,E[Jt (ω
∗· )Je1(ω

∗(0))]

= −EN ,E

⎡

⎣

⎛

⎝
t∫

0

(Je1)
∗(ω∗(s))ds + M∗(t)

⎞

⎠ Je1(ω
∗(0))

⎤

⎦

= −EN ,E

⎡

⎣

⎛

⎝
t∫

0

Je1
∗(ω∗(s))ds

⎞

⎠ Je1(ω
∗(0))

⎤

⎦ , (34)

where the last equality follows from the martingale property of M∗. Recall now that
(Je1)

∗ = −Je1 . By variables change s → t − s in the time integral, we get

EN ,E[Jt (ω·)Je1(ω(t))] = EN ,E

⎡

⎣

⎛

⎝
t∫

0

Je1(ω(s))ds

⎞

⎠ Je1(ω(t))

⎤

⎦ . (35)
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It follows that

EN ,E

⎡

⎣

⎛

⎝
t∫

0

Je1(ω(s))ds

⎞

⎠Me1(t)

⎤

⎦ = EN ,E

⎡

⎣
t∫

0

Je1(ω(s))Me1(s)ds

⎤

⎦

=
t∫

0

ds EN ,E

⎡

⎣Je1(ω(s))

⎛

⎝Js(ω·)−
s∫

0

Je1(ω(v))dv

⎞

⎠

⎤

⎦ . = 0 (36)

For the second term on the RHS of (31) we have

(t N d)−1
EN ,E

(
M2

e1
(t)
)

= γ

(d − 1)N d

∑

x

∑

i, j

〈(
Xi, j

x,x+e1(p
2
x/2)

)2
〉

N ,E

= γ

(d − 1)N d

∑

x

∑

i �= j

〈(
p j

x pi
x+e1

− pi
x p j

x+e1

)2
〉

N ,E

= 2γ

(d − 1)N d

∑

x

∑

i �= j

〈
(p j

x pi
x+e1

)2
〉

N ,E

− 2γ

(d − 1)N d

∑

x

∑

i �= j

〈
(pi

x pi
x+e1

p j
x p j

x+e1)
〉

N ,E
.

Thanks to the equivalence of ensembles (cf. Lemma 7), this last quantity is equal to

2γ
T 2

d
+ N−d ON , (37)

where ON remains bounded as N → ∞. The calculation in d = 1 is similar. The
contribution of the martingale term for the conductivity is hence γ /d and we have shown
(28). Notice this is the only point where we have used the equivalence of ensembles
results of Sect. 7 that we have proven only in the harmonic case. We conjecture these
are true also for the anharmonic cases.

Observe that all the arguments above between (30) and (37) apply directly also to the
canonical definition of the Green-Kubo but without the small error in N (because for the
canonical measure momentums px are independently distributed and the equivalence of
ensembles approximations are in fact equalities). Therefore we have the similar formula
to (28):

1

2T 2t

∑

x

EN ,T

(
Jx,x+e1([0, t])J0,e1([0, t]))

= (2T 2 N dt)−1
EN ,T

⎛

⎜⎝

⎡

⎣
∑

x

t∫

0

ja
x,x+e1

(s)ds

⎤

⎦
2
⎞

⎟⎠ +
γ

d
. (38)

In the next sections we will consider the (α, ν)-harmonic case and we will compute
explicitly the limit (as N → ∞ and then t → ∞) of the two first term on the RHS of
(31).
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4. Correlation Function of the Energy Current in the Harmonic Case

We consider the (α, ν)-harmonic case (16). We recall that Je1 = ∑
x jx,x+e1 . Because

of the periodic boundary conditions, and being j s
x,x+e1

a spatial gradient (cf. (13)), we
have that Je1 =∑x ja

x,x+e1
. We are interested in the decay of the correlation function:

C1,1(t) = lim
N→∞

1

N d
EN ,E(Je1(t)Je1(0)) = lim

N→∞
∑

x

EN ,E( ja
0,e1
(0) ja

x,x+e1
(t)), (39)

where EN ,E is the expectation starting with the microcanonical distribution defined above.
For λ > 0, let uλ,N be the solution of the Poisson equation

λuλ,N − Luλ,N = −
∑

x

ja
x,x+e1

given explicitly in Lemma 2 of Sect. 5. By Lemma 1, we can write the Laplace transform
of C1,1(t) as

∞∫

0

dte−λt C1,1(t) dt = lim
N→∞

〈
ja
0,e1

uλ,N
〉

N ,E . (40)

Substituting in (40) the explicit form of uλ,N given in Lemma 2, we have:

− 〈 ja
0,e1

uλ,N
〉

N ,E = α2

2γ

∑

x,y

gλ,N (x − y)
〈
(qe1 − q0) · (pe1 + p0)(px · qy)

〉
N ,E

= α2

2γ

∑

x,y

gλ,N (x − y)
〈
(qe1 · p0 − q0 · pe1)(px · qy)

〉
N ,E

+
α2

2γ

∑

x,y

gλ,N (x − y)
〈
(qe1 · pe1 − q0 · p0)(px · qy)

〉
N ,E .

(41)

Observe that the last term on the RHS of (41) is null by the translation invariance property.
So we have (using again the translation invariance and the antisymmetry of gλ,N )

− 〈 ja
0,e1

uλ,N
〉

N ,e
= α2

2γ

∑

x,y

gλ,N (x − y)
〈
(qe1 − q−e1) · p0)(px · qy)

〉
N ,e
.

Define

KN (q) = N dE − 1

2

∑

x

qx · (ν I − α�)qx.

In the unpinned case ν = 0, conditionally to the positions configuration q, the law of p
is µq = µN d√

2KN (q)
(defined in Lemma 6), meaning the uniform measure on the surface

{
(px)x∈Z

d
N
; 1

2

∑

x

p2
x = KN (q);

∑

x

px = 0

}
.
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By using properties (i),(ii) and (iii) of Lemma 6, one has for x �= 0,
〈
((qe1 − qe1) · p0)(px · qy)

〉
N ,E =

∑

i, j

〈
µq

(
pi

0 p j
x

)
(qi

e1
− qi−e1

)q j
y

〉

N ,E

=
∑

i

〈
µq

(
pi

0 pi
x

)
(qi

e1
− qi−e1

)qi
y

〉

N ,E

= −
d∑

i=1

〈
2KN (q)

d N d(N d − 1)
(qi

e1
− qi−e1

)qi
y

〉

N ,E

= − 1

N d − 1

d∑

i=1

〈
(pi

0)
2(qi

e1
− qi−e1

)qi
y

〉

N ,E
. (42)

For x = 0, one gets
〈
((qe1 − qe1) · p0)(p0 · qy)

〉
N ,E =

∑

i, j

〈
µq

(
pi

0 p j
0

)
(qi

e1
− qi−e1

)q j
y

〉

N ,E

=
d∑

i=1

〈
µq

(
pi

0 pi
0

)
(qi

e1
− qi−e1

)qi
y

〉

N ,E

=
d∑

i=1

〈(
pi

0

)2
(qi

e1
− qi−e1

)qi
y

〉

N ,E
. (43)

In the pinned case ν > 0, conditionally to the positions configuration q, the law of p
is λq = λN d√

2KN (q)
(defined in Lemma 5), meaning the uniform measure on the surface

{
(px)x∈Z

d
N
; 1

2

∑

x

p2
x = KN (q)

}
.

We proceed in a similar way and we observe that if x �= 0, λq(pi
0 pi

x) = 0 (cf. ii) of
Lemma 5)

Since gλ,N is antisymmetric (see (64–65)) and such that
∑

z gλ,N (z) = 0, one obtains
easily in both cases (pinned and unpinned)

− 〈 ja
0,e1

uλ,N
〉

N ,e
= − α

2

2γ

∑

y

gλ,N (y)
∑

i

〈(
pi

0

)2
(qi

e1
− qi−e1

)qi
y

〉

N ,E

+
α2

2γ

1ν=0

N d − 1

∑

x �=0,y

gλ,N (y − x)
∑

i

〈(
pi

0

)2
(qi

e1
− qi−e1

)qi
y

〉

N ,E

= −
(

1 +
1ν=0

N d − 1

)
α2

2γ

∑

y

gλ,N (y)
∑

i

〈(
pi

0

)2
(qi

e1
− qi−e1

)qi
y

〉

N ,E
.

(44)

Let �N (x), x ∈ Z
d
N , be the unique solution of

(ν I − α�)�N = δe1 − δ−e1 (45)

such that
∑

x∈Z
d
N
�N (x) = 0.
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By (iii) of Lemma 7 and (77), we have
∣∣∣∣∣∣
− 〈 ja

0,e1
uλ,N

〉
N ,E −

(
1 +

1ν=0

N d − 1

)
α2E2

2γ d

∑

y

gλ,N (y)�N (y)

∣∣∣∣∣∣

≤ C log N

N d

∑

y

∣∣gλ,N (y)
∣∣ ≤ C log N

N d/2

(
∑

x

(gλ,N (x))2
)1/2

≤ C ′ log N

λN d/2 . (46)

Hence the last term of (46) goes to 0.
Taking the limit as N → ∞ we obtain (see (80))

∞∫

0

e−λt C1,1(t) dt = α2E2

2dγ

∑

z

gλ(z)�(z), (47)

where gλ are solutions of the same equations as gλ,N but on Z
d and � is the solution of

the same equation as �N but on Z
d .

Using Parseval relation and the explicit form of the Fourier transform of gλ (cf. (74))
and �, one gets the following formula for the Laplace transform of C1,1(t) for d ≥ 2:

α2E2

d

∫

[0,1]d

dk

(
sin2(2πk1)

ν + 4α
∑d

j=1 sin2(πk j )

)
1

λ + 8γ
∑d

j=1 sin2(πk j )
. (48)

By injectivity of Laplace tranform, C1,1(t) is given by:

C1,1(t) = α2E2

d

∫

[0,1]d

dk

(
sin2(2πk1)

ν + 4α
∑d

j=1 sin2(πk j )

)

exp

⎧
⎨

⎩ −8γ t
d∑

j=1

sin2(πk j )

⎫
⎬

⎭ . (49)

For the one dimensional case, the equation for gλ,N (resp. gλ) is different (see (75) )
and we get the following integral representation of the correlation function of the energy
current:

C1,1(t) = αE2

1∫

0

dk cos2(πk) exp

{
−4γ t

3
sin2(πk)(1 + 2 cos2(πk)

}
. (50)

In any dimension, we have the following unified formula for C1,1(t)

C1,1(t) = E2

4π2d

∫

[0,1]d

(∂k1ω(k))2e−tγψ(k)dk, (51)
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where ω(k) is defined by (18) and ψ(k) by (19). Observe that the same formula holds if
we replace EN ,E by EN ,T . In this last case, the situation is simpler since we do not need
equivalence of ensembles.

Standard analysis shows the behavior of C1,1(t) as t goes to infinity is governed by the
behavior of the function (∂k1ω(k))2 andψ(k) around the minimal value ofψ which is 0.
In fact,ψ(k) = 0 if and only if k = 0 or k = (1, . . . , 1). By symmetry, we can treat only
the case k = 0. Around k = 0, ψ(k) ∼ a|k|2 and (∂κ1ω(k))2 ∼ b(ν + |k|2)−1(k1)2,
where a and b are positive constants depending on ν and α. Essentially, C1,1(t) has the
same behavior as

∫

k∈[0,1]d

dk
(k1)2e−aγ t |k|2

ν + |k|2 = 1

td/2+1

∫

[0,√t]d

dk
(k1)2e−aγ |k|2

ν + t−1|k|2 . (52)

Hence, we have proved the following theorem:

Theorem 4. In the (α, ν)-harmonic case, the current-current time correlation function
C1,1(t) decays like

• C1,1(t) ∼ t−d/2 in the unpinned case (ν = 0)
• C1,1(t) ∼ t−d/2−1 in the pinned case (ν > 0)

5. Conductivity in the Harmonic Case

Lemma 1. Consider the (α, ν)-harmonic case. For any time t, the following limit exists:

C1,1(t) = lim
N→∞

1

N d
EN ,E(Je1(t)Je1(0)). (53)

and

∞∫

0

dte−λt C1,1(t) dt = lim
N→∞

〈
ja
0,e1

uλ,N
〉

N ,E . (54)

The same result holds with EN ,E replaced by EN ,T .

Proof. We only prove this lemma in the microcanonical setting. Let us define

fN (t) = 1

N d
EN ,E(Je1(t)Je1(0)). (55)

We first prove the sequence ( fN )N is uniformly bounded. By Cauchy-Schwarz and
stationarity, we have

| fN (t)| ≤ 1

N d

√〈
J2

e1
(t)
〉

N ,E

√〈
J2

e1
(0)
〉

N ,E

= 1

N d

〈
J2

e1

〉

N ,E
. (56)
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We now use symmetry properties of the microcanonical ensemble to show this last term
is bounded above by a constant independent of N ,

N−d < J2
e1
>N ,E=

∑

x

< ja
0,e1

ja
x,x+e1

>N ,E

= α2

4

∑

x

d∑

i, j=1

〈
(qi

e1
− qi

0)(q
j

x+e1 − q j
x )(p

i
e1

+ pi
0)(p

j
x+e1 + p j

x

〉

N ,E
.

In the unpinned case ν = 0, conditionally to the positions configuration q, the law
of p is µq = µN d√

2KN (q)
(defined in Lemma 6).

By using properties (i), (ii) and (iii) of Lemma 6, one has

N−d < J2
e1
>N ,E= α2

4

d∑

i=1

〈
(qi

e1
− qi

0)(q
i
2e1

− qi−e1
− 3qi

e1
+ 3qi

0)(p
i
0)

2
〉

N ,E
. (57)

By Cauchy-Schwarz inequality, the modulus of this last quantity is bounded above by

α[8 < E2
0 >N ,E +

1

2
< E2

e1
>N ,E] = 17

2
< E2

0 >N ,E, (58)

where the last equality is a consequence of the invariance by translation of< · >N ,E . Let
(X1, . . . , X N d ) be a random vector with law λN d√

N dE , meaning the uniform measure on

the N d -dimensional sphere of radius
√

N dE . The vector of energies (Ex, x ∈ Z
d
N ) has

the same law as (X2
1, . . . , X2

N d ). By Lemma 4, E(X4
1) =< E2

0 >N ,E is bounded above

by a constant independent of N . Hence there exists a positive constant C such that

| fN (t)| ≤ C. (59)

Similarly, inequality (59) can be proved in the pinned case ν > 0. Let f (t) be any limit
point of the sequence ( fN (t))N≥1 and choose a subsequence (Nk)k≥0 such that ( fNk )

converges to f (for the pointwise convergence topology). By Lebesgue’s theorem, we
have

lim
k→∞

∞∫

0

e−λt fNk (t)dt =
∞∫

0

e−λt f (t)dt. (60)

But we have that

∞∫

0

e−λt fN (t)dt = − < j0,e1 , uλ,N >N ,E (61)

and we have seen in Sect. 4 this last quantity converges as N goes to infinity to

∞∫

0

e−λt f∞(t)dt, (62)
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where f∞ is given by (see (18–19) for the notations)

f∞(t) = E2

4π2d

∫

[0,1]d

(∂k1ω(k))2e−tγψ(k)dk. (63)

By injectivity of the Laplace transform, we get f (t) = f∞(t). Uniqueness of limit points
implies ( fN (t))N≥1 converges to f∞(t) for any t . It follows also we can inverse time
integral and infinite volume limit in the left hand side of (54) and the lemma is proved.

�
Lemma 2 (Resolvent equation).

uλ,N = (λ− L)−1

(
−
∑

x

ja
x,x+e1

)
= α

γ

∑

x,y

gλ,N (x − y)px · qy,

where gλ,N (z) is the solution (such that
∑

z gλ,N (z) = 0) of the equation

2λ

γ
gλ,N (z)− 4�gλ,N (z) = (δ(z + e1)− δ(z − e1)) (64)

for d ≥ 2, or

2λ

γ
gλ,N (z)− 1

3
�
[
4gλ,N (z) + gλ,N (z + 1) + gλ,N (z − 1)

]=(δ(z + 1)−δ(z − 1))

(65)

for d = 1. Moreover, Auλ,N = 0 and Luλ,N = γ Suλ,N .

Proof. We only give the proof for the dimension d ≥ 2 since the proof for the one
dimensional case is similar. Let uλ,N = α

γ

∑
x,y gλ,N (x − y)px · qy. The generator L is

equal to the sum of the Liouville operator A and of the noise operator γ S. The action of
A on uλ,N is null. Indeed, we have:

Auλ,N = α

γ

∑

x

[(α�−ν I )qx] ·
⎛

⎝
∑

y

gλ,N (x − y)qy

⎞

⎠+
α

γ

∑

y,x

gλ,N (x−y)px · py.

(66)

Here, and in the sequel of the proof, sums indexed by x, y, z are indexed by ZN and sums
indexed by i, j, k, � are indexed by {1, . . . , d}. Summation by parts can be performed
(without outcoming boundary terms since we are on the torus) and we get

Auλ,N = α

γ

∑

x

[(α�− ν I )gλ,N ](x − y)qx qy +
α

γ

∑

y,x

gλ,N (x − y)px · py. (67)

Remark now that the function δ(· − e1) − δ(· + e1) is antisymmetric. Hence gλ,N , and
consequently �gλ,N , is still antisymmetric. We have therefore Auλ,N which is of the
form:

Auλ,N =
∑

x,y

{a1(x − y)px · py + a2(x − y)qx · qy} (68)
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with a1, a2 antisymmetric. Using the antisymmetricity of a1 and a2, it is easy to show
that the last two sums are zero and hence Auλ,N = 0.

A simple computation shows that if � ∈ {1, . . . , d} then

S(p�x) = 1

2(d − 1)

∑

y

∑

i �= j,k

(Xi, j
y,y+ek )

2(p�x)

= 2

2(d − 1)

∑

i �=�,k
(Xi,�

x,x+ek
)2(p�x) +

2

2(d − 1)

∑

i �=�,k
(Xi �=�,k

x−ek ,x)
2(p�x)

= 1

d − 1

∑

i �=�,k

{
(p�x+ek

− p�x)− (p�x − p�x−ek
)
}

= 2�(p�x).

Since the action of S is only on the p’s, we have

γ Suλ,N = α
∑

x,y

gλ,N (x − y)S(px) · qy

= 2α
∑

x,y

gλ,N (x − y)(�px) · qy

= 2α
∑

x,y

(�gλ,N )(x − y)px · qy,

where in the last line, we performed a summation by parts. Since gλ,N is a solution of
(64), we have

λuλ,N − γ Suλ,N = α

2

∑

x

px · (qx+e1 − qx−e1) = −
∑

x

ja
x,x+e1

. (69)

�
Let us define the Fourier transform v̂(ξ), ξ ∈ Z

d
N , of the function v on Z

d
N as

v̂(ξ) =
∑

z∈Z
d
N

v(z) exp(2iπξ · z/N ). (70)

The inverse transform is given by

v(z) = 1

N d

∑

ξ∈Z
d
N

v̂(ξ) exp(−2iπξ · z/N ) (71)

On Z
d we define similarly:

v̂(k) =
∑

z∈Zd

v(z) exp(2iπk · z), k ∈ [0, 1]d . (72)

and its inverse by

v(z) =
∫

[0,1]d

v̂(k) exp(−2iπk · z).
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For λ > 0, the function gλ : Z
d → R is the solution on Z

d of the equation

2λ

γ
gλ(z)− 4�gλ(z) = δ0(z + e1)− δ0(z + e1), d ≥ 2,

2λ

γ
gλ(z)− 1

3
�(4gλ(z) + gλ(z + 1) + gλ(z − 1)) = δ0(z + 1)− δ0(z − 1), d = 1.

(73)

Then we have

ĝλ(k) = −2iπ sin(2πk1)

2λ

γ
+ 16

∑d
j=1 sin2(πk j )

, if d ≥ 2 (74)

and

ĝλ(k) = −2iπ sin(2πk)

2λ

γ
+

8

3
sin2(πk)

(
1 + 2 cos2(πk)

) , if d = 1. (75)

Since gλ,N is the solution of the same equation as gλ but on Z
d
N , we have the following

formula for ĝλ,N :

ĝλ,N (ξ) = ĝλ(ξ/N ). (76)

The following bound follows easily from Parseval relation:

∑

x∈Z
d
N

(gλ,N (x))2 ≤ γ 2

λ2 (77)

Similarly, the function �N defined in (45) has Fourier transform given by

�̂N (ξ) = �̂(ξ/N ), (78)

where

�̂(k) = −2i sin(2πk1)

ν + 4α
∑d

j=1 sin2(πk j )
. (79)

Let us denote by z∗ the conjugate of the complex number z and observe that the func-

tion k ∈ [0, 1]d → ĝλ(k)
[
�̂(k)

]∗ ∈ R
+ is continuous. Hence we have the following

convergence of Riemann sums:

∑

y∈Z
d
N

gλ,N (y)�N (y) = 1

N d

∑

ξ∈Z
d
N

ĝλ,N (ξ)[�̂N (ξ)]∗

−−−−→
N→∞

∫

[0,1]d

dkĝλ(k)[�̂(k)]∗ =
∑

y∈Zd

gλ(y).�(y). (80)

The limits as λ → 0 of the above expressions give the values for the conductivity
(up to a multiplicative constant) when this is finite. If ν = 0 it diverges if d = 1 or 2.
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6. Anharmonic Case: Bounds on the Thermal Conductivity

We consider in this section the general anharmonic case and we prove Theorem 3. Recall
(38), then all we need to estimate is

(2T 2 N d+1)−1
EN ,T

⎛

⎜⎝

⎡

⎣
∑

x

N∫

0

ja
x,x+e1

(s)ds

⎤

⎦
2⎞

⎟⎠ . (81)

Let us define
∑

x ja
x,x+e1

= Je1 , then we have the general bound ([16], Lemma 3.9)

EN ,T

⎛

⎜⎝

⎡

⎣
N∫

0

Je1(s)ds

⎤

⎦
2⎞

⎟⎠ ≤ 10N
〈
Je1 , (N

−1 − L)−1Je1

〉

N ,T

≤ 10N
〈
Je1 , (N

−1 − γ S)−1Je1

〉

N ,T
. (82)

Recall that S(px) = 2�(px) if d ≥ 2 and S(px ) = 1

6
�(4px + px+1 + px−1) if d = 1,

(N−1 − γ S)−1Je1 =
d∑

j=1

∑

y

G N (x − y)p j
x V ′

j (q
j

y+e1 − q j
y ), (83)

where G N (z) is the solution of the resolvent equation
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N−1G N (z)− 2γ (�G N )(z) = −1

2

[
δ0(z) + δe1(z)

]
, d ≥ 2

N−1G N (z)− γ

6
[4(�G N )(z) + (�G N )(z + 1) + (�G N )(z − 1)]

= −1

2
[δ0(z) + δ1(z)] , d = 1.

(84)

The left-hand side of (82) is equal to

− 5T N d+1
d∑

j=i

∑

x

(G N (x) + G N (x + e1))
〈
V ′

j (q
j

x+e1 − q j
x )V

′
j (q

j
e1 − q j

0 )
〉

N ,T
. (85)

• Pinned case.

In the pinned case, the correlations
〈
V ′

j (q
j

x+e1 − q j
x )V ′

j (q
j

e1 − q j
0 )
〉

N ,T
decay expo-

nentially in x,
∣∣∣∣
〈
V ′

j (q
j

x+e1 − q j
x )V

′
j (q

j
e1 − q j

0 )
〉

N ,T

∣∣∣∣ ≤ Ce−c|x|. (86)

It follows that the previous expression is bounded by

CT 2t N d
∑

x

|G N (x) + G N (x + e1)|e−c|x|.
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Since G N is bounded in d ≥ 3, it follows that (81) is uniformly bounded in N . In low
dimensions, our estimates are too rough and we obtain only diverging upper-bounds.
Nevertheless, if Vj (r) = α j r2 are quadratics and W j are general but strictly positive
then

〈
V ′

j (q
j

x+e1 − q j
x )V

′
j (q

j
e1 − q j

0 )
〉

N ,T

= α j

{
2 < q j

x q j
0 >N ,T − < q j

x−e1
q j

0 >N ,T − < q j
x+e1q j

0 >N ,T

}
. (87)

As a function of x, this quantity is a Laplacian in the first direction and by integration
by parts, the left-hand side of (81) is upper bounded by

C
∑

x

|(�G N )(x) + (�G N )(x + e1)| e−c|x|. (88)

By Lemma 3, this quantity is uniformly bounded in N .
• Unpinned case.

In the unpinned case, we assume that 0 < c ≤ V ′′
j (q) ≤ C < +∞. We have (cf. [9],

Theorem 6.2, that can be proved in finite volume uniformly)
∣∣∣∣
〈
V ′

j (q
j

x+e1 − q j
x )V

′
j (q

j
e1 − q j

0 )
〉

N ,T

∣∣∣∣ ≤ C |x|−d . (89)

In the one dimensional case, the random variables rx = qx+1 − qx are i.i.d. and
< V ′(rx ) >N ,T = 0. Only the term corresponding to x = 0 remains in the sum of
(85). By Lemma 3, we get the upper bound

(G N (0) + G N (1))
〈
V ′(r2

0 )
〉

N ,T
≤ C

√
N . (90)

For the unpinned two dimensional case, we obtain the upper bound

C
∑

x∈Z
2
N

|G N (x) + G N (x + e1)||x|−d

≤ C log N
∑

x∈Z
2
N

|x|−2

∼ C(log N )2. (91)

For the case d ≥ 3, we use the first point of Lemma 3, (89) and the fact that
∑

x∈Z
d
N

|x|−d ∼ log N . (92)

Lemma 3. Let G N be the solution of the discrete equation (84). There exists a constant
C > 0 independent of N such that

• G N (x) ≤ C(|x|d−2 + N−1/2), d ≥ 3
• G N (x) ≤ C log N , d = 2
• G N (x) ≤ C

√
N , d = 1

• |G N (x + e1) + G N (x − e1)− 2G N (x)| ≤ C, d ≥ 1.
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Proof. In the proof, C is a constant independent of N but which can change from line
to line. We first treat the case d ≥ 3. We use Fourier’s transform representation of G N :

G N (x) = − 1

2N d

∑

k∈Z
d
N

(1 + e2iπk1/N )
e−2iπk·x/N

θN (k/N )
, (93)

where θN (u) = N−1 + 8γ
∑d

j=1 sin2(πu j ). G N can also be written in the following
form:

G N (x) = −1

2
[FN (x) + FN (x − e1)] , (94)

where

FN (x) = 1

N d

∑

k∈Z
d
N

e−2iπk·x/N

θN (k/N )
. (95)

Let us introduce the continuous Fourier’s transform representation of the Green func-
tion F∞ on Z

d given by:

F∞(x) =
∫

[0,1]d

exp(2iπx · u)

θ(u)
du, (96)

where θ(u) = 8γ
∑d

j=1 sin2(πu j ). Remark that F∞ is well defined because d ≥ 3. We
have to prove there exists a constant C > 0 independent of N such that

FN (x) ≤ C(|x|d−2 + N−1/2). (97)

Observe that by symmetries of FN , we can restrict our study to the case x ∈ [0, N/2]d .
We want to show that FN (x) is well approximated by F∞(x). We have

FN (x)− F∞(x) = FN (x)− F N∞(x) + F N∞(x)− F∞(x), (98)

where

F N∞(x) =
∫

[0,1]d

exp(2iπx · u)

θN (u)
du. (99)

For each k ∈ Z
d
N , we introduce the hypercube Qk =∏d

j=1[k j/N , (k j + 1)/N ) and

we divide [0, 1]d following the partition ∪k∈Z
d
N

Qk. By using this partition, we get

FN (x)− F N∞(x) =
∑

k∈Z
d
N

∫

Qk

du
e2iπk·x/N − e2iπu·x

θN (k/N )

+
∫

Qk

due2iπu·x
(

1

θN (k/N )
− 1

θN (u)

)
. (100)
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Remark that
∫

Qk

due2iπu·x = e2iπk·x/N

N d
ϕ(x/N ), (101)

where

ϕ(u) =
d∏

j=1

e2iπu j
d∏

j=1

sin(πu j )

(πu j )
. (102)

It follows that the first term on the right-hand side of (100) is equal to

(1 − ϕ(x/N ))FN (x) (103)

so that

FN (x) = F N∞(x)
ϕ(x/N )

+
1

ϕ(x/N )

∑

k∈Z
d
N

∫

Qk

due2iπu·x
(

1

θN (k/N )
− 1

θN (u)

)
. (104)

The next step consists to show that the second term on the right-hand side of (104) is
small. In the sequel, C is a positive constant independent of N but which can change
from line to line. For each u ∈ Qk, we have

sin2(πu j )− sin2(πk j/N ) = π sin(2πc j )(u j − k j/N ). (105)

for some c j ∈ [k j/N , (k j + 1)/N ). Consequently, we have

| sin2(πu j )− sin2(πk j/N )| ≤ C

N
| sin(πk j/N )|. (106)

Moreover, there exists a positive constant C such that

∀k ∈ Z
d
N ,∀u ∈ Qk, θN (u) ≥ CθN (k/N ). (107)

It follows that the modulus of the second term on the right-hand side of (104) is bounded
by

C

|ϕ(x/N )|
d∑

j=1

1

N d

∑

k∈Z
d
N

N−1| sin(πk j/N )|
θN (k/N )2

. (108)

Since the modulus of the function ϕ(u) is bounded below by a positive constant on
[0, 1/2]d , this last term is of the same order as

N−1
d∑

j=1

∫

[0,1]d

| sin(πu j )|
θN (u)2

du. (109)

Elementary standard analysis shows that this term is of the same order as

N−1

1∫

0

rd

(N−1 + r2)2
dr. (110)
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For d ≥ 4, this term is clearly of order N−1. For d = 3, the change of variables
r = N−1/2v gives an integral of order N−1 log N . In conclusion, we proved

FN (x) = F N∞(x)
ϕ(x/N )

+ O

(
log N

N

)
. (111)

Moreover, it is not difficult to show that

|F∞(x)− F N∞(x)| ≤ C N−1/2. (112)

Since we have (cf. [14], Theorem 4.5)

F∞(x) ≤ C |x|2−d (113)

we obtained the first point of the lemma.
For the 1- and 2-dimensional estimates, we have that |G N (x)| ≤ G N (0) and by

standard analysis, there exists a constant C > 0 independent of N such that

G N (0) ≤ C
∫

[0,1/2]d

dk
1

N−1 +
∑d

j=1 sin2(πk)
. (114)

By using the inequality sin2(πu) ≥ 4u2, one gets G N (0) is of same order as

∫

[0,1/2]d

dk
1

N−1 + |k|2. (115)

This last quantity is of order
√

N if d = 1 and log N if d = 2.
Let us now prove the final statement. Assume d ≥ 2 (the case d = 1 can be proved

in a similar way). We have

|G N (x + e1) + G N (x − e1)− 2G N (x)|

=

∣∣∣∣∣∣∣

2

N d

∑

k∈Z
d
N

(1 + e2iπk1/N ) sin2(πk1/N )
e−2iπk·x/N

θN (k/N )

∣∣∣∣∣∣∣

≤ 4

N d

∑

k∈Z
d
N

sin2(πk1/N )

θN (k/N )

≤ (2γ )−1. (116)

�
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7. Appendix: Equivalence of Ensembles

In this part, we establish a result of equivalence of ensembles for the microcanonical
measure< · >N ,E , since it does not seem to appear in the literature. The decomposition in
normal modes permits to obtain easily the results we need from the classical equivalence
of the ensemble for the uniform measure on the sphere. This last result proved in [10]
says that the expectation of a local function in the microcanonical ensemble (the uniform
measure on the sphere of radius

√
k in this context) is equal to the expectation of the same

function in the canonical ensemble (the standard gaussian measure on R
∞) with an error

of order k−1. In fact, the equivalence of ensembles of Diaconis and Freedman is expressed
in terms of a very precise estimate of variation distance between the microcanonical
ensemble and the canonical ensemble. In this paper, we need to consider equivalence of
ensembles for unbounded functions and to be self-contained we prove in the following
lemma a slight modification of estimates of [10].

Lemma 4. Let λn
rn1/2 be the uniform measure on the sphere

Sn
rn1/2 =

{
(x1, . . . , xn) ∈ R

n;
n∑

�=1

x2
� = nr2

}

of radius r and dimension n − 1 and λ∞
r the Gaussian product measure with mean 0

and variance r2. Let θ > 0 and φ be a function on R
k such that

|φ(x1, . . . , xk)| ≤ C

(
k∑

�=1

x2
�

)θ
, C > 0. (117)

There exists a constant C ′ (depending on C, θ, k, r) such that

lim sup
n→∞

n
∣∣λn

rn1/2(φ)− λ∞
r (φ)

∣∣ ≤ C ′. (118)

Proof. This lemma is proved in [10] for φ positive bounded by 1. Without loss of
generality, we can assume r = 1 and we simplify the notations by denoting λn

rn1/2 with

λn and λ∞
r with λ∞. The law of (x1 + . . . + xk)

2 under λn is n times a β[k/2, (n − k)/2]
distribution and has density (cf. [10])

f (u) = 1{0≤u≤n} · 1

n

�(n/2)

�(k/2)�[(n − k)/2]
(

u

n

)(k/2)−1 (
1 − u

n

)((n−k)/2)−1

. (119)

On the other hand, the law of (x1 + . . . + xk)
2 under λ∞ is χ2

k with density (cf. [10])

g(u) = 1

2k/2�(k/2)
e−u/2u(k/2)−1. (120)

With these notations, we have

∣∣λn(φ)− λ∞(φ)
∣∣ ≤ C

∞∫

0

uθ | f (u)− g(u)|du. (121)
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The RHS of the inequality above is equal to

2C

∞∫

0

uθ
(

f (u)

g(u)
− 1

)+

g(u)du + C

∞∫

0

uθ (g(u)− f (u))du. (122)

In [10], it is proved 2

(
f (u)

g(u)
− 1

)+

≤ 2(k +3)/(n−k−3) as soon as k ∈ {1, . . . , n−4}.
The second term of (122) can be computed explicitly and is equal to

� ((2θ + k)/2)

�(k/2)

[
2θ − nθ�(n/2)

�(θ + n/2)

]
. (123)

A Taylor expansion shows that this term is bounded by C ′/n for n large enough. �
We recall here the following well known properties of the uniform measure on the

sphere.

Lemma 5 (Symmetry properties of the uniform measure on the sphere).
Let λk

r be the uniform measure on the sphere

Sk
r =

{
(x1, . . . , xk) ∈ (Rd)k;

k∑

�=1

x2
� = r2

}

of radius r and dimension dk − 1.

i) λk
r is invariant by any permutation of coordinates.

ii) Conditionally to {x1, . . . , xk}\{xi }, the law of xi has an even density w.r.t. the
Lebesgue measure on R

d .

In the same spirit, we have the following lemma.

Lemma 6. Let µk
r be the uniform measure on the surface defined by

Mk
r =

{
(x1, . . . , xk) ∈ (Rd)k;

k∑

�=1

x2
� = r2;

k∑

�=1

x� = 0

}
.

We have the following properties:

i) µk
r is invariant by any permutation of the coordinates.

ii) If i �= j ∈ {1, . . . , d} then for every h, � ∈ {1, . . . , k} (distinct or not),µk
r (x

i
hx j
� ) =

0.

iii) If h �= � ∈ {1, . . . , k} and i ∈ {1, . . . , d},

µk
r (x

i
hxi
�) = − r2

dk(k − 1)
= −µ

k
r (x

2
h)

k − 1
= −µ

k
r (x

2
�)

k − 1
. (124)

Lemma 7. (Equivalence of ensembles.) Consider the (α, ν)-harmonic case. There exists
a positive constant C = C(d, E) such that:
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i) If i �= j ,

∣∣∣∣∣

〈(
p j

0 pi
e1

)2
〉

N ,E
− E2

d2

∣∣∣∣∣ ≤
C

N d
.

ii) If i �= j ,

∣∣∣∣
〈
(pi

0 pi
e1

p j
0 p j

e1)
〉

N ,E

∣∣∣∣ ≤
C

N d
.

iii) For any i and any y ∈ Z
d
N , we have

∣∣∣∣∣

〈
q j

y (q
j
−e1

− q j
e1)(p

j
0)

2
〉

N ,E
−
(E

d

)2

�N (y)

∣∣∣∣∣ ≤
C log N

N d
.

Proof. Let us treat only the unpinned case ν = 0. The pinned case is similar. We take
the Fourier transform of the positions and of the momentums (defined by (70)) and we
define

q̃(ξ) = (1 − δ(ξ))ω(ξ)q̂(ξ), p̃(ξ) = N−d/2(1 − δ(ξ))p̂(ξ), ξ ∈ Z
N
d , (125)

where ω(ξ) = 2N−d/2
√
α
∑d

k=1 sin2(πξ k/N ) is the normalized dispersion relation.
The factor 1 − δ in the definition above is due to the condition

∑
x px = ∑

x qx = 0
assumed in the microcanonical state. Then the energy can be written as

HN = 1

2

∑

ξ �=0

{
|p̃(ξ)|2 + |q̃(ξ)|2

}

= 1

2

∑

ξ �=0

{
Re2(p̃(ξ)) + Im2(p̃(ξ)) + Re2(q̃(ξ)) + Im2(q̃(ξ)

}
.

Since px,qx are real, Re(p̃),Re(q̃) are even and Im(p̃),Im(q̃) are odd:

Re(p̃)(ξ) = Re(p̃)(−ξ), Re(q̃)(ξ) = Re(q̃)(−ξ),
Im(p̃)(ξ) = −Im(p̃)(−ξ), Im(q̃)(ξ) = −Im(q̃)(−ξ). (126)

On Z
d
N \{0}, we define the relation ξ ∼ ξ ′ if and only if ξ = −ξ ′. Let U

d
N be a class

of representants for ∼ (Ud
N is of cardinal (N d −1)/2). With these notations and by using

(126), we have

HN =
∑

ξ∈U
d
N

{
Re2(p̃(ξ)) + Im2(p̃(ξ)) + Re2(q̃(ξ)) + Im2(q̃(ξ)

}
. (127)

It follows that in the microcanonical state, the random variables

((Rep̃)(ξ), (Imp̃)(ξ), (Req̃)(ξ), Imq̃)(ξ))ξ∈U
d
N

are distributed according to the uniform measure on the sphere of radius
√

N dE (which
is not true without the restriction on the set U

d
N ). The classical results of equivalence of

ensembles for the uniform measure on the sphere ([10]) can be applied for these random
variables.



96 G. Basile, C. Bernardin, S. Olla

i) By using inverse Fourier transform and (126), we have

〈(
p j

0 pi
e1

)2
〉

N ,E
= 1

N 2d

∑

ξ,ξ ′,η,η′ �=0

〈
p̃ j (ξ) p̃ j (ξ ′) p̃i (η) p̃i (η′)

〉

N ,E
e
−

2iπe1 · (η + η′)
N .

(128)

It is easy to check by using (ii) of Lemma 5 that the only terms in this sum which
are nonzero are only for ξ ′ = −ξ and η = −η′. One gets hence

〈(
p j

0 pi
e1

)2
〉

N ,E
= 1

N 2d

∑

ξ,η �=0

〈∣∣∣ p̃ j (ξ)

∣∣∣
2 ∣∣∣ p̃i (η)

∣∣∣
2
〉

N ,E
. (129)

Classical equivalence of ensembles estimates of [10] show that this last sum is
equal to (E/d)2 + O(N−d).

ii) Similarly, one has

〈
(pi

0 pi
e1

p j
0 p j

e1)
〉

N ,E
= 1

N 2d

∑

ξ,xi ′,η,η′ �=0

〈
p̃i (ξ) p̃i (ξ ′) p̃ j (η) p̃ j (η′)

〉

N ,E

× exp

(
−2iπe1

N
· (ξ ′ + η′)

)
. (130)

It is easy to check by using (ii) of Lemma 5 that the only terms in this sum which
are nonzero are for ξ ′ = −ξ and η′ = −η. One gets hence

〈
(pi

0 pi
e1

p j
0 p j

e1)
〉

N ,E
= 1

N 2d

∑

ξ,η �=0

〈∣∣∣ p̃i (ξ)

∣∣∣
2 ∣∣∣ p̃ j (η)

∣∣∣
2
〉

N ,E

× exp

(
2iπe1

N
· (ξ+η)

)
. (131)

Using classical equivalence of ensembles estimates ([10]), one obtains

〈
(pi

0 pi
e1

p j
0 p j

e1)
〉

N ,E
= E2

d2

⎛

⎜⎝
1

N d

∑

ξ �=0

e

2iπe1

N
·ξ
⎞

⎟⎠

2

+O(N−d) = O(N−d). (132)

iii) By using the symmetry properties, we have

〈
q̃ j (ξ)q̃ j (ξ ′) p̃ j (η) p̃ j (η′)

〉

N ,E
= 0
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for ξ �= −ξ ′ or η �= −η′. Hence one has

〈
q j

x q j
z (p

j
0)

2
〉

N ,E

= 1

N 3d

∑

ξ,ξ ′,η,η′ �=0

〈
q̃ j (ξ)q̃ j (ξ ′) p̃ j (η) p̃ j (η′)

〉

N ,E

exp (−2iπ(ξ · z + ξ ′ · y)/N )

ω(ξ)ω(ξ ′)

= 1

N 3d

∑

ξ,η �=0

〈∣∣∣q̃ j (ξ) p̃i (η)

∣∣∣
2
〉

N ,E

exp (−2iπξ · (z − y)/N )

ω(ξ)2

= 1

N 2d

∑

ξ �=0

〈∣∣∣q̃ j (ξ) p̃ j (e1)

∣∣∣
2
〉

N ,E

exp (−2iπξ · (z − y)/N )

ω(ξ)2
,

Estimates of [10] give

∣∣∣∣∣

〈
(q̃ j (ξ))2( p̃ j (e1))

2
〉

N ,E
−
(E

d

)2
∣∣∣∣∣ ≤

C

N d
.

It follows that

〈
q j

y (q
j
−e1

− q j
e1)(p

j
0)

2
〉

N ,E
= E2

d N 2d

∑

ξ �=0

e−2iπξ ·(−e1−y)/N − e−2iπξ ·(e1−y)/N

ω(ξ)2
+ RN ,

where

|RN | ≤ C N−2d
∑

ξ �=0

| sin(2πξ1/N )|
4α
∑d

k=1 sin2(πξ k/N )
.

To obtain iii) observe that

1

N 2d

∑

ξ �=0

e−2iπξ ·(−e1−y)/N − e−2iπξ ·(e1−y)/N

ω(ξ)2
= �N (y)

and

N−2d
∑

ξ �=0

| sin(2πξ1/N )|
4α
∑d

k=1 sin2(πξ k/N )
∼

⎧
⎪⎨

⎪⎩

log N/N , d = 1
1/N , d = 2
1/N d , d ≥ 3.
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