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Abstract: The existence and uniqueness of nonnegative strong solutions for stochastic
porous media equations with noncoercive monotone diffusivity function and Wiener
forcing term is proven. The finite time extinction of solutions with high probability is
also proven in 1-D. The results are relevant for self-organized criticality behavior of
stochastic nonlinear diffusion equations with critical states.

1. Introduction

The phenomenon of self-organized criticality is widely studied in Physics from different
perspectives. (We refer to [1,2,8–10,13–19,23] for various studies). Roughly speaking it
is the property of systems to have a critical point as attractor and to reach spontaneously
a critical state.

In [2] Bantay and Janosi beautifully explained that the continuum limit of the sand
pile model of Bak-Tang-Wiesenfeld in [1] (“BTW model”), which was based on a
cellular automaton algorithm, can be interpreted as a solution of an anomalous (singular)
diffusion equation of the type

d X (t) = �(H(X (t) − xc)dt, (1.1)

where H is the Heaviside function and xc is the critical value. In [13] (see also [14])
Diaz-Guilera pointed out that for this and a similar model due to Zhang [24] given by

d X (t) = (X (t) − xc)�(H(X (t) − xc)dt, (1.2)

it is more realistic to consider Eqs. (1.1) and (1.2) perturbed by (an additive) noise
to model a random amount of energy put into the system varying all over the under-
lying domain. The resulting equations are then stochastic partial differential equations
(SPDE) of evolution type, however, with very singular (non-continuous) coefficients
which mathematically can only be treated as multi-valued functions.



902 V. Barbu, G. Da Prato, M. Röckner

The purpose of this paper is to analyze such type of equations within the framework
of multi-valued stochastic evolution equations with (1.1) and (1.2) as the underlying
motivating examples. To the best of our knowledge this is the first time this is done in
the presence of a stochastic force and in such generality in a mathematically strict way.
Let us introduce our framework.

Let O be an open bounded domain of R
d , d = 1, 2, 3, with smooth boundary ∂O.

We shall study here the nonlinear stochastic diffusion equation with linear multiplicative
noise,

⎧
⎪⎨

⎪⎩

d X (t) − ��(X (t))dt � σ(X (t))dW (t), in (0,∞) × O,

�(X (t)) � 0, on (0,∞) × ∂O,

X (0, x) = x on O,

(1.3)

where x is an initial datum and � : R → 2R is a maximal monotone (possibly multiva-
lued) graph with polynomial growth and random forcing term

σ(X)dW =
∞∑

k=1

µk Xdβk ek, t ≥ 0,

which is linear in X . Here {ek} is an orthonormal basis in L2(O), {µk} is a sequence of
positive numbers and {βk} a sequence of independent standard Brownian motions on a
filtered probability space (�,F , {Ft }t≥0, P).

We note that the linear operator σ(X) is defined by

σ(X)h =
∞∑

k=1

µk X〈h, ek〉2ek, ∀ h ∈ L2(O),

where 〈·, ·〉2 is the scalar product in L2(O).
Apart from the self-organized criticality phenomena mentioned above, Eq. (1.3)

models the dynamics of flows in porous media and more generally the phase transi-
tion (including melting and solidification processes) in the presence of a random forcing
term σ(X)dW .

Existence for stochastic equations of the form (1.3) with additive and multiplicative
noise was studied in [6] under the main assumption that � is monotonically increasing,
continuous and such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�(0) = 0, � ′(r) ≤ α1|r |m−1 + α2, ∀ r ∈ R,

r∫

0

�(s)ds ≥ α3|r |m+1 + α4, ∀ r ∈ R,
(1.4)

where α1 ≥ 0, α3 > 0, α2, α4 ≥ 0 and m ≥ 1. (See also [7] and [22] for general growth
conditions on �.)

Here we shall study Eq. (1.3) under the following assumptions.

Hypothesis 1.1. (i) � is a maximal monotone multivalued function from R into R

such that 0 ∈ �(0).
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(ii) There exist C > 0 and m ≥ 1 such that

sup{|θ | : θ ∈ �(r)} ≤ C(1 + |r |m), ∀ r ∈ R.

(iii) The sequence {µk} is such that

∞∑

k=1

µ2
kλ

2
k < +∞,

where λk are the eigenvalues of the Laplace operator −� in O with Dirichlet
boundary conditions.

We recall that the domain of � is H2(O)∩ H1
0 (O). A multivalued function � : R → 2R

is said to be maximal monotone if it is monotone, i.e.,

(v1 − v2)(u1 − u2) ≥ 0, ∀ vi ∈ �(ui ), ui ∈ R, i = 1, 2,

and the range R(I + �) of I + � is all of R.
Standard examples of maximal monotone functions (or graphs) are continuous and

increasing functions, the subdifferential of the indicator function IK of a closed interval
K of the form [a, b] or (−∞, b), [0, +∞), i.e.

IK (r) =
{

0, if r ∈ K ,

+∞, if r /∈ K ,

or for −∞ = a0 < a1 < · · · < aN+1 = ∞ and for 0 ≤ i ≤ N − 1,

�(r) =
{

ϕi (r), for ai < r < ai+1,

(ϕi (ai+1 − 0), ϕi+1(ai+1 + 0)) , for r = ai+1,

where {ϕi }N
i=1 are monotonically non-decreasing continuous functions on (ai , ai+1) and

such that limr→ai+1 ϕi (r) ≤ limr→ai+1 ϕi+1(r). Of course, any linear combination of
maximal monotone graphs is maximal monotone.

It should be noticed also that the subdifferential ∂ j : R → 2R of a lower semiconti-
nuous convex function j : R → (−∞, +∞], i.e.,

∂ j (r) = {η ∈ R : j (r) ≤ η(r − r̄) + j (r̄), ∀ r̄ ∈ R}
is maximal monotone and conversely every maximal monotone function � is of the
form ∂ j , where j is a lower semicontinuous convex function on R.

Since for x ∈ H−1(O),

|xek |2−1 ≤ C1|ek |2H2(O)
|x |2−1 ≤ C1λ

2
k |x |2−1, (1.5)

and hence

‖σ(x)‖2
L2(L2(O),H−1(O))

=
∞∑

k=1

µ2
k |xek |2−1 ≤ C1

∞∑

k=1

µ2
kλ

2
k |x |2−1, (1.6)

it follows by (iii) that σ(x) ∈ L2(L2(O), H−1(O)) (the space of all Hilbert-Schmidt
operators from L2(O) into H−1(O)) and that it is Lipschitz continuous from H−1(O)

into L2(L2(O), H−1(O)). Under these assumptions we shall prove that if x ∈ L p(O),
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p ≥ max{2m, 4}, then there is a unique strong solution to Eq. (1.3) which is nonnegative
if so is the initial data x .

With respect to the situation considered in [5–7], in the present case one does not
assume that the range of � is all of R. This general setting, motivated by the diffusion
models mentioned above, requires, however, a different treatment of existence.

It should be mentioned that several other physical problems with free boundary and
with phase transition can be put into this functional setting. For instance if

�(x) =
⎧
⎨

⎩

α1(x − a), for x < a
[0, ρ], for x = a
α2(x − a) + ρ, for x > a,

(1.7)

with a, ρ, α1, α2 ∈ (0, +∞), then (1.3) models the phase transition in porous media or
in heat conduction (Stefan problem). If �(x) = ρ sign x , where ρ > 0 and

sign x =

⎧
⎪⎨

⎪⎩

x

|x | , if x = 0

[−1, 1], if x = 0,

(1.8)

then (1.3) reduces to the nonlinear singular diffusion equation

d X (t) − ρ div (δ(X (t))∇ X (t))dt = σ(X (t))dW (t),

where δ is the Dirac measure concentrated at the origin.
We already mentioned the Heavside step function

H(x) =
⎧
⎨

⎩

0, if x < 0
[0, 1], if x = 0
1, if x > 0.

Furthermore, �(x) = |x |α sign x with 0 < α ≤ 1 also satisfy Hypothesis 1.1.
Typical examples considered in the literature are �(r) = (r − xc)

α , where α < 1
and the key result is that the density X (t) of the system converges to the critical value.
In the same category fall the stochastically perturbed versions of Eqs. (1.1) and (1.2),
that is e.g. in the first case the highly singular diffusion equation

d X (t) − �(H + λ)(X (t) − xc)dt = σ(X (t) − xc)dW (t), (1.9)

where λ ≥ 0. This is a diffusion problem with free boundary driven by a random forcing
term proportional to X (t) − xc, where xc is the critical density and X (t) is the density
at the moment t .

Taking into account the numerical simulation in 1-D (see [2]), one might expect that
the time evolution of the system displays self-organized criticality, i.e. the supercritical
region {X (t) > xc} is absorbed asymptotically in time by the critical one {X (t) = xc}.

A few of the previous works (see e.g. [11]) on self-organized criticality in singu-
lar diffusion equations based on numerical tests brought attention on the failure of the
self-organized behavior in the presence of random fluctuations (white noise perturbation).

Here we shall prove, however, for systems of the form (1.7)-(1.9) that the
self-organized criticality takes place with high probability under appropriate assump-
tions on the parameters and more precisely that the supercritical region “vanishes” into
the critical one in finite time with high probability, at least if µk = 0 for all k ≥ N +1 for
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some N ∈ N. We emphasize that this is in particular true when the noise is zero. In this
case one gets an explicit bound for the time when this happens (cf. Remark 4.4 below).

The plan of this paper is the following. The main results are presented in Sect. 2 and
are proven in Sect. 3. In Sect. 4 we prove a finite time extinction type result for solutions
to (1.3) which displays a self-organized criticality behavior.

The following notations will be used. L p(O), p ≥ 1, is the usual space of
p-integrable functions with norm denoted by | · |p. The scalar product in L2(O) and
the duality induced by the pivot space L2(O) will be denoted by 〈·, ·〉2. Hk(O) ⊂
L2(O), k = 1, 2, are the standard Sobolev spaces on O , while H1

0 (O) is the subspace of
H1(O) with zero trace on the boundary. For p, q ∈ [1, +∞] by Lq

W ((0, T ); L p(�; H))

(H a Hilbert space) we shall denote the space of all q-integrable processes u : [0, T ]→
L p(�; H) which are adapted to the filtration {Ft }t≥0.

By CW ([0, T ]; L2(�; H)) we shall denote the space of all H -valued adapted pro-
cesses which are mean square continuous. L(H) denotes the space of bounded linear
operators equipped with the usual norm.

In the following by H we shall denote the distribution space

H = H−1(O) = (H1
0 (O))′

endowed with the scalar product and norm defined by

〈u, v〉 =
∫

O

A−1u(ξ)v(ξ)dξ, |u|−1 = 〈u, u〉1/2,

where A = −� with D(A) = H2(O) ∩ H1
0 (O).

In terms of A Eq. (1.3) can be formally rewritten as
⎧
⎨

⎩

d X (t) + A�(X (t))dt � σ(X (t))dW (t),

X (0, x) = x .
(1.10)

Its exact meaning will be precised later (see Definition 2.1 below).
It should be recalled, however, that the operator x → A�(x) with the domain

{x ∈ L1(O) ∩ H−1(O) : there is η ∈ H1
0 (O), η ∈ �(x) a.e. in O}

is maximal monotone in H := H−1(O) (see e.g. [3]) and so the distribution space H
offers the natural functional setting for the porous media equation (1.3) or its abstract
form (1.10). However, the general existence theory of infinite dimensional stochastic
equations in Hilbert space with nonlinear maximal monotone operators (see [12,21]) is
not applicable in the present case and so a direct approach must be used.

Finally, in this paper we use the same letter C for several different positive constants
arising in chains of estimates.

2. Existence, Uniqueness and Positivity

Definition 2.1. Let x ∈ H. An H-valued continuous Ft -adapted process X = X (t, x)

is called a solution to (1.3) (equivalently (1.10)) on [0, T ] if

X ∈ L p(� × (0, T ) × O) ∩ L2(0, T ; L2(�, H)), p ≥ m,
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and there exists η ∈ L p/m(� × (0, T ) × O) such that P-a.s.

〈X (t, x), e j 〉2 = 〈x, e j 〉2 +

t∫

0

∫

O

η(s, ξ)�e j (ξ)dξds

+
∞∑

k=1

µk

t∫

0

〈X (s, x)ek, e j 〉2dβk(s), ∀ j ∈ N, t ∈ [0, T ], (2.1)

η ∈ �(X) a.e. in � × (0, T ) × O. (2.2)

Below for simplicity we often write X (t) instead of X (t, x).
From the stochastic point of view the solution X given by Definition 2.1 is a strong

one, but from the PDE point of view it is a solution in the sense of distributions since
the boundary condition �(X) � 0 on ∂O is satisfied in a weak sense only.

Theorem 2.2 below is the main existence result.

Theorem 2.2. Assume that d = 1, 2, 3 and that Hypothesis 1.1 holds. Then for each
x ∈ L p(O), p ≥ max{2m, 4} there is a unique solution X ∈ L∞

W (0, T ; L p(�;O)) to
(1.3). Moreover, if x is nonnegative a.e. in O then P-a.s.

X (t, x)(ξ) ≥ 0, for a.e. (t, ξ) ∈ (0,∞) × O.

As mentioned earlier, Theorem 2.2 was proven in [6] for a differentiable � satisfying
conditions (1.4) and for p ≥ max{m + 1, 4}. It should be said, however, that in contrast
with what happens for coercive functions � arising in [6], here it seems no longer
possible to extend the existence result to all x ∈ H−1(O), x ≥ 0.

3. Proof of Theorem 2.2

We shall consider the approximating equation
{

d Xλ(t) + A(�λ(Xλ(t)) + λXλ(t))dt = σ(Xλ(t))dW (t),
Xλ(0, x) = x,

(3.1)

where λ > 0 and

�λ(x) = 1

λ
(x − (1 + λ�)−1(x)) ∈ �((1 + λ�)−1(x))

is the Yosida approximation of �. We recall that �λ is Lipschitzian and monotonically
increasing and so x → �λ(x) + λx is strictly monotonically increasing and bounded by
C1(1 + |x |m) and (�λ(x) + λx)x ≥ λ|x |2 for all x ∈ R. By [6, Theorem 2.2] (applied
with m = 1), for each x ∈ H−1(O) Eq. (3.1) has a unique solution

Xλ ∈ L2(� × (0, T ) × O) ∩ L2
W (�, C([0, T ]; H))

in the sense of Definition 2.1. Here as usual C([0, T ]; H) is equipped with the supremum
norm. Moreover, (see e.g. [21, Theorem 4.2.5]) the following Itô formula holds

E|Xλ(t)|2−1 + 2E

t∫

0

∫

O

(�λ(Xλ(s)) + λXλ(s))Xλ(s)dξ ds

= |x |2−1 +
∞∑

k=1

µ2
k E

t∫

0

|Xλ(s)ek |2−1ds. (3.2)
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We note that since

|Xλek |−1 ≤ C |ek |H2(O)|Xλ|−1 ≤ Cλk |Xλ|−1,

(cf. (1.5)) we have by Hypothesis 1.1(iii) (cf. (1.6))

∞∑

k=1

µ2
kE

t∫

0

|Xλ(s)ek |2−1ds ≤ CE

t∫

0

|Xλ(s)|2−1ds. (3.3)

Lemma 3.1. There exists a constant C > 0 such that for all p ≥ 2 and all x ∈ L p(O),

ess.supt∈[0,T ] E|Xλ(t, x)|p
p ≤ exp

(

C
p − 1

2

)

|x |p
p, ∀ λ > 0. (3.4)

Proof. We know from [6, Lemma 3.4] (with m = 1) that as ε → 0,
{

Xε
λ → Xλ strongly in L∞

W (0, T ; L2(�; H)),

Xε
λ → Xλ in the weak∗ topology in L∞

W (0, T ; L p(�; L p(O))),
(3.5)

where Xε
λ is the solution to the approximating equation

{
d Xε

λ(t) + (Aλ)ε Xε
λ(t)dt = σ(Xε

λ(t))dW (t), t ≥ 0,

Xε
λ(0) = x,

(3.6)

where
{

Aλx = A(�λ(x) + λx) = −�(�λ(x) + λx),

D(Aλ) = {x ∈ H ∩ L1(O) : �λ(x) + λx ∈ H1
0 (O)},

and (Aλ)ε is the Yosida approximation of Aλ,

(Aλ)ε = 1

ε
(I − (I + εAλ)

−1), ε > 0.

Furthermore, by [6, Lemma 3.2] we have that Xε
λ ∈ L2(�; C([0, T ]; L2(O)). As a mat-

ter of fact the results of [6] were proven for smooth nonlinear functions while �λ is only
Lipschitz but the extension to Lipschitzian functions � satisfying (1.4) is immediate. In
fact, one might take a smoother approximation of �, for instance the mollifier �λ ∗ ρλ

(ρλ(r) = 1
λ

ρ(λ/r), ρ ∈ C∞
0 (R), ρ ≥ 0,

∫
ρdr = 1) which still remains monotonically

increasing and has all properties of �λ.
Next we apply Itô’s formula (3.6) for the function ϕ(x) = 1

p |x |p
p. More precisely,

we first apply Itô’s formula to ϕγ (x) = 1
p |(1 + γ A)−1x |p

p, γ > 0, and then we let
γ → 0. We have (for details see the proof in [6, Lemma 3.5]),

Eϕ(Xε
λ(t)) + E

t∫

0

〈(Aλ)ε Xε
λ(s), |Xε

λ(s)|p−2 Xε
λ(s)〉2ds

= ϕ(x) +
p − 1

2

∞∑

k=1

µ2
kE

t∫

0

∫

O

|Xε
λ(s)|p−2|Xε

λ(s)ek |2dξ ds dξ

≤ ϕ(x) +
p − 1

2
CE

t∫

0

∫

O

|Xε
λ(s)|pdξ ds, (3.7)
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since by Sobolev embedding |ek |∞ ≤ Cλk for all k ∈ N. If Y ε
λ is the solution to the

equation

Y ε
λ − ε�(�λ(Y

ε
λ ) + λY ε

λ ) = Xε
λ, �λ(Y

ε
λ ) + λY ε

λ ∈ H1
0 (O),

then (see [6, (3.25)]) |Y ε
λ |p ≤ |Xε

λ|p and therefore

〈(Aλ)ε Xε
λ, |Xε

λ|p−2 Xε
λ〉2 = 1

ε
〈Xε

λ − Y ε
λ , |Xε

λ|p−2 Xε
λ〉2 ≥ 0.

Then by (3.7) it follows, via Gronwall’s lemma, that

E|Xε
λ(t)|p

p ≤ |x |p
p exp

(

C
p − 1

2

)

,

where C is independent of x, λ and t . Now one obtains (3.4) by letting ε tend to 0 and
taking into account (3.5). ��

From now on let us assume that p ≥ max{4, 2m} and x ∈ L p(O). From Lemma 3.1
it follows that for a subsequence {λ} → 0 we have

⎧
⎪⎨

⎪⎩

Xλ → X weakly in L p(� × (0, T ) × O),

and weak∗ in L∞(0, T ; L p(�; L p(O))),

�λ(Xλ) → η weakly in L p/m(� × (0, T ) × O),

in particular weakly in L2(� × (0, T ) × O),

(3.8)

because by Hypothesis(ii),

|�λ(x)| ≤ |�0(x)| ≤ C(1 + |x |m), ∀ x ∈ R.

(�0 is the minimal section of �.) By (3.4) we have for λ → 0,

λXλ → 0 strongly in L p(� × (0, T ) × O). (3.9)

Clearly X and η are adapted processes. On the other hand, we have

d(Xλ(t) − Xµ(t)) − �(�λ(Xλ(t)) − �µ(Xµ(t)) + λXλ(t) − µXµ(t))dt
= (σ (Xλ(t)) − σ(Xµ(t)))dW (t),

and therefore once again applying Itô’s formula (cf. (3.2)) we obtain for α > 0,

t ∈ [0, T ],
1

2
|Xλ(t) − Xµ(t))|2−1e−αt

+

t∫

0

∫

O

[
(�λ(Xλ(s)) − �µ(Xµ(s)) (λ�λ(Xλ(s)) − µ�µ(Xµ(s)))

+ (λXλ(s) − µXµ(s))(Xλ(s) − Xµ(s))
]

e−αsdξ ds

≤
(

C
∞∑

k=1

µ2
kλ

2
k − 1

2
α

) t∫

0

|Xλ(s − Xµ(s))|2−1e−αs ds + Mλ,µ(t), ∀ λ,µ > 0,

(3.10)



Stochastic Porous Media Equations and Self-Organized Criticality 909

where

Mλ,µ(t) :=
t∫

0

e−αs〈Xλ(s) − Xµ(s), σ (Xλ(s) − Xµ(s))dW (s)〉2

is a real local valued martingale. To derive (3.10) we used that x = λ�λ(x) + (1 +
λ�)−1(x), and thus for all x, y ∈ R,

(�λ(x) − �µ(y))(x − y) = [�λ(x) − �µ(y)][(1 + λ�)−1(x) − (1 + µ�)−1(y)]
+[�λ(x) − �µ(y)][λ�λ(x) − µ�µ(y)],

and that the first summand on the right-hand side is nonnegative because � is monoto-
nically increasing and �λ(x) ∈ �((1 + λ�)−1(x)). Hence for α > 0 large enough we
obtain for all λ,µ ∈ (0, 1) and t ∈ [0, T ],

1

2
|Xλ(t) − Xµ(t))|2−1e−αt

≤ C max{λ,µ}
t∫

0

∫

O

(
|�λ(Xλ(s))|2 + |Xλ(s)|2 + |�µ(Xµ(s))|2

+ |Xµ(s)|2
)

e−αsdξ ds + Mλ,µ(t). (3.11)

Hence by the Burkholder-Davis-Gundy inequality (for p = 1) we get for all
λ,µ ∈ (0, 1), r ∈ [0, T ],

1

2
E sup

t∈[0,r ]
|Xλ(t) − Xµ(t))|2−1e−αt

≤ C max{λ,µ}E
r∫

0

∫

O

(
|�λ(Xλ(s))|2 + |Xλ(s)|2 + |�µ(Xµ(s))|2

+ |Xµ(s)|2
)

e−αsdξ ds + CE

⎛

⎝

r∫

0

|Xλ(s) − Xµ(s)|4−1e−2αsds

⎞

⎠

1/2

. (3.12)

But

E

⎛

⎝

r∫

0

|Xλ(s) − Xµ(s)|4−1e−2αsds

⎞

⎠

1/2

≤ E sup
s∈[0,r ]

|Xλ(s) − Xµ(s))|−1e− α
2 s

⎛

⎝

r∫

0

|Xλ(s) − Xµ(s)|2−1e−αsds

⎞

⎠

1/2

≤ 1

4
E sup

s∈[0,r ]
|Xλ(s) − Xµ(s))|2−1e−αs + CE

r∫

0

|Xλ(s) − Xµ(s)|2−1e−αsds. (3.13)

Taking into account that by Hypothesis 1.1(ii),

|�λ(Xλ)| ≤ C(1 + |Xλ|m), ∀ λ > 0,
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and that by (3.4) {Xλ} is bounded in L p(�×(0, T )×O) for p ≥ max{4, 2m}, we infer by
(3.12), (3.13) and Gronwall’s lemma that {Xλ} is a Cauchy net in L2(�; C([0, T ]; H))

Hence for λ → 0,

Xλ → X in L2(�; C([0, T ]; H)). (3.14)

In order to complete the proof of the existence part of Theorem 2.2 it suffices to show
that

η(ω, t, ξ) ∈ �(X (ω, t, ξ)) a.e in � × (0, T ) × O. (3.15)

Since the operator

L p(� × (0, T ) × O)→ L
p
m (� × (0, T ) × O)⊂ L

p
p−1 (� × (0, T ) × O), X →�(X),

in the duality pair
(

L p(� × (0, T ) × O), L p(� × (0, T ) × O)′ = L
p

p−1 (� × (0, T ) × O)
)

,

is maximal monotone, it suffices to show that (see e.g. [3])

lim inf
λ→0

E

T∫

0

∫

O

�λ(Xλ)Xλdξdt ≤ E

T∫

0

∫

O

ηXdξdt. (3.16)

To prove (3.16) we first note that by (3.2) we have

lim inf
λ→0

E

T∫

0

∫

O

�λ(Xλ)Xλdξdt +
1

2
E|X (t)|2−1

= 1

2
|x |2−1 +

1

2

∞∑

k=1

µ2
k E

t∫

0

|X (s)ek |2−1ds, (3.17)

because by (1.5), |(Xλ − X)ek |−1 ≤ Cλk |Xλ − X |−1 and so by Hypothesis 1.1(iii),

lim
λ→0

∞∑

k=1

µ2
kE

t∫

0

|Xλ(s)ek |2−1ds =
∞∑

k=1

µ2
kE

t∫

0

|X (s)ek |2−1ds.

Next letting λ tend to zero in (3.1) and using (3.8) we see that P-a.s., for all t ∈ [0, T ],

〈X (t), e j 〉2 = 〈x, e j 〉2 +

t∫

0

〈η(s),�e j 〉2ds +
∞∑

k=1

µk

t∫

0

〈X (s)ek, e j 〉2dβk(s).

(3.18)

Note that by continuity the P-zero set does not depend on t ∈ [0, T ], since

∞∑

k=1

µk

t∫

0

〈X (s)ek, e j 〉2dβk(s) =
t∫

0

〈e j , σ (X (s))dW (s)〉2.
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In order to get (3.18) we have used the fact that by (3.14) we have

E

∣
∣
∣
∣
∣
∣

t∫

0

〈Xλ(s)ek, e j 〉2dβk(s)ds −
t∫

0

〈X (s)ek, e j 〉2dβk(s)ds

∣
∣
∣
∣
∣
∣

2

= E

t∫

0

〈(Xλ(s) − X (s))ek, e j 〉2
2ds ≤ Cλ2

jλ
2
k T |Xλ − X |2L2(�,C([0,T ];H)),

and therefore

lim
λ→0

∞∑

k=1

µk

t∫

0

〈Xλ(s)ek, e j 〉2dβkds =
∞∑

k=1

µk

t∫

0

〈X (s)ek, e j 〉2dβkds.

Therefore (3.18) follows and this yields, via Itô’s formula (applied to 〈X (t), e j 〉2
2,

t ∈ [0, T ]) and summation over j that

1

2
E|X (t)|2−1 + E

t∫

0

∫

O

ηXdξ ds

= 1

2
E|x |2−1 +

1

2

∞∑

k=1

µ2
k E

t∫

0

|X (s)ek |2−1ds, ∀ t ∈ [0, T ]. (3.19)

Comparing (3.17) and (3.19) we get (3.16). Hence X is a solution to (1.3) as claimed.
To prove uniqueness we take two solutions X (1) and X (2) with corresponding η(1)

and η(2). Repeating the argument above we obtain

1

2
E|X (1)(t) − X (2)(t)|2−1

+E

t∫

0

∫

O

(η(1)(s) − η(2)(s))(X (1)(s) − X (2)(s))dξds

= 1

2

∞∑

k=1

µ2
k E

t∫

0

|(X (1)(s) − X (2)(s))ek |2−1 ds, ∀ t ∈ [0, T ].

Since, because � is monotone, the second term on the left is positive, by (1.5), Hypo-
thesis 1.1(iii) this implies X (1) = X (2) by Gronwall’s lemma.

Finally, if x ≥ 0 a.e. in O we know by [6, Theorem 2.2] that Xλ ≥ 0 P-a.s. and so
by (3.14) it follows that X ≥ 0, a.e in � × (0, T ) × O as desired. This completes the
proof of Theorem 2.2. ��
Remark 3.2. Theorem 2.2 extends to any dimension d ≥ 1 if one modifies condition
(iii) in Hypothesis 1.1 as in [6, Condition 4.1], i.e., one assumes

∞∑

k=1

µ2
k(|ek |∞ + λk |ek |

L
4d

d+6 (O)
)2 < +∞.
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Remark 3.3. The existence part of Theorem 2.2 remains true for stochastic porous media
equations with additive noise, i.e.

d X − ��(X)dt = √
Q dW (t),

where � satisfies Hypothesis 1.1 and

√
Q dW (t) =

∞∑

k=1

µkekdβk(t)

with
∞∑

k=1

λ−1
k µ2

k < +∞.

The proof is exactly the same and so, it will be omitted.

Proposition 3.4. Let Xλ, λ ∈ (0, 1), be as above, x ∈ L4(O). Assume that � satisfies
Hypothesis 1.1 with m = 1 and for some δ > 0,

(x̃ − ỹ)(x − y) ≥ δ(x − y)2, ∀ (x, x̃), (y, ỹ) ∈ �. (3.20)

Then Xλ, X ∈ L2
W (0, T ; L2(�, H1

0 (O))) and

lim
λ→0

E|Xλ − X |2L2(0,T ;L2(O))
= 0. (3.21)

Proof. A simple calculation reveals that

(�λ(x) − �λ(y))(x − y) ≥ δ

2
|x − y|2, ∀ x, y ∈ R

for λ sufficiently small. Then �̃λ defined by �̃λ(r) := �λ(r)− δ
2 r, r ∈ R, is increasing

and so by Itô’s formula we have

E|Xλ(t)|22 +
δ

2
E

t∫

0

|Xλ(s)|2H1
0 (O)

ds ≤ C. (3.22)

As a matter of fact, we shall apply Itô’s formula not directly to Eq. (3.1) but to Eq. (3.6)
(cf. the proof of Lemma 3.1 to obtain (3.7)). Thus we get

1

2
E|Xε

λ(t)|22 + E

t∫

0

〈(Aλ)ε Xε
λ(s), Xε

λ(s)〉2ds ≤ 1

2
|x |22 + CE

t∫

0

|Xε
λ(s)|22ds.

Next we have

〈(Aλ)ε Xε
λ, Xε

λ〉2 = 〈Aλ(1 + εAλ)
−1 Xε

λ, (1 + εAλ)
−1 Xε

λ〉2 + ε|(Aλ)ε Xε
λ|22.

Taking into account that Aλ = �(�λ +λI ) and that r → �λ(r)−δr/2 is monotonically
increasing we get

〈(Aλ)ε Xε
λ, Xε

λ〉2 ≥ δ

2

∫

O

|∇(1 + εAλ)
−1 Xε

λ|2dξ + ε|(Aλ)ε Xε
λ|22.
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Hence

E

t∫

0

|(1 + εAλ)
−1 Xε

λ(s)|2H1
0 (O)

ds ≤ C

and letting ε → 0 we get (3.22) and the first assertion (taking also into account (3.5)).
To prove the second part we note that

d(Xλ − Xµ) − �[�̃λ(Xλ) − �̃µ(Xµ) + λXλ − µXµ +
1

2
δ (Xλ − Xµ)]dt

= (σ (Xλ) − σ(Xµ))dW.

Hence exactly the same arguments to derive (3.11) lead to

1

2
|Xλ(t) − Xµ(t)|2−1e−αt +

δ

2

t∫

0

|Xλ(s) − Xµ(s)|22e−αsds

≤ C max{λ,µ}
t∫

0

(
|�λ(Xλ(s))|22 + |�µ(Xµ(s))|22

+ |Xλ(s)|22 + |Xµ(s)|22
)

e−αsds + Mλ,µ(t),

for α large enough and λ,µ ∈ (0, 1), t ∈ [0, T ]. Since m = 1, we have |�λ(x)| ≤
C(1 + |x |) for all x ∈ R, λ ∈ (0, 1), hence taking the expectation we get

δ

2
E

t∫

0

|Xλ(s) − Xµ(s)|22ds ≤ C max{λ,µ}E
t∫

0

(|Xλ(s)|2 + |Xµ(s)|2)ds.

By Lemma 3.1 with p = 2 and (3.8) this implies (3.21). ��
Besides Hypothesis 1.1, we shall now assume the following:

(iv) �(r) = ρ sign r + �̃(r), for r ∈ R, where ρ > 0, �̃ : R → R is Lipschitz,
�̃ ∈ C1(R \ {0}) and for some δ > 0 it satisfies �̃ ′(r) ≥ δ for all r ∈ R\{0}.

Here the signum is defined by (1.8).
Below we shall use an approximation to � which is slightly different from �λ defined

before. Namely, below we consider

�λ(r) := ρ (sign)λ(r) + �̃(r) + λr, r ∈ R,

where (sign)λ is the Yosida approximation of the sign, i.e.

(sign)λ(r) :=
⎧
⎨

⎩

1 if r > λ
r
λ

if r ∈ [−λ, λ]
−1 if r < −λ.

We shall use the symbol �λ also for this approximation and denote also by Xλ the
corresponding solution of (3.1). This approximation in the special case of condition (iv)
is much more convenient. We emphasize that all previous results remain true for this
modified approximation. The proofs are the same and some parts even simplify. We
therefore shall use all previous results for �λ and Xλ as above without further notice.

The following technical result will be used in Sect. 4 (cf. Lemma 4.1) in a crucial
way.
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Proposition 3.5. The solutions Xλ to (3.1) and X to (1.3) satisfy all conditions of
Proposition 3.4 and in addition

E

T∫

0

∫

O

|∇(sign)λ(Xλ)|2dξdt ≤ C, ∀ λ > 0,

and consequently η ∈ L2
W (0, T ; L2(�; H1

0 (O)).

Proof. We set

gλ(r) :=
r∫

0

(sign)λ(s)ds, r ∈ R,

and choose ϕλ ∈ C2(R) such that

(i) ϕλ(0) = 0.
(ii) ϕ′

λ(r) = r
λ

for |r | ≤ λ, ϕ′
λ(r) = 1 + λ for r ≥ 2λ, ϕ′

λ(r) = −1 − λ for r ≤ −2λ.
(iii) 0 ≤ ϕ′′

λ(r) ≤ C
λ

for all r ∈ R.

It is easily seen that such a function exists and can be constructed simply by smoothing
the function (sign)λ. Let us denote the resulting function by fλ. Then define

ϕλ(r) :=
r∫

0

fλ(s)ds, r ∈ R.

As mentioned above the arguments of the previous proofs extends to the present situation
in order to prove that {Xλ} is convergent to the solution X to (1.3).

Now we shall apply Itô’s formula to Eq. (3.1) (or, more exactly, to (3.6) and then let
ε → 0 as in the proof of Proposition 3.4) with �λ defined as above and to the function∫

O ϕλ(Xλ)dξ .
Arguing as in the proof of Lemma 3.1 to obtain (3.7), we get (recall that Xλ(t) ∈

H1
0 (O)),

E

∫

O

ϕλ(Xλ(t))dξ − E

t∫

0

〈�(sign)λ(Xλ(s)) + ��̃(Xλ(s)), ϕ
′
λ(Xλ(s))〉2 ds

≤
∫

O

ϕλ(x)dξ + C
∞∑

k=1

µ2
kE

t∫

0

∫

O

ϕ′′
λ(Xλ(s))|Xλ(s)ek |2dξds

≤
∫

O

ϕλ(x)dξ + 4λC
∞∑

k=1

µ2
kλ

2
kE

t∫

0

∫

O

1λ(s, ξ)|ek |2dξds,

where 1λ is the characteristic function of the set {(s, ξ) : 0 ≤ |Xλ(s, ξ)| ≤ 2λ}.
Concerning the first line we note that, since ϕ′

λ and �̃ are monotonically increasing
while as seen earlier Xλ(t) ∈ H1

0 (O), we have by the Green formula that

〈��̃(Xλ), ϕ
′
λ(Xλ)〉2 = −

∫

O

�̃ ′(Xλ)ϕ
′′
λ(Xλ)|∇ Xλ|2dξ ≤ 0.
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This yields

E

T∫

0

∫

O

〈∇(sign)λ(Xλ),∇ϕ′
λ(Xλ)〉2 dξds ≤ C, ∀ λ ∈ (0, 1).

Taking into account that

−〈�(sign)λ(Xλ), ϕ
′
λ(Xλ)〉2 = 〈∇(sign)λ(Xλ),∇ϕ′

λ(Xλ)〉2 ≥ 0, a.e.

and that ∇ϕ′
λ(Xλ) = 1

λ
∇ Xλ on {(s, ξ) : |Xλ(s, ξ)| < λ}, we get

E

T∫

0

∫

O

|∇(sign)λ(Xλ)|2dξds ≤ C, ∀ λ ∈ (0, 1),

because ∇(sign)λ(Xλ) = 1
λ
∇(Xλ) if |Xλ)| < λ and ∇(sign)λ(Xλ) = 0 if |Xλ)| ≥ λ.

Then we get the desired estimate and since also by (3.22),

E

T∫

0

∫

O

|∇�̃(Xλ)|2dξds ≤ C, ∀ λ ∈ (0, 1)

and (sign)λ(Xλ) + �̃(Xλ) → η weakly in L2(� × (0, T ) × O) as λ → 0, we infer that
η ∈ L2

W (0, T ; L2(�; H1
0 (O)) as claimed. ��

4. Extinction in Finite Time and Self-Organized Criticality

In this section we shall prove a finite extinction property for solutions of (1.3) in 1-D
for a special density dependent diffusion coefficient function �. However, Lemma 4.1
below can be proved without restriction on dimension. So, for the moment we remain
in our general framework.

For simplicity we choose the Wiener process

W (t) =
N∑

k=1

µkekβk(t), t ≥ 0, (4.1)

where N ∈ N.
Besides Hypothesis 1.1, we shall assume Hypothesis (iv) (following the proof of

Prop. 3.4), i.e.

(iv) �(r) = ρ sign r + �̃(r), for r ∈ R, where ρ > 0, �̃ : R → R is Lipschitzian,
�̃ ∈ C1(R \ {0}) and for some δ > 0 it satisfies �̃ ′(r) ≥ δ for all r ∈ R \ {0}.

Here the signum is defined by (1.8).
Now let τ be the stopping time

τ = inf{t ≥ 0 : |X (t, x)|−1 = 0},
where X (t, x), t ≥ 0, is the solution to (1.3) given by Theorem 2.2 for x ∈ L p(O),
p ≥ max{4, 2m}.
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Lemma 4.1. Under assumptions (i)−(iv) we have

X (t, x) = 0, for t ≥ τ, P-a.s.

Proof. Set A = −�, D(A) = H2(O) ∩ H1
0 (O). Define µ : [0, T ] × � → C2

b (O; R)

by

µ(t) := −
N∑

k=1

µkekβk(t), t ∈ [0, T ],

and µ̃ : [0, T ] → C2
b (O; R) by

µ̃ :=
N∑

k=1

µ2
ke2

k .

Define

Y (t) = eµ(t) X (t), t ≥ 0.

Let D(A) be equipped with the graph norm of A and let D(A)′ be its dual space, hence

D(A) ⊂ H1
0 (O) ⊂ L2(O) ⊂ H−1(O) ⊂ D(A)′. (4.2)

It is easy to see that for all ω ∈ �, t ∈ [0, T ] the function eµ(t,ω) is a multiplier both
in D(A) and in H , hence eµ(t,ω)�z ∈ D(A)′ is well defined for all z ∈ L2(O) and
Y (t) ∈ H .

Claim. We have

Y (t) = x +

t∫

0

eµ(s)�η(s)ds − 1

2

t∫

0

µ̃Y (s)ds, t ∈ [0, T ], (4.3)

where the fist integral on the right-hand side is a Bochner integral in D(A)′, the second
by (3.8) is one in L p(O) ⊂ L2(O). In particular a posteriori the first integal is in H ,
continuous in H as a function of t ∈ [0, T ], P-a.s.

��
Proof of the Claim. Let ϕ ∈ D(A). As before we shall use 〈·, ·〉2 also for the extended
dualizations with pivot space L2(O) as the ones in (4.2).Then for t ∈ [0, T ],

〈ϕ, eµ(t) X (t)〉2 =
∞∑

j=1

〈e j , eµ(t)ϕ〉2 〈e j , X (t)〉2.

Furthermore, we have by Itô’s formula for all ξ ∈ O ,

eµ(t,ξ) = 1 +

t∫

0

eµ(s,ξ)dµ(s, ξ) +
1

2

t∫

0

eµ(s,ξ)µ̃(ξ)ds.
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Now fix j ∈ N. Then by the stochastic Fubini Theorem

〈e j , eµ(t)ϕ〉2 = 〈e j , ϕ〉2 −
N∑

k=1

µk

t∫

0

〈e j , ekeµ(s)ϕ〉2dβk(s)

+
1

2

t∫

0

〈e j , µ̃eµ(s)ϕ〉2ds, t ∈ [0, T ].

By Itô’s product rule and (3.18) we hence obtain

〈e j , eµ(t)ϕ〉2 〈e j , X (t)〉2

= 〈e j , ϕ〉2 〈e j , x〉2 +

t∫

0

〈e j , eµ(s)ϕ〉2 〈�e j , η(s)〉2 ds

+
N∑

k=1

µk

t∫

0

〈e j , eµ(s)ϕ〉2 〈e j , X (s)ek〉2 dβk(s)

+
1

2

t∫

0

〈e j , X (s)〉2 〈e j , µ̃ eµ(s)ϕ〉2 ds

−
N∑

k=1

µk

t∫

0

〈e j , X (s)〉2 〈e j , ekeµ(s)ϕ〉2 dβk(s)

−
N∑

k=1

µ2
k

t∫

0

〈e j , ekeµ(s)ϕ〉2 〈e j , X (s)ek〉2 dβk(s).

After summing over j ∈ N the two stochastic terms cancel and the claim follows since
ϕ ∈ D(A) was arbitrary.

Below we work for P-a.s. ω ∈ �, ω fixed. Hence all constants C appearing below
may depend on ω.

Consider the solution Xλ ∈ L2
W (0, T ; L2(�, H1

0 (O))) to Eq. (3.1). By Proposi-
tion 3.4 we have

lim
λ→0

E|Xλ − X |2L2(0,T ;L2(O))
= 0

and �λ(Xλ) ∈ L2
W (0, T ; L2(�, H1

0 (O))) because �λ is Lipschitz.
On the other hand,we have as in (4.3) for Yλ = eµ Xλ,

dYλ(t)

dt
= eµ(t)�ηλ(t) − 1

2
µ̃(t)Yλ(t), ∀ t ≥ 0, (4.4)

where

ηλ(t) = �λ(Xλ(t)) ∈ H1
0 (O).
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It follows by (3.21) that

lim
λ→0

E|Yλ − Y |2L2(0,T ;L2(O))
= 0, (4.5)

and therefore for some sequence λn → 0,

lim
n→∞ |Yλn − Y |L2(0,T ;L2(O)) = 0 a.e. on �. (4.6)

Below we simply write λ instead of λn . Next we have by (4.4) that
〈

dYλ(t)

dt
, Yλ(t)

〉

2
=

〈
ηλ(t),�(eµ(t)Yλ(t))

〉

2
− 1

2
〈µ̃(t)Yλ(t), Yλ(t)〉2 a.e. t ∈ [0, T ].

(4.7)

Also we have (for simplicity we take ρ = 1)

〈ηλ(t),�(eµ(t)Yλ(t))〉2

= 〈(sign)λ (e−µ(t)Yλ(t)) + �̃(e−µ(t)Yλ(t)),�(eµ(t)Yλ(t))〉2

= −
∫

O

(∇(sign)λ (e−µ(t)Yλ(t)),∇(eµ(t)Yλ(t)))dξ

−
∫

O

�̃ ′(e−µ(t)Yλ(t))(∇(e−µ(t)Yλ(t)),∇(eµ(t)Yλ(t)))dξ

= −1

λ

∫

O

(|∇Yλ(t)|2 − |Yλ(t)|2 |∇µ(t)|2)1λ(t, ξ)dξ

−
∫

O

�̃ ′(e−µ(t)Yλ(t))(|∇Yλ(t)|2 − |Yλ(t)|2 |∇µ(t)|2)dξ,

because for y ∈ H1
0 (O),

∇ (sign)λ (y) =
{

0, on {y /∈ (−λ, λ)},
1
λ

∇ y, on {y ∈ (−λ, λ)}.
(Here 1λ is the characteristic function of {(ξ, t) ∈ O ×[0, T ] : |e−µ(t,ξ)Yλ(t, ξ))| < λ}
and (·, ·) is the euclidean scalar product in R

n .) Since �̃ ′ ≥ δ and �̃ ′ ∈ L∞(R),
µ ∈ C([0, T ] × O) this yields

〈ηλ(t),�(eµ(t)Yλ(t))〉2 ≤ C
(
|Yλ(t)|22 + λ

)
. (4.8)

Hence (4.7) and Gronwall’s lemma imply

|Yλ(t)|22 ≤ eC(t−s)
(
|Yλ(s)|22 + CλT

)
a.e. t > s.

Now taking into account (4.6) and letting λ → 0 we get

|Y (t)|22 ≤ eC(t−s)|Y (s)|22 a.e. t > s. (4.9)

If Y (·) is L2(O)-continuous then (4.9) holds for all s, t ∈ [0, T ], t ≥ s. Taking in (4.9)
s = τ ∧ T we get Y (t) = 0 for all t ≥ τ ∧ T and since T > 0 was arbitrary for all
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t ≥ τ as claimed. So, we have to prove that Y is L2(O)-continuous on [0, T ]. For this
we recall that by Proposition 3.5 we have

eµ η ∈ L2(0, T ; H1
0 (O)), P-a.s. (4.10)

Then by Eq. (4.3) we have dY
dt ∈ L2(0, T ; H−1(O)) and so, since Y ∈ L2(0, T ; H1

0 (O))

P-a.s. by Proposition 3.4, by a well known interpolation result (see e.g. [3]), we conclude
that Y ∈ C([0, T ]; L2(O)). This concludes the proof of Lemma 4.1. ��

For proving our extinction result we need O ⊂ R, i.e. d = 1. To be more specific

let O = (0, π). Then ek(ξ) =
√

2
π

sin kξ, ξ ∈ [0, π ], λk = k2 and L1(0, π) ⊂ H
continuously, so

γ = inf

{ |x |L1

|x |−1
: x ∈ L1(0, π)

}

> 0. (4.11)

Theorem 4.2. Let x ∈ L p(0, π), p ≥ max{2m, 4}, be such that

|x |−1 < C−1
N ργ,

where

CN := π

4

N∑

k=1

(1 + k)2µ2
k . (4.12)

Then, for each n ∈ N,

P(τ ≤ n) ≥ 1 − |x |−1

ργ

⎛

⎝

n∫

0

e−CN sds

⎞

⎠

−1

, (4.13)

where by Lemma 4.1 we have

τ(ω) = sup{t ≥ 0 : |X (t, x)|−1 > 0}.

Proof. By condition (iv) we see that

r�(r) ≥ ρ|r |, ∀ r ∈ R. (4.14)

Consider the solution Xλ ∈ L2
W (0, T ; L2(�; H1

0 (0, π))) to Eq. (3.1). Then by first
applying Krylov-Rozovskii’s Itô formula (cf. [20, Theorem I.3.1] or e.g. [21, Theorem
4.2.5]) and then the classical Itô formula to the real valued semi-martingale |Xλ(t)|2−1,

t ∈ [0, T ], and the function

ϕε(r) = (r + ε2)1/2, r ∈ R,
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we find

dϕε(|Xλ(t)|2−1) + (|Xλ(t)|2−1 + ε2)−1/2〈Xλ(t),�λ(Xλ(t))〉2dt

= 1

2

N∑

k=1

µ2
k

|Xλ(t)ek |2−1(|Xλ(t)|2−1 + ε2) − |〈Xλ(t)ek, Xλ(t)〉−1|2)
(|Xλ(t)|2−1 + ε2)3/2

dt

+〈σ(Xλ(t))dW (t), ϕ′
ε(|Xλ(t)|2−1)Xλ(t)〉−1

≤ 1

2

N∑

k=1

µ2
k

|Xλ(t)ek |2−1

(|Xλ(t)|2−1 + ε2)1/2
dt + 〈σ(Xλ(t))dW (t), ϕ′

ε(|Xλ(t)|2−1)Xλ(t)〉−1

≤ CN
|Xλ(t)|2−1

(|Xλ(t)|2−1 + ε2)1/2
dt + 2〈σ(Xλ(t))dW (t), ϕ′

ε(|Xλ(t)|2−1)Xλ(t)〉−1. (4.15)

Here CN is given by (4.12) and

σ(Xλ(t))dW (t) =
N∑

k=1

µk Xλ(t)ekdβk(t).

Integrating over t and letting λ → 0 we see that the right-hand side of (4.15) converges
to the right-hand side of (4.16) below. But by (3.8), (3.12), (3.13) and by Proposition 3.4
the same is true for the left-hand side with limit

ϕε(|X (t)|2−1) − ϕε(|x |2−1) +

t∫

0

∫

O

X (s)

(|X (s)|2−1 + ε)1/2
η(s)dξds.

Taking into account (2.2) and (4.14) we altogether obtain

dϕε(|X (t)|2−1) + ρ
|X (t)|L1(0,π)

(|X (t)|2−1 + ε2)1/2
dt

≤ CN
|X (t)|2−1

(|X (t)|2−1 + ε2)1/2
dt + 2〈σ(X (t))dW (t), ϕ′

ε(|X (t)|2−1)X (t)〉.

Consequently by Lemma 4.1 for all t ≥ 0,

ϕε(|X (t)|2−1) + γρ

t∧τ∫

0

|X (s)|−1

(|X (s)|2−1 + ε2)1/2
ds

≤ ϕε(|x |2−1) + CN

t∧τ∫

0

|X (s)|2−1

(|X (s)|2−1 + ε2)1/2
ds

+2

t∧τ∫

0

〈σ(X (s))dW (s), ϕ′
ε(|X (s)|2−1)X (s)〉, P-a.s., (4.16)

where γ is defined by (4.4).
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Clearly, we have

lim
ε→0

t∧τ∫

0

|X (s)|−1

(|X (s)|2−1 + ε2)1/2
ds = t ∧ τ, P-a.s.

Now, letting ε tend to zero we get

|X (t)|−1 + γρ(t ∧ τ)

≤|x |−1+CN

t∫

0

|X (s)|−1ds+

t∫

0

1[0,τ ](s)〈σ(X (s))dW (s), X (s)|X (s)|−1
−1〉 P-a.s.

(4.17)

Hence by a standard comparison result

|X (t)|−1 + ργ

t∫

0

eCN (t−s)1[0,τ ](s)ds

≤ eCN t |x |−1 +

t∫

0

eCN (t−s)1[0,τ ](s)〈σ(X (s))dW (s), X (s)|X (s)|−1
−1〉.

Taking the expectation and multiplying by (ργ )−1e−CN t , we obtain

t∫

0

e−CN s
P(τ > s)ds ≤ |x |−1

ργ
.

Writing P(τ > s) = 1 − P(τ ≤ s) we deduce that

P(τ ≤ t) ≥ 1 − |x |−1

ργ

⎛

⎝

t∫

0

e−CN sds

⎞

⎠

−1

and (4.13) follows. ��
In particular Theorem 4.2 applies to self-organized criticality stochastic models (1.9),

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d X (t) − �(ρ sign (X (t) − xc) + �̃(X (t) − xc))dt

� σ(X (t) − xc)

N∑

k=1

µkekdβk, t ≥ 0,

ρ sign (X (t) − xc) + �̃(X (t) − xc) � 0, on ∂[0, π ],
X (0, x) = x .

(4.18)

Here the function �̃ is as in assumption (iv) and xc ∈ R.
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Corollary 4.3. Assume that

|x − xc|−1 < ργ C−1
N ,

where CN is as in (4.12) and γ as in (4.11). Then for each n ∈ N,

P(τc ≤ n) ≥ 1 − |x − xc|−1

ργ

⎛

⎝

n∫

0

e−CN sds

⎞

⎠

−1

, (4.19)

where

τc = inf{t ≥ 0 : |X (t) − xc|−1 = 0} = sup{t ≥ 0 : |X (t) − xc|−1 > 0},
and X = X (t, x) is the solution to (4.18) in the sense of Definition 2.1.

We note that Eq. (1.9) reduces to (4.18) by shifting the Heavside function with xc.

Remark 4.4. One must notice that if x > xc, i.e. if the initial state is in the supercritical
region then by the positivity result in Theorem 2.2 we have X (t) ≥ xc, P-a.s. for all
t ≥ 0. This means that the state remains in the supercritical-critical region for all time.
However, by (4.19) if CN |x |−1

ργ
is small, it reaches the critical state xc with high probability

in a finite time, i.e. the supercritical-critical region is completely absorbed by the critical
one in a finite time. In contrast, if CN |x |−1

ργ
is not small, i.e., if the magnitude of the

random fluctuations induced by the noise is large compared with the initial state x then
the above conclusion might fail because the random perturbations can push the density
X (t) over the singularity xc.

So, in general we cannot expect τc < ∞, P-a.s. However, by (4.19) we see that

P(τc < ∞) = lim
n→∞ P(τc ≤ n) ≥ 1 − |x − xc|−1

ργ CN
.
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Note added in proof. Employing a supermartingale argument it is possible to prove Lemma 4.1 without the
assumption that N in (4.1) is finite. Then also Theorem 4.2 holds for N = ∞. In addition, Lemma 4.1 also
holds without assuming in (iv) that δ > 0, but rather only that �̃ ′(r) ≥ 0 for all r ∈ R\{0}. Details on this
will be included in a forthcoming paper.
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