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Abstract: Consider a Gaussian Entire Function

f (z) =
∞∑

k=0

ζk
zk

√
k! ,

where ζ0, ζ1, . . . are Gaussian i.i.d. complex random variables. The zero set of this func-
tion is distribution invariant with respect to the isometries of the complex plane. Let n(R)
be the number of zeroes of f in the disk of radius R. It is easy to see that En(R) = R2,
and it is known that the variance of n(R) grows linearly with R (Forrester and Honner).
We prove that, for every α > 1/2, the tail probability P

{ |n(R)− R2| > Rα
}

behaves
as exp

[−Rϕ(α)
]

with some explicit piecewise linear function ϕ(α). For some special
values of the parameter α, this law was found earlier by Sodin and Tsirelson, and by
Krishnapur.

In the context of charge fluctuations of a one-component Coulomb system of parti-
cles of one sign embedded into a uniform background of another sign, a similar law was
discovered some time ago by Jancovici, Lebowitz and Manificat.

1. Introduction

Consider the Fock-Bargmann space of the entire functions of one complex variable
that are square integrable with respect to the measure 1

π
e−|z|2 dm(z), where m is the

Lebesgue measure on C. Let f be a Gaussian function associated with this space; i.e.,

f (z) =
∑

k�0

ζkek(z),
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where ζk are independent standard complex Gaussian random variables (that is, the
density of ζk on the complex plane C is 1

π
e−|w|2 ), and {ek} is an orthonormal basis in

the Fock-Bargmann space. The Gaussian function f does not depend on the choice of

the basis {ek}, so usually one takes the standard basis ek(z) = zk

√
k! , k ∈ Z+. In what

follows, we call f a Gaussian Entire Function (G.E.F., for short). G.E.F. together with
other similar models were introduced in the 90’s in the works of Bogomolny, Bohigas,
Lebouef [1], and Hannay [5].

A remarkable feature of the zero set Z f = f −1{0} of a G.E.F. is its distribution
invariance with respect to the isometries of C. The rotation invariance is obvious since
the distribution of the function f is rotation invariant. The translation invariance follows,
for instance, from the fact that the operators (Twg)(z) = g(w + z)e−zwe−|w|2/2, w ∈ C,
are unitary operators in the Fock-Bargmann space, and therefore, if f is a G.E.F., then
Tw f is a G.E.F. as well (see Sect. 2.2 below). It is worth mentioning that by Calabi’s
rigidity [11, Sect. 3], f (z) together with its scalings f (t z), t > 0, are the only Gauss-
ian functions analytic in C with the distribution of zeroes invariant with respect to the
isometries of C. See [12, Part I] for further discussion.

Let n(R) = Card
{Z f ∩ RD

}
be the number of zeroes of f in the disk of radius

R. It is not hard to check that the mean number of points of Z f per unit area equals 1
π

(cf. Sect. 2.3). Therefore, En(R) = R2. The asymptotics of the variance of n(R) was
computed by Forrester and Honner in [2]:

E

(
n(R)− R2

)2 = cR + o(R), R → ∞,

with an explicitly computed positive c. In [10], Shiffman and Zelditch gave a different
computation of the asymptotics of the variance valid in a more general context. The nor-

malized random variables
n(R)− R2

√
Var n(R)

converge in distribution to the standard Gaussian

random variable. This can be proven, for instance, by a suitable modification of the argu-
ment used in [12, Part I]. In this work, we describe the probabilities of large fluctuations
of the random variable n(R)− R2.

Theorem 1. For every α � 1
2 and every ε > 0,

e−Rϕ(α)+ε < P

{
|n(R)− R2| > Rα

}
< e−Rϕ(α)−ε (1.1)

for all sufficiently large R > R0(α, ε), where

ϕ(α) =

⎧
⎪⎨

⎪⎩

2α − 1, 1
2 � α � 1;

3α − 2, 1 � α � 2;
2α, α � 2 .

In a different context of charge fluctuations of a one-component Coulomb system of
particles of one sign embedded into a uniform background of the opposite sign, a similar
law was discovered by Jancovici, Lebowitz and Manificat in their physical paper [4].
Let us mention that it is known since Ginibre’s classical paper [3] that the class of point
processes considered by Jancovici, Lebowitz and Manificat contains as a special case the
N → ∞ limit of the eigenvalue point process of the ensemble of N × N random matri-
ces with independent standard complex Gaussian entries. The resemblance between the
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zeroes of G.E.F. and the eigenvalues of Ginibre’s ensemble was discussed both in the
physical and the mathematical literature.

Now, let us return to the zeroes of G.E.F. In some cases, the estimate (1.1) is known.
As we have already mentioned, it is known for α = 1

2 when it follows from the asympt-
otics of the variance and the asymptotic normality. In the case α = 2 it follows from a
result of Sodin and Tsirelson [12, Part III], which says that for each R � 1,

e−C R4 � P

{
|n(R)− R2| > R2

}
� e−cR4

with some positive numerical constants c and C . In [7], Krishnapur considered the case
α > 2 and proved that in that case

P
{

n(R) > Rα
} = e−( α2 −1)(1+o(1))R2α log R , R → ∞ .

In the same work, he also proved the lower bound in the case 1 < α < 2:

P

{
|n(R)− R2| > Rα

}
� e−C R3α−2

.

Using a certain development of his method, we’ll get the lower bound

P

{
|n(R)− R2| > Rα

}
� e−C R2α−1

,
1

2
< α < 1 .

Apparently, in the case 1
2 < α < 2, the technique used in [12, Part III] and [7] does not

allow one to treat the upper bounds in the law (1.1), which require new ideas.
Outline of the proof. Let us sketch the main ideas we use in the proof of Theorem 1.
1. We denote by �I arg f the increment of the argument of a G.E.F. f over an arc
I ⊂ RT oriented counterclockwise, and set δ( f, I ) = �I arg f − E�I arg f . Then by
the argument principle,

2π(n(R)− R2) = δ( f, RT) .

Note that the random variable δ( f, I ) is set-additive and split the circumference RT into

N = 2π
R

r
disjoint arcs I j of length r . Thus we need to estimate the probability of the

event

	α(R) =
⎧
⎨

⎩

∣∣∣∣∣∣

N∑

j=1

δ( f, I j )

∣∣∣∣∣∣
> 2πRα

⎫
⎬

⎭ .

2. Let us fix an arc I of length r and look more closely at the tails of the random variable
δ( f, I ). It is not hard to check that δ( f, I ) = δ(Tw f, I −w), wherew is the midpoint of
the arc I and Tw f (z) = f (w + z)e−zwe−|w|2/2. A classical complex analysis argument
shows that for any analytic function g in the disk 2rD and any “good” arc γ ⊂ rD of
length at most r , one has

∣∣�γ arg g
∣∣ � C log

max2rD |g|
maxrD |g| ,
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see Lemma 9. Then, estimating the probability that, for a G.E.F. g = Tw f , the doubling

exponent log
max2rD |g|
maxrD |g| is large, we come up with the tail estimate

P

{
|δ( f, I )| > Mr2

}
� exp

(
− C M2

log M
r4
)
, M � 1 .

3. Now, let us come back to the sum
N∑

j=1

δ( f, I j ). The random variables δ( f, I j ) are not

independent, however in [9, Theorem 3.2] we’ve introduced an “almost independence
device” that allows us to think about these random variables as of independent ones,
provided that the arcs I j are well-separated from each other. Here we’ll need a certain
extension of that result (Lemma 5 below).
4. To see how the almost independence and the tail estimate work, first, consider the case
1 < α < 2. We split the circumference RT into N disjoint arcs {I j } of length r . In view
of the tail estimate in Item 2, we need to distribute the total deviation Rα between these
arcs in such a way that the “deviation per arc” Rα/N is bigger than r2. Since N � R

r ,
this leads to the choice of r comparable to Rα−1.

Then we consider the event that for a fixed subset J ⊂ {1, 2, ... , N } and for every
j ∈ J , one has |δ( f, I j )| � m jr2, where m j are some big positive integer powers of 2
that satisfy

∑

j∈J

m jr
2 � Rα . (1.2)

Then we choose a well-separated sub-collection of arcs J ′ ⊂ J that falls under the
assumptions of the almost independence Lemma 5. This step weakens condition (1.2)
to

∑

j∈J ′
m3/2

j r2 � Rα ,

which still suffices for our purposes. Then regarding the random variables δ( f, I j ),
j ∈ J ′, as independent ones and using the tail estimate for these variables, we see that
the probability of this event does not exceed

exp

⎛

⎝−c
∑

j∈J ′

m2
j

log m j
r4

⎞

⎠ � exp

⎛

⎝−r2
∑

j∈J ′
m3/2

j r2

⎞

⎠

� exp
(
−cr2 Rα

)
� exp

(
−c1 R3α−2

)
.

To get the upper bound for the probability of the event 	α , we need to take into
account the number of possible choices of the subset J and of the numbers m j . This
factor does not exceed 2N (log R)N < eC R log log R which is not big enough to destroy
our estimate.
5. Now, let us turn to the upper bound in the case 1

2 < α < 1. We choose the arcs I j of
length 1. To separate them from each other, we choose from this collection R1−ε arcs
{I j } j∈J separated by Rε and such that
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∣∣∣∣∣∣

∑

j∈J

δ( f, I j )

∣∣∣∣∣∣
> Rα−ε .

For these arcs, the random variables δ( f, I j ) behave like independent ones, and since
their tails have a fast decay, we can apply to them the classical Bernstein inequality
(Lemma 3), which yields

P

⎧
⎨

⎩

∣∣∣∣∣∣

∑

j∈J

δ( f, I j )

∣∣∣∣∣∣
> Rα−ε

⎫
⎬

⎭ � C exp

(
−c(Rα−ε)2

Card J

)
= C exp

(
−cR2α−1−ε) .

6. To get the lower bound for the probability of	α in the case 1
2 < α < 1, we introduce

an auxiliary Gaussian Taylor series

g(z) =
∞∑

k=0

ζkak
zk

√
k! ,

where ζk are independent standard complex Gaussian random variables, and

ak =

⎧
⎪⎨

⎪⎩

√
1 − Rα−1, R2 + R < k < R2 + 2R ;√
1 + Rα−1, R2 − 2R < k < R2 − R ;

1, otherwise .

It is not difficult to check that for some absolute c > 0, the probability that the function
g has at most R2 −cRα zeroes in the disk RD is not exponentially small (more precisely,
it cannot be less than cR−2+α).

Now, let γ be the standard Gaussian measure in the space C
∞; i.e., the product of

countably many copies of standard complex Gaussian measures on C, and let γa be
another Gaussian measure on C

∞ which is the product of complex Gaussian measures
γak on C with variances a2

k . Let E ⊂ C
∞ be the set of coefficients ηk such that the Taylor

series
∑

k�0 ηk
zk√
k! converges in C and has at most R2 − cRα zeroes in RD. Then

γa(E) � cR−2+α ,

while the quantity P
{

n(R) � R2 − cRα
}

we are interested in equals γ (E). Thus, it
remains to compare γ (E) with γa(E), and a more or less straightforward computation
finishes the job.

Following [12, Parts I and II], we compare the zero point process Z f with random
independent perturbations of the lattice points. We fix the parameter ν > 0, and consider
the random point set {ω + ζω}ω∈Z2 , where ζω are independent, identical, radially distrib-
uted random variables with the tails P { |ζω| > t } decaying as exp(−tν) for t → ∞.
Set

n(R) = Card{ω ∈ Z
2 : |ω + ζω| � R}.

Then one can see that, for every α > 1
2 and every ε > 0,

e−Rϕ(α,ν)+ε < P

{
|n(R)− πR2| > Rα

}
< e−Rϕ(α,ν)−ε
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for all sufficiently large R > R0(α, ε) with

ϕ(α, ν) =

⎧
⎪⎨

⎪⎩

2α − 1, 1
2 � α � 1;

(ν + 1)α − ν, 1 � α � 2;
(ν/2 + 1)α, α � 2 .

In the range 1
2 � α � 1, the exponent ϕ(α) = 2α − 1 seems to be determined by

the asymptotic normality at the endpoint α = 1
2 . In the range α > 1, the Jancovici-

Lebowitz-Manificat law (1.1) corresponds to the case ν = 2; i.e., to the lattice
perturbation with the Gaussian decay of the tails.
Convention about the constants. By c and C we denote positive numerical constants
that appear in the proofs. The constants denoted by c are supposed to be small (in par-
ticular, they are always less than 1), while the constants denoted by C are supposed to
be big (they are always larger than 1). Within the proof of each lemma, we start a new
sequence of indices for these constants, and we never refer to these constants after the
corresponding proof is completed.

Notation A � B and A � B means that there exist positive numerical constants C
and c such that A � C · B and A � c · B correspondingly. If A � B and A � B
simultaneously, then we write A � B. Notation A 
 B stands for “much less” and
means that A � c · B with a very small positive c; similarly, A � B stands for “much
larger” and means that A � C · B with a very large positive C .

2. Preliminaries

2.1. A combinatorial lemma. For j, k ∈ {1, . . . , N }, we set

| j − k|∗ = min {|i − k| : i ≡ jmodN }
= min {| j − k|, | j − k + N |, | j − k − N |} .

Lemma 1. Let m1, ..., m N be non-negative integers. Then, given Q � 1, there exists a
subset J ′ ⊂ {1, . . . , N } such that

| j − k|∗ � Q(
√

m j +
√

mk) , j, k ∈ J ′, j = k ,

and
∑

j∈J

m j � 5Q
∑

j∈J ′
m3/2

j .

Proof of Lemma 1. We build the set J ′ by an inductive construction. Choose
j1 ∈ {1, . . . , N } such that m j1 = max

{
m j : j ∈ {1, . . . , N }}. Set

J ′
1 = { j1}, J ′′

1 = {
j : 0 < | j − j1|∗ < 2Q

√
m j1

}
, J1 = J ′

1 ∪ J ′′
1 ,

and note that
∑

j∈J1

m j �
(
4Q

√
m j1 + 1

)
m j1 � 5Q

∑

j∈J ′
1

m3/2
j .
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Now, suppose that we’ve made k steps of this construction. If Jk = {1, . . . , N }, then
we are done with J ′ = J ′

k . If {1, . . . , N }\Jk = ∅, we choose jk+1 ∈ {1, . . . , N }\Jk
such that

m jk+1 = max
{
m j : j ∈ {1, . . . , N }\Jk

}
,

and define the sets J ′
k+1 = J ′

k ∪ { jk+1},
J ′′

k+1 = J ′′
k ∪ {

j ∈ {1, . . . N }\Jk : 0 < | j − jk+1|∗ < 2Q
√

m jk+1

}
,

and Jk+1 = J ′
k+1 ∪ J ′′

k+1. Then, as above,
∑

j∈Jk+1\Jk

m j � 5Qm3/2
jk+1

,

whence
∑

j∈Jk+1

m j � 5Q
∑

j∈J ′
k+1

m3/2
j .

We are done. ��

2.2. Probabilistic preliminaries.

Lemma 2. [9, Lemma 2.1]. Let ηk be standard complex Gaussian random variables
(not necessarily independent). Let ak > 0, S = ∑

k ak . Then, for every t > 0,

P

{
∑

k

ak |ηk | > t

}
� 2e− 1

2 (t/S)2 .

We also need the following classical Bernstein’s estimate:

Lemma 3. Let ψk , k = 1, 2, ... , n, be independent random variables with zero mean
such that, for some K > 0 and every t > 0,

P { |ψk | > t } � K e−t .

Then, for 0 < t � 5K n,

P

{ ∣∣∣∣∣
∑

k

ψk

∣∣∣∣∣ > t

}
� 2 exp

(
− t2

16K n

)
.

Proof. Set Sn =
n∑

k=1

ψk . Then EeλSn =
n∏

k=1

Eeλψk . Note that

Eeλψk = E
{
1 + λψk +

(
eλψk − 1 − λψk

)}

= 1 + λ

{∫ ∞

0
P {ψk > t } (eλt − 1

)
dt +

∫ ∞

0
P {ψk < −t } (1 − e−λt) dt

}

� 1 + Kλ

{∫ ∞

0
e−t (eλt − 1

)
dt +

∫ ∞

0
e−t (1 − e−λt) dt

}

= 1 +
2Kλ2

1 − λ2 � 1 + 4Kλ2 � e4Kλ2
,
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provided that λ � 2
3 . Hence, we get

P { Sn > t } � e−λt
EeλSn � e4K nλ2−λt .

Similarly, P { Sn < −t } � e4K nλ2−λt , and therefore P { |Sn| > t } � 2e4K nλ2−λt .

Taking λ = t

8K n
, we get the lemma. ��

2.3. Mean number of zeroes of a Gaussian Taylor series. Consider a Gaussian Taylor
series

g(z) =
∞∑

k=0

ζkak zk

with non-negative ak such that lim
k→∞

k
√

ak = 0 and with independent standard complex

Gaussian random variables ζk . Then almost surely, the series on the right-hand side has
infinite radius of convergence, and hence g is an entire function. By ng(r) we denote
the number of zeroes of the function g in the disk of radius r .

Lemma 4.

Eng(r) = 1

2

rC′
g(r)

Cg(r)
,

where

Cg(r) =
∞∑

k=0

a2
k r2k .

This readily follows from the Edelman-Kostlan formula for the density of mean
counting measure of zeroes of an arbitrary Gaussian analytic function, see [11, Sect. 2].
Alternatively, one can obtain this formula using the argument principle, see [6, p. 195,
Exercise 5].

2.4. Operators Tw and shift invariance. For a function g : C → C and a complex
number w ∈ C, we define

Twg(z) = g(w + z)e−zwe− 1
2 |w|2 .

In what follows, we use some simple properties of these operators.

(a) Tw are unitary operators in the Fock-Bargmann space of entire functions that are
square integrable with respect to the measure 1

π
e−|z|2 dm(z):

‖Tw f ‖2 = 1

π

∫∫

C

| f (w + z)|2e−2Re (zw)−|w|2−|z|2 dm(z)

= 1

π

∫∫

C

| f (w + z)|2e−|w+z|2 dm(z) = ‖ f ‖2 .
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(b) If f is a G.E.F., then Tw f is a G.E.F. as well.

In particular, the distribution of the random zero set Z f = f −1{0} is translation invari-
ant. The property (b) also yields the distribution invariance of the function f ∗(z) =
| f (z)|e−|z|2/2 with respect to the isometries of C. Indeed, a straightforward inspection
shows that (Tw f )∗(z) = f ∗(w + z).

(c) By (b), if f is a G.E.F., then

Tw f =
∑

k�0

ζk(w)
zk

√
k! ,

where ζk(w) are independent standard complex Gaussian random variables. Recall-

ing that

{
zk

√
k!
}

k�0
is an orthonormal basis in the Fock-Bargmann space, and using

that Tw is a unitary operator and TwT−w is the identity operator in that space, we
get

ζk(w) =
〈
Tw f,

zk

√
k!
〉

=
〈

f, T−w
(

zk

√
k!
)〉
.

Note that for w = w′, the Gaussian variables ζk(w) and ζk′(w′) are correlated and

(d)

∣∣∣E
{
ζk(w)ζk′(w′)

}∣∣∣ =
∣∣∣∣∣

〈
T−w

(
zk

√
k!
)
, T−w′

(
zk′

√
k′!

)〉∣∣∣∣∣ .

Let γ ⊂ C be an oriented curve. Note that if f does not vanish on the curve γ , then

�γ−w arg Tw f = �γ arg f −�γ Im(z − w)w = �γ arg f −�γ Im(zw) ,

where �γ Im(zw) is the increment of the function Im(zw) over γ , and γ − w denotes
the translation of the curve γ by −w.

(e) Set δ( f, γ ) = �γ arg f − E�γ arg f . Then δ(Tw f, γ − w) = δ( f, γ ).

If I ⊂ RT is a counterclockwise oriented arc with the midpoint at w, then using
rotation invariance and the argument principle, we get

E�I arg f = |I |
2πR

E�RT arg f = |I |
2πR

E2πn(R) = |I |
R

R2 = |I |R

and

δ(Tw f, I − w) = �I arg f − |I |R .
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2.5. Almost independence. Our approach is based on the almost independence property
introduced in [9]. It says that if {w j } ⊂ C is a “well-separated” set, then the G.E.F.
Tw j f can be simultaneously approximated by independent G.E.F. The following lemma
somewhat extends Theorem 3.2 from [9].

Lemma 5. There exists a numerical constant A > 1 such that for every family of pair-
wise disjoint disks D(w j , r j + Aρ j ) with

w j ∈ C, r j � 1, ρ j � max
(

1,
√

log r j

)
,

one can represent the family of G.E.F. Tw j f as

Tw j f = f j + h j ,

where f j are independent G.E.F. and

P

{
max
z∈r j D

|h j (z)|e−|z|2/2 � e−ρ2
j

}
� 2 exp

(
− 1

2 eρ
2
j

)
.

Theorem 3.2 in [9] corresponds to the case when r j = r � 1 and ρ j = Nr with N � 1.
We prove Lemma 5 in the Appendix.

2.6. Bounds for G.E.F. Our first lemma estimates the probability that the function f is
very large:

Lemma 6. (cf. [9, Lemma 4.1]). Let f be a G.E.F. Then, for each r � 1 and M � 1,

P

{
max
z∈rD

| f (z)|e−|z|2/2 � M

}
� 18r2e− 1

32 M2
.

Proof. We cover the disk rD by at most (2r + 1)2 � 9r2 disks D j of radius 1 and show
that for each j ,

P

{
max
z∈D j

| f (z)|e−|z|2/2 � M

}
� 2e− 1

32 M2
.

By the translation invariance of the distribution of the random function | f (z)|e−|z|2/2 it
suffices to prove this estimate in the unit disk D. Clearly,

P

{
max
z∈D

| f (z)|e−|z|2/2 � M

}
� P

{
max
z∈D

| f (z)| � M

}

� P

⎧
⎨

⎩
∑

k�0

|ζk |√
k! � M

⎫
⎬

⎭
Lemma 2

� 2e− 1
2 (M/S)2

with S = ∑
k�0

1√
k! < 4. Hence, the lemma. ��

The following lemma estimates the probability that the function f is very small:
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Lemma 7. (cf. Lemma 8 in [7] and Lemma 4.2 in [9]). Let f be a G.E.F. Let r � 1 and
m � 3. Then

P

{
max

rD

| f | � e−mr2
}

� exp

(
− m2

log m
r4
)
.

Proof. Suppose that | f | � e−mr2
everywhere in rD. Then by Cauchy’s inequalities,

|ζn| �
√

n!
rn

max
rD

| f | � nn/2

rn
e−mr2

, n = 0, 1, 2, ... .

For 0 � n � m

log m
r2, the probabilities of these events do not exceed

(
nr−2

)n
e−2mr2 �

(
m

log m

) m
log m r2

e−2mr2
< e−mr2

.

Since these events are independent, the probability we are estimating is bounded by

exp

(
−mr2

(
m

log m
r2
))

= exp

(
− m2

log m
r4
)
.

We are done. ��
The next lemma bounds the probability that a G.E.F. is small on a given curve of a

given length.

Lemma 8. Let f be a G.E.F., and let γ be a curve of length at most r � 1. Then, for
any positive ε � 1

4 ,

P

{
min
z∈γ | f (z)|e−|z|2/2 < ε

}
< 100rε

√
log

1

ε
.

Proof. We split the curve γ into �r� arcs γ j of length at most 1, and fix the collection
of disks D j of radius 1 such that γ j ⊂ D j . We’ll show that for each j ,

P

{
min
z∈γ j

| f (z)|e−|z|2/2 < ε

}
< 50ε

√
log

1

ε
.

Clearly, this will yield the lemma.
By the shift invariance of the distribution of the random function | f (z)|e−|z|2/2, we

assume without loss of generality that D j is the unit disk D. Taking into account that

e−|z|2/2 > 1
2 everywhere in the unit disk, we have

P

{
min
z∈γ j

| f (z)|e−|z|2/2 < ε

}
� P

{
min
z∈γ j

| f (z)| < 2ε

}
.

We choose points {zm} ⊂ γ and disks Dm = {|z − zm | � κε} such that

γ ⊂
⋃

m

Dm , and Card{zm} �
⌈

1

2κε

⌉
,
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with the parameter κ to be specified later. Then, for z ∈ Dm ,

| f (z)| � | f (zm)| − |z − zm | max
D

| f ′| � | f (zm)| − κεmax
D

| f ′| .

Hence, we need to estimate the probability of the events

	1 =
{

min
m

| f (zm)| � 3ε
}

and 	2 =
{

max
D

| f ′| � 1

κ

}
.

If neither of these events holds, then | f (z)| > 3ε − ε = ε everywhere on γ .
Recall that for any standard complex Gaussian random variable ζ and for any t >

0, we have P { |ζ | � t } < t2, also recall that f (zm)e−|zm |2/2 is a standard complex
Gaussian random variable. Hence, for any fixed m, we have P { | f (zm)| � 3ε } �
P

{
| f (zm)|e−|zm |2/2 � 3ε

}
< 9ε2. Therefore,

P {	1 } <
⌈

1

2κε

⌉
· 9ε2 � 9

2
εκ−1 + 9ε2 .

Next,

P {	2 } � P

⎧
⎨

⎩
∑

k�1

k√
k! |ζk | � 1

κ

⎫
⎬

⎭
Lemma 2

� 2e− 1
2 (κS)−2

with S = ∑
k�1

k√
k! < 6. Therefore, P {	2 } � 2e− 1

72 κ
−2

, and

P {	1 } + P {	2 } < 9

2
εκ−1 + 2e− 1

72 κ
−2

+ 9ε2 .

Choosing here κ−1 =
√

72 log 1
ε
, we get

P

{
min
z∈γ j

| f (z)| < 2ε

}
� P {	1 } + P {	2 }

< 27
√

2 ε

√
log

1

ε
+ 2ε + 9ε2 < 50ε

√
log

1

ε
,

proving the lemma. ��

2.7. Upper bounds for the increment of the argument. We say that a piecewise C1-
curve γ ⊂ rD is good if its length does not exceed r and, for any ζ ∈ C\{γ }, we have∣∣�γ arg(z − ζ )

∣∣ � 2π . The following lemma is classical (cf. [8, Lemma 6, Chapter VI]):

Lemma 9. There exists a numerical constant B > 1 with the following property. Let g
be an analytic function in the disk 2rD such that sup

2rD

|g| � 1. If max
rD

|g| � e−β , then for

any good curve γ ⊂ rD, we have
∣∣�γ arg g

∣∣ � Bβ .
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Proof. By scale invariance, it suffices to prove the lemma for r = 1. Choose z0 ∈ rT such
that |g(z0)| = max

rD

|g| � e−β , and denote by ϕ a Möbius transformation ϕ : 2D → 2D

with ϕ(0) = z0.
Denote by ng(t) and ng◦ϕ(t) the number of zeroes of the functions g and g ◦ϕ in the

disk tD, and choose ρ < 2 such that ϕ−1
( 3

2 D
) ⊂ ρD. Then by Jensen’s formula

0 �
∫ 2π

0
log |(g ◦ ϕ)(2eiθ )| dθ

2π
= log |g ◦ ϕ(0)| +

∫ 2

0

ng◦ϕ(t)
t

dt

� −β +
∫ 2

ρ

ng◦ϕ(t)
t

dt � −β + ng◦ϕ(ρ) log 2
ρ

� −β + ng(
3
2 ) log 2

ρ
.

Thus the number of zeroes of g in the disk 3
2 D does not exceed C1β. Hence, g = pg1,

where p is a polynomial of degree N � C1β with zeroes in 3
2 D and a unimodular leading

coefficient, and g1 does not vanish in 3
2 D, g1(0) > 0.

Claim 9 -1.
∫ 2π

0

∣∣∣log |g1(
3
2 eiθ )|

∣∣∣
dθ

2π
� C2β.

Proof of Claim 9-1. Indeed,

∫ 2π

0

∣∣∣log |g1(
3
2 eiθ )|

∣∣∣
dθ

2π
�
∫ 2π

0

∣∣∣log |g( 3
2 eiθ )|

∣∣∣
dθ

2π
+
∫ 2π

0

∣∣∣log |p( 3
2 eiθ )|

∣∣∣
dθ

2π

=
∫ 2π

0
log− |g( 3

2 eiθ )| dθ

2π
+
∫ 2π

0

∣∣∣log |p( 3
2 eiθ )|

∣∣∣
dθ

2π
.

To estimate the integral on the right-hand side, we note that

∫ 2π

0
log |g( 3

2 eiθ )|
( 3

2

)2 − |z0|2
| 3

2 eiθ − z0|2
dθ

2π
� log |g(z0)| � −β ,

whence

∫ 2π

0
log− |g( 3

2 eiθ )| dθ

2π
� C3β .

The estimate of the second integral on the right-hand side is also straightforward: since

p(z) =
N∏

j=1

(z − λ j ) with λ j ∈ 3
2 D, we have

∫ 2π

0

∣∣∣log |p( 3
2 eiθ )|

∣∣∣
dθ

2π
� N · sup

λ∈ 3
2 D

∫ 2π

0

∣∣∣log | 3
2 eiθ − λ|

∣∣∣
dθ

2π

N�C1β

� C4β .

Hence, the claim. ��
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Now,
∣∣�γ arg g

∣∣ �
∣∣�γ arg p

∣∣ +
∣∣�γ arg g1

∣∣, and since the curve γ is good, we have∣∣�γ arg p
∣∣ � 2πN � C5β. Fix the branch h of arg g1. Then

∣∣�γ h
∣∣ � 2 max

D

|h − h(0)| .

Since h harmonic in 3
2 D, we have

h(z) =
∫ 2π

0
log |g1(

3
2 eiθ )| Im

3
2 eiθ + z
3
2 eiθ − z

dθ

2π
+ h(0) , |z| � 1 ,

and

|h(z)− h(0)| � C6

∫ 2π

0

∣∣∣log |g1(
3
2 eiθ )|

∣∣∣ dθ
Claim 9−1

� C7β , |z| � 1 .

This proves the lemma. ��
Lemma 10. Let r � 1, let γ ⊂ rD be a good curve, let m � 25B, and let f be a G.E.F.
Consider the event 	 = {|δ( f, γ )| � mr2

}
. Then

	 ⊂ 	′ ∪
{

max
rD

| f | < e− 1
4B mr2

}
with P

{
	′ } � exp

(
−e

1
6B mr2

)
.

In particular,

P {	 } � 2 exp
(
− 1

16B2
m2r4

log m

)
.

Proof. Introduce the events

	1(m) =
{
|�γ arg f | � mr2

}
,

and

	′(m) =
{

max
z∈2rD

| f (z)|e−|z|2/2 > e
1

3B mr2
}
.

Claim 10 -1. For m � 12B, 	1(m) ⊂ 	′(m) ∪
{

maxrD | f | < e− 1
2B mr2

}
.

Proof of Claim 10-1. Suppose that the event 	′(m) does not occur. Then

max
2rD

| f | � e
1

3B mr2+2r2 = e(
1

3B + 2
m )mr2 m�12B

� e
1

2B mr2
.

If the event 	1(m) occurs, then by Lemma 9

mr2 �
∣∣�γ arg f

∣∣ � B log
max2rD | f |
maxrD | f | ,

whence,

max
rD

| f | � e− 1
B mr2

max
2rD

| f | � e− 1
2B mr2

,

proving the claim. ��
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Claim 10 -2. For m � 12B, P
{
	′(m)

}
� exp

(
−e

1
3B mr2

)
.

Proof of Claim 10-2. We have

P
{
	′(m)

} Lemma 6
� 72r2 exp

(
− 1

32 e
2

3B mr2
)

� 6
B mr2 exp

(
− 1

32 e
2

3B mr2
)
.

It’s easy to see that for t = 1
3B mr2 � 4, one has

18t exp
(
− 1

32 e2t
)

� 18t exp
(
− e4

32 et
)
< 18t exp

(− 3
2 et)

= 18t exp
(− 1

2 et)
︸ ︷︷ ︸

<1

exp
(−et) < exp

(−et).

Hence, the claim. ��
Claim 10 -3. For m � 12B, P {	1(m) } � 2 exp

(
− 1

4B2
(mr2)2

log(m/2B)

)
.

Proof of Claim 10-3. By Lemma 7,

P

{
max

rD

| f | < e− 1
2B mr2

}
� exp

(
− 1

4B2
(mr2)2

log(m/2B)

)
.

It’s easy to check that for t = 1
B mr2 � 12, one has et/3 > t2

4 . Therefore,

e
1

3B mr2
> 1

4B2 (mr2)2 > 1
4B2

(mr2)2

log(m/2B) .

Thus P
{
	′(m)

}
also does not exceed exp

(
− 1

4B2
(mr2)2

log(m/2B)

)
. We are done. ��

Claim 10 -4.
∣∣E�γ arg f

∣∣ � 12.5Br2.

Proof of Claim 10-4. By Claim 10 -3, for s � 12Br2, we have

P
{ |�γ arg f | � s

}
� 2 exp

(
− (s/2B)2

log s/(2Br2)

)
� 2 exp

(
− (s/2B)2

log s/2B

)
.

Therefore,

∣∣E�γ arg f
∣∣ � 12Br2 + 2

∫ ∞

12Br2
exp

(
− (s/2B)2

log(s/2B)

)
ds

= 12Br2 + 4B
∫ ∞

6r2
e−s2/ log s ds

︸ ︷︷ ︸
<1/8

< 12.5Br2 ,

proving the claim. ��
Now, we readily finish the proof of Lemma 10. Suppose that the event	 occurs; i.e.,

|δ( f, γ )| � mr2 with m � 25B. Then
∣∣�γ arg f

∣∣ � |δ( f, γ )| − ∣∣E�γ arg f
∣∣ � (m − 12.5B)r2 � 1

2 mr2 .

That is,	 ⊂ 	1(
1
2 m) and the lemma follows from Claims 10 -1, 10 -2 and 10 -3 applied

with 1
2 m instead of m. ��
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Remark. One can get a better estimate
∣∣E�γ arg f

∣∣ � r2 than the one given in Claim
10 -4 in the following way. If γ : [0, 1] → C is a good curve, then

�γ arg f = Im
∫ 1

0

f ′

f
(γ (t)) γ ′(t) dt.

Taking into account that E
f ′
f (z) = z, we get

E�γ arg f = Im
∫ 1

0
γ ′(t)γ (t) dt,

whence
∣∣E�γ arg f

∣∣ � r · Length(γ ) � r2.

3. The Upper Bound for 1 < α < 2

3.1. Few arcs with large increments of the argument. Given r � 1, we fix a collection
of N � 2π R

r disjoint arcs
{

I j
}

1� j�N of length r on the circumference RT. Then, given
� � 1 and a positive integer L , we introduce two events. The first event	1(r, R,�, L)
is that the collection

{
I j
}

1� j�N contains a sub-collection of L disjoint arcs {I j } j∈J

such that
∑

j∈J

∣∣δ( f, I j )
∣∣ � � .

To define the second event, we fix N independent G.E.F. f j . Then the event	2(r, R,�, L)
is that the collection

{
I j
}

1� j�N contains a sub-collection of L disjoint arcs {I j } j∈J such
that,

∑

j∈J

∣∣δ( f j , Ĩ j )
∣∣ � � .

Here, Ĩ j = I j − w j , where w j are the centers of the arcs I j .

Lemma 11. Suppose that R is sufficiently big. Suppose also that

R1/2 � � � R2 and 1 < L <
b�

r2 + log R

with a sufficiently small positive numerical constant b. Then the probabilities of the
events 	i , i = 1, 2, do not exceed e−b1r2� with a positive numerical constant b1.

Proof of Lemma 11. First, we estimate the probability of the event 	2; this is a sim-
pler part of the job. Suppose that the event 	2(r, R,�, L) occurs. We choose M j �
r−2

∣∣δ( f j , Ĩ j )
∣∣ such that

∑
j∈J M jr2 = �. Let B be the constant from Lemma 9. Note

that the arcs Ĩ j with M j < 50B can contribute at most 50BL < 50Bb� < 1
2� to the

total sum, provided that b < 1
100B . We discard the arcs Ĩ j with M j < 50B and denote

by J the collection of remaining arcs.
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Now, let m j be the largest positive integer power of 2 such that m j � M j , j ∈ J .
Then

1

4
� �

∑

j∈J

m jr
2 � � and m j � 25B , (3.1.1)

and

P {	2 } �
∑

J

∑

{m j }
P

⎧
⎨

⎩
⋂

j∈J

{
|δ( f j , Ĩ j )| � m jr

2
}
⎫
⎬

⎭,

where the first sum is taken over all subsets J ⊂ {1, ..., N } of cardinality at most L , and
the second sum is taken over all possible choices of m j , j ∈ J , that are positive integer
powers of 2 satisfying restrictions (3.1.1). Since f j are independent, we have

P

⎧
⎨

⎩
⋂

j∈J

{
|δ( f j , Ĩ j )| � m jr

2
}
⎫
⎬

⎭ =
∏

j∈J

P

{
|δ( f j , Ĩ j )| � m jr

2
}
.

The probabilities of the events on the right-hand side were estimated in Lemma 10:

P

{
|δ( f j , Ĩ j )| � m jr

2
}

� 2 exp

(
− 1

16B2

m2
j r

4

log m j

)
.

Therefore,

P

⎧
⎨

⎩
⋂

j∈J

{
|δ( f j , Ĩ j )| � m jr

2
}
⎫
⎬

⎭ � 2L exp

⎛

⎝− 1

16B2 r2
∑

j∈J

m2
j r

2

log m j

⎞

⎠

< 2L exp

⎛

⎝− 1

16B2 r2
∑

j∈J

m jr
2

⎞

⎠

� 2L exp

(
− 1

64B2 r2�

)
,

and

P {	2 } < 2L exp

(
− 1

64B2 r2�

)∑

J

∑

{m j }
1 .

To get rid of the sums on the right-hand side, we need to estimate the number of
different ways to choose the “data” J, {m j } j∈J . Since m j is an integer power of 2 and
m j � �, for each j ∈ J , there are at most 2 log�ways to choose the integer m j . Hence,
given a set J of cardinality at most L , we have at most (2 log�)L ways to choose the
collection {m j } j∈J . Also there are at most

∑

0���L

(
N

�

)
< (N + 1)L N�2πR

< eC L log R
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ways to choose the subset J ⊂ {1, 2, ... , N } of cardinality at most L . Therefore,

2L
∑

J

∑

{m j }
1 � (4 log�)LeC L log R

< eC ′L(log R+log log�) < eC ′′L log R < eC ′′b� ,

which is a negligible factor with respect to exp
(
− 1

64B2 r2�
)

, provided that b 
 B−2.

This completes the estimate of P {	2 } . ��
The estimate of the probability of the event 	1 follows a similar pattern. Now, the

events
{|δ( f, I j )| � m jr2

}
, j ∈ J , are not independent. To get around this obstacle,

we’ll use the almost independence lemma, which brings in some awkward technicalities.
We split the proof into several steps.
(i) Suppose that the event 	1(r, R,�, L) occurs. As above, we choose M j � r−2
∣∣δ( f, I j )

∣∣ such that
∑

j∈J M jr2 = �. Then we fix a sufficiently large positive numer-

ical constant C1 � 25B and note that the arcs I j with M j < 2C1(1 + r−2 log�) can
contribute to the total deviation � at most

2C1L(r2 + log�) < 2C1
b�(r2 + 2 log R)

r2 + log R
� 4bC1�,

which is much smaller than�provided that the constant b is sufficiently small. We choose
b < 1

8C1
and conclude that at least half of the deviation�must come from the arcs I j with

sufficiently large M j . From now on, we discard the arcs I j with M j < 2C1(1+r−2 log�)
and denote by J the set of the remaining arcs.

Now, let m j be the largest positive integer power of 2 such that m j � M j , j ∈ J .
Then

1

4
� �

∑

j∈J

m jr
2 � �, and m jr

2 � C1

(
r2 + log�

)
(3.1.2)

and

P {	1 } �
∑

J

∑

{m j }
P

⎧
⎨

⎩
⋂

j∈J

{
|δ( f, I j )| � m jr

2
}
⎫
⎬

⎭, (3.1.3)

where the first sum is taken over all subsets J ⊂ {1, ..., N } of cardinality at most L , and
the second sum is taken over all possible choices of m j , j ∈ J , that are positive integer
powers of 2 satisfying restrictions (3.1.2).

As in the previous case, it suffices to show that, for a fixed subset J ⊂ {1, 2, . . . , N }
with Card J � L , and for fixed m j , j ∈ J , that are integer powers of 2 and satisfy
conditions (3.1.2), one has

P

⎧
⎨

⎩
⋂

j∈J

{
|δ( f, I j )| � m jr

2
}
⎫
⎬

⎭ � e−cr2� . (3.1.4)

Since we have at most eC ′′L log R < eC ′′b� possible combinations of the “data” J and
{m j } j∈J , the two sums on the right-hand side of (3.1.3) contribute by a negligible factor

with respect to e−cr2�, provided that b < c
2C ′′ .
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(ii) From now on, we fix a set J of cardinality at most L , and m j , j∈J , that are
integer powers of 2 and satisfy conditions (3.1.2). Let w j be the centers of the arcs
I j , Ĩ j = I j − w j , and let

	 j
def=

{
|δ( f, I j )| � m jr

2
}

=
{
|δ(Tw j f, Ĩ j )| � m jr

2
}
.

By Lemma 10 applied to the G.E.F. Tw j f with γ = Ĩ j and m = m j , we have

	 j ⊂ 	′
j ∪

{
max

rD

|Tw j f | < e− 1
4B m j r2

}

with P

{
	′

j

}
< exp

(
−e− 1

6B m j r2
)

, whence,

⋂

j∈J

{∣∣δ( f, I j )
∣∣ � m jr

2
}

⊂
⎛

⎝
⋃

j∈J

	′
j

⎞

⎠ ∪
⋂

j∈J

{
max

rD

|Tw j f | < e− 1
4B m j r2

}

with

P

⎧
⎨

⎩
⋃

j∈J

	′
j

⎫
⎬

⎭
m j r2�C1 log�

� L exp
(
−e

1
6B C1 log�

) C1�25B
� Le−�4 L<�

< �e−�4
.

Since r2 < �, this is much less than e−r2� when R � 1.
Discarding the event

⋃

j∈J

	′
j , we need to estimate the probability of the event

⋂

j∈J

{
max

rD

|Tw j f | � exp
(
− 1

4B m jr
2
)}
.

(iii) Combinatorial Lemma 1 applied with m j = 0 for j /∈ J and with the constant
Q = π

2 (A + 1), gives us a subset J ′ ⊂ J such that

| j − k|∗ � Q(
√

m j +
√

mk) , j, k ∈ J ′ , j = k ,

and
∑

j∈J ′
m3/2

j � 1

5Q

∑

j∈J

m j . (3.1.5)

Hence, the centers w j of the arcs from J ′ are well-separated:

|w j − wk | = 2R sin
| j − k|∗r

2R
� 2

π
| j − k|∗ r � (A + 1)

(√
m j r +

√
mk r

)

for j, k ∈ J ′, j = k. By the almost independence Lemma 5 applied with r j = ρ j =√
m jr , we have Tw j f = f j + h j , j ∈ J ′, where f j are independent G.E.F., and

P

{
max
z∈rD

|h j (z)|e−|z|2/2 � e−m j r2
}

� 2 exp
(
− 1

2 em j r2
)

m j r2�C1 log�
� 2 exp

(
− 1

2�
C1
)
.
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Introduce the event

F =
⋃

j∈J ′

{
max

rD

|h j | > exp
(
− 1

2 m jr
2
)}
.

Claim 11 -1. For R � 1, P { F } � e−r2�.

Proof of Claim 11-1. If for some j ∈ J ′,

max
rD

|h j | > exp
(
− 1

2 m jr
2
)
,

then

max
z∈rD

|h j (z)|e−|z|2/2 > exp
(
− 1

2 (m j + 1)r2
) m j �25

> e−m j r2
.

Therefore,

P { F } �
∑

j∈J ′
P

{
max
z∈rD

|h j (z)|e−|z|2/2 > exp
(
− 1

2 m jr
2
)}

� L · 2 exp
(
− 1

2�
C1
) L��

� 2� exp
(
− 1

2�
C1
)
.

Since r2 < �, this is much less than e−r2�, provided that R � 1. ��
If the event F does not occur, then for each j ∈ J ′,

max
rD

| f j | � max
rD

|Tw j f | + max
r j D

|h j |

� e− 1
4B m j r2

+ e− 1
2 m j r2 B>1

< 2e− 1
4B m j r2 m j r2�25B

< e− 1
6B m j r2

.

We conclude that if R is sufficiently big, then outside of an event of probability less than
exp(−r2�), we have

max
rD

| f j | < exp
(
− 1

6B m jr
2
)

for each j ∈ J ′.
(iv) Our problem boils down to the estimate of the probability that the independent events

{
max

rD

| f j | < e− 1
6B m j r2

}
, j ∈ J ′ ,

occur. By Lemma 7 the logarithm of the probability of each of these events doesn’t

exceed − c2m2
j

log m j
r4 with c2 = 1

36B2 . Therefore, the logarithm of the probability that all
these events happen doesn’t exceed

−c2

∑

j∈J ′

m2
j

log m j
r4 < −c2r2

∑

j∈J ′
m3/2

j r2

(3.1.5)
< − c2

5π2 (A + 1)
r2
∑

j∈J

m jr
2

(3.1.2)
� −cr2�
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with

c = 1

4

2c2

5π(A + 1)
= 1

360πB2(A + 1)
.

This completes the proof of (3.1.4) and, thereby, of the lemma. ��

3.2. Proof of Theorem 1: the upper bound for 1 < α < 2. We need to estimate the
probability of the event	α = {|n(R)− R2| > Rα

}
. Let b be the constant from the pre-

vious lemma. We fix a small positive δ ∈ ( 1
4 b, 1

2 b) such that the number N = 2π
δ

R2−α
is an integer, take r = δRα−1, and split the circumference RT into N disjoint arcs

{I j } of length r . By the argument principle, 	α =
{∣∣∣
∑

j δ( f, I j )

∣∣∣ > 2πRα
}

. In the

case 1 < α < 2, the cancelations between different random variables δ( f, I j ) are
not important, so we are after the upper bound for the probability of the bigger event

	′
α =

{∑
j

∣∣δ( f, I j )
∣∣ > 2πRα

}
.

We take� = 2πRα , and check that Lemma 11 can be applied to the whole collection
of arcs {I j }; i.e., with L = N . If R is big enough then log R 
 r2, and

1 � L = 2π

δ
R2−α < 1

2

b · 2πRα

δ2 R2α−2 = 1

2

b�

r2 <
b�

r2 + log R
.

Therefore, the assumptions of Lemma 11 are fulfilled, and we get

P
{
	′
α

}
� e−2πb1r2 Rα < e−cR3α−2

.

Done! ��

4. The Upper Bound for 1
2 < α < 1

4.1. Approximating the total increment of arg f by the sum of increments of arguments
of independent G.E.F.

Lemma 12. Suppose that R is sufficiently big, that 1 � r � 2, and that 3R1/2 � � � R.
Then, given a collection of disjoint arcs

{
I j
}

of length r of the circumference RT that
are separated by arcs of length at least log R, there exists a collection of independent
G.E.F. { f j } such that

P

⎧
⎨

⎩

∣∣∣∣∣∣

∑

j

δ( f, I j )−
∑

j

δ( f j , Ĩ j )

∣∣∣∣∣∣
� �

⎫
⎬

⎭ � e−b2�,

where Ĩ j = I j − w j and b2 is a positive numerical constant.

Proof of Lemma 12. Set ρ = √
C1 log R with C1 � 1. Let A be the constant from

the almost independence lemma. If R is big enough, then by our assumptions, the disks
D(w j , r + Aρ) are disjoint. So the almost independence Lemma 5 yields a decomposition
Tw j f = f j + h j with independent G.E.F. { f j } and

P

{
max

rD

|h j (z)|e−|z|2/2 � R−C1

}
� 2 exp

(
− 1

2 RC1
)
.
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In what follows, we assume that

max
j

max
rD

|h j (z)|e−|z|2/2 � R−C1 .

For this, we throw away an event of probability at most

2πR · 2e− 1
2 RC1 
 e−� .

Since δ( f, I j ) = δ(Tw j f, Ĩ j ), we need to estimate the probability of the event
⎧
⎨

⎩

∣∣∣∣∣∣

∑

j

[
δ(Tw j f, Ĩ j )− δ( f j , Ĩ j )

]
∣∣∣∣∣∣
� �

⎫
⎬

⎭,

introduce the events

	 j =
{

min
z∈ Ĩ j

| f j (z)|e−|z|2/2 � R−C1/2

}
,

and note that if 	 j does not occur, then

∣∣δ(Tw j f, Ĩ j )− δ( f j , Ĩ j )
∣∣ =

∣∣∣� Ĩ j
arg Tw j f −� Ĩ j

arg f j

∣∣∣

=
∣∣∣∣� Ĩ j

arg

(
1 +

h j

f j

) ∣∣∣∣ � R−C1/2

(we have used that E� Ĩ j
arg Tw j f = E� Ĩ j

arg f j ), whence

∑

j : 	 j doesn′t occur

∣∣δ(Tw j f, Ĩ j )− δ( f j , Ĩ j )
∣∣ � 2πR · R−C1/2 
 1 .

Therefore, we conclude that
∣∣∣∣∣∣

∑

j

(
δ(Tw j f, Ĩ j )− δ( f j , Ĩ j )

)
∣∣∣∣∣∣

�
∑

j : 	 j occurs

∣∣δ(Tw j f, Ĩ j )
∣∣ +

∑

j : 	 j occurs

∣∣δ( f j , Ĩ j )
∣∣ + 1

=
∑

j : 	 j occurs

∣∣δ( f, I j )
∣∣ +

∑

j : 	 j occurs

∣∣δ( f j , Ĩ j )
∣∣ + 1.

To estimate the size of the two sums on the right-hand side, we introduce the (random)
counter L = Card

{
j : 	 j occurs

}
. Lemma 11 (applied to 1

3� instead of�) handles the
case

L � b

6

�

log R

(
<

b�

3(r2 + log R)
for R � 1

)
.

It yields that outside of some event 	′ of probability at most 2e−b1r2�, each of these
two sums does not exceed 1

3�.
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Now, consider the second case when L > b
6

�
log R . Denote by Q the integer part of

b

6

�

log R
. Then at least Q independent events 	 j1 , ... , 	 jQ must occur. By Lemma 8

applied with γ = Ĩ j and ε = R−C1/2, we have

P
{
	 j

}
� 100r R−C1/2

√
1
2 C1 log R � R−C1/3 ,

provided that R is sufficiently big. Therefore,

P

{
L � 1

6
b�

log R

}
�
(

Card{I j }
Q

)

︸ ︷︷ ︸
�(2πR)Q

(
R−C1/3

)Q

< e− 1
4 C1 Q log R � e−c2� .

Thereby,

P

⎧
⎨

⎩

∣∣∣∣∣∣

∑

j

δ( f, I j )−
∑

j

δ( f j , Ĩ j )

∣∣∣∣∣∣
� �

⎫
⎬

⎭

� P
{
	′ } + P

{
L � 1

6
b�

log R

}
< 2e−b1r2� + e−c2� < e−c3� ,

and we are done. ��

4.2. Proof of Theorem 1: the upper bound in the case 1
2 < α < 1. We split the circum-

ference RT into N = �2πR� disjoint arcs {I j } of equal length r , 1 � r � 2. We fix a
positive ε < 1−α

4 and suppose that
∣∣∣∣∣∣

N∑

j=1

δ( f, I j )

∣∣∣∣∣∣
> 2πRα .

Then we split the set {1, ... , N } into n = �2Rε� disjoint arithmetic progressions J1, ...,
Jn . If R is sufficiently big, then the cardinality of each of these arithmetic progressions
cannot be less than

N

n
− 1 � 2πR − 1

2Rε
− 1 > 2R1−ε,

and cannot be larger than

N

n
+ 1 � 2πR

2Rε − 1
+ 1 < 4R1−ε .

For at least one of these progressions, say for Jl , we have
∣∣∣∣∣∣

∑

j∈Jl

δ( f, I j )

∣∣∣∣∣∣
> 2π

Rα

n
> 2Rα−ε .
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Given a collection {I j } j∈J with 2R1−ε < Card J < 4R1−ε of Rε-separated arcs of
length r , we show that

P

⎧
⎨

⎩

∣∣∣∣∣∣

∑

j∈J

δ( f, I j )

∣∣∣∣∣∣
> 2Rα−ε

⎫
⎬

⎭ � C1e−c2 R2α−1−ε
.

Since we have n 
 R such collections
{

I j
}
, this will prove the upper bound in the case

1
2 < α < 1.

Now, suppose that
∣∣∣
∑

j∈J δ( f, I j )

∣∣∣ > 2Rα−ε. By Lemma 12 applied with� = Rα−ε,
we see that there is a collection of independent G.E.F. { f j } such that throwing away an
event of probability at most

e−b2� = e−b2 Rα−ε ε<1−α
 e−R2α−1
,

we have
∣∣∣∣∣∣

∑

j∈J

δ( f j , Ĩ j )

∣∣∣∣∣∣
> 2Rα−ε −� = Rα−ε .

To estimate the probability of the event P

{ ∣∣∣
∑

j∈J δ( f j , Ĩ j )

∣∣∣ > Rα−ε
}

, we apply

Bernstein’s estimate (Lemma 3) to the independent identically distributed random vari-
ables ψ j = δ( f j , Ĩ j ). By Lemma 10, the tails of these random variables decay superex-
ponentially:

P
{ ∣∣ψ j

∣∣ � t
}

� exp

(
− c3t2

log t

)

for t � 1. The number of the random variables ψ j is bigger than 2R1−ε. Hence, the
Bernstein estimate can be applied with t = Rα−ε. We see that the probability we are
interested in does not exceed

2 exp
(
−c4t2/Card J

)
< exp

(
−c5 R2α−1−ε),

completing the argument. ��

5. Proof of Theorem 1: The Lower Bound for 1
2 < α < 1

We fix α ∈ ( 1
2 , 1) and show that, for some positive numerical constant c0 and for each

R > R0(α), one has

P

{
n(R) � R2 − c0 Rα

}
� e−3R2α−1

.

Everywhere below, we assume that R > 2. Let N = �R�. Let J− be a set consisting of
N integers between R2 − 2R and R2 − R, and let J+ be a set consisting of N integers
between R2 + R and R2 + 2R. Let

ak =

⎧
⎪⎨

⎪⎩

√
1 − Rα−1, k ∈ J+ ;√
1 + Rα−1, k ∈ J− ;

1, k /∈ J+ ∪ J− .
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Consider the Gaussian Taylor series

g(z) =
∞∑

k=0

ζkak
zk

√
k! ,

and denote by ng(R) the number of its zeroes in the disk RD.

Claim 5.1. For R � 1, we have Eng(R) � R2 − c1 Rα .

Proof of Claim 5.1. By Lemma 4,

Eng(R) = 1

2

R
∑

k�0 a2
k · 2k · R2k−1

k!∑
k�0 a2

k · R2k

k!
=
∑

k�0 a2
k · k · R2k

k!∑
k�0 a2

k · R2k

k!
.

The ratio on the right-hand side can be written as

R2 +

∑
k�0 a2

k · (k − R2) · R2k

k!∑
k�0 a2

k · R2k

k!
.

Note that
∑

k�0

(k − R2) · R2k

k! = 0 ,

so the numerator in the second term equals

∑

k∈J−
Rα−1 · (k − R2) · R2k

k! +
∑

k∈J+

(−Rα−1) · (k − R2) · R2k

k!

� −Rα
∑

k∈J−∪J+

R2k

k! .

Since R � 1, we have a2
k � 2, and the denominator cannot be bigger than 2eR2

. Hence,

Eng(R) � R2 − 1

2
Rαe−R2 ∑

k∈J−∪J+

R2k

k! .

Now, observe that

∑

k∈J−∪J+

R2k

k! � ceR2

with some absolute c > 0. To see this, note that the function k �→ R2k

k! decreases for
k ∈ J+ and increases for k ∈ J−. We set K = �R2 + 2R�. Applying Stirling’s formula,
we get

R2k

k! � R2K

K ! � 1√
K

(
eR2

K

)K

� eR2+2R−1

R
(
1 + 2

R

)R2+2R
� eR2+2R

Re2R+4 � eR2

R
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for k ∈ J+. A similar estimate holds for k ∈ J−. Therefore,

Eng(R) � R2 − 1

2
Rαe−R2 ∑

k∈J−∪J+

R2k

k! � R2 − 1

2
Rαe−R2 · ceR2

,

proving the claim. ��
Claim 5.2. For R � 1, we have

P

{
ng(R) � R2 − c1

2
Rα

}
� c1

2
R−2+α .

Proof of Claim 5.2. We have

c1 Rα � E(R2 − ng(R)) � c1

2
Rα + R2

P

{
ng(R) � R2 − c1

2
Rα

}

whence

P

{
ng(R) � R2 − c1

2
Rα

}
� R−2 · c1

2
Rα = c1

2
R−2+α .

��
Claim 5.3. Let 0 � t � N. Then

P

⎧
⎨

⎩
∑

k∈J−
|ζk |2 −

∑

k∈J+

|ζk |2 � t

⎫
⎬

⎭ � 2 exp

(
− t2

16(e + 1)N

)
.

Proof of Claim 5.3. Note first of all that P
{ |ζk |2 � t

} = e−t and E|ζk |2 = 1, whence,
for t > 0,

P

{
|ζk |2 − 1 > t

}
< e−t

and

P

{
|ζk |2 − 1 < −t

}
= max

{
1 − et−1, 0

}
< e1−t .

Thus we can apply Bernstein’s Lemma 3 with K = e + 1 to the random variables
±(|ζk |2 − 1), which yields the desired conclusion. ��

In particular,

P

⎧
⎨

⎩
∑

k∈J−
|ζk |2 −

∑

k∈J+

|ζk |2 � R1/2 log R

⎫
⎬

⎭ � 2 exp
(
−c2 log2 R

)
� c1

4
R−2+α ,

provided that R > R0(α).
Now everything is ready to make the final estimate. Let γ be the standard Gaussian

measure on the space C
∞; i.e., the product of countably many copies of the measures

1

π
e−|ηk |2 dm(ηk), and let γa be another Gaussian measure on C

∞ that is the product of

the Gaussian measures
1

πa2
k

e−|ηk |2/a2
k dm(ηk). Let E ⊂ C

∞ be the set of coefficients
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ηk such that the Taylor series
∑

k�0 ηk
zk√
k! converges in C and has at most R2 − c1

2 Rα

zeroes in RD. Then Claim 5.2 can be rewritten as

γa(E) � c1

2
R−2+α ,

while the quantity P
{

n(R) � R2 − c1
2 Rα

}
we are interested in equals γ (E). Thus, it

remains to compare γ (E) with γa(E).
Let

U =
⎧
⎨

⎩
∑

k∈J−∪J+

|ηk |2 �
∑

k∈J−∪J+

|ηk |2
a2

k

+ Rα− 1
2 log R

⎫
⎬

⎭,

and

Ũ =
⎧
⎨

⎩
∑

k∈J−∪J+

a2
k |ηk |2 �

∑

k∈J−∪J+

|ηk |2 + Rα− 1
2 log R

⎫
⎬

⎭.

Note that

γa(U ) = γ (Ũ ) = P

⎧
⎨

⎩
∑

k∈J−
|ζk |2 −

∑

k∈J+

|ζk |2 � R1/2 log R

⎫
⎬

⎭ � c1

4
R−2+α .

Hence,

γa(E\U ) � c1

4
R−2+α .

But on E\U , we can bound the density of γa with respect to γ :

dγa

dγ
� eRα− 1

2 log R(1 − R2α−2)−N < e2R2α−1

for R > R0(α). The rest is obvious:

γ (E) � γ (E\U ) � e−2R2α−1
γa(E\U )

� c1

4
R−2+αe−2R2α−1 � e−3R2α−1

,

provided that R > R0(α). This proves the lower bound in Theorem 1. ��

Appendix: Asymptotic Almost Independence. Proof of Lemma 5

A-1. Elementary inequalities.

Claim A-1.1. For all positive k and t,

k log t − t � k log k − k − (
√

t − √
k)2 .
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Proof. The function ϕ(τ) = k log(τ 2)− τ 2 attains its maximum at τ = √
k, and

ϕ′′(τ ) = −2k

τ 2 − 2 � −2 for all τ > 0 .

Hence,

ϕ(τ) � ϕ(
√

k)− (τ − √
k)2 for all τ > 0 .

Replacing τ 2 by t , we get the claim. ��
Claim A-1.2. Let k be a positive integer and u � k. Then

∫ ∞

u

tke−t

k! dt � e−(√u−√
k)2 .

Proof.
∫ ∞

u

tke−t

k! dt =
∫ ∞

k

[t + (u − k)]ke−t−(u−k)

k! dt

=
∫ ∞

k

tke−t

k!
[

1 +
u − k

t

]k

e−(u−k) dt

�
[

1 +
u − k

k

]k

e−(u−k)
∫ ∞

k

tke−t

k! dt
︸ ︷︷ ︸

�1

� exp {[k log u − u] − [k log k − k]} Claim A-1.1
� e−(√u−√

k)2 ,

proving the claim. ��
Corollary A-1.3.

1

π

∫

|z|�√
k+d

|z|2k

k! e−|z|2 dm2(z) =
∫ ∞

(
√

k+d)2

tk

k! e−t dt � e−d2
.

Claim A-1.4. Let w′, w′′ be points in C and let k′, k′′ be non-negative integers. Then
∣∣∣E
{
ξk′(w′)ξk′′(w′′)

}∣∣∣ � 2e− d2
8 ,

provided that |w′ − w′′| �
√

k′ +
√

k′′ + d, d > 0.

Proof. By Sect. 2.4(d),
∣∣∣E
{
ξk′(w′)ξk′′(w′′)

}∣∣∣

=
∣∣∣∣∣

〈
T−w′

(
zk′

√
k′!

)
, T−w′′

(
zk′′

√
k′′!

)〉∣∣∣∣∣

=
∣∣∣∣∣

1

π

∫

C

(z − w′)k′
√

k′!
(z − w′′)k′′

√
k′′! e−zw′− 1

2 |w′|2 e−zw′′− 1
2 |w′′|2 e−|z|2 dm2(z)

∣∣∣∣∣.
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Therefore,
∣∣∣E
{
ξk′(w′)ξk′′(w′′)

}∣∣∣

� 1

π

∫

C

|z − w′|k′
√

k′! e− 1
2 |z−w′|2 |z − w′′|k′′

√
k′′! e− 1

2 |z−w′′|2 dm2(z)

� 1

π

∫
{
|z−w′|�√

k′+ d
2

} +
1

π

∫
{
|z−w′′|�√

k′′+ d
2

} = I ′ + I ′′ .

By the Cauchy-Schwarz inequality,

I ′ �
{

1

π

∫
{
|z−w′|�√

k′+ d
2

}
|z − w′|2k′

k′! e−|z−w′|2 dm2(z)

}1/2

×
{

1

π

∫

C

|z − w′′|2k′′

k′′! e−|z−w′′|2 dm2(z)

}1/2

Claim A-1.3
� e− d2

8 · 1 = e− d2
8 .

Similarly, I ′′ � e− d2
8 . Hence, I ′ + I ′′ � 2e− d2

8 , and we are done. ��
Claim A-1.5. Assume that the disks D(w j , R j + 8σ j ) are pairwise disjoint and R j � 1,
σ j � max

(
1,
√

log R j
)
. Let Di j = |wi − w j | − Ri − R j be the distance between the

disks D(wi , Ri ) and D(w j , R j ). Then, for each i ,

2
∑

j : j =i

(1 + R2
j )e

− 1
8 D2

i j � e−2σ 2
i .

Proof. Indeed, since Di j � 8σ j , we have

1

16
D2

i j � 4σ 2
j � 2σ 2

j + 2 � log(e2 R2
j ) � log(4R2

j ) � log
[
2(1 + R2

j )
]
.

Thus, it suffices to estimate the sum
∑

j : j =i

e− 1
16 D2

i j . For each j = i , consider the disk

D j ⊂ D(w j , R j + 8σ j ) of radius 4 closest to wi .
For each z ∈ D j , we have |z − wi | � Di j + Ri . Also, the disks D j are disjoint and⋃

j

D j ⊂ C\D(wi , Ri + 8σi ). Hence,

∑

j : j =i

e− 1
16 D2

i j � 1

16π

∫

{|z−wi |�Ri +8σi }
e− 1

16 (|z−wi |−Ri )
2

dm2(z)

= 1

16π

∫

{|z|�Ri +8σi }
e− 1

16 (|z|−Ri )
2

dm2(z) = 1

8

∫ ∞

8σi

(Ri + t)e− 1
16 t2

dt

� (1 + 1
8 Ri )

∫

8σi

t

8
e− 1

16 t2
dt = (1 + 1

8 Ri )e
−4σ 2

i

�
1 + 1

8 Ri

eσ
2
i +1

e−2σ 2
i � 8 + Ri

8eRi
e−2σ 2

i � 9

8e
e−2σ 2

i < e−2σ 2
i

proving the claim. ��
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Fig. 1. The disks D(wi , Ri ), D(w j , R j ) and D j

A-2. Almost orthogonal standard Gaussian random variables are almost independent.

Claim A-2.1. Let ξ j be standard complex Gaussian random variables such that their
covariance matrix �i j = E

{
ξiξ j

}
satisfies

∑

j : j =i

|�i j | � δi � 1

3
.

Then ξ j = ζ j + s jη j , where ζ j are independent standard complex Gaussian random
variables, η j are standard complex Gaussian random variables, and s j ∈ [0, δ j ].
Proof. Let � = I −�, where I is the identity matrix. Put

ζi =
∑

j

(�−1/2)i jξ j .

Then ζi are independent standard complex Gaussian random variables. We set �̃ =
I − �−1/2 and siηi =

∑

j

�̃i jξ j , and estimate the sum
∑

j

|�̃i j |.
We have

�−1/2 = I +
1

2
� +

∑

k�2

αk�
k

with |αk | � 1 for all k � 2. Then

|�̃i j | � 1

2
|�i j | +

∑

k�2

|(�k)i j |,

whence
∑

j

|�̃i j | � 1

2

∑

j

|�i j | +
∑

k�2

∑

j

|(�k)i j | � δi

2
+
∑

k�2

∑

j

|(�k)i j | .
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To estimate the sum on the right-hand side, we note that for any two square matrices
A and B of the same size, we have

∑

j

|(AB)i j | �
∑

j,�

|Ai�| |B�j |

=
∑

�

⎡

⎣|Ai�| ·
∑

j

|B�j |
⎤

⎦ �

⎛

⎝
∑

j

|Ai j |
⎞

⎠ · sup
�

∑

j

|B�j | .

Applying this observation to the matrices�k = � ·�k−1 (with k � 1), we conclude by
induction that

∑

j

|(�k)i j | �

⎛

⎝
∑

j

|�i j |
⎞

⎠ 3−(k−1) � δi

3k−1 .

Thus

∑

j

|�̃i j | � δi

2
+
∑

k�2

δi

3k−1 = δi ,

and we are done. ��

A-3. Proof of the lemma. We fix two big constants A � a � 1. Let R j = r j + aρ j ,
σ j = A−a

8 ρ j . Clearly, R j � 1, σ j � 1. Also,

σ j = 2ρ j +

(
A − a

8
− 2

)
ρ j

� 2
√

log r j +
A − a − 16

8a
log(1 + aρ j )

� 2
√

log r j + 2
√

log(1 + aρ j )

� 2
√

log r j (1 + aρ j ) � 2
√

log R j ,

provided that a � 2 and A � 17a + 16.
We consider now the family of standard Gaussian random variables ζk(w j ), k � R2

j .
Applying to this family Claim A-1.4, we get

∣∣∣E
{
ζk(wi )ζ�(w j )

}∣∣∣ � 2e− 1
8 D2

i j

where, as before, Di j = |wi −w j |− Ri − R j is the distance between the disks D(wi , Ri )

and D(w j , R j ). Now, Claim A-1.5 implies that the sum of absolute values of the covari-

ances of ζk(wi ) with all other ζl(w j ) in our family does not exceed e−2σ 2
i � e−2 <

1

3
.

Claim A-2.1 then allows us to write

ζk(wi ) = ζik + sikηik , k � R2
i ,
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where ζik are independent standard Gaussian complex random variables, ηik are standard
Gaussian complex random variables, and sik ∈ [0, e−2σ 2

i ].
Next, we choose ζik , k > R2

i , in such a way that the whole family ζik of standard
Gaussian complex random variables is independent and put

fi =
∑

k

ζik
zk

√
k! ,

hi =
∑

k�R2
i

sikηik
zk

√
k! +

∑

k>R2
i

[ζk(wi )− ζik]
zk

√
k! .

By construction, Twi f = fi + hi .
To estimate the probability

P

{
max
z∈ri D

|hi (z)|e− 1
2 |z|2 > e−ρ2

j

}
,

it suffices to estimate the expression

∑

k�R2
i

sik max
z∈ri D

|z|k√
k!e− 1

2 |z|2 + 2
∑

k>R2
i

max
z∈ri D

|z|k√
k!e− 1

2 |z|2 .

If this expression is less than e−2ρ2
j , then by Lemma 2, we get what Lemma 5 asserts:

P

{
max
z∈r j D

|h j (z)|e−|z|2/2 � e−ρ2
j

}
� 2 exp

(
−1

2
e2ρ2

j

)
.

For every k � 1, we have
|z|k√

k!e−|z|2/2 � 1 and thereby,

∑

k�R2
i

sik max
z∈ri D

|z|k√
k!e−|z|2/2 �

∑

k�R2
i

sik

� (1 + R2
i )e

−2σ 2
i �

1 + R2
i

eσ
2
i

e−σ 2
i

�
1 + R2

i

R4
i

e−σ 2
i � 2e− (A−a)2

64 ρ2
i � 1

2
e−2ρ2

i ,

provided that A > a + 16.
For k > R2

i , Claim A-1.1 implies that

|z|2k

k! e−|z|2 � kk

k! e−k e−(√k−|z|)2 � e−(√k−ri )
2

for all z ∈ ri D. Hence,

max
z∈ri D

|z|k√
k!e−|z|2/2 � e− 1

2 (
√

k−ri )
2
, k > R2

i ,
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and it suffices to show that

2
∑

k>R2
i

e− 1
2 (

√
k−ri )

2 � 1

2
e−2ρ2

i .

Now,
∑

k>R2
i

=
∑

R2
i <k�4r2

i

+
∑

k>max(R2
i ,4r2

i )

with the usual convention that the sum taken over the empty set equals zero. The first
sum does not exceed

(1 + 4r2
i )e

− 1
2 a2ρ2

i �
5r2

i

e4+2ρ2
i

e(−
1
2 a2−6)ρ2

i

ρ2
i �log ri

� 5

e4 e−2ρ2
i <

1

8
e−2ρ2

i ,

provided that a � 4. At last, the remaining sum does not exceed
∑

k�aρ2
i

e− 1
8 k � 1

1 − e−1/8 e− 1
8 a2ρ2

i

� 9e− 1
8 a2ρ2

i � 9

e6 e−( 1
8 a2−6)ρ2

i � 1

8
e−2ρ2

i ,

provided that a � 8. This finishes off the proof of Lemma 5. ��
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