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Abstract: We rigorously show that there can exist Strange Nonchaotic Attractors (SNA)
in the quasi-periodically forced quadratic (or logistic) map

(θ, x) �→ (θ + ω, c(θ)x(1 − x))

for certain choices of c : T → [3/2, 4] and Diophantine ω.

1. Introduction

1.1. Background. Strange Nonchaotic Attractors (SNA) are certain attracting sets with
a complicated geometry, but with rather simple dynamics, which have shown to appear
in quasi-periodically forced maps. For the present discussion, let T = R/Z be the circle,
and let X be T or a finite or infinite interval in R. Consider a continuous mapping
� : T × X � of the form

(θ, x) �→ (θ + ω, gθ (x)),

where ω is an irrational number. The graph of a non-continuous measurable function
ψ : T → X is called an SNA if it is invariant under �, i.e., ψ(θ + ω) = gθ (ψ(θ)) for
a.e. θ , and if the vertical Lyapunov exponent is negative on the graph of ψ . See [17] for
an extensive discussion on invariant graphs.

The notion of SNA was first introduced in [8]. The phenomenon of a “strange” inva-
riant attracting set had been observed in the projective dynamics induced by certain
quasi-periodically forced SL(2,R) cocycles [9,12,15,19] (in this case X = T). When
the cocycle is non-uniformly hyperbolic, it follows that the projectivization of the Ose-
ledets directions must be highly discontinuous. We refer the reader to the excellent paper
[13] for a detailed discussion, and also to [5–7] where we study finer properties of the
SNA’s appearing in the projective Schrödinger cocycle.
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So far there are very few rigorous results concerning the existence of SNA’s outside
the class of projectivizations of linear systems. We mention [4,10,11,14]. In the papers
[4,14], a class of systems introduced in [8] are considered. These examples are all
so-called pinched, that is, there exists collapsed fibers in the sense that there are values
of θ such that gθ (x) is constant for all x ∈ X . In the classes considered in [10,11], the
function gθ (x) is assumed to be monotone in x for each θ .

It is therefore an interesting problem to see what happens if the system is neither
pinched nor monotone (non-invertible). The model we shall consider is the
quasi-periodically forced quadratic (also called the logistic) map on T × [0, 1],

(θ, x) �→ (θ + ω, c(θ)x(1 − x)),

where c(θ)∈(0, 4]. The dynamics of the one-dimensional map x �→ cx(1 − x) (0< c ≤ 4)
is by now well understood (see e.g. [2,3]), so it is rather natural to consider quasi-periodic
perturbations of such maps. There are several numerical papers investigating the quasi-
periodically forced logistic map with fascinating results (e.g. [1,16]).

In this context we also mention the systems rigorously studied in [19]. There the base
dynamics is an expanding map of the form θ �→ kθ where k > 0 is big.

1.2. Our model. The model which we shall investigate is the following one-parameter
family of a quasi-periodically forced system,

�α : T × [0, 1] �: (θ, x) �→ (θ + ω, cα(θ)p(x)) (T = R/Z).

Here p is the quadratic map

p(x) = x(1 − x),

and cα : T → (3/2, 4] is defined by

cα(θ) = 3

2
+

5

2

(
1

1 + λ(cos 2π(θ − α/2)− cosπα)2

)
, λ > 0.

We shall assume that ω satisfies the Diophantine condition

(DC)κ,τ inf
p∈Z

|qω − p| > κ

|q|τ for all q ∈ Z\{0},

for some constants κ > 0 and τ ≥ 1. Note that if c ∈ [0, 4] and x ∈ [0, 1], then
cx(1 − x) ∈ [0, 1], so �α indeed maps T × [0, 1] into T × [0, 1].

Given a point (θ0, x0) ∈ T × [0, 1], we use the notation (θn, xn) = �n(θ0, x0). We
define the vertical (or fiber) Lyapunov exponent at (θ0, x0) as

γ (θ0, x0) = lim
n→∞

1

n
log

∣∣∣∣∂xn

∂x0

∣∣∣∣ = lim
n→∞

1

n

n−1∑
k=0

log |c(θk)(1 − 2xk)|,

whenever the limit exists. Moreover, we define

γ̄ (θ0, x0) = lim
n→∞

1

n

n−1∑
k=0

log |c(θk)(1 − 2xk)|.
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The graph of a measurable function ψ : T → [0, 1] is called invariant if

ψ(θ + ω) = c(θ)p(ψ(θ)) for a.e. θ ∈ T.

Since p(0) = 0 we have that the graph of ψ0(θ) ≡ 0 is invariant. By Birkhoff’s ergodic
theorem

γ (θ0, 0) = lim
n→∞

1

n

n−1∑
k=0

log |c(θk)| =
∫

T

log c(θ)dθ > log(3/2) > 0 for all θ0 ∈ T.

Thus, the graph of ψ0 is repelling. Our main theorem states that for λ � 0 there is a
particular value of α such that there is one more invariant curve, ψ , which is highly
discontinuous. This curve attracts almost all points in T × [0, 1]. See Fig. 2 to get an
idea of what ψ can look like.

Main Theorem. Assume that ω satisfies the Diophantine condition (DC)κ,τ for some
κ > 0, τ ≥ 1. Then for all sufficiently large λ > 0 there is a parameter value α such
that the following holds for the map �α .

i) γ̄ (θ, x) < 1
2 log(3/5) < 0 for a.e θ ∈ T and all x ∈ (0, 1).

ii) |xn − yn| → 0 exponentially fast as n → ∞ for a.e. θ0 ∈ T and all x0, y0 ∈ (0, 1).
iii) For a.e θ0 ∈T and all x0 ∈(0, 1) there holds xn > 0 for all n ≥0 and infn≥0 xn = 0.
iv) There exists a measurable function ψ : T → (0, 1) with an invariant graph, i.e.,

ψ(θ + ω) = πx (�(θ, ψ(θ))) a.e. θ ∈ T (πx (θ, x) = x).

Condition iii) especially applies to ψ(θ), that is, infθ∈T ψ(θ) = 0. Since the line
x = 0 is fixed, this implies

v) The set {θ ∈ T : ψ(θ) < ε} is dense in T for all ε > 0.
In particular, ψ cannot be continuous. Moreover, by combining ii) and iv) we get

vi) |xn −ψ(θn)| → 0 exponentially fast as n → ∞ for a.e. θ0 ∈ T and all x0 ∈ (0, 1).
Thus the graph of ψ attracts almost all points in T × (0, 1). Note that vi) imme-
diately gives

vii) lim
n→∞

1

n

n−1∑
k=0

u(�n(θ0, x0))=
∫

T

u(θ, ψ(θ))dθ for all functions u ∈C(T×[0, 1],R),
a.e. θ0 ∈ T and all x0 ∈ (0, 1).

In other words, the Lebesgue (or Haar) measure on T lifted to the graph of ψ is a
physical measure.

Remark 1. It is not important that c(θ) has exactly the above form. What is needed is
that c is of class C2, has two sharp peaks, one at 0 (for simplicity) and one at α (which
can be varied), and “outside” the peaks c should be close to a value a ≈ 3/2. For such a,
the map x �→ ax(1 − x) has an attracting fixed point x f = (a − 1)/a and the repelling
fixed point x = 0. From the peaks we need that c(0)x f (1−x f ) > 1/2 and that c(α) = 4
(so that c(α)(1/2)(1 − 1/2) = 1).

The proof of the main theorem is a bit technical, but the philosophy is as follows.
For very large λ, the coefficient c(θ) is close to 3/2 outside two small intervals of θ ; one
centered at 0 and one centered at α (see Fig. 1). α should be thought of as being very
close to ω. The unperturbed one-dimensional map x �→ (3/2)x(1 − x) has an attracting
fixed point x = 1/3 which attracts (0, 1); the fixed point x = 0 is repelling. The idea
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Fig. 1. A picture of c(θ); there is one peak at θ = 0 and one at θ = α
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Fig. 2. An approximation of the attracting graphψ whenλ = 1000,ω = (
√

5−1)/10 andα = ω−0.02047359

is that the function ψ = ψ(θ), which we want to construct, shall be close to 1/3 for
“most” θ , but near θ = 0 (α − ω ≈ 0) there should be points on the graph of ψ which
are mapped by πx (�α) arbitrarily close to 1/2. These points in turn should be mapped
by πx (�α) arbitrarily close to 1. In this step it is crucial that c(α) = 4; it is only for
c = 4 when maxx∈[0,1] cx(1− x) = 1. Since 1 is mapped to 0, which is a repelling fixed
point, we get the “strange” looking curve. This is the reason why we need two peaks
on c(θ); we use the chain 1/3 �→ 1/2 �→ 1. To get this kind of resonance phenomena
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we need to “fine tune” the parameter α. In Fig. 2 we can see the two peaks; one located
close to ω and the second, which “touches 1”, close to 2ω.

The rest of the paper is organized as follows. In Sect. 2 we derive some elementary
estimates on iterations of the one-dimensional map x �→ cx(1 − x) on [0, 1]. In Sect. 3
we combine these estimates with the properties of the function c(θ) to get some general
estimates on iterations of �α . Section 4 contains the inductive machinery on which the
construction of the proof hinges. The proof is of multi-scale type and the techniques used
are similar to the ones we use in [5–7]. The methods are close in spirit to the ones used
in the seminal work by Benedicks and Carleson [3]. Finally, in Sect. 5 we put everything
together and derive the statements in Main Theorem.

2. Some Numerical Lemmas

This section contains certain numerical estimates for iterations of quadratic maps of the
form x �→ ax(1− x). These estimates, which are all elementary, will be used frequently
in the rest of the paper.

Lemma 2.1. Let P(x) = (3/2 + ε)x(1 − x). If |ε| is sufficiently small, then P(C) ⊂ C,
where C is the interval [1/3 − 1/100, 1/3 + 1/100]. Moreover, 0 < P ′(x) < 3/5 holds
for all x ∈ C.

Proof. For the unperturbed map q(x) = 3
2 x(1− x)we have q(C) = [1/3−103/20000,

1/3 + 97/20000]. From this the first statement follows. The second statement follows
since q ′(x) = 3/2 − 3x , and q ′(1/3 − 1/100) = 53/100. 
�
Lemma 2.2. Let P be as in the previous lemma. If 1/100 ≤ x ≤ 99/100, then 1/100 <
P(x) < 2/5, under the condition that |ε| is small.

Proof. An easy computation. 
�
Lemma 2.3. Assume that |ε1|, |ε2|, . . . , |ε20| < ε. Let Pi (x) = (3/2 + εi )x(1 − x)
(i = 1, . . . , 20). Then P20 ◦ P19 ◦ · · · ◦ P1(x) ∈ (1/3 − 1/100, 1/3 + 1/100) for all
x ∈ [1/100, 99/100], provided that ε is small.

Proof. A numerical computation shows that q(x) = 3
2 x(1 − x) satisfies q20([1/100,

99/100]) ⊂ (1/3 − 1/100, 1/3 + 1/100). 
�
Lemma 2.4. If P(x) = ax(1 − x) (a ≥ 3/2), then P(x) ≥ 5

4 x for all x ∈ [0, 1/10].
Proof. Let q(x) = 3

2 x(1 − x). Then q(x) − 5
4 x = x

2 (
1
2 − 3x) ≥ 0. Since clearly

P(x) ≥ q(x) for all x ∈ [0, 1], the statement follows. 
�
We close this section with a return-time estimate for Diophantine rotation.

Lemma 2.5. Assume that ω ∈ T satisfies the Diophantine condition (DC)κ,τ for some
κ > 0, τ ≥ 1. If I ⊂ T is an interval of length ε > 0, then

I ∩
⋃

0<|m|≤N

(I + mω) = ∅

with N = [(κ/ε)1/τ ].
Remark 2. Here, and in the rest of the paper, [·] denotes the integer part of a real number.

Proof. The proof is standard. 
�
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3. Definitions and Formulas

3.1. Definitions and notations. We assume from now on that ω ∈ (0, 1) is fixed and
satisfies the Diophantine condition (DC)κ,τ for some κ > 0, τ ≥ 1.

Let �α : T × [0, 1] � be given by

�α(θ, x) = (θ + ω, cα(θ)p(x)),

where

p(x) = x(1 − x)

and

cα(θ) = c(θ, α) = 3

2
+

5

2

(
1

1 + λ(cos 2π(θ − α/2)− cosπα)2

)
.

Recall that c has two sharp peaks, one at θ = 0 and one at θ = α. By taking λ large the
peaks get sharper. See Fig. 1. Note that p has its maximum at x = 1/2.

The number α will act as a parameter and will be very close to ω. We will “fine tune”
α in order to get an SNA. In the rest of the paper c and p will always be defined as above.
We also stress that in this paper, λ should be thought of as being “extremely” large.

Given (θ0, x0) we use the notation

(θn, xn) = �n(θ0, x0), n ≥ 0.

We define the contracting region C by

C = [1/3 − 1/100, 1/3 + 1/100].

Moreover, we let

I0 = [−λ−1/7, λ1/7];
I ′
0 = [−λ−2/5,−λ−2/3]; and

A0 = [ω − λ−2/5/2, ω − 2λ−2/3].

Note that A0 ⊂ I ′
0 + ω. The interval I0 contains “most” of the support of c’s peak at

θ = 0, and on I ′
0 the θ -derivative of c is large. Moreover, A0 is our first approximation

of the parameter α, that is, the α we are looking for will be in A0.
We define

M0 = [λ1/(14τ)] and K0 = [λ1/(28τ)]. (3.1)

Note that M0 ≈ √
N and K0 ≈ N 1/4, where N is the integer in Lemma 2.5 when applied

to I0, that is, to an interval of length 2λ−1/7. We again stress that λ should be thought of
as “extremely” large, so M0, K0 are big integers.

Given a set I ⊂ T and a point θ0 ⊂ T, we denote by N (θ0; I ) the smallest
non-negative integer N such that θN = θ0 + Nω ∈ I .
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3.2. Basic lemmas. Our first lemma contains some elementary estimates on the function
c(θ, α). More precisely, from the definition of I0, I ′

0 and A0 we get

Lemma 3.1. For all large λ > 0 (depending on ω) the following holds for α ∈ A0:

a) |c(θ, α)− 3/2|, |∂θc(θ, α)|, |∂αc(θ, α)| < 1/
√
λ for all θ /∈ I0 ∪ (I0 + ω).

b) c(−λ−2/5/2, α) < 2 and c(−2λ−2/3, α) > 3.
c) λ1/6 < ∂θc(θ, α) < λ for all θ ∈ I ′

0.

d) |∂αc(θ, α)| < const(ω) for all θ ∈ I ′
0.

e) For any 1/2 < δ < 1, {θ : c(θ) ≥ 4(1−δ)}∩(I0+ω) ⊂ [α−√
δλ−1/4, α+

√
δλ−1/4]

holds.

Proof. Assume that λ is sufficiently large, depending on ω. The function g(θ, α) =
cos 2π(θ − α/2) − cosπα has exactly two zeroes in [0, 1], namely θ = 0 and θ = α.
We have

g(θ, α) =(2π sin πα)θ + O(θ2) as θ → 0 and

g(θ, α) =(−2π sin πα)(θ − α) + O((θ − α)2) as θ → α.
(3.2)

The number ω is irrational, so we must have sin πα �= 0 and cosπα �= 0 for all α ∈ A0
provided that λ � 1. Since

c(θ, α) = 3

2
+

5

2

(
1

1 + λg(θ, α)2

)
,

this immediately gives b). Moreover, since also |α − ω| < λ−2/5 for all α ∈ A0, and
|I0| = 2λ−1/7, we get

g−1(I0 ∪ (I0 + ω), α) ⊂ [−bλ−1/7, bλ1/7] α ∈ A0

for some constant b > 0 which only depends on ω. From this the first part of a) follows.
Furthermore, differentiation yields

|∂θc(θ, α)| =
∣∣∣∣5λg(θ, α)∂θg(θ, α)

(1 + λg(θ, α)2)2

∣∣∣∣ < const.
1

λ2g(θ, α)3

< λ−1/2 for θ /∈ I0 ∪ (I0 + ω).

Similarly for |∂αc|. This gives the second part of a). Using (3.2) we obtain

c(θ, α) = 3

2
+

5

2

(
1 − 4π2 sin2(πα)λθ2 + λO(θ4)

)
as θ → 0.

Differentiating this w.r.t θ and α gives c) and d); the upper bound ∂θg < λ is trivial.
Finally,

c(θ) = 3

2
+

5

2
f (θ) = 3

2
+

5/2

1 + λg(θ)2
= 4 − 10π2λ sin2(πα)(θ − α)2

+λO((θ − α)3)

as θ → α. From this e) follows. 
�
If we now combine the results in Sect. 2 with fact that 0 < c(θ, α) − 3/2 < 1/

√
λ

for θ /∈ I0 ∪ (I0 + ω) and α ∈ A0, provided that λ is sufficiently large, then we get
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Lemma 3.2. For all large λ > 0 and α ∈ A0, we have

a) If θ0 /∈ I0 ∪ (I0 + ω) and x0 ∈ C, then x1 ∈ C, and |c(θ0)p′(x0)| < 3/5.
b) If θ0, θ1, . . . , θ19 /∈ I0 ∪ (I0 + ω) and x0 ∈ [1/100, 99/100], then x20 ∈ C.
c) If θ0 /∈ I0 ∪ (I0 + ω) and x0 ∈ [1/100, 99/100], then x1 ∈ (1/100, 2/5).
d) If x0 ∈ [0, 1/10], then x1 ≥ (5/4)x0 for all θ0 ∈ T.

The next two lemmas will be used later to control how close to x = 0 the iterates xn
come.

Lemma 3.3. If θ0 ∈ T, x0 ≥ 1/100 and if x−1 ∈ (0, 1/100) ∪ (99/100, 1), then
x2 ∈ [1/100, 99/100].
Proof. This is an easy verification. Recall that p is growing on [0, 1/2) and that
p(1 − x) = p(x) (so p((0, 1/100)) = p((99/100, 1))):

x0 = c(θ−1)p(x−1) < 4p(1/100) < 1/25,

1/100 <
3

2
p(1/100) < x1 = c(θ0)p(x0) < 4p(1/25) < 4/25,

1/100 < x2 = c(θ1)p(x1) < 4p(4/25) < 16/25 < 99/100.


�
Lemma 3.4. For all large λ > 0 we have the following. Fix α ∈ A0, let M > 100 be
any integer, and let

J = {θ : c(θ) ≥ 4(1 − (4/5)M )} ∩ (I0 + ω).

If θ0 ∈ (I0 −ω)\(J − 2ω) and x0 ∈ [1/100, 99/100], then there is a k, 3 ≤ k ≤ M − 7,
such that xk ∈ [1/100, 99/100]. Moreover, if θ0 ∈ (I0+ω)\J and x0 ∈ [1/100, 99/100],
then there is a k, 1 ≤ k ≤ M − 7, such that xk ∈ [1/100, 99/100].
Proof. Assume first that θ0 ∈ (I0 − ω)\(J − 2ω) and x0 ∈ [1/100, 99/100]. For large
λ > 0 we have that (I0−ω) ⊂ T\(I0∪(I0+ω)). Thus, by Lemma 3.2, 1/100 < x1 < 2/5,
and therefore 1/100 < x2 < 4p(2/5) = 24/25 < 99/100. Since θ2 ∈ (I0 + ω)\J ,
we have c(θ2)p(1/2) < 1 − (4/5)M . Consequently 1/100 < x3 = c(θ2)p(x2) <

1 − (4/5)M . If x3 ≤ 99/100 we are done. Assume now that 99/100 < x3 < 1 −
(4/5)M . Since p has the property that p(x) = p(1 − x) for all x , we get the same orbit
x4, x5, x6, . . . if we use y3 = 1 − x3 instead of x3. Note that (4/5)M < y3 < 1/100.
If x4, x5, . . . , xM−8 < 1/100, it follows by repeated use of Lemma 2.4 that xM−7 ≥
(5/4)M−10(4/5)M = (4/5)10 > 1/100. To get the upper bound, we do as in the proof
of the previous lemma, i.e., we use the fact that if xk < 1/100 and xk+1 > 1/100, then
xk+1 < 1/25.

The proof of the second statement is included in the one above. 
�

3.3. Formulas. We shall now derive some formulas which will be needed to control the
geometry in the inductive construction in the next section.

We begin with an easy formula. Assume that (ak) and (bk) are sequences of real
numbers and that (xn) is defined inductively by xn+1 = an + bn xn . Given x0, we get

xn+1 = an +
n∑

k=1

ak−1bn · · · bk + bn · · · b0x0, n ≥ 0.
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Now, assume that x0 = x0(θ, α) is given, and that xn is defined by (θ + nω, xn) =
�n(θ, x0). Then xn+1 = c(θ + nω, α)p(xn). Differentiating this with respect to θ and
α, respectively, yields

∂θ xn+1 = (∂θcn)p(xn) + cn p′(xn)∂θ xn;
∂αxn+1 = (∂αcn)p(xn) + cn p′(xn)∂αxn .

Here we use the notation cn = c(θ + nω, α). Applying the above formula now gives us

∂θ xn+1 = (∂θcn)p(xn) + ∂θ x0

n∏
j=0

c j p′(x j )

+
n∑

k=1

⎛
⎝(∂θck−1)p(xk−1)

n∏
j=k

c j p′(x j )

⎞
⎠ (3.3)

and

∂αxn+1 = (∂αcn)p(xn) + ∂αx0

n∏
j=0

c j p′(x j )

+
n∑

k=1

⎛
⎝(∂αck−1)p(xk−1)

n∏
j=k

c j p′(x j )

⎞
⎠ . (3.4)

Lemma 3.5. Assume that x0 ∈ [0, 1], ∂αx0 = ∂θ x0 = 0 and
∏T

j=k |c j p′(x j )| <
(3/5)(T −k+1)/2 for all k ∈ [0, T ], where T > 10 log λ is an integer. Assume moreover
that |∂αck |, |∂θck | < 1/

√
λ for k ∈ [T −10 log λ, T ]. Then |∂αxT +1|, |∂θ xT +1| < λ−1/4,

provided that λ is bigger than a numerical constant.

Proof. Using the given estimates, together with the fact that |∂θc(θ, α)|, |∂αc(θ, α)| < λ

(by an easy estimate) and 0 ≤ p(xi ) ≤ p(1/2) = 1/4, the above formulas give

|∂αxT +1|, |∂θ xT +1| < 1

4
√
λ

+
1

4
√
λ

T∑
k=T −10 log λ

(3/5)(T −k+1)/2

+
λ

4

T −10 log λ∑
k=1

(3/5)(n−k+1)/2.

Since, (3/5)4 < 1/e, we have

T −10 log λ∑
k=1

(3/5)(T −k+1)/2 <

∞∑
j=10 log λ

(
√

3/5) j =
√

3/510 log λ

1 − √
3/5

< 1/λ2.

From this the statement of the lemma follows. 
�

4. The Induction

In this section we present the inductive construction on which the proof of Theorem 1
hinges. Inductively we will obtain fine estimates on longer and longer orbits of “many”
initial points.
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4.1. Basic step. We begin with the basic step. It follows more or less straightforwardly
from the definitions and results in the previous two sections. We recall that I ′

0 ⊂ I0 and
A0 ⊂ I ′

0 + ω; on I ′
0 the θ -derivative of c(θ) is � 1.

Lemma 4.1. There is a λ1 > 0 such that for all λ > λ1, the following holds:

(i) If α ∈ A0, θ0 /∈ I0 ∪ (I0 + ω) and x0, y0 ∈ C, then, letting N = N (θ0; I0),

N−1∏
i=k

|c(θi )p
′(xi )| < (3/5)N−k for all k ∈ [0, N − 1]; (4.1)

xk ∈ C for all k ∈ [0, N ]; and (4.2)

|xk − yk | ≤ (3/5)k |x0 − y0|, for all k ∈ [1, N ]. (4.3)

(ii)0 If � is a horizontal line segment � = (I0 − M0ω)× {x}, where x ∈ C, then

�M0+1
α (�) = {(θ, ϕ(θ, α)) : θ ∈ I0 + ω} (α ∈ A0),

where the function ϕ : (I0 + ω)× A0 → R satisfies

3/10 < ϕ±(θ, α) < 99/100;
|∂αϕ(θ, α)| < const(ω) and λ1/7 < ∂θϕ(θ, α) < λ

for all θ ∈ I ′
0 + ω, α ∈ A0.

Moreover, there is an α ∈ A0 such that

ϕ(α, α) = 1/2.

(iii)0 If α ∈ A0, 1/100 ≤ x0 ≤ 99/100 and θ0 /∈ I0 ∪ (I0 + ω), then

1/100 ≤ xk ≤ 99/100 for all k ∈ [0, N ].
Before we prove the above lemma, we comment a bit on the statement. Conditions (i)0

and (i i i)0 just state that we have good control on iteration outside I0∪(I0+ω) forα ∈ A0.
They follow directly from Lemma 3.2. Condition (i i)0 gives a first approximation of
the function � which we want to construct. We iterate the line segment � under the
mapping �α (α ∈ A0). When it comes over I0 + ω we have a good control on how it
looks, see Fig. 3. The interesting part is the one over I ′

0 + ω. The last statement says

that there is a parameter value α ∈ A0 ⊂ I ′
0 + ω such that �M0+1

α (�) contains the point
(α, 1/2). This point will be mapped to (α +ω, 1) by�α , and then to (α + 2ω, 0). Recall
that x = 0 is fixed. Inductively we will later (Proposition 4.2 below) get better and better
approximations of �, and make sure that we have this “collision” between � and the
point (α, 1/2) for a certain value of α.

Proof. We assume that λ is sufficiently large. First we verify (i)0. Assume that θ0 /∈ I0 ∪
(I0 +ω) and x0, y0 ∈ C . Let N = N (θ0; I0) > 0. Since θ0, θ1, . . . , θN−1 /∈ I0 ∪(I0 +ω),
it follows directly by a repeated application of Lemma 3.2 that

xk ∈ C for all k ∈ [0, N ], and |c(θk)p
′(xk)| < 3/5 for all k ∈ [0, N − 1].

In particular this gives

N−1∏
i=k

|c(θi )p
′(xi )| < (3/5)N−k (k ∈ [0, N − 1]).
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1/2

1

Γ

I0− M0ω
I0 + ω

I0 + ω

ΦM0+1
α (Γ)

Fig. 3. A picture of condition (i i)0

Furthermore, by the mean value theorem

|xk − yk | =
k−1∏
i=0

|c(θi )p
′(ξi )||x0 − y0| (k = 1, 2, . . . , N ),

where ξi is between xi and yi . Since xi , yi ∈ C and θi /∈ I0∪(I0+ω) (i = 0, 1, . . . , N − 1),
it follows from Lemma 3.2 that |c(θi )p′(ξi )| < 3/5. Thus,

|xk − yk | ≤ (3/5)k |x0 − y0| for all k ∈ [1, N ].
To obtain (i i)0, take any x ∈ C and let x0 = x0(θ, α) = x for θ ∈ I0 − M0ω

and α ∈ A0. From the definition of M0 in (3.1), we have that [I0 ∪ (I0 + ω)] ∩ ⋃M0
m=1

(I0 − mω) = ∅ (recall the discussion below the definition of M0). Thus it follows from
(4.2)0 in (i)0 that xk ∈ C for k = 0, 1, . . . ,M0. Furthermore, by Lemma 3.1 we have
|∂θc(θk, α)|, |∂αc(θk, α)| < 1/

√
λ for k = 0, 1, . . . ,M0 − 1 if θ0 ∈ I0 − M0ω. Thus,

using this fact and (4.1)0 in (i)0, and noticing that M0 � 10 log λ, it follows from
Lemma 3.5 that

|∂αxM0 |, |∂θ xM0 | < λ−1/4. (4.4)

From the fact that xM0 ∈ C and 3/2 < c(θ) ≤ 4 for all θ , we get

3/10 <
3

2
p(1/3 − 1/100) ≤ xM0+1 ≤ 4p(1/3 + 1/100) < 99/100.

To continue, let

ψ(θ, α) = xM0(θ − M0ω, α), θ ∈ I0, α ∈ A0; and

ϕ(θ, α) = xM0+1(θ − (M0 + 1)ω, α), θ ∈ I0 + ω, α ∈ A0.

Then, by definition, ψ and ϕ are related like

ϕ(θ, α) = c(θ − ω, α)p(ψ(θ − ω, α)).
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Differentiating this, we obtain, using the estimates in Lemma 3.1, together with (4.4),

|∂αϕ(θ, α)| < const and λ1/7 < ∂θϕ(θ, α) < λ, θ ∈ I ′
0 + ω, α ∈ A0.

Moreover, from Lemma 3.1 we have c(−λ−2/5/2, α) < 2 and c(−2λ−2/3, α) > 3 for
all α ∈ A0. Since xM0 ∈ C , it therefore follows that

ϕ(−λ−2/5/2 + ω, α) < 1/2 − 1/10 and ϕ(−2λ−2/3 + ω, α) > 1/2 + 1/10

for all α ∈ A0.

Thus, for each α ∈ A0 there must be a θ = θ(α) ∈ [−λ−2/5/2 +ω,−2λ−2/3 +ω] = A0
(recall the definition of A0) such that ϕ(θ(α), α) = 1/2. Since the mapping A0 � α �→
θ(α) ∈ A0 clearly is continuous, there must be a fixed point, that is, an α such that
θ(α) = α. Hence, we have ϕ(α, α) = 1/2 for some α ∈ A0. This finishes the proof.

It remains to verify (i i i)0. Since θk /∈ I0 ∪(I0 +ω) (k = 0, . . . , N −1), (i i i)0 follows
directly by repeated use of Lemma 3.2. 
�

4.2. The Inductive Step. Before we state the inductive lemma, we introduce the fol-
lowing notation. Given intervals I0, I1, . . . , In−1 and integers M0,M1, . . . ,Mn−1 and
K0, K1, . . . , Kn−1, we define

�n−1 = T\
n−1⋃
i=0

Mi⋃
m=−Mi

(Ii + mω), �−1 = T\(I0 ∪ (I0 + ω)); and

Gn−1 =
n−1⋃
i=0

3Ki⋃
m=0

(Ii + mω), G−1 = ∅.

Proposition 4.2. There is a λ2 > 0 such that the following hold for all λ > λ2: Assume
that for some n ≥ 0, closed intervals I ′

0 ⊃ I1 ⊃ · · · ⊃ In have been constructed, and
integers M0 < M1 < · · · < Mn and K0 < K1 < · · · < Kn have been chosen, satisfying

|Ik | = (4/5)Kk−1 , Kk ∈ [(5/4)Kk−1/(4τ), 2(5/4)Kk−1/(4τ)]
for k = 1, 2, . . . , n; (4.5)

Mk ∈ [(5/4)Kk−1/(2τ), 2(5/4)Kk−1/(2τ)] for k = 1, 2, . . . , n; and (4.6)
20⋃

k=0

(In + (2Kn + k)ω) ⊂ �n−1, In − Mnω ⊂ �n−1. (4.7)

Assume further that a non-empty interval An = [α−
n , α

+
n ] ⊂ In + ω (⊂ I ′

0 + ω if n = 0)
has been constructed such that, writing In + ω = [an, bn] (I ′

0 + ω = [a0, b0] if n = 0),
there holds

α−
n − an > (4/5)Kn and bn − α+

n > (4/5)Kn , (4.8)

and the following holds:
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(i)n If α ∈ An, θ0 ∈ �n−1 and x0, y0 ∈ C, then, letting N = N (θ0; In),

N−1∏
i=k

|c(θi )(1 − 2xi )| < (3/5)(1/2+1/2n+1)(N−k+1) for all k ∈ [0, N − 1]; (4.9)

xk /∈ C and k ∈ [0, N ] ⇒ θk ∈ Gn−1; and (4.10)

|xk − yk | ≤ (3/5)(1/2+1/2n+1)k |x0 − y0| for all k ∈ [1, N ]. (4.11)

(i i)n If � is a horizontal line segment � = (In − Mnω)× {x}, where x ∈ C, then

�Mn+1
α (�) = {(θ, ϕ(θ, α)) : θ ∈ In + ω} (α ∈ An),

where the function ϕ : (In + ω)× An → R satisfies

3/10 < ϕ(θ, α) < 99/100, (4.12)

λ1/7 < ∂θϕ(θ, α) < λ,

|∂αϕ| < const(ω) for all

{
θ ∈ I ′

0 + ω, α ∈ A0 if n = 0
θ ∈ In + ω, α ∈ An if n > 0

. (4.13)

Moreover, there is an α ∈ An such that

ϕ(α, α) = 1/2. (4.14)

(i i i)n If α ∈ An, 1/100 ≤ x0 < 99/100 and θ0 /∈ I0 ∪ (I0 + ω), then

xk /∈ [1/100, 99/100] and k ∈ [0, N (θ0; In)] ⇒ θk ∈ Gn−1.

Then there are non-degenerate closed intervals In+1 ⊂ In (I1 ⊂ I ′
0 if n = 0) and

An+1 ⊂ (In+1 + ω) ∩ An, and integers Mn+1, Kn+1 such that (4.5-4.8)n+1 and
(i − i i i)n+1 hold.

Proof. Along the proof, which consists of several parts, we assume that n ≥ 0 is given
and that λ is sufficiently large. We stress that λ does not depend on n.

By using Lemma 2.5, the length estimates on the Ik in (4.5) imply the minimal return
time to Ik is > {

[(κ(5/4)Kk−1)1/τ ] := Nk k ≥ 1[
(κλ1/7/2)1/τ

] := N0 k = 0.
(4.15)

Thus, the Mk and Kk have been chosen to be approximately
√

Nk and N 1/4
k , respectively.

This implies, in particular, that

Ik ∩
⋃

0<|m|≤10Mk

(Ik + mω) = ∅ for all k = 0, 1, . . . , n. (4.16)

By condition (4.7)n , combined with (4.16), we have that

(In − Mnω) ∩ Gn = ∅. (4.17)

Moreover, since In ⊂ Ik (k = 0, 1, . . . , n − 1) and (Ik − ω) ∩ ⋃3Kk
m=0(Ik + mω) = ∅

(k = 0, 1, . . . , n), we have

(In − ω) ∩ Gn = ∅. (4.18)
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Defining An+1 and In+1. Take x, y ∈ C and let ϕ1, ϕ2 be the corresponding functions
given by (i i)n , that is, let �1 = (In − Mnω)× {x} and �2 = (In − Mnω)× {y}, and let
ϕi be defined by �Mn+1(�i ) = (θ, ϕi (θ, α)). Then they satisfy (4.12-4.13)n . Moreover,

|ϕ1 − ϕ2| < 2

25
(3/5)Mn/2. (4.19)

Indeed, by (4.7)n we have In − Mnω ⊂ �n−1, and from (4.16) it follows that if
θ0 ∈ In − Mnω, then N (θ0; In) = Mn . Thus, taking θ0 ∈ In − Mnω and x0, y0 ∈ C , we
obtain from (i)n that

|xMn − yMn | ≤ (3/5)Mn/2|x0 − y0| ≤ 1

50
(3/5)Mn/2.

Since xMn+1 = c(θn)p(xMn ) and yMn+1 = c(θn)p(yMn ), 3/2 < c(θMn ) ≤ 4, and since
|p′(x)| ≤ 1 in [0, 1], we have that

|xMn+1 − yMn+1| ≤ 2

25
(3/5)Mn/2.

By recalling the definition of ϕ1,2, this gives (4.19).
Next, by (4.14)n there are α1, α2 ∈ An such that ϕi (αi , αi ) = 1/2 (i = 1, 2). By

letting gi (θ) = ϕi (θ, θ), for example, an easy computation, using the above estimates
on ϕi , shows that |α1 − α2| < (3/5)Mn/2.

Summing up, since x, y ∈ C were arbitrarily chosen, the above calculation shows
that there exists a closed interval An+1 ⊂ An , of length< (3/5)Mn/2, with the following
properties: for any x ∈ C , with corresponding function ϕ (we use (i i)n), there is an
α ∈ An+1 such that ϕ(α, α) = 1/2.

We now define In+1 by

In+1 + ω = [α−
n+1 − (4/5)Kn/2, α−

n+1 + (4/5)Kn/2],
where we use the notation An+1 = [α−

n+1, α
+
n+1]. Since An+1 ⊂ An , we have that

α−
n ≤ α−

n+1 < α+
n+1 ≤ α+

n ,

where An = [α−
n , α

+
n ]. Denoting the endpoints in In+1 +ω as an+1 = α−

n+1 − (4/5)Kn/2
and bn+1 = α−

n+1 + (4/5)Kn/2, and In + ω = [an, bn] (I ′
0 + ω = [a0, b0] if n = 0), it

follows from (4.8)n that

an+1 − an = α−
n+1 − an − (4/5)Kn/2 ≥ α−

n − an − (4/5)Kn/2 > 0

and

bn − bn+1 = bn − (α−
n+1 + (4/5)Kn/2) ≥ bn − α+

n − (4/5)Kn/2 > 0.

Thus

In+1 ⊂ In (I1 ⊂ I ′
0 if n = 0).

Below we will choose the integer Kn+1 to be of the size (5/4)Kn/(4τ), that is Kn+1 �
Kn . Using this fact, the above definitions yields

α−
n+1 − an+1 = (4/5)Kn/2 > (4/5)Kn+1
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and, since α+
n+1 − α−

n+1 < (3/5)Mn/2,

bn+1 − α+
n+1 = α−

n+1 + (4/5)Kn/2 − α+
n+1 > (4/5)Kn/2 − (3/5)Mn/2 > (4/5)Kn+1 .

This shows that (4.8)n+1 holds, once we have defined Kn+1 of the above mentioned size.
To continue, we note that since the length of An+1 is < (3/5)Mn/2, we have

In+1 + ω ⊃ [α − (4/5)Kn/λ1/4, α + (4/5)Kn/λ1/4] for all α ∈ An+1.

By Lemma 3.1 we therefore have

c(θ, α) < 4(1 − (4/5)2Kn ) for all θ ∈ (I0 + ω)\(In+1 + ω), α ∈ An+1. (4.20)

Choosing Mn+1 and Kn+1. For each j ∈ [0, n], let N ′
j be the positive integer given by

Lemma 2.5 when it is applied to I = 3I j . Here 3I j is the interval with the same center
as I j , but three times longer. By the estimates in (4.16)n we have

N ′
j =

[
(κ(5/4)K j−1/3)1/τ

]
, j ∈ [1, n], N ′

0 =
[
(κλ1/7/6)1/τ

]
.

By this choice we have

(3I j ) ∩
⋃

0<|m|≤N ′
j

(3I j + mω) = ∅, j ∈ [0, n].

Since M j is of size
√

N ′
j one easily checks that the following holds for each j ∈ [0, n]:

Given any integer t ∈ Z, there are at most 4M j + 1 integers p in [t, t + N ′
j ] such that

(I j + pω) ∩
2M j⋃

m=−2M j

(I j + mω) �= ∅.

Thus, in the interval [t, t + N ′
n] there are at most

s = (4Mn + 1) + (4Mn−1 + 1)(
[
N ′

n/N ′
n−1

]
+ 1) + · · · (4M0 + 1)(

[
N ′

n/N ′
0

]
+ 1)

integers p such that

(In + pω) ∩
n⋃

j=0

2M j⋃
m=−2M j

(I j + mω) �= ∅.

Since

s < 100

(
Mn + Mn−1

N ′
n

N ′
n−1

+ · · · + M0
N ′

n

N ′
0

)
= 100Nn

(
Mn

N ′
n

+ · · · M0

N ′
0

)
� N ′

n

by the estimates on Mk and Nk , there must be a p ∈ [t, t + N ′
n] such that

(In + pω) ∩
n⋃

j=0

2M j⋃
m=−2M j

(I j + mω) = ∅,
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and thus

20⋃
k=0

(In + (p + k)ω) ∩
n⋃

j=0

M j⋃
m=−M j

(I j + mω) = ∅.

Consequently, letting t = (5/4)Kn/(4τ) and noticing that (5/4)Kn/(4τ) � N ′
n , we can find

an integer Kn+1 in the interval [(5/4)Kn/(4τ), 2(5/4)Kn/(4τ)] such that the first condition
in (4.7)n holds. Similarly we can find an integer Mn+1 in [(5/4)Mn/(2τ), 2(5/4)Mn/(2τ)]
such that the second condition in (4.7)n holds.

Verifying (i)n+1. Assume that α ∈ An+1 ⊂ An , θ0 ∈ �n ⊂ �n−1 and x0, y0 ∈ C , and
let N = N (θ0; In+1). We need to prove that

N−1∏
i=k

|c(θi )(1 − 2xi )| < (3/5)(1/2+1/2n+2)(N−k) for all k ∈ [0, N − 1]; (4.21)

xk /∈ C and k ∈ [0, N ] ⇒ θk ∈ Gn; and (4.22)

|xk − yk | ≤ (3/5)(1/2+1/2n+2)k |x0 − y0| for all k ∈ [1, N ]. (4.23)

We denote by (4.21)[T ]–(4.23)[T ] the three above conditions when N is replaced by an
integer T > 0, respectively. We shall inductively prove that (4.21)[N]–(4.23)[N] hold.

From the assumption that θ0 ∈ �n it immediately follows from (4.16) that N > Mn .
Let 0 < s1 < s2 < · · · < sr = N be the times k ∈ [0, N ] when θk ∈ In . Note that we
could have r = 1. We have the estimates (recall (4.15))

s1 > Mn; and

s j − s j−1 > Nn for j = 2, 3, . . . , r. (4.24)

From (i)n , which holds by assumption, we automatically get that the weaker conditions
(4.21)[s1]–(4.23)[s1] hold. If r = 1 we are done. If not, assume that we have shown that
(4.21)[sl ]–(4.23)[sl ] hold for some l, 1 ≤ l < r . Since sl > Mn and since (4.17) holds,
it follows from (4.22)[sl ] that

xsl−Mn ∈ C. (4.25)

Recall that θsl−Mn ∈ In − Mnω. Thus, from (i i)n we get that 3/10 < xsl +1 < 99/100.
Since (4.20) holds, it now follows from Lemma 3.4 that there is a t , 2 ≤ t ≤ 2Kn − 7,
such that xsl +t ∈ [1/100, 99/100]. We now prove that xsl +2Kn ∈ [1/100, 99/100].

If t = 2 or t = 3, then, since θsl +t ∈ In + tω and (In + tω) ∩ (I0 ∪ (I0 + ω)) = ∅
(t = 2, 3), we can use (i i i)n to get

xsl +k /∈ [1/100, 99/100] and k ∈ [t, sl+1 − sl ] ⇒ θsl +k ∈ Gn−1.

Since (In + 2Knω)∩ Gn−1 = ∅ by (4.7)n we must have that xsl +2Kn ∈ [1/100, 99/100].
If t > 3, assume that t was chosen as small as possible, i.e., assume that xsl +k /∈

[1/100, 99/100] for k = 2, 3, . . . , t − 1. Then we must have xsl +k < 1/100 for
k = 3, 4, . . . , t − 1. If θsl +t /∈ I0 ∪ (I0 + ω) we can use (i i i)n , as above, and obtain
xsl +2Kn ∈ [1/100, 99/100]. If θsl +t ∈ I0 ∪ (I0 + ω), then we use Lemma 3.3 to get
xsl +t+2 ∈ [1/100, 99/100]. Since θsl +t+2 /∈ I0 ∪ (I0 + ω), we can proceed as above, i.e.,
apply (i i i)n to the point (θsl +t+2, xsl +t+2).
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Thus, we know that xsl +2Kn ∈ [1/100, 99/100]. Since (4.7)n holds, so in particular we
have θsl +2Kn , . . . , θsl +2Kn+20 /∈ I0 ∪(I0 +ω), it follows from Lemma 3.2 that xsl +2Kn+20 ∈
C . Now we know, again using (4.7)n , that θsl +2Kn+20 ∈ �n−1. Therefore we can apply
(i)n to the point (θsl +2Kn+20, xsl +2Kn+20) and deduce (recall the definition of sl+1)

∏sl+1−1
i=k |c(θi )(1 − 2xi )| < (3/5)(1/2+1/2n+1)(sl+1−k)

for all k ∈ [sl + 2Kn + 20, sl+1 − 1]; (4.26)

xk /∈ C and k ∈ [sl + 2Kn + 20, sl+1] ⇒ θk ∈ Gn−1; and (4.27)

|xk − yk | ≤ (3/5)(1/2+1/2n+1)(k−sl−2Kn−20)|xsl +2Kn+20 − ysl +2Kn+20|
for all k ∈ [sl + 2Kn + 20 + 1, sl+1]. (4.28)

During the passage from k = sl + 1 to k = sl + 2Kn + 20 we could have had xk /∈ C ,
but for k ∈ [sl + 1, sl + 2Kn + 20] we have θk ∈ ⋃2Kn+20

m=0 (In + mω) ⊂ Gn . Combining
this with (4.22)[sl ] and (4.27) gives (4.22)[sl+1].

To continue, we notice that |c(θ)| ≤ 4 (θ ∈ T) and |1 − 2x | ≤ 1 for x ∈ [0, 1]. Thus
we always have the trivial estimates

sl +2Kn+19∏
i=k

|c(θi )(1 − 2xi )| ≤4sl +2Kn+20−k, k ≤ sl + 2Kn + 19; and

|xsl +k − ysl +k | ≤4k |xsl − ysl |, k > 0.

(4.29)

To show that (4.21)[sl+1] holds, it follows from (4.21)[sl ] and (4.26) that it is enough
to prove that

sl+1−1∏
i=k

|c(θi )(1 − 2xi )| < (3/5)(1/2+1/2n+2)(sl+1−k) for all k ∈ [sl , sl + 2Kn + 19].

Take k ∈ [sl , sl + 2Kn + 19]. By the above estimates we have

sl+1−1∏
i=k

|c(θi )(1 − 2xi )| =
sl +2Kn+19∏

i=k

|c(θi )(1 − 2xi )|
sl+1−1∏

i=sl +2Kn+20

|c(θi )(1 − 2xi )|

<4sl +2Kn+20−k(3/5)(1/2+1/2n+1)(sl+1−sl−2Kn−20)

<(3/5)(1/2+1/2n+1)(sl+1−sl−2Kn−20)−3(sl +2Kn+20−k).

In the last inequality we used the fact that (5/3)3 > 4. Denoting the above exponent by
z(k), we have to show that z(k) > w(k) := (1/2 + 1/2n+2)(sl+1 − k). Subtracting, using
2Kn + 20 < 3Kn and the fact that the worst case is when k = sl , we obtain

z(k)− w(k) > (sl+1 − sl)/(2
n+2)− 12Kn .

By (4.24), and the estimates on Nn and Kn in (4.15), it is clear that this is positive.
It remains to verify (4.23)[sl+1]. Since θsl−Mn ∈ In − Mnω ⊂ �n−1, and since (4.25)

holds, we can apply (i)n to the point (θsl−Mn , xsl−Mn ) and obtain the estimate

|xsl − ysl | ≤ (3/5)(1/2+1/2n+1)Mn |xsl−Mn − ysl−Mn |. (4.30)
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Applying the estimate (4.29) for k ∈ [1, 2Kn + 20], we have, again using the fact that
(5/3)3 > 4,

|xsl +k − ysl +k | ≤ (3/5)(1/2+1/2n+1)Mn−3k |xsl−Mn − ysl−Mn |.
Now we note that

((1/2 + 1/2n+1)Mn − 3k)− (1/2 + 1/2n+2)(Mn + k)

= Mn/2
n+2 − 4k > Mn/2

n+2 − 12Kn > 0

by the estimates on Kn and Mn . Thus,

|xsl +k − ysl +k | ≤ (3/5)(1/2+1/2n+2)(Mn+k)|xsl−Mn − ysl−Mn |,
k ∈ [1, 2Kn + 20]. (4.31)

Combining this estimate with (4.23)[sl ] and (4.28) now yields (4.23)[sl+1].
Verifying (i i)n+1. Take x ∈ C and let � = (In+1 − Mn+1ω)× {x}. Let ϕ : (In+1 + ω)×
An+1 → R be defined such that �Mn+1+1(�) = {(θ, ϕ(θ, α)) : θ ∈ In+1 + ω} for fixed
α ∈ An+1.

Fix α ∈ An+1, and let (θ0, x0) be a point on �, that is, θ0 ∈ In+1 − Mn+1ω and
x0 = x ∈ C . We note that N (θ0; In+1) = Mn+1. Since In+1 − Mn+1ω ⊂ �n , by (4.7)n+1,
we can apply (i)n+1 and get

∏Mn+1−1
i=k |c(θi )(1 − 2xi )| < (3/5)(N−k+1)/2

for all k ∈ [0,Mn+1 − 1]; and (4.32)

xk /∈ C and k ∈ [0,Mn+1] ⇒ θk ∈ Gn . (4.33)

The latter, together with (4.17), implies that xMn+1−Mn ∈ C , because θMn+1−Mn ∈ In+1 −
Mnω ⊂ In − Mnω. Moreover, (4.18) and (4.33) imply that xMn+1−1 ∈ C , and since
θMn+1−1 ∈ In+1 − ω ⊂ T\(I0 ∪ (I0 + ω)), it follows from Lemma 3.2 that xMn+1 ∈ C .
Thus

�Mn+1−Mn (�) ⊂ (In+1 − Mnω)× C and (4.34)

�Mn+1(�) ⊂ In × C. (4.35)

Note that (4.12)n+1 now follows from (i i)n and (4.34).
Next, if we think of x0 = x0(θ, α) = x ∈ C , where θ ∈ In+1 − Mn+1ω and α ∈ An+1,

it follows from (4.32) and Lemma 3.5 that

|∂θ xMn+1 |, |∂αxMn+1 | < λ−1/4. (4.36)

Indeed, if θ0 ∈ In+1 − Mn+1ω, then θMn+1 ∈ In ⊂ I0 and hence θMn+1−k /∈ I0 ∪ (I0 + ω)
for (at least) k = 1, 2, . . . ,M0, and thus |∂θc(θMn+1−k, α)| < 1/

√
λ for k ∈ [1,M0] by

Lemma 3.2. Since M0 � 10 log λ, the use of Lemma 3.5 is possible. By proceeding as
in the proof of the basic step, Lemma 4.1, making use of the estimates (4.35) and (4.36),
we get (4.13)n+1.

It remains to check (4.14)n+1. From (i i)n we know that if �y = (In − Mnω)× {y},
y ∈ C , then�Mn+1(�y) = {(θ, φ(θ, α, y) : θ ∈ In +ω)}, where φ : (In +ω)× An × C
satisfy

|∂θφ| > λ1/7 and |∂αφ| < const (ω). (4.37)
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Moreover, for every y ∈ C there is an α(y) ∈ An such that φ(α(y), α(y), y) = 1/2. By
(4.37) it is clear that it is unique. By the definition of An+1 above, we have α(y) ∈ An+1.
If we let ψ(α, y) = φ(α, α, y) for α ∈ An+1 and y ∈ C , and use the estimates (4.37), it
follows from the implicit function theorem that the function C � y �→ α(y) ∈ An+1 is
(at least) continuous.

Consider now the curve � : (α(y) − (Mn + 1)ω, y), y ∈ C . We know that α(y) ∈
An+1 ⊂ In+1 +ω, so� divides the box (In+1 − Mnω)× C into two pieces. Since (4.34)
holds, the curve�Mn+1−Mn (�)must intersect�. By construction we have�Mn+1(α(y)−
(Mn + 1)ω, y) = 1/2 if y ∈ C and α = α(y). This gives (4.14)n+1.

Verifying (i i i)n+1. Assume that x0 ∈ [1/100, 99/100] and θ0 /∈ I0 ∪ (I0 + ω), and let
N = N (θ0; In+1). We need to prove that

xk /∈ [1/100, 99/100] and k ∈ [0, N ] ⇒ θk ∈ Gn . (4.38)

Let (4.38)[T ] denote the above condition with N replaced by T ≥ 0. Let 0 < s1 < s2 <

· · · < sr = N be the times k ∈ [0, N ] when θk ∈ In .
From (i i i)n we get (4.38)[s1]. Assume now that (4.38)[sl ] holds for some 0 ≤ l < r .

Since (4.18) holds, we get from (4.38)[sl ] that xsl−1 ∈ [1/100, 99/100]. Since (4.20)
holds, it therefore follows from Lemma 3.4 that there is a k, 3 ≤ k ≤ 2Kn −7, such that
xsl +k ∈ [1/100, 99/100]. Proceeding exactly as in the verification of (i)n+1 above, we
get that xsl +2Kn ∈ [1/100, 99/100]. Note that we could have xsl +k /∈ [1/100, 99/100]
for k ∈ [0, 2Kn − 1]. For such k we have θsl +k ∈ ⋃2Kn

m=0(In + mω) ⊂ Gn . Since
θsl +2Kn ∈ In + 2Kn and since (In + 2Kn) ∩ (I0 ∪ (I0 + ω)) = ∅ by (4.7)n , we can apply
(i i i)n to the point (θsl +2Kn , xsl +2Kn ) and get

xk /∈ [1/100, 99/100] and k ∈ [sl + 2Kn, sl+1] ⇒ θk ∈ Gn−1.

Summing up, this shows that (i i i)n+1 holds.
This finishes the proof of Proposition 4.2. 
�

5. Proof of Main Theorem

We now have all the pieces needed for the proof of the Main Theorem. The proof will
consist of several lemmas. We begin by defining the main objects.

From now on we assume that λ > max{λ1, λ2} is sufficiently large so that the
(finitely many) conditions below hold true. By using Lemma 4.1 and Proposition 4.2 we
inductively get a nested sequence of closed intervals I ′

0 ⊃ I1 ⊃ I2 ⊃ . . . and integers
M0 < M1 < M2 < . . ., K0 < K1 < K2 < . . . satisfying the estimates (4.5–4.6)n for
n = 1, 2, 3, . . .. Moreover, we get closed non-degenerate intervals A0 ⊃ A1 ⊃ A2 ⊃
. . . such that

An ∩ (In + ω) ⊃ An+1 n = 0, 1, 2, . . . , (5.1)

and (i − i i i)n in Proposition 4.2 hold for all n.
Let θc ∈ T be the unique point such that

⋂
n≥0

In = {θc}.



156 K. Bjerklöv

We now fix the parameter α ∈ T as
⋂
n≥0

An = {α}.

This is the α appearing in the statement of the Main Theorem; we have “fine tuned it on
infinitely many scales”. Note that by (5.1) we have

α = θc + ω.

From now on α is fixed like this. In the rest of the paper we are going to verify that the
mapping �α (with the above α) has the required properties.

We define

�∞ =
⋂
n≥0

�n = T\
∞⋃

i=0

Mi⋃
−Mi

(Ii + mω).

Since

(2M0 + 1)|I0| ≤ 3λ1/(14τ)λ−1/7

and

(2Mk + 1)|Ik | ≤ 5(5/4)Kk−1/(2τ)(4/5)Kk−1 , k ≥ 1,

and since τ ≥ 1, it follows that |�∞| > 0. In fact, |�∞| → |T| = 1 as λ → ∞. Recall
the extreme growth of the numbers Kk . We also let

G∞ =
⋃
n≥0

Gn =
∞⋃

i=0

3Ki⋃
m=0

(Ii + mω).

By definition we have (recall that K j � M j for all j)

G∞ ∩�∞ = ∅.
Next we let

�∗ = ({θ ∈ T : θ − kω ∈ �∞ for infinitely many k ≥ 0}
∩{θ ∈ T : θ + kω ∈ �∞ for infinitely many k ≥ 0})

\({θc + kω : k ∈ Z} ∪ {kω : k ∈ Z}).
Since |�∞| > 0, it follows by ergodicity (θ �→ θ + ω is ergodic) that |�∗| = 1, i.e., it
has full Lebesgue measure. By definition �∗ is invariant under rotation by ω:

�∗ ± ω = �∗.

The next two lemmas are direct consequences of the definition of �∗.

Lemma 5.1. If θ0 ∈ �∗ and x0 ∈ (0, 1), then xk ∈ (0, 1) for all k ≥ 0.

Proof. Recall that c(θ) = 4 only for θ = 0, α. Since α = θc + ω, it thus follows from
the definition of�∗ that c(θ) = 3/2 + (5/2) f (θ) ∈ (3/2, 4) for all θ ∈ �∗. This clearly
implies that if x ∈ (0, 1), then c(θ)p(x) ∈ (0, 1). 
�
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Lemma 5.2. If θ0 ∈ �∗, then supn≥0 N (θ0; In) = ∞.

Proof. If supn≥0 N (θ0; In) = N < ∞, then θN ∈ ⋂
n≥0 In = {θc}. 
�

Using this lemma, together with (i i i)n in Proposition 4.2, which holds for each n, and
recalling that α ∈ An for all n, we get the following

Lemma 5.3. If x0 ∈ [1/100, 99/100] and θ0 ∈ �∗\(I0 ∪ (I0 + ω)), then

xk /∈ [1/100, 99/100] and k ≥ 0 ⇒ θk ∈ G∞.

Furthermore, by (i)n , which holds for each n, we get

Lemma 5.4. If θ0 ∈ �∞ and x0, y0 ∈ C, then

|xk − yk | ≤ (3/5)k/2|x0 − y0| for all k > 0; and

xk /∈ C and k ≥ 0 ⇒ θk ∈ G∞.

The next lemma shows that any point (θ, x) ∈ �∗ × (0, 1) “ends up well” after a finite
time.

Lemma 5.5. If θ0 ∈ �∗ and x0 ∈ (0, 1), then there is a t ≥ 0 such that θt ∈ �∞ and
xt ∈ C.

Proof. From Lemma 5.1 we know that xk ∈ (0, 1) for all k ≥ 0. We first show that there
is an s ≥ 0 such that xs ∈ [1/100, 99/100] and θs /∈ I0 ∪ (I0 +ω). There are two cases.

If x0 /∈ [1/100, 99/100], let q > 0 be the smallest integer such that xq ∈ [1/100,
99/100]. Such a q clearly exists since xk ∈ (0, 1) for all k ≥ 0 and since Lemma 2.4
holds. If θq /∈ I0 ∪ (I0 +ω) we are done. If θq ∈ I0 ∪ (I0 +ω), then θq+2 /∈ I0 ∪ (I0 +ω).
Moreover, since xq−1 ∈ (0, 1/100) ∪ (99/100, 1), it follows from Lemma 3.3 that
xq+2 ∈ [1/100, 99/100].

If x0 ∈ [1/100, 99/100] and θ0 ∈ I0 ∪ (I0 + ω), then θ2 /∈ I0 ∪ (I0 + ω). If
x2 ∈ [1/100, 99/100] we are done. Otherwise we proceed as in the previous case.

We have thus shown that there is a s ≥ 0 such that xs ∈ [1/100, 99/100] and
xs /∈ I0 ∪ (I0 + ω). From Lemma 5.3, applied to the point (θs, xs), we hence get

xk /∈ [1/100, 99/100] and k ≥ s ⇒ θk ∈ G∞. (5.2)

Let r ≥ s be such that θr ∈ �∞ − 20ω (this is possible by the definition of �∗). Since
(�∞ − 20ω) ∩ G∞ = ∅ (see the definitions of �∞ and G∞ above), it follows from
(5.2) that xr ∈ [1/100, 99/100]. Moreover, since (�∞ − jω)∩ (I0 ∪ (I0 +ω)) = ∅ for
j ∈ [0, 20], it follows from Lemma 3.2 that xr+20 ∈ C . Thus, letting t = r + 20 finishes
the proof. 
�

We now show that we have control on the contraction.

Lemma 5.6. If θ0 ∈ �∗ and x0, y0 ∈ (0, 1), then

|xk − yk | ≤ const.(θ0, x0, y0)(3/5)
k/2|x0 − y0| for all k > 0.

Furthermore, ∣∣∣∣∂xn

∂x0

∣∣∣∣ ≤ const.(θ0, x0)(3/5)
k/2 for all k > 0.



158 K. Bjerklöv

Proof. From Lemma 5.5 we get integers s, t ≥ 0 such that θs ∈ �∞, xs ∈ C , and
θt ∈ �∞, yt ∈ C . Moreover, from Lemma 5.4 we get the following:

xk /∈ C and k ≥ s ⇒ θk ∈ G∞,
yk /∈ C and k ≥ t ⇒ θk ∈ G∞.

Combining this gives us an r ≥ max{s, t} such that xr , yr ∈ C and θr ∈ �∞. Thus we
can apply Lemma 5.3 and get

|xk − yk | ≤ (3/5)(k−r)/2|xr − yr | for all k > r.

To get the second statement, we see that (we think of xk as a function of xr : xk = xk(xr )

k > r ) ∣∣∣∣∂xk

∂xr

∣∣∣∣ =
∣∣∣∣ lim
h→0

xk(xr + h)− xk(xr )

h

∣∣∣∣ ≤ (3/5)(k−r)/2, k > r,

by Lemma 5.4, since xr ∈ C . This finishes the proof. 
�
In the following lemma we construct the measurable function ψ mentioned in the

Main Theorem.

Lemma 5.7. There is a measurable function ψ : �∗ → (0, 1) such that ψ(θ) = c(θ −
ω)p(ψ(θ − ω)) for all θ ∈ �∗.

Proof. Let ψn(θ) = π2 (�
n(θ − nω, 1/100)). From this we have ψn(θ) = c(θ −

ω)p(ψn−1(θ − ω)). We are going to show that ψn(θ) converges to a number ψ(θ) as
n → ∞ for all θ ∈ �∗. Then the function ψ is measurable, since the functions ψn are
all continuous. Moreover, it is invariant:

ψ(θ) = lim
n→∞ψn(θ) = lim

n→∞ c(θ − ω)p(ψn−1(θ − ω)) = c(θ − ω)p(ψ(θ − ω)).

We are thus left with the proof of the convergence.
Fix θ0 ∈ �∗. Let t > 0 be a big integer such that

θ−t+m ∈ �∞ for m ∈ [0, 20]. (5.3)

Applying Lemma 5.4 to all the points in {θ−t+20} × C implies that

�t−20(θ−t+20,C) ⊂ {θ0} × Jt , (5.4)

where Jt is an interval of length < (3/5)(t−20)/2.
Next, take any n > t + 1 and let x−n = 1/100. This choice of x−n implies that

ψn(θ0) = x0.
If θ−n /∈ I0 ∪ (I0 + ω), it follows from Lemma 5.3 (applied to the point (θ−n, x−n))

that

xk /∈ [1/100, 99/100] and k ≥ −n ⇒ θk ∈ G∞.

Since G∞ ∩�∞ = ∅, we must have that x−t ∈ [1/100, 99/100].
If θ−n ∈ I0 ∪ (I0 +ω), then since x−n = 1/100 we get x−n+2 ∈ [1/100, 99/100] (the

same computation as in the proof of Lemma 3.3). In the same way as above we hence
get that x−t ∈ [1/100, 99/100].
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We thus know that x−t ∈ [1/100, 99/100], and by Lemma 3.2 and (5.3) we get that
θ−t+20 ∈ �∞ and x−t+20 ∈ C . Therefore (5.4) implies that x0 ∈ Jt . This shows that

|ψn(θ0)− ψm(θ0)| ≤ |Jt | < (3/5)(t−20)/2 for all m, n > t + 1.

Since t can be chosen arbitrarily large, we have hence shown that ψn(θ0) is a Cauchy
sequence, and thus there is a ψ(θ0) such that ψn(θ0) → ψ(θ0) as n → ∞. 
�

It remains to prove that the function� is not continuous. That will be guaranteed by
the following lemma.

Lemma 5.8. There exists a set�∗
1 ⊂ �∗ of full Lebesgue measure such that the following

holds. If θ0 ∈ �∗
1 and x0 ∈ (0, 1), then infk≥0 xk = 0.

Proof. We begin by proving the following statement. For any scale n > 0 there holds

θ0 ∈ In − Mnω and x0 ∈ C ⇒ xMn+3 < |In| = (4/5)Kn−1 . (5.5)

To prove this we use (i i)n in Proposition 4.2, which holds for each n. Before we start,
recall that α was fixed as {α} = ⋂

n≥0 An . Fix n > 0 and take θ0 ∈ In − Mnω, x0 ∈ C .
Moreover, let � = (In − Mnω)× {x0} be a horizontal line segment. By applying (i i)n
we get

�Mn+1
a (�) = {(θ, ϕ(θ)) : θ ∈ In + ω} (a ∈ An),

where ϕ : (In + ω) × An → (3/10, 99/100) satisfies λ1/7 < |∂θϕ| < λ2 and |∂aϕ| <
const . Moreover, there is an αn ∈ An ⊂ In +ω such that ϕ(αn, αn) = 1/2. This implies
that

|ϕ(θ, α)− 1/2| = |ϕ(θ, α)− ϕ(αn, αn)|
≤ λ2|θ − αn| + const |α − αn| for all θ ∈ In + ω.

Since α, αn ∈ An ⊂ In + ω and since xMn+1 = ϕ(θMn+1, α), it thus follows that

|xMn+1 − 1/2| < λ3|In|.
From the definition of c, we get a constant c1 > 0 such that c(θ) > 4 − c1λ(θ − α)2 for
all θ sufficiently close to α (see the proof of Lemma 3.1). Since θMn+1, α ∈ In + ω, we
have |θMn+1 − α| ≤ |In|. Moreover, p can be written p(x) = 1/4 − (x − 1/2)2. Thus

xMn+2 = c(θMn+1)p(xMn+1) > (4 − c1λ|In|2)(1/4 − λ6|In|2) > 1 − |In|/4.
This in turn shows that

xMn+3 = c(θMn+2)p(xMn+2) < 4p(1 − |In|/4) = 4p(|In|/4) < |In|.
Next we prove that the set (In − Mnω)∩ Gc∞ has a positive measure for each n. Here

Gc∞ = T\G∞. From (4.17) we have that (In − Mnω) ∩ Gn = ∅, and by definition

G∞ = Gn ∪
∞⋃

i=n+1

3Ki⋃
m=0

(Ii + mω).
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From the estimates in (4.5), it follows that

|In| �
∞∑

i=n+1

(3Ki + 1)|Ii |.

This shows that |(In − Mnω) ∩ Gc∞| > 0.
We now define�∗

1 to be the set of θ ∈ �∗ such that for each n > 0, there are infinitely
many k > 0 such that θ + kω ∈ (In − Mnω)∩ Gc∞. By ergodicity it is clear that this set
has full Lebesgue measure.

To continue, take θ0 ∈ �∗
1 and x0 ∈ (0, 1). Lemma 5.5 gives us a t ≥ 0 such that

θt ∈ �∞ and xt ∈ C . Therefore we can apply Lemma 5.4 and get

xk /∈ C and k ≥ t ⇒ θk ∈ G∞. (5.6)

By the definition of �∗
1, we have that for each scale n > 0, there is a kn > t such

θkn ∈ (In − Mnω) ∩ Gc∞. By (5.6) we must thus have xkn ∈ C , that is, we have
θkn ∈ In − Mnω and xkn ∈ C . Applying (5.5) to each point (θkn , xkn ) finishes the proof.

�
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