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Dedicated to the memory of Alexei Zamolodchikov

Abstract: In this article we unveil a new structure in the space of operators of the XXZ
chain. For each α we consider the space Wα of all quasi-local operators, which are pro-

ducts of the disorder field qα
∑0

j=−∞ σ 3
j with arbitrary local operators. In analogy with

CFT the disorder operator itself is considered as primary field. In our previous paper,
we have introduced the annhilation operators b(ζ ), c(ζ ) which mutually anti-commute
and kill the “primary field”. Here we construct the creation counterpart b∗(ζ ), c∗(ζ )
and prove the canonical anti-commutation relations with the annihilation operators. We
conjecture that the creation operators mutually anti-commute, thereby upgrading the
Grassmann structure to the fermionic structure. The bosonic operator t∗(ζ ) is the gene-
rating function of the adjoint action by local integrals of motion, and commutes entirely
with the fermionic creation and annihilation operators. Operators b∗(ζ ), c∗(ζ ), t∗(ζ )
create quasi-local operators starting from the primary field. We show that the ground
state averages of quasi-local operators created in this way are given by determinants.

1. Introduction

The present paper is a continuation of our previous article [1]. We consider the infinite
XXZ spin chain with the Hamiltonian

HXXZ = 1
2

∞∑
k=−∞

(
σ 1

k σ
1
k+1 + σ 2

k σ
2
k+1 +�σ 3

k σ
3
k+1

)
, � = 1

2 (q + q−1), (1.1)
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where σ a (a = 1, 2, 3) are the Pauli matrices. In this paper we shall mostly consider the
critical regime where q = eπ iν , ν ∈ R.

Let us recall briefly the main definitions and results of the paper [1]. Consider the
vacuum expectation values (VEVs)

〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉 , (1.2)

where S(k) = 1
2

∑k
j=−∞ σ 3

j , and O is a local operator (an operator localized on a finite

portion of the chain). We call X = q2αS(0)O a quasi-local operator with tail α. In other

words, an operator X is quasi-local if there exist k ≤ l such that X stabilizes as qασ
3
j for

j < k and as the identity I j for j > l. The length of X is defined to be the minimum
of l − k + 1. The spin of X is the eigenvalue of S = [S, ·], where S = S(∞) is the total
spin. It will be helpful to think of the operator q2αS(0) as a lattice analog of the primary
field in CFT.

Denote by Wα the space of all quasi-local operators with tail α, and by Wα,s the
subspace of those with spin s. Let us introduce the following formal object:

W =
⊕

α∈C

Wα. (1.3)

We introduce also the operator α on W which acts as α times the identity on each
summand Wα .

In [1] we have defined anti-commuting one-parameter families of operators b(ζ ),
c(ζ ) acting on W. For reasons which will be clear later, we shall call them annihilation
operators. The annihilation operators have the following block structure:

b(ζ ) : Wα−1,s+1 → Wα,s, c(ζ ) : Wα+1,s−1 → Wα,s .

Clearly they commute with α + S. All other operators considered in this paper have this
property. Hence, in the actual working, we shall restrict ourselves to each eigenspace of
α + S with fixed eigenvalue α ∈ C,

W(α) =
∞⊕

s=−∞
Wα−s,s .

As we have said, b(ζ ), c(ζ ) are two completely anti-commuting families of operators:

[b(ζ1),b(ζ2)]+ = [b(ζ1), c(ζ2)]+ = [c(ζ1), c(ζ2)]+ = 0.

The annihilation operators have the following structure as functions of the spectral
parameter:

b(ζ ) = ζ−α−S

⎛

⎝b0 +
∞∑

p=1

(ζ 2 − 1)−pbp

⎞

⎠ , c(ζ ) = ζα+S
(
c0 +

∞∑

p=1

(ζ 2 − 1)−pcp
)
.

Here the operators b0 and c0 are written separately because they are not independent of bp
and cp with p > 0, and do not enter the final formulae. Besides the anti-commutativity,
the most important property of the annihilation operators bp, cp (p > 0) is:

bp
(
X
) = 0, cp

(
X
) = 0 for p > length

(
X
)
. (1.4)
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In particular they vanish on the ‘primary fields’ q2αS(0) (and their translations) whose
length equals zero. The property (1.4) explains the name ‘annihilation operators’: every
monomial of bp, cp of degree larger than 2 length(X) vanishes on X .

The main result of [1] is the following formula. Introduce the linear functional on
Wα ,

trα(X) = · · · trα1 trα2 trα3 · · · (X),
where we set for x ∈ End(C2),

trα(x) = tr
(
q− 1

2ασ
3
x
)
/tr
(
q− 1

2ασ
3)
.

Then the VEV is expressed as

〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉 = trα

(
e�
(

q2αS(0)O
))
, (1.5)

where � is an operator acting on W(α), 1

� = resζ 2
1 =1resζ 2

2 =1

(

ω (ζ1/ζ2, α) b(ζ1)c(ζ2)
dζ 2

1

ζ 2
1

dζ 2
2

ζ 2
2

)

,

and

ω(ζ, α) = ωtrans(ζ, α)− 4qα

(1 − qα)2
ω0(ζ, α)

is a scalar function. For future convenience ω(ζ, α) is split into two pieces, the trans-
cendental part and the elementary part. The trancendental part is given by

ωtrans(ζ, α) = P

i∞∫

−i∞
ζ u+α sin π

2 (u − ν(u + α))

sin π
2 u cos πν2 (u + α)

du.

The elementary part is defined by

ω0(ζ, α) = −
(

1 − qα

1 + qα

)2

�ζ (ψ(ζ, α)) , (1.6)

where we introduced two important notations:

�ζ ( f (ζ )) = f (ζq)− f (ζq−1), ψ(ζ, α) = ζ α
ζ 2 + 1

2(ζ 2 − 1)
.

In the present paper we complete the construction of [1] introducing the creation
operators. Along with the homogeneous chain described by the Hamiltonian (1.1), we
consider also the inhomogeneous one. The latter case is often very useful, but in this
Introduction we shall deal only with the homogeneous case which has a clearer physical
meaning.

1 We change slightly the normalization of b, c from [1], but � remains unchanged.
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The creation operators must generate the entire space W(α) from the primary field
q2αS(0), and must have nice commutation relations with the annihilation operators.
Obvious examples of this sort were discussed in [1]. First, there are the operators τ
(τ−1) of right (left) shift along the chain which change neither the length of quasi-local
operators nor their VEVs. Second, there is the adjoint action of local integrals of motion
on W(α). By this adjoint action, we do create operators with larger length from a given
quasi-local operator. However, their VEVs vanish for a clear reason. These facts are
consistent with the right-hand side of (1.5), for, as has been explained in [1], τ±1 and the
adjoint action of local integrals of motion commute with b, c as well as q−αS which enters
the definition of trα . The first creation operator which we shall describe in this paper
is t∗(ζ ), the adjoint action of the usual transfer matrix. In other words, log(τ−1t∗(ζ ))
is the generating function for the adjoint action of local integrals of motion. Obviously
t∗(ζ ) is block diagonal:

t∗(ζ ) : Wα,s → Wα,s .

This operator satisfies the commutation relations

[t∗(ζ1), t∗(ζ2)] = 0, [t∗(ζ1),b(ζ2)] = [t∗(ζ1), c(ζ2)] = 0,

and has the expansion in ζ 2 − 1,

t∗(ζ ) =
∞∑

p=1

(ζ 2 − 1)p−1t∗p,

where t∗1 = 2τ . The operators t∗p satisfy the main property of our creation operators:
they increase the length of operators, but do this in a controllable way, namely

length
(

t∗p(X)
)

≤ length (X) + p.

Now we come to the description of the main part of our construction. We define the
operators b∗(ζ ), c∗(ζ ) acting on W with the following block structure:

b∗(ζ ) : Wα+1,s−1 → Wα,s, c∗(ζ ) : Wα−1,s+1 → Wα,s,

and the dependence on ζ :

b∗(ζ ) = ζα+S+2
∞∑

p=1

(ζ 2 − 1)p−1b∗
p, c∗(ζ ) = ζ−α−S−2

∞∑

p=1

(ζ 2 − 1)p−1c∗
p.

The definition of the annihilation operators is a result of a long chain of transforma-
tions from the multiple integral formulae for VEV [5]. In contrast, the way we define the
creation operators cannot be explained absolutely logically. Their definition is a result of
many experiments, mistakes, dead ends, etc. Even after the correct operators have been
found, the proof of their properties took some time. The first property explains that the
operators b∗(ζ ), c∗(ζ ) are creation operators acting on W:

length
(
b∗

p

(
X
)) ≤ length

(
X
)

+ p, (1.7)

length
(
c∗

p

(
X
)) ≤ length

(
X
)

+ p.
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The second property is the commutation relations with the annihilation operators:

[b(ζ1), c∗(ζ2)]+ = [c(ζ1),b∗(ζ2)]+ = 0,

[b(ζ1),b∗(ζ2)]+ = −ψ(ζ2/ζ1,α + S), (1.8)

[c(ζ1), c∗(ζ2)]+ = ψ(ζ1/ζ2,α + S).

The third property consists in the following fact:

trα
(
e�0 b∗(ζ )(q2(α+1)S(0)O1)

) = 0, trα
(
e�0 c∗(ζ )(q2(α−1)S(0)O2)

) = 0, (1.9)

where O1, O2 have respectively spins −1 and 1,

�0 = resζ 2
1 =1resζ 2

2 =1

(

ω0 (ζ1/ζ2, α) b(ζ1)c(ζ2)
dζ 2

1

ζ 2
1

dζ 2
2

ζ 2
2

)

,

and ω0 is the simple function defined in (1.6). Let us restrict our considerations to W(α).
The primary field q2αS(0) is in the common kernel of the annihilation operators and plays
the role of the ‘right vacuum’. On the other hand, the linear functional vα on W(α) given
by

vα( · ) = trα
(
e�0( · ))

plays the role of the ‘left vacuum’: it vanishes on the image of creation operators.
Starting from the primary field q2αS(0), let us define inductively quasi-local operators

X ε1...εk (ζ1, . . . , ζk;α) =

⎧
⎪⎨

⎪⎩

b∗(ζk)X ε1...εk−1(ζ1, . . . , ζk−1;α) (εk = +),
c∗(ζk)(−1)S X ε1...εk−1(ζ1, . . . , ζk−1;α) (εk = −),
1
2 t∗(ζk)X ε1...εk−1(ζ1, . . . , ζk−1;α) (εk = 0).

Actually, X ε1...εn (ζ1, . . . , ζn, α) is rather a generating function of quasi-local operators:

X ε1···εn (ζ1, . . . , ζn;α) =
∏

ζ
ε jα

j

∑

p1,...,pn

(ζ 2
1 − 1)p1−1 · · · (ζ 2

n − 1)pn−1 X ε1···εn
p1,...,pn

(α),

where the coefficients X ε1,...,εn
p1,...,pn (α) are quasi-local operators from Wα−s,s , with

s = #( j : ε j = +)− #( j : ε j = −). Rewriting the formula (1.5) as

〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉 = vα

(
e�−�0

(
q2αS(0)O

))
, (1.10)

we get immediately

〈vac|X ε1...εn (ζ1, . . . , ζn, α)|vac〉
〈vac|q2αS(0)|vac〉 = det

(
(ω − ω0)(ζ j+

p
/ζ j−q , α)

)

p,q=1,...,l,

where j+
1 < · · · < j+

l are the indices with ε j+
p

= + and j−1 < · · · < j−l are those with
ε j−p = −.

At the moment we do not have a proof of the completeness of X ε1···εn (ζ1, . . . , ζn, α)

in W(α), but we conjecture that it holds. This conjecture is supported by the consideration
of the inhomogeneous case, for which completeness is easy to prove.
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Let us comment on the commutation relations of the creation operators. We prove
that

[t∗(ζ1),b∗(ζ2)] = [t∗(ζ1), c∗(ζ2)] = 0.

These commutation relations are crucial for our construction: they show that the fer-
mionic operators commute completely with the adjoint action of the local integrals of
motion.

We do not prove, but only conjecture, the remaining commutation relations:

[b∗(ζ1),b∗(ζ2)]+ = [b∗(ζ1), c∗(ζ2)]+ = [c∗(ζ1), c∗(ζ2)]+ = 0. (1.11)

We already know from our construction that these commutation relations hold in a weak
sense, i.e., when we consider pairings with elements of the subspace of W(α)∗ created
from vα by right action of the annihilation operators. This is enough for our goals. So,
we decided to leave the direct proof of (1.11) for future work. We think that the reader
will forgive this after passing through the extremely complicated calculation of Sect. 4
devoted to the commutation relations. Nevertheless, computer experiments suggest that
(1.11) hold generally.

In summary, we have fermions which are (conjecturally) completely canonical, and
the (adjoint) integrals of motion commuting with them. It would be very interesting to
find the conjugate operators for the latter. When all this has been done, we would have a
novel description of the space of quasi-local operators: it is simply the tensor product of
Fock spaces of fermions and bosons. For the descendant operators created by the latter,
the VEV’s can be computed as in free theory. Hence it is important to know how to
express a given quasi-local operator in terms of these descendants. This remains a major
open problem.

Finally let us comment on the paper by Bazhanov-Lukyanov-Zamolodchikov [3]. It
contains besides deep analytic conjectures a remarkable algebraic construction. Namely
these authors relate Baxter’s Q-operators to transfer matrices constructed via the
q-oscillator representation of the Borel subalgebra of the quantum affine algebra Uq (ŝl2).
The BLZ treatment of the q-oscillator representation is a cornerstone of our algebraic
construction. Unlike the usual considerations, however, we introduce operators not on
the space of states but rather on the space of quasi-local operators. So our philosophy
is closer to that of CFT than to the usual approach of QFT. In order to define such
operators, we use transfer matrices in the adjoint representation. Our main message is
that a correct understanding of the q-oscillator transfer matrices allows one to define
fermionic operators in addition to the usual commutative families of Q-operators. In
a recent work [4], it is conjectured and checked on examples that at least in the limit
α → 0 the same creation-annihilation operators describe the thermal averages, only the
function ω(ζ, α) becomes dependent on the temperature. This suggests the universal
character of our algebraic construction.

The plan of the paper is as follows.
In Sect. 2 we introduce our notation. Working with a fixed interval [k, l], we define

various transfer matrices acting on the space of local operators and state their basic
properties. These operators typically have poles at ζ 2 = ξ2

j and/or ζ 2 = q±2ξ2
j , where

ξ j ’s are the inhomogeneity parameters. On the basis of this pole structure, we then define
the annihilation and creation operators on [k, l].

When the interval [k, l] is extended to the left as [k′, l] (k′ < k), operators on the larger
interval are simply related to those on the smaller. On the other hand, extension to the right
[k, l ′] (l ′ > k) is non-trivial. We call these (the left and right) reduction relations and study
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them in Sect. 3. Using the reduction relations, we extend the operators in Sect. 2 to those
on the space of operators on the whole infinite chain. While the annihilation operators c,
c̄, b, b̄ are defined in the same way both for homogeneous and inhomogeneous chains,
the creation operators need to be treated separately. We explain the difference of the
construction first in the simpler case of t∗, and then proceed to b∗, c∗.

In Sect. 4, we study the commutation relations. We shall mainly discuss homogeneous
chains. We show that t∗ commutes with creation and annihilation operators, and that the
annihilation operators c, c̄, b, b̄ mutually anti-commute. Proof of the anti-commutation
relations between creation and annihilation operators is technically quite involved, and
occupies a substantial part of the section. The main results are Theorems 4.7, 4.11. The
commutation relations between creation operators remain as conjecture. We prove the
simplest case between t∗ and b∗, c∗ in Theorem 4.12. Results about the inhomogeneous
case are stated as Theorem 4.14 at the end of the section.

We use these results to construct a fermionic basis in Sect. 5, and evaluate their
VEV’s. The determinant formula for VEV’s is given as Theorem 5.4, 5.7.

The text is followed by 4 appendices. In Appendix A we collect some necessary
facts concerning the quantum affine algebra Uq(ŝl2) and R matrices. In Appendix B
we give a proof of a technical lemma in Sect. 3. When we deal with the q oscillator
representations, one of the technical complications is that the R matrix does not exist
for the tensor product W + and W − (see Appendix A for the notation). We explain in
Appendix C that the original BLZ construction offers a way around, and deduce exchange
relations of monodromy matrices under the trace which are used in the main text. The
definition of the annihilation operators adopted in this paper slightly differs from the
one in the previous work [1,2]. In Appendix D, we give the precise connection between
the two.

This paper is dedicated to the memory of Alexei Zamolodchikov. His premature
death was a great shock for all of us. Aliosha, thinking about you, generosity is the word
which comes to our mind. You had a great talent, which you shared with the scientific
community, and at the same time you were a kind and open man. This is how we shall
always remember you.

2. Creation and Annihilation Operators in Finite Intervals

In this section we introduce various operators which act on the space of linear operators on
a finite tensor product of C

2. In subsequent sections, we will study their basic properties,
such as the reduction and commutation relations, and compute the expectation values of
their products.

2.1. Twisted transfer matrices. First, let us explain the basic construction in a general
setting using the representation theory of Uq ŝl2. We fix q ∈ C, which is not a root of
unity. We leave some details on the representation theory to Appendix A.

We use the universal R matrix R for the quantum affine algebra Uq ŝl2. Set R′ :=
R ·qc⊗d+d⊗c ∈ Uqb+ ⊗Uqb−. The Borel subalgebra Uqb+ is generated by e0, e1, t0, t1,
and Uqb− by f0, f1, t0, t1. In this paper, we consider the level zero case where c = 0.
Take two representations, πaux : Uqb+ → End(Vaux) and πqua : Uqb− → End(Vqua).
The former is called the ‘auxiliary’ space and the latter the ‘quantum’ space. Set

LVaux⊗Vqua := (πaux ⊗ πqua)(R
′).
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This is called the L operator. The most basic property of the L operator is the
commutativity

[qπaux(h1) ⊗ qπqua(h1), LVaux⊗Vqua ] = 0. (2.1)

For X ∈ End(Vqua), set

tVqua (α)(X) := traceVaux

{
LVaux⊗Vqua ·

(
qαπaux(h1) ⊗ X

)
· (LVaux⊗Vqua

)−1
}
. (2.2)

We thus obtain an operator acting on the space of operators on the quantum space. We
call this operator the twisted transfer matrix. This is different from the usual setting
where the transfer matrix is acting on the quantum space itself.

Now, we specify our auxiliary and quantum spaces. Let V be a two-dimensional
vector space over C(qα), where qα is a formal variable. The reason for introducing qα

is clear from (2.2).
Fixing a basis of V , we identify M = End(V ) with the algebra of 2 × 2 matrices.

With each j ∈ Z we associate Vj 
 V , M j 
 M and ξ j ∈ C
×. The tensor product

⊗ j∈ZVj with the ‘inhomogeneity’ parameters ξ j is called the inhomogeneous chain. The
parameter ξ j is used to specify the action of U ′

q ŝl2 on Vj . This point will be explained
shortly.

For each finite interval [k, l] ⊂ Z, we denote by

M[k,l] := Mk ⊗ · · · ⊗ Ml (2.3)

the space of operators in the interval [k, l]. This is the space on which the twisted transfer
matrices act when Vqua = Vk ⊗ · · · ⊗ Vl is chosen.

We define an action of Uqb− on V :

π
(1)
ζ = π(1) ◦ evζ : Uqb− → M,

where the notation is explained in Appendix A. We use ζ = ξ j for Vj .
Let us fix the notation for L operators. We shall consider two kinds of auxiliary

spaces: representations of U ′
qsl2 and representations of the q-oscillator algebra Osc.

Let Ma be a copy of M . We set

La, j (ζ/ξ) := (π
(1)
ζ ⊗ π

(1)
ξ )R′ ∈ Ma ⊗ M j .

We have

La, j (ζ ) = ρ(ζ )L◦
a, j (ζ ),

where L◦
a, j (ζ ) is the standard trigonometric R matrix,

L◦
a, j (ζ ) :=

⎛

⎜
⎝

1 0 0 0
0 β(ζ ) γ (ζ ) 0
0 γ (ζ ) β(ζ ) 0
0 0 0 1

⎞

⎟
⎠ , (2.4)

β(ζ ) := ζ − ζ−1

qζ − q−1ζ−1 , γ (ζ ) := q − q−1

qζ − q−1ζ−1 .

The inverse of L◦
a, j (ζ ) is given by L◦

a, j (ζ )
−1 = L◦

a, j (ζ
−1).
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See Appendix A, (A.2) for the normalization factor ρ(ζ ). We also use the notation
R j1, j2(ζ ) := L◦

j1, j2
(ζ ) especially when both of the tensor components are from the

inhomogeneous chain. This occurs when we specialize the spectral parameter ζ of the
auxiliary space to ξ j .

The q-oscillator algebra Osc is also defined over C(qα). It has the generators
a, a∗, q±D and the relations

q Da q−D = q−1a, q Da∗q−D = q a∗, a a∗ = 1 − q2D+2, a∗a = 1 − q2D.

We have a homomorphism oζ : Uqb+ → Osc given by

oζ (e0)= ζ

q − q−1 a, oζ (e1)= ζ

q − q−1 a∗, oζ (t0)=q−2D, oζ (t1) = q2D . (2.5)

Let OscA be a copy of Osc. We set

L A, j (ζ/ξ) := (
oζ ⊗ πξ

)
R′ ∈ OscA ⊗ M j . (2.6)

We have

L A, j (ζ ) = σ(ζ )L◦
A, j (ζ ), (2.7)

where

L◦
A, j (ζ ) :=

(
1 − ζ 2q2DA+2 −ζaA

−ζa∗
A 1

)

j

(
q−DA 0

0 q DA

)

j
, (2.8)

L◦
A, j (ζ )

−1 := 1

1 − ζ 2

(
q DA 0

0 q−DA

)

j

(
1 ζaA

ζa∗
A 1 − ζ 2q2DA

)

j
. (2.9)

We consider two representations W ± of Osc, but we do not use them before Sect. 4.
See Appendix A for their definitions.

In what follows, we shall use indices a, b, . . . as labels for M or its representation V ,
and A, B, . . . for Osc or its representations W ±. They are the auxiliary space indices. We
use the indices j, k, . . . for the quantum spaces, the components of the inhomogeneous
chain.

Here we make some notational principles on suffixes. We denote by X[k,l],Y[k,l], . . .
operators which belong to M[k,l]. We denote by xa, ya, . . . , 2×2 matrices which belong
to Va . We use also La, j , TA,[k,l], etc. They are some special operators which belong to
Ma ⊗ M j , OscA ⊗ M[k,l], etc. We do not drop suffixes in these cases.

In Sect. 3 we introduce the spaces of operators Wα , W(α), etc., for which k = −∞
and l = ∞. We denote by X,Y, . . . operators which belong to these spaces, without
putting suffixes.

We denote by boldface letters b, c, . . . or ‘blackboard boldface’ letters T,S, . . . the
operators acting on the spaces Ma , OscA, M[k,l], etc. We also put suffixes a, A, [k, l]
indicating the spaces on which they act. However, if they are written with operands in
quantum spaces, say, X[k,l], we may drop the suffix [k, l] from these operators. There
are two exceptions for this rule: if the interval for the operand is larger than that of the
operator (this happens when we divide the latter in two parts), we do not drop the suffix
in the latter; if an operator x[k,l] acts on X[k,m]id[m+1,l], where id[m+1,l] ∈ M[m+1,l] is the
identity operator, we write x[k,l](X[k,m]) to mean x(X[k,m]id[m+1,l]). We do not drop the
suffixes for auxiliary spaces.
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We stop talking just about notations. Now we define the twisted transfer matrices on
M[k,l]. When we choose Va as the auxiliary space the twisted transfer matrix (2.2) is
written as

t∗(ζ, α)(X[k,l]) := Tra
[
Ta(ζ, α)(X[k,l])

]
,

Ta(ζ, α)(X[k,l]) := Ta,[k,l](ζ )qασ
3
a X[k,l]Ta,[k,l](ζ )−1,

Ta,[k,l](ζ ) := La,l(ζ/ξl) · · · La,k(ζ/ξk),

where X[k,l] ∈ M[k,l]. Here Tra : Ma → C(qα) is defined by the usual trace on the two
dimensional space. Later we use the notation

La, j (ζ/ξ j )(X[k,l]) := La, j (ζ/ξ j ) · X[k,l] · La, j (ζ/ξ j )
−1. (2.10)

Here we take X[k,l] ∈ Ma ⊗ M[k,l]. In other words, the operator La, j belongs to
End(Ma)⊗ End(M[k,l]). It is not considered as an element of Ma ⊗ End(M[k,l]). The-
refore, we have

Ta(ζ, α)(X[k,l]) = La,l(ζ/ξl) · · · La,k(ζ/ξk)(q
ασ 3

a X[k,l])

for X[k,l] ∈ M[k,l]. We set Ta,[k,l](ζ ) := Ta,[k,l](ζ, 0). Notice that La, j (ζ ) has poles at
ζ 2 = q±2.

Products of L operators such as Ta,[k,l](ζ ) are called monodromy matrices. The
twisted transfer matrix t∗[k,l](ζ, α) is essentially the trace of the adjoint action of the
monodromy matix Ta,[k,l](ζ ). We note that the choice of the normalization factor ρ(ζ )
is irrelevant for the adjoint action, though in some calculations the properties of the
universal R matrix help us.

Define the total spin operator S[k,l] ∈ End(M[k,l]) by

S(X[k,l]) := [S[k,l], X[k,l]], S[k,l] := 1
2

∑
j∈[k,l] σ 3

j .

We say an operator X[k,l] is of spin s if and only if

S(X[k,l]) = s X[k,l]. (2.11)

When a representation of OscA is used for the auxiliary space, we modify (2.2) by
insertion of ζ α−S[k,l] and the left multiplication by q−2S[k,l] :

q(ζ, α)(X[k,l]) := TrA

[
TA(ζ, α)ζ

α−S(q−2S[k,l] X[k,l])
]
, (2.12)

TA(ζ, α)(X[k,l]) := TA,[k,l](ζ )
(

q2αDA X[k,l]
)

TA,[k,l](ζ )−1, (2.13)

TA,[k,l](ζ ) := L A,l(ζ/ξl) · · · L A,k(ζ/ξk), (2.14)

where X[k,l] ∈ M[k,l]. Here the trace TrA : q2αDA OscA → C(qα) is defined in
Appendix A. We define the operator LA, j (ζ ) like in (2.10), it has a pole at ζ 2 = 1.

The reason for putting ζ α−S[k,l] in the definition of q[k,l](ζ, α) is that with this insertion
the Baxter equation looks nicer:

q[k,l](qζ, α) + q[k,l](q−1ζ, α)− t∗[k,l](ζ, α)q[k,l](ζ, α) = 0. (2.15)

The reason for the insertion of q−2S[k,l] can be understood only when we discuss the
reduction relation in Sect. 3.
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2.2. R matrix symmetry and spin selection rule. By construction, it is obvious that t∗[k,l]
enjoys the R matrix symmetry

si t∗[k,l](ζ, α) = t∗[k,l](ζ, α) si . (2.16)

Here

si := Ki,i+1Ři,i+1(ξi/ξi+1),

Ři,i+1(ξi/ξi+1)(X) := Ři,i+1(ξi/ξi+1)X Ři,i+1(ξi/ξi+1)
−1,

Ři,i+1(ζ ) := Pi,i+1 Ri,i+1(ζ ),

where Ki, j stands for the transposition of arguments ξi and ξ j , and Pi, j ∈ End(Vi ⊗ Vj )

for that of vectors.
A similar remark applies to q[k,l] and other operators which will appear in

Subsect. 2.4, so we will not repeat it.
Another general remark is on the spin selection rules. Our operators t∗[k,l], q[k,l] as

well as those which will be introduced in later subsections satisfy spin selection rules in
the following sense.

We say an operator x[k,l] ∈ End(M[k,l]) has spin s if

[S[k,l], x[k,l]] = sx[k,l].

If x[k,l] has spin s, we denote s(x) = s. If an operator X[k,l] ∈ M[k,l] has spin s, the
operator x(X[k,l]) ∈ M[k,l] has spin s + s(x). We have

s(t∗) = 0, s(q) = 0.

For convenience sake we list s(x) for those x which will be introduced in the following
sections.

s(x) =
{

1 if x = k, f, c, c̄,b∗;
−1 if x = b, b̄, c∗. (2.17)

2.3. Spin reversal transformation. The operator t∗[k,l](ζ, α) is invariant under the spin
reversal coupled to the change of α to −α. However, the other operators q[k,l](ζ, α),
k[k,l](ζ, α) are not. We can introduce new operators by such a transformation. Let us
define the transformation.

For X[k,l] ∈ M[k,l] we define

J(X[k,l]) :=
∏

j∈[k,l]
σ 1

j · X[k,l] ·
∏

j∈[k,l]
σ 1

j .

Then we have

J[k,l] ◦ t∗[k,l](ζ,−α) ◦ J[k,l] = t∗[k,l](ζ, α).

Set

N (x) := q−x − qx . (2.18)
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For an operator x[k,l](ζ, α) ∈ End(M[k,l]) we define the transformation by

φα(x[k,l](ζ, α)) := q−1 N (α − S[k,l] − 1) ◦ J[k,l] ◦ x[k,l](ζ,−α) ◦ J[k,l].

We use φ(x) for the operator symbol of the operator φα(x[k,l](ζ, α)):

φ(x)[k,l](ζ, α) := φα(x[k,l](ζ, α)).

The second solution to the Baxter equation

x[k,l](qζ, α) + x[k,l](q−1ζ, α)− t∗[k,l](ζ, α)x[k,l](ζ, α) = 0

is given by φ(q)[k,l](ζ, α). The convenience of the normalization factor q−1 N (α −
S[k,l]−1)will be understood when we discuss the commutation relations of our operators.

2.4. Fusion relation and off-diagonal transfer matrix. The product of La, j (ζ ) and
L A, j (ζ ) can be brought into a triangular matrix in Ma ,

L{a,A}, j (ζ ) := (Fa,A)
−1La, j (ζ )L A, j (ζ )Fa,A

=
(

1 0
γ (ζ )
β(ζ )

σ +
j 1

)

a

(
L A, j (qζ )q

−σ 3
j /2 0

0 L A, j (q−1ζ )qσ
3
j /2

)

a

, (2.19)

where Fa,A = 1 − aAσ
+
a . This is called the fusion relation. The monodromy matrix is

triangular,

T{a,A},[k,l](ζ ) := L{a,A},l(ζ/ξl) · · · L{a,A},k(ζ/ξk) =
(

AA,[k,l](ζ ) 0
CA,[k,l](ζ ) DA,[k,l](ζ )

)

,

AA,[k,l](ζ ) = TA,[k,l](qζ )q−S[k,l] , DA,[k,l](ζ ) = TA,[k,l](q−1ζ )q S[k,l] .

The triangular structure descends to the adjoint action if the operand X[k,l] commutes
with Fa,A (it does if X[k,l] ∈ M[k,l]):

T{a,A}(ζ, α)(X[k,l]) := (Fa,A)
−1 (

Ta(ζ, α)TA(ζ, α)(X[k,l])
)

Fa,A

=
(

AA(ζ, α)(X[k,l]) 0
CA(ζ, α)(X[k,l]) DA(ζ, α)(X[k,l])

)

a
, (2.20)

where

AA(ζ, α)(X[k,l]) = TA(qζ, α)q
α−S(X[k,l]), (2.21)

DA(ζ, α)(X[k,l]) = TA(q
−1ζ, α)q−α+S(X[k,l]). (2.22)

The Baxter relation (2.15) follows from the diagonal part, AA,[k,m](ζ, α) and
DA,[k,m](ζ, α) of this relation. They have no poles at ζ 2 = ξ2

j , while the off-diagonal
part CA,[k,l](ζ, α) does. Now we use the latter. Namely, the following object will be
basic for the construction of various other operators. For X[k,l] ∈ M[k,l] we define

k(ζ, α)(X[k,l]) := TrA

{
CA(ζ, α)ζ

α−S
(
q−2S[k,l] X[k,l]

)}
. (2.23)

Since [Fa,A, σ
+
a ] = 0, we have

k(ζ, α)(X[k,l]) = TrA,a

{
σ +

a Ta(ζ, α)TA(ζ, α)ζ
α−S(q−2S[k,l] X[k,l])

}
.
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2.5. Analytic structure of the twisted transfer matrices. In order to read the behavior of
the operators t∗[k,l](ζ, α), q[k,l](ζ, α) and k[k,l](ζ, α) in ζ , it is useful to rewrite (2.23) by
using

L̃◦
a, j (ζ

2) := ζ
−σ 3

j /2 L◦
a, j (ζ )ζ

σ 3
j /2,

L̃◦
A, j (ζ

2) := ζ
−σ 3

j /2−1L◦
A, j (ζ )ζ

−σ 3
j /2.

Note that the second line is not a similarity transformation. The matrices L̃◦
a, j (ζ

2)

and L̃◦
a, j (ζ

2)−1 are rational functions in ζ 2; in the finite plane, they have poles only
at ζ 2 = q−2 or ζ 2 = q2, respectively. At ζ 2 = ∞, they are regular and upper trian-

gular in Ma . The operators L◦
A, j (ζ ) and (1 − ζ 2)

(
L◦

A, j (ζ )
)−1

are polynomials in ζ .

The modified operators L̃◦
A, j (ζ

2) and L̃◦
A, j (ζ

2)−1 are rational functions in ζ 2. In C
×,

L̃◦
A, j (ζ

2) has no pole, and L̃◦
A, j (ζ

2)−1 has poles only at ζ 2 = 1. At ζ 2 = ∞, they are

regular. We denote by T̃a,[k,l](ζ 2, α), T̃A,[k,l](ζ 2, α) the modifications of Ta,[k,l](ζ, α),
TA,[k,l](ζ, α), where La,[k,l](ζ/ξ j ), L A,[k,l](ζ/ξ j ) are replaced with L̃◦

a,[k,l](ζ 2/ξ2
j ),

L̃◦
A,[k,l](ζ 2/ξ2

j ), respectively. Namely, we have

Ta(ζ, α)(X[k,l]) = ζS
G

−1
T̃a(ζ

2, α)ζ−S
G(X[k,l]),

TA(ζ, α)(X[k,l]) = ζS
G

−1
T̃A(ζ

2, α)ζS
G

−1(X[k,l]),

where G(X[k,l]) = G[k,l] X[k,l]G−1
[k,l], G[k,l] = ∏

j∈[k,l] ξ
σ 3

j /2

j . They are rational func-

tions of ζ 2, and the poles in C
× are only at ζ 2 = q±2ξ2

j and ζ 2 = ξ2
j , respectively.

The operator t∗[k,l](ζ, α) is a rational function in ζ 2. Its singularities in the finite plane

are poles at ζ 2 = q±2ξ2
j . It is regular at ζ 2 = ∞. The operator q[k,l](ζ, α) has an overall

factor ζ α . If X[k,l] is of spin s, ζ−α+sq(ζ, α)(X[k,l]) is a rational function in ζ 2. Its poles
in the finite plane are at ζ 2 = ξ2

j , and ζ−α−sq(ζ, α)(X[k,l]) is regular at ζ 2 = ∞.
Set

TrA,a := TrATra .

In later sections we will use similar notations such as TrA,B,a,b,c, etc. The behavior of
k[k,l](ζ, α) easily follows from

k(ζ, α)(X[k,l]) = ζ α+s+1
G

−1TrA,a

{
σ +

a T̃a(ζ
2, α)T̃A(ζ

2, α)G−1(q−2S[k,l] X[k,l])
}
.

If X[k,l] is of spin s, ζ−α+s−1k(ζ, α)(X[k,l]) is a rational function in ζ 2. Its singularities
in the finite plane are poles at ζ 2 = ξ2

j , q±2ξ2
j , and ζ−α−s+1k(ζ, α)(X[k,l]) is regular at

ζ 2 = ∞.
Hereafter we assume ξ2

i = q2ξ2
j , q4ξ2

j (i, j ∈ [k, l]), so that the three series of

poles in k[k,l](ζ, α) have no intersection. On the other hand, we do not require ξ2
i = ξ2

j
(i = j) unless otherwise stated. Our construction goes as well for the homogeneous
chain as the inhomogeneous chain.
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2.6. q-exact forms, cycles and primitives. Later we shall extract three kinds of operators
out of the operator k[k,l](ζ, α). In this subsection we motivate this construction. The key
is its analytic structure in ζ : the poles are located in three series ζ 2 = ξ2

j , q±2ξ2
j .

Let �ζ denote the q-difference operator with respect to the variable ζ :

�ζ f (ζ ) := f (qζ )− f (q−1ζ ).

In Sect. 4 we will establish the commutation relations of the form

k[k,l](ζ1, α)k[k,l](ζ2, α + 1) + k[k,l](ζ2, α)k[k,l](ζ1, α + 1)

= �ζ1 m(++)
[k,l](ζ1, ζ2, α) +�ζ2 m(++)

[k,l](ζ2, ζ1, α),

k[k,l](ζ1, α)φ(k)[k,l](ζ2, α + 1) + φ(k)[k,l](ζ2, α)k[k,l](ζ1, α − 1)

= �ζ1 m(+−)
[k,l] (ζ1, ζ2, α) +�ζ2 m(−+)

[k,l] (ζ2, ζ1, α).

The right-hand sides of these relations are ‘q-exact 2 forms’. Let us consider an analogy
in differential calculus. If we have an exact 1 form d f (ζ ), its integral over a cycle C is
zero,

∫

C
d f (ζ ) = 0,

and the function f (ζ ) is called the primitive integral.
In the context of our working, we call an operator of the form g[k,l](ζ, α) = �ζh[k,l]

(ζ, α) a q-exact 1 form if h[k,l](ζ, α) = ζ α+S
(

f[k,l](ζ 2)
)
, and f[k,l](ζ 2) is a rational

function in ζ 2 whose poles in C
× are only at ζ 2 = ξ2

j for j ∈ [k, l]. We call h[k,l](ζ, α)
a q-primitive integral of g[k,l](ζ, α) and denote it by �−1

ζ g[k,l](ζ, α). We can take two

kinds of cycles C = C j , C̃ j on which the integrals are zero. The first kind of cycles
C j are ones which encircle the point ζ 2 = ξ2

j , and the second kind C̃ j are those which

encircle two points ζ 2 = q2ξ2
j and ζ 2 = q−2ξ2

j . The integral
∫

C j
g[k,l](ζ, α) dζ 2

ζ 2 is zero

because there is no pole at ζ 2 = ξ2
j , and the integral

∫
C̃ j

g[k,l](ζ, α) dζ 2

ζ 2 is also zero

because two residues at ζ 2 = q±2ξ2
j cancel each other.

In the above commutation relations, the singularity structure of the operators
m(++)(ζ1, ζ2, α), m(+−)

[k,l] (ζ1, ζ2, α) and m(−+)
[k,l] (ζ1, ζ2, α) are much improved compared

to each term in the left-hand side. The right-hand sides are q-exact in the above sense.
For example, we have

m(++)
[k,l](ζ1, ζ2, α) = (ζ1ζ2)

α+Sm̃(++)
[k,l](ζ

2
1 , ζ

2
2 , α),

the function m̃(++)
[k,l](ζ 2

1 , ζ
2
2 , α) is rational in ζ 2

1 , ζ
2
2 such that the poles in ζ 2

1 ∈ C
×

are only at ζ 2
1 = ξ2

j for j ∈ [k, l]. Similar statements hold for m(+−)
[k,l] (ζ1, ζ2, α) and

m(−+)
[k,l] (ζ1, ζ2, α) except that there are simple poles at ζ 2

1 = ζ 2
2 with residues proportio-

nal to the identity operator. This much will be proved in Sect. 4.
Now, we integrate the above identities for k[k,l], φ(k)[k,l] over the cycles C j and

C̃ j . We denote the operators obtained as residues by c̄( j)
[k,l] , b̄( j)

[k,l] and c( j)
[k,l],b( j)

[k,l]. If we
integrate the commutation relations in both ζ1 and ζ2, in the left-hand sides we obtain



Grassmann Structure in XXZ Model 889

anti-commutators of the operators (except that the value of α changes.) The right-hand
sides are zero. We get the Grassmann relations.

We can modify the operator k[k,l](ζ, α) by subtracting these Grassmann operators
so that we get a q-exact operator. We define the third kind of operator f[k,l](ζ, α) as the
q-primitive integral of the modified operator. The commutation relations of f[k,l] with

c( j)
[k,l],b( j)

[k,l], c̄( j)
[k,l], b̄( j)

[k,l] follow from those for k[k,l], φ(k)[k,l]. In the next subsection, we
define three kinds of operators in this way.

2.7. Decomposition of k[k,l]. We introduce operators c̄[k,l], c[k,l], f[k,l] by decomposing
the operator k[k,l] in accordance with the poles ζ 2 = ξ2

j , q±2ξ2
j ,

k(ζ, α)(X[k,l])

=
(

c̄(ζ, α) + c(qζ, α) + c(q−1ζ, α) + f(qζ, α) − f(q−1ζ, α)
)
(X[k,l]), (2.24)

or equivalently,

f(ζ, α)(X[k,l]) = �−1
ζ

({
k(ζ, α)− c̄(ζ, α)− c(qζ, α)− c(q−1ζ, α)

}
(X[k,l])

)
.

We demand, for any element X[k,l] ∈ M[k,l] with spin s, that c̄(ζ, α)(X[k,l]), c(ζ, α)
(X[k,l]), and f(ζ, α)(X[k,l]) all have the form ζ α−s+1 f[k,l](ζ 2), where f[k,l](ζ 2) is a
rational function in ζ 2 whose only poles are ξ2

j ( j ∈ [k, l]) and ∞. Clearly such a

decomposition is possible, and is unique modulo terms of the form ζ α−s+1 p(ζ 2), where
p(ζ 2) is a polynomial in ζ 2 of degree s. We fix this ambiguity, which occurs when s ≥ 0,
by making the following choice:

c̄(ζ, α)(X[k,l]) := 1
2π i

∮
�
ψ(ζ/ξ, α + s + 1)k(ξ, α)(X[k,l]) dξ2

ξ2 , (2.25)

c(ζ, α)(X[k,l]) := 1
4π i

∮
�
ψ(ζ/ξ, α + s + 1)

×
{

k(qξ, α) + k(q−1ξ, α)
}
(X[k,l])

dξ2

ξ2 , (2.26)

f(ζ, α)(X[k,l]) := {
fsing(ζ, α) + f reg(ζ, α)

}
(X[k,l]), (2.27)

where

fsing(ζ, α)(X[k,l]) := 1
4π i

∮
�
ψ(ζ/ξ, α + s + 1){−k(qξ, α) + k(q−1ξ, α)}(X[k,l]) dξ2

ξ2 .

Here

ψ(ζ, α) := 1

2

ζ 2 + 1

ζ 2 − 1
ζ α , (2.28)

and p(ζ 2) = ζ−α+s−1f reg(ζ, α)(X[k,l]) is a polynomial in ζ 2 to be determined. The inte-
grands are rational functions in ξ2 with possible poles at ξ2 = ζ 2, 0, ξ2

j , q±2ξ2
j , q±4ξ2

j

( j ∈ [k, l]). The integrals are taken along a simple closed curve� such that ξ2
j ( j ∈ [k, l])

are inside, while q±2ξ2
j , q±4ξ2

j ( j ∈ [k, l]), 0 and ζ 2 are outside.
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Now we determine p(z). Consider the rational one form in ξ2,

ψ(ζ/ξ, α + s + 1)k(ξ, α)(X)
dξ2

ξ2 .

We use the analytic behavior of ζ−α+s−1k(ζ, α)(X) in ζ 2, which was discussed in
Subsect. 2.5. First, the above one form has no pole at ξ2 = ∞. Collecting the residues
using (2.24), we obtain that
(

k(ζ, α)− c̄(ζ, α)− c(qζ, α)− c(q−1ζ, α)− fsing(qζ, α) + fsing(q−1ζ, α)
)
(X[k,l])

= resξ2=0ψ(ζ/ξ, α + s + 1)k(ξ, α)(X[k,l])
dξ2

ξ2 .

Then, the right-hand side is ζ α−s+1 times a polynomial in ζ 2 of degree at most s.
Therefore, for generic α, p(z) is uniquely determined by the equation

�ζ
(
f reg(ζ, α)(X[k,l])

) = resξ2=0ψ(ζ/ξ, α + s + 1)k(ξ, α)(X[k,l])
dξ2

ξ2 .

In particular, p(z) = 0 if s ≤ −1. The decomposition (2.24) follows from this.
Using this notation, we define

b̄[k,l](ζ, α) := φ(c̄)[k,l](ζ, α), b[k,l](ζ, α) := φ(c)[k,l](ζ, α).

The operators b[k,l](ζ, α), c[k,l](ζ, α), b̄[k,l](ζ, α), c̄[k,l](ζ, α) are called annihilation
operators because they annihilate the “vacuum state”, the identity operator id[k,l] ∈
M[k,l]. (Recall that we fix the interval [k, l] and are discussing operators acting on
M[k,l].)

Remark 2.1. The operators ζ−(α+s+1)x(ζ, α)(X[k,l]) (x = c̄, c, f) are rational in ζ 2. In
the homogeneous case, they have a pole at ζ 2 = 1, while in the inhomogeneous case, if
we assume that ξ j ’s are distinct, their poles are simple poles only at ζ 2 = ξ2

j ( j ∈ [k, l])
in C

×.

Until the end of this subsection we consider the inhomogeneous case with distinct
spectral parameters. Let f (ζ 2) be a rational function in ζ 2. In order to unburden the
formulas we use the residues of functions of the form ζ α+m f (ζ 2), e.g.,

resζ=ξ j c̄(ζ, α)(X[k,l]) dζ 2

ζ 2 = ξα+s+1
j resζ 2=ξ2

j
ζ−(α+s+1)c̄(ζ, α)(X[k,l]) dζ 2

ζ 2 .

In this notation, by the definition we have

resζ=ξ j c̄(ζ, α)(X[k,l]) dζ 2

ζ 2 = resζ=ξ j k(ζ, α)(X[k,l]) dζ 2

ζ 2 ,

resζ=ξ j c(ζ, α)(X[k,l]) dζ 2

ζ 2 = 1
2

(
resζ=q−1ξ j

+ resζ=qξ j

)
k(ζ, α)(X[k,l]) dζ 2

ζ 2 ,

resζ=ξ j f(ζ, α)(X[k,l]) dζ 2

ζ 2 = 1
2

(
resζ=q−1ξ j

− resζ=qξ j

)
k(ζ, α)(X[k,l]) dζ 2

ζ 2 .

The following is less obvious. We consider the residue at the right end, ζ = ξl .
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Lemma 2.2. The residues of k[k,l](ζ, α) at ζ 2 = q±2ξ2
l are given in terms of the residue

of q[k,l](ζ, α) :

resζ=q−1ξl
k(ζ, α)(X[k,l]) dζ 2

ζ 2 = −resζ=ξl
(
σ +

l q(ζ, α)(X[k,l])
)

dζ 2

ζ 2 ,

resζ=qξl k(ζ, α)(X[k,l]) dζ 2

ζ 2 = −resζ=ξl
(

q(ζ, α)(X[k,l]) σ +
l

)
dζ 2

ζ 2 .

In particular, we have

resζ=ξl f(ζ, α)(X[k,l]) dζ 2

ζ 2 = − 1
2 resζ=ξl

[
σ +

l ,q(ζ, α)(X[k,l])
]

dζ 2

ζ 2 .

Proof. We prove the first formula. The other one is similar. We start from

k(ζ, α)(X[k,l]) = TrA,a

{
σ +

a L{a,A},l(ζ/ξl)

× T{a,A},[k,l−1](ζ, α)ζ α−S(q−2S[k,l] X[k,l])L{a,A},l(ζ/ξl)−1
}
.

We use (2.19) for L{a,A},l(ζ ) and (2.20) for T{a,A},[k,l−1](ζ, α). We must be careful
about S in (2.21) and (2.22). When the formulas are used in T{a,A},[k,l−1](ζ, α) this
means S[k,l−1]. To see if there is a pole at ζ = q−1ξ j we use (2.7), and that L

◦
(ζ ) :=

(1 − ζ 2)L◦
A,l(ζ )

−1 is regular at ζ = 1. For the normalization factor we use

σ(qζ )

σ (q−1ζ )
= 1 − ζ 2

1 − q2ζ 2 .

Taking the residue at ζ = q−1ξ j we obtain

resζ=q−1ξ j
k[k,l](ζ, α)(X[k,l])

= σ +
l TrA L◦

A,l(1)TA,[k,l−1](ξl , α)ξ
α−S[k,l]
l (q−2S[k,l] X[k,l])L

◦
A,l(1).

By a similar calculation for q[k,l] we obtain the first formula. ��

2.8. Creation operators b∗[k,l] and c∗[k,l]. Our main objects in this paper are the creation
operators. We define them in terms of f[k,l] and t∗[k,l] as

b∗(ζ, α)(X[k,l]) :=
(

f(qζ, α) + f(q−1ζ, α)− t∗(ζ, α)f(ζ, α)
)
(X[k,l]), (2.29)

c∗(ζ, α)(X[k,l]) := −φ(b∗)(ζ, α)(X[k,l]). (2.30)

Notice the similarity of this definition with Baxter’s TQ relation (2.15): the same second
order linear difference operator is used in the right-hand side of (2.29). This particular
combination of the operators enjoys several miraculous properties such as the regularity,
the reduction and the commutation relations. In the following sections we shall establish
them.

Remark 2.3. The construction of operators in this section goes equally well when q2 is a
root of unity other than −1. With a little more care the case q2 = −1 can be also treated.
We hope to discuss these in a separate publication.
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3. Reduction Relations and Extension to Infinite Volume

In this section, we discuss certain stability of the operators t∗[k,l], k[k,l], etc., when the
interval [k, l] is enlarged to [k′, l ′]. It is called the reduction relation. The reduction
relation will be used essentially in the definition of operators on the infinite chain.

3.1. Space of quasi-local operators. Set

S(k) := 1

2

k∑

j=−∞
σ 3

j ,

and consider formal expressions q2(α−s)S(0)O, where O is a local operator of spin s, i.e.,
O is an element of M[k,l] for some interval [k, l] such that S(O) = sO. We call them
‘quasi-local operators’. We denote by W(α) the space spanned by quasi-local operators
of the form above, where α is fixed and s can be any integer. Mathematically, one can
define the space W(α) as an inductive limit. Physically, we want to compute the vacuum
expectation values

〈q2αS(0)O〉 = 〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉 .

Therefore, we are interested in the spin zero case, i.e., s = 0. The multiplication of
q2αS(0) is the insertion of a disorder field in the infinite chain.

As we did in the Introduction, we set

W := ⊕α∈CW(α).

The subspace of quasi-local operators, stable outside the interval [k, l], will be denoted
by (W)[k,l]. We will define operators acting on W. All the operators we discuss in this
paper are block diagonal

x : W(α) → W(α).

From now on, we fix α and discuss the restriction of x on W(α) denoting it by the
same symbol x without specifying α. We note that in Sect. 2 the symbol α was used
as a ‘dummy variable’ rather than a fixed parameter. We shall keep using α in these
two different ways, but there should be no fear of confusion. In formulas containing an
infinite interval, α is a fixed parameter specifying the subspace we work with, while in
formulas containing only finite intervals it is used as a dummy variable.

The operator S defines the spin s on W(α). We have the decomposition

W(α) = ⊕s∈ZW(α)
s , W(α)

s := {X ∈ W(α) | SX = s X}.
The creation and annihilation operators change spin s. Accordingly, they change the
semi-infinite tail q2(α−s)S(0). To follow up this change it is convenient to introduce an
operator

α = α − S.

Note that α + S is a c-number on W(α), i.e., it commutes with all kind of operators.
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In Sect. 2 we constructed the creation and annihilation operators x[k,l](ζ, α) acting
on M[k,l]. Recall that we denoted by s(x) the spin of the operator x[k,l](ζ, α). In this
section we will define operators x(ζ ) acting on W(α) in such a way that for all s ∈ Z,

x(ζ ) : W
(α)
s−s(x) → W(α)

s .

In the homogeneous case, we construct x(ζ ) as the inductive limit of x[k,l](ζ, α):

x(ζ )|
W(α)

s−s(x)
= lim

k→−∞
l→∞

x[k,l](ζ, α − s).

To be precise this means for X[k,m] ∈ W
(α)
s−s(x),

x(ζ )
(

q2(α−s+s(x))S(k−1)X[k,m]
)

=
{

q2(α−s)S(k−1)x[k,l](ζ, α − s)(X[k,m]) for l ≥ m if x is annihilation;
q2(α−s)S(k−1)x[k,l](ζ, α − s)(X[k,m]) mod (ζ 2 − 1)l−m if x is creation.

(3.1)

In the inhomogeneous case, for the annihilation operators, the inductive construction is
the same and we obtain operators x(ζ ) acting on W(α). On the other hand, for the creation
operators, the inductive construction leads to operators whose domains are restricted in
such a way that x(ξ j ) is defined only on the operators of the form q2(α−s)S(k−1)X[k,m]
with X[k,m] ∈ M[k,m], where m < j .

3.2. Left reduction relation. The definition of the twisted transfer matrix (2.2) has a
general feature, which we call the left reduction property. Suppose that the quantum
space is a tensor product of two representations π(i)qua : Uqb− → V (i)

qua (i = 1, 2),

Vqua = V (1)
qua ⊗ V (2)

qua .

Then, if Y ∈ End(V (2)
qua), we have

tVqua (α)(q
απ

(1)
qua(h1) ⊗ Y ) = qαπ

(1)
qua(h1) ⊗ t

V (2)
qua
(α)(Y ). (3.2)

This is obvious from (2.1) and

LVaux⊗Vqua = L
Vaux⊗V (2)

qua
L

Vaux⊗V (1)
qua
.

Applying (3.2) to the operator t∗[k,l](ζ, α) we obtain

t∗(ζ, α)(qασ
3
k−1 X[k,l]) = qασ

3
k−1 t∗(ζ, α)(X[k,l]),

where X[k,l] ∈ M[k,l]. This is called the left reduction relation for t∗. Note that we keep

the convention on suffixes; e.g., t∗(ζ, α)(qασ
3
k−1 X[k,l]) = t∗[k−1,l](ζ, α)(q

ασ 3
k−1 X[k,l]).

By a similar argument we obtain

k(ζ, α)(q(α+1)σ 3
k−1 X[k,l]) = qασ

3
k−1 k(ζ, α)(X[k,l]).
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This is also called the left reduction relation. The shift of the parameter α occurs because
of the factor q−2S[k,l] in the definition of k[k,l](ζ, α). By spin reversal we obtain

φ(k)(ζ, α)(q(α−1)σ 3
k−1 X[k,l]) = qασ

3
k−1φ(k)(ζ, α)(X[k,l]).

In all cases, the action of the operator x changes the coefficient in front of σ 3
k−1 by −s(x).

The left reduction relation enables us to define the action of x on the semi-infinite interval
(−∞, l] by changing σ 3

k−1 to 2S(k − 1). For example, we define

t∗(ζ, α)(q2αS(k−1)X[k,l]) = q2αS(k−1)t∗(ζ, α)(X[k,l]).

The real question is how to extend it to the complete infinite chain. We want to obtain
something independent of l when l → ∞ out of the operator on the interval (−∞, l].

3.3. Locality of annihilation operators and quasi-locality of creation operators. We
define the support of a quasi-local operator X ∈ W(α) to be the minimal interval [k, l]
such that

X = q2αS(k−1)X[k,l]
for some X[k,l] ∈ M[k,l] holds. Then, we define its length by

length(X) = l − k + 1.

Note that M[k,k−1] = C(qα)· I by definition, where I is the identity operator; the support
of q2αS(0) is the virtual interval [k, k −1], and length(q2αS(0)) = 0. The operator q2αS(0)

belongs to W
(α)
0 .

We will define two kinds of operators on W(α): creation and annihilation operators.
Let us discuss them separately.
Annihilation operators. We have already defined annihilation operators x[k,l](ζ, α)
(x = b, c,b, c) on the finite interval [k, l]. We will define the operator x(ζ ) acting
on W(α). There is not much difference in the homogeneous and inhomogeneous cases
except for the analytic structure. The singularity in ζ is at ζ 2 = 1 in the homogeneous
case, while the singularities in the inhomogeneous case are at ζ 2 = ξ2

j . The definition
goes as follows.

The right reduction relation for annihilation operators is exactly the same as the left
reduction. Suppose that k ≤ m ≤ l. We will prove that if X[k,m] ∈ M[k,m] then we have
an equality

x[k,l](ζ, α)(X[k,m]) = x[k,m](ζ, α)(X[k,m]).

Therefore, we can define x(ζ ) : W(α) → W(α). Namely, for X[k,m] ∈ M[k,m] of spin
s − s(x), we define

x(ζ )(q2(α−s+s(x))S(k−1)X[k,m]) := q2(α−s)S(k−1)x(ζ, α − s)(X[k,m]).

We call this property of the annihilation operators the locality.
In the homogeneous case, one can define the annihilation operators xp, where

x = b, c,b, c, by the series expansion

x(ζ ) =
{
ζ−α∑∞

p=0(ζ
2 − 1)−pxp if x = b,b;

ζ α
∑∞

p=0(ζ
2 − 1)−pxp if x = c, c.
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In the inhomogeneous case, the corresponding objects are the residues resζ=ξ j x(ζ ) at
the simple poles ζ = ξ j .
Creation operators. Creation operators may enlarge the support of quasi-local operators
to the right. There is some difference how much the support is enlarged to the right in
the homogeneous and inhomogeneous cases.
Homogeneous Case. In the homogeneous case, we will define operators xp acting on
W(α), where x = t∗,b∗, c∗ and p ∈ Z≥1, such that if the support of X ∈ W(α) is
contained in [k,m] then the support of xp(X) is contained in [k,m + p]. Namely, the
length of quasi-local operators is incremented by at most p. Then, we define the operator
x(ζ ) as the formal power series with the coefficients xp:

t∗(ζ ) :=
∞∑

p=1

(ζ 2 − 1)p−1t∗p,

b∗(ζ ) := ζ α+2
∞∑

p=1

(ζ 2 − 1)p−1b∗
p,

c∗(ζ ) := ζ−α−2
∞∑

p=1

(ζ 2 − 1)p−1c∗
p.

Inhomogeneous Case. We assume ξi = ξ j for i = j . We have already defined operators
x[k,l](ζ, α), where x = t∗,b∗, c∗. We will prove that they satisfy the properties that if
X[k,m] ∈ M[k,m] and m < j ≤ l, then x[k,l](ζ, α)(X[k,m]) is regular at ζ = ξ j , the
specialization x[k,l](ξ j , α)(X[k,m]) belongs to M[k, j] and it is independent of l.

When X ∈ (W(α)
s−s(x)

)
[k,m] we denote

X = q2(α−s+s(x))S(k−1)X[k,m].

If X ∈ (W(α)
s
)
(−∞, j−1] we can define x(ξ j )(X) by the inductive limit

x(ξ j )(X) := lim
k→−∞
l→∞

q2(α−s)S(k−1)x[k,l](ξ j , α − s)(X[k, j−1]).

We call these properties of the creation operators the quasi-locality. In the following
subsections we will prove the quasi-locality of the creation operators.

3.4. Creation operator t∗ and local integrals of motion. In this subsection, we clarify
the quasi-locality in detail in the case of the creation operator t∗. In particular, in the
homogeneous case, we show that the action of t∗(ζ ) is given in terms of the shift operator
and the exponential adjoint action of the local integrals of motion.

We define the shift operator τ [k,l] : M[k,l] → M[k+1,l+1], X[k,l] �→ τ (X[k,l]) by

τ (X[k,l]) = Kk,k+1 · · · Kl,l+1Pk,k+1 · · · Pl,l+1(X[k,l]),

where Ki, j is the exchange of the inhomogeneous parameters ξi with ξ j . The shift
operator τ is also defined on W(α):

τ (qαS(k−1)X[k,m]) := qαS(k)τ (X[k,m]).
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The key observation is that

La, j (1) = Pa, j .

Homogeneous Case. In the homogeneous case, it leads to a simple fact that if X[k,m] ∈
M[k,m] and m < l then the operator t∗[k,l](1, α) satisfies

1
2 t∗[k,l](1, α)(X[k,m]) = qασ

3
k τ (X[k,m]).

It means in the inductive limit we have the shift operator

lim
k→−∞
l→∞

1
2 t∗[k,l](1, α) = τ .

Let us expand 1
2 t∗[k,l](ζ, α)(X[k,m]) in ζ 2 − 1. Set

R̃∨
i, j (ζ

2) := ζ σ
3
i /2 Ri, j (ζ )Pi, jζ

−σ 3
j /2, R̃

∨
i, j (ζ

2) := ζSi Ri, j (ζ )Pi, jζ
−S j .

We have

t∗[k,l](ζ, α)(X[k,m]) = Tra{R̃∨
a,l(ζ

2)R̃∨
l,l−1(ζ

2) · · · R̃∨
k+1,k(ζ

2)(qασ
3
k τ (X[k,m]))}.

Define an operator ri, j (ζ
2) by

R̃
∨
i, j (ζ

2) = 1 + (ζ 2 − 1)ri, j (ζ
2).

Note that ri, j (ζ
2) is regular at ζ 2 = 1 and that ri, j (ζ

2)(Z) = 0 if Z is a local operator
such that its action on the i th and the j th components is proportional to the identity

operator or qα(σ
3
i +σ 3

j ). We define R̃
∨[k,l](ζ 2) acting on M[k,l] by

R̃
∨(ζ 2)(X[k,l]) := R̃

∨
l,l−1(ζ

2) · · · R̃∨
k+1,k(ζ

2)(X[k,l]).

We have

t∗[k,l](ζ, α)(X[k,m])

= 2
l−1∑

j=m

(ζ 2 − 1) j−mr j+1, j (ζ
2) · · · rm+2,m+1(ζ

2)R̃∨(ζ 2)(Y[k,m+1])

+ (ζ 2 − 1)l−mTra

{
ra,l(ζ

2)rl,l−1(ζ
2) · · · rm+2,m+1(ζ

2)R̃∨(ζ 2)(Y[k,m+1])
}
,

where Y[k,m+1] := qασ
3
k τ (X[k,m]). Therefore, the inductive limit is well-defined as a

formal power series in ζ 2 − 1. Namely, for X ∈ W
(α)
s such that the support of X is

contained in [k,m] we define

t∗(ζ )(X) = lim
l→∞ q2(α−s)S(k−1)t∗[k,l](ζ, α − s)(X[k,m])

= 2q2αS(k−1)
∞∑

j=m

(ζ 2 − 1) j−mr j+1, j (ζ
2) · · · rm+2,m+1(ζ

2)R̃∨(ζ 2)(Y[k,m+1]).
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The operators t∗p are the coefficients of t∗(ζ ).

t∗(ζ ) =
∞∑

p=1

(ζ 2 − 1)p−1t∗p.

From this definition it is clear that the operator t∗p enjoys the quasi-locality discussed in
Subsect. 3.3.

Later we use

Lemma 3.1. Suppose that k ≤ m < l, and let Y[k,m],c ∈ M[k,m] ⊗ Mc. Set Y[k,m],m+1 :=
Pc,m+1(Y[k,m],c). Then, we have

Tc,[m+1,l](ζ )(Y[k,m],c)

=
l−1∑

j=m

(ζ 2 − 1) j−mr j+1, j (ζ
2) · · · rm+2,m+1(ζ

2)ζSm+1(Ym+1,[k,m])

+ (ζ 2 − 1)l−mζ−Sc rc,l(ζ
2)rl,l−1(ζ

2) · · · rm+2,m+1(ζ
2)ζSm+1(Ym+1,[k,m]).

Let us return to t∗(ζ ). We have

R̃∨
i, j (ζ

2) = exp

{

log

(

1 +
(1 + q2)(ζ 2 − 1)

1 − q2ζ 2

)

· h(1)i, j

}

,

where

h(1)i, j := − 1

q + q−1

(

σ +
i σ

−
j + σ−

i σ
+
j +

q + q−1

4
(σ 3

i σ
3
j − 1) +

q − q−1

4
(σ 3

i − σ 3
j )

)

is the local density of the Hamiltonian.
The local integrals of motion Ip (p ≥ 1, I1 = 1

q−q−1 HX X Z ) are defined as coeffi-

cients of the formal series in ζ 2 − 1:

lim
N→∞ log

(
R̃∨

N ,N−1(ζ
2) · · · R̃∨−N+1,−N (ζ

2)
)

=
∞∑

p=1

(ζ 2 − 1)p Ip.

By the Campbell-Hausdorff formula, each Ip is a sum of local densities h(p)
[ j, j+p] ∈

M[ j, j+p], which commute with X ∈ W(α) if the support of X does not intersect with
[ j, j + p]. Thus, Ip = [Ip, ·] is well-defined on W(α) and we have

1
2 t∗(ζ ) = exp

(∑∞
p=1(ζ

2 − 1)p
Ip

)
τ .

Inhomogeneous Case. We prove

Lemma 3.2. Suppose that k ≤ m < j ≤ l. Then, we have

1
2 t∗[k,l](ξ j , α)(X[k,m]) = s j−1 · · · sk(qασ

3
k · τ (X[k,m])).
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Proof. We have

1
2 t∗[k,l](ξ j , α)(X[k,m]) = 1

2 tra

{
Ta,[ j+1,l](ξ j )Pa, j Ta,[k, j−1](ξ j )(qασ

3
a X[k,m])

}

= T j,[k, j−1](ξ j )(q
ασ 3

j X[k,m])

= R j, j−1(ξ j/ξ j−1) · · · R j,k(ξ j/ξk)
(
qασ

3
j X[k,m]

)

= Ř j, j−1(ξ j/ξ j−1) · · · Řk+1,k(ξ j/ξk)q
ασ 3

k

× Pk+1,k · · · P j, j−1(X[k,m])

= Ř j, j−1(ξ j/ξ j−1) · · · Řk+1,k(ξ j/ξk)q
ασ 3

k K j−1, j · · ·
× Kk,k+1(τ (X[k,m]))

= s j−1 · · · sk(q
ασ 3

k · τ (X[k,m])).

��
Corollary 3.3. If X ∈ (W(α)

s
)
(−∞, j−1], we can define t∗(ξ j )(X) by the inductive limit

t∗(ξ j )(X) := lim
k→−∞
l→∞

q2(α−s)S(k−1)t∗[k,l](ξ j , α − s)(X[k, j−1]),

and we have

1
2 t∗(ξ j )(X) = limk→−∞ s j−1 · · · skτ (X).

3.5. Right reduction relation for k[k,l](ζ, α). In this subsection we prove the right reduc-
tion relation for the operator k[k,l](ζ, α). It implies the right reduction relation for the
annihilation operators b, c,b, c discussed in Subsect. 3.3.

We use the anti-automorphism θ j of M j :

θ j (x) := σ 2
j x

t j
j σ

2
j for x j ∈ M j .

In general, we denote θ[k,l] := ∏l
j=k θ j . It has the property (crossing symmetry):

θ j (La, j (ζ )) = La, j (qζ )
−1, θ j (La, j (ζ )

−1) = La, j (q
−1ζ ).

This property is universal, i.e., valid for L A, j (ζ ), L{a,A}, j (ζ ), Ta,[k,l](ζ ), etc.

Lemma 3.4. Suppose that k ≤ m < l. Let X[k,m] ∈ M[k,m]. Then we have

k[k,l](ζ, α)(X[k,m]) = k(ζ, α)(X[k,m]) +�ζv[k,l](ζ, α)(X[k,m]), (3.3)

where

v[k,l](ζ, α)(X[k,m]) = TrA

(
VA,[m+1,l](ζ )TA(ζ, α)ζ

α−S(q−2S[k,m] X[k,m])
)
, (3.4)

VA,[m+1,l](ζ ) = −θ[m+1,l]
(

CA,[m+1,l](ζ )q S[m+1,l] TA,[m+1,l](qζ )−1
)
. (3.5)
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Proof. We use J = [k,m], K = [m + 1, l]. Write the operator k[k,l] separating the K
part from the J part:

k[k,l](ζ, α)(X J ) = Tra,A

[
σ +

a T{a,A},K (ζ )q−2SK T{a,A}(ζ, α)ζ α−S(q−2SJ X J )T{a,A},K (ζ )−1
]
.

We want to bring Q = T{a,A},K (ζ )−1 together with P = σ +
a T{a,A},K (ζ )q−2SK . Using

the cyclicity of trace we obtain

k[k,l](ζ, α)(X J ) = Tra,A

{
θK (θK (Q)θK (P))T{a,A}(ζ, α)ζ α−S(q−2SJ X J )

}
.

The expression θK (θK (Q)θK (P)) is used to keep the order of the product P Q with
respect to the quantum space K but reverse the order to Q P with respect to the auxiliary
space a, A. The rest of the proof is straightforward. ��
The right reduction property of the annihilation operators, which was discussed in
Subsect. 3.3, follows from (3.3) and the following:

Remark 3.5. The operator �ζv[k,l](ζ, α) is q exact in the sense of Subsect. 2.6.

To see this one can rewrite

VA,[m+1,l](ζ ) = −θ[m+1,l]

×
⎛

⎝
l∑

j=m+1

q − q−1

ζ/ξ j − ξ j/ζ
TA,[ j+1,l](q−1ζ )q2S[ j+1,l]σ +

j TA,[ j+1,l](qζ )−1

⎞

⎠ .

In particular, we have

VA,l(ζ ) = q − q−1

ζ/ξl − ξl/ζ
σ +

l .

The right reduction relation for f[k,l](ζ, α) reads

Corollary 3.6.

f[k,l](ζ, α)(X[k,m]) = f(ζ, α)(X[k,m]) + v[k,l](ζ, α)(X[k,m]).

3.6. Right reduction for b∗[k,l](ζ, α) and its regularity. The right reduction relation for
the creation operator b∗[k,l](ζ, α) reads

Lemma 3.7. Suppose that k ≤ m < l. For X[k,m] ∈ M[k,m] we have

b∗[k,l](ζ, α)(X[k,m]) = Trc
{
Tc,[m+1,l](ζ )gc(ζ, α)(X[k,m])

}
, (3.6)

where

gc(ζ, α)(X[k,m]) =
(

1
2 f(qζ, α) + 1

2 f(q−1ζ, α)− Tc(ζ, α)f(ζ, α) + uc(ζ, α)
)
(X[k,m]),

uc(ζ, α)(X[k,m]) = TrA,a

{
Ya,c,AT{a,A}(ζ, α)ζ α−S

(
q−2S[k,m] X[k,m]

)}
,

Ya,c,A = − 1
2σ

3
c σ

+
a + σ +

c σ
3
a − aAσ

+
c σ

+
a . (3.7)
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The proof will be given in Appendix B. In this formula the automorphism θ[m+1,l] does
not appear. By introducing the auxiliary space indexed by c, we have eliminated the
θ[m+1,l] used in VA,[m+1,l](ζ ).

An immediate consequence of the right reduction relation is the regularity of
b∗[k,l](ζ, α)(X[k,m]). In the homogeneous case it is regular at ζ = 1, and in the inho-
mogeneous case it is regular at ζ = ξ j where j ∈ [k, l]. For the proof it is enough to
consider the latter case with distinct spectral parameters since other cases are obtained
by specialization.

Lemma 3.8. Suppose k ≤ m < l. Then b∗[k,l](ζ, α)(X[k,m]) is regular at ζ 2 = ξ2
j for

any j ∈ [k, l].
Proof. Since Tc,[m+1,l](ζ ), f[k,m](qζ, α) and f[k,m](q−1ζ, α) are regular at ζ 2 = ξ2

j , it
is enough to show that

resζ=ξ j Tc(ζ, α)f(ζ, α)(X[k,m]) dζ 2

ζ 2 = resζ=ξ j uc(ζ, α)(X[k,m]) dζ 2

ζ 2 .

By the R matrix symmetry without loss of generality we assume j = m. We have

(L H S) = − 1
2 resζ=ξm Tc(ζ, α)

[
σ +

m,q(ζ, α)(X[k,m])
] dζ 2

ζ 2

= − 1
2 resζ=ξm

[
σ +

c ,Tc(ζ, α)q(ζ, α)(X[k,m])
] dζ 2

ζ 2

= − 1
2 resζ=ξm

[
σ +

c ,TrA

{
Fc,ACA(ζ, α)σ

−
c ζ

α−S(q−2S[k,m] X[k,m])F−1
c,A

}]
dζ 2

ζ 2

= −resζ=ξm TrA
{
( 1

2σ
3
c + aAσ

+
c )CA(ζ, α)ζ

α−S(q−2S[k,m] X[k,m])
} dζ 2

ζ 2

= (RH S),

where in the first line we used Lemma 2.2, going to the second line we used the fact that
Tc,[k,m](ξm, α) contains the permutation Pc,m , going to the third line we did the fusion,
and dropped the diagonal terms since they are regular at ζ = ξm . For the same reason

we dropped the term containing σ +
c σ

3
a to obtain resζ=ξm uc(ζ, α)(X[k,m]) dζ 2

ζ 2 . ��

3.7. Creation operator b∗(ζ ). Now we define the creation operators b∗(ζ ) on the space
W(α). We discuss the homogeneous and inhomogeneous cases separately. There is a
crucial difference in the two cases: the operators b∗

p are defined on the whole space

W(α) in the homogeneous case, while the operators b∗(ξ j ) is defined only on a certain
subspace of W(α) in the inhomogeneous case.
Homogeneous Case. Let k ≤ m < l. The operator ζ−αb∗[k,l](ζ, α) is a rational function

in ζ 2 and regular at ζ 2 = 1 when it acts on X[k,m] ∈ M[k,m]. Lemma 3.7 shows that the
dependence of b∗[k,l](ζ, α)(X[k,m]) on l comes only from Tc,[m+1,l](ζ ). Therefore, from
Lemma 3.1 we see that the coefficients in the expansion

b∗[k,l](ζ, α)(X[k,m]) = ζ α+2
∞∑

p=1

(ζ 2 − 1)p−1(b∗
p)[k,l](X[k,m])

stabilizes when l → ∞. From this one can define b∗
p on W(α).
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Inhomogeneous Case. By exactly the same argument as in Subsect. 3.4, we can show
that

b∗[k,l](ξ j , α)(X[k,m]) = b∗[k, j](ξ j , α)(X[k,m]).

The above relation implies that the operator b∗(ξ j ) is well-defined on
(
W
(α)
s
)
(−∞, j−1].

4. Commutation Relations

It this section we shall find the commutation relations of the annihilation operators
b, c with the creation operators t∗, c∗ and b∗. We shall also comment on the known
commutation relations [1] of the annihilation operators among themselves. We shall
restrict our consideration to the more complicated homogeneous case. The commutation
relations for the inhomogeneous case will be presented at the end of the section with
necessary comments on their derivation.

Before starting, recall the connection between operators in infinite volume and those
on finite intervals (3.1). On the basis of these relations, we derive commutation relations
for the operators in infinite volume from those for finite intervals.

4.1. Commutation relations of c, c̄ with t∗. The derivation of the commutation relations
is a complicated problem, so, this section will be rather technical.

We shall act by operators b, b∗, etc. on the quasi-local operators of the form q2αS(k−1)

X[k,m]. It is clear from left reduction relations that in that case they can be reduced to
b[k,∞), b∗

[k,∞), etc. acting on X[k,m]. Let us take l � m. Then the construction of the
operators b∗, c∗, implies for the homogeneous case:

b∗
[k,∞)(ζ )(X[k,m]) ≡ b∗[k,l](ζ )(X[k,m]) mod (ζ 2 − 1)l−m .

We shall consider the commutation relations of c, c̄ with t∗, c∗ and b∗. The operators c(ζ )
and c̄(ζ ) are defined by (2.25), (2.26) via k(ξ). So, in order to treat them simultaneously
we shall actually consider the commutation relations with k(ξ) computing them up to
q-exact forms defined in Subsect. 2.6. Equality up to q-exact forms in ξ will be denoted
by 
ξ .

We begin with the following technical lemma. In the statement and the proof, we
use a 2 × 2 matrix algebra Mc with spectral parameter ζ in two ways: as an auxiliary
space, and as an additional quantum space. In the right-hand side of (4.1) below, the
inhomogeneous parameter corresponding to c is to be understood as ζ .

Lemma 4.1. Suppose that k ≤ m < l and Y[k,m],c ∈ M[k,l] ⊗ Mc. We have

k[k,l](ξ, α)TrcTc,[m+1,l](ζ )(Y[k,m],c)

ξ TrcTc,[m+1,l](ζ )k[k,m]�c(ξ, α)(Y[k,m],c) mod (ζ 2 − 1)l−m . (4.1)

Proof. Consider the following expression:

X[k,l] := Trck[k,l]�c(ξ, α)Tc,[m+1,l](ζ )(Y[k,m],c).

There are two ways to compute X[k,l]. First write

X[k,l] = Trc,b,B

{
Zc,b,BT{b,B},[k,l](ξ, α)ξα−S[k,l]

(
q−2S[k,l]Tc,[m+1,l](ζ )(Y[k,m],c)

)}
,
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where

Zc,b,B := ξScL{b,B},c(ξ/ζ )−1(σ +
b )q

−σ 3
c .

Lemma 3.1 says modulo (ζ 2 − 1)l−m the c-dependence in Tc,[m+1,l](ζ )(Y[k,m],c) disap-
pears:

Tc,[m+1,l](ζ )(Y[k,m],c) ≡ W[k,l] mod (ζ 2 − 1)l−m .

Denoting by ≡l−m equalities modulo (ζ 2 − 1)l−m , we have

X[k,l] ≡l−m Trc,b,B

{
Zc,b,BT{b,B},[k,l](ξ, α)ξα−S[k,l](q−2S[k,l] W[k,l])

}

= Trb,B

{
(Trc Zc,b,B)T{b,B},[k,l](ξ, α)ξα−S[k,l] 1

2 Trc(q−2S[k,l] W[k,l])
}

≡l−m Trb,B

{
(Trc Zc,b,B)T{b,B},[k,l](ξ, α)ξα−S[k,l] 1

2 Trc(q−2S[k,l]

× Tc,[m+1,l](ζ )(Y[k,m],c))
}
.

It is easy to check Trc Zc,b,B = 2σ +
b . So, we obtain

X[k,l] ≡l−m k[k,l](ξ, α)TrcTc,[m+1,l](ζ )(Y[k,m],c).

Now write

X[k,l] = Trc,b,Bσ
+
b L{b,B},c(ξ/ζ )T{b,B},[m+1,l](ξ)T{b,B},[k,m](ξ, α)

× Tc,[m+1,l](ζ )ξα−S[k,l]−Sc (q−σ 3
c −2S[k,l]Y[k,m],c).

Using the Yang-Baxter equation and then the right reduction relation we obtain

X[k,l] = Trc,b,Bσ
+
b Tc,[m+1,l](ζ )T{b,B},[m+1,l](ξ)L{b,B},c(ξ/ζ )T{b,B},[k,m](ξ, α)

× ξα−S[k,l]−Sc (q−σ 3
c −2S[k,l]Y[k,m],c)=TrcTc,[m+1,l](ζ )k[k,m]�c�[m+1,l](ξ, α)(Y[k,m],c)


ξ TrcTc,[m+1,l](ζ )k[k,m]�c(ξ, α)(Y[k,m],c).

��
Remark. We can allow Yc,[k,m] to be a function of ζ 2 regular at ζ 2 = 1.

From this lemma we get the first couple of commutation relations.

Corollary 4.2. The operators c, c̄ commute with t∗

[c(ζ ′), t∗(ζ )] = 0, [c̄(ζ ′), t∗(ζ )] = 0. (4.2)

Proof. From the general remarks given at the beginning of Sect. 4, it is enough to deduce
the following equality from Lemma 4.1:

k[k,l](ξ, α)t∗(ζ, α + 1)(X[k,m]) 
ξ t∗[k,l](ζ, α)k(ξ, α)(X[k,m]) mod (ζ 2 − 1)l−m .

(4.3)
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Set Y[k,m],c = Tc,[k,m](ζ, α)(qσ
3
c X[k,m]) in (4.1). The (LHS) immediately gives the

(LHS) of (4.3). For the (RHS), move q−σ 3
c −2S[k,m] through Tc,[k,m](ζ, α) and use the

Yang-Baxter equation

L{b,B},c(ξ/ζ )T{b,B},[k,m](ξ, α)Tc,[k,m](ζ, α)=Tc,[k,m](ζ, α)T{b,B},[k,m](ξ, α)L{b,B},c(ξ/ζ ).

Finally L{b,B},c(ξ/ζ ) will disappear because of

L{b,B},c(ξ/ζ )(q−2S[k,m] X[k,m]) = q−2S[k,m] X[k,m],

and we obtain the (RHS) of (4.3). ��

4.2. Commutation relations of c, c̄ and b∗. Now we want to consider the commutation
relations among c, c̄, b∗. They are based on the Yang-Baxter equation:

R{a,A},{b,B}(ζ1/ζ2)T{a,A}(ζ1)T{b,B}(ζ2) = T{b,B}(ζ2)T{a,A}(ζ1)R{a,A},{b,B}(ζ1/ζ2).

(4.4)

See Appendix A for more details. We start from the commutation relation of k with
itself.

Lemma 4.3. The commutation relation for k[k,l](ζ, α) is given by “q-exact 2 forms”:
k[k,l](ζ1, α)k[k,l](ζ2, α + 1) + k[k,l](ζ2, α)k[k,l](ζ1, α + 1)

= �ζ1 m(++)
[k,l](ζ1, ζ2, α) +�ζ2 m(++)

[k,l](ζ2, ζ1, α), (4.5)

where

m(++)(ζ1, ζ2, α)(X[k,l])

= Trb,A,B

(
Mb,A,B(ζ1/ζ2)TA(ζ1, α)T{b,B}(ζ2, α)(ζ1ζ2)

α−S(q−4S[k,l] X[k,l])
)
,

Mb,A,B(ζ ) = ζ−1q−1

ζ − ζ−1

(
q2DB +1a∗

Aq−2DA a∗
A −ζ−1q DB (1 + ζu A,B)a∗

Aq DB

0 −q2DB−1a∗
Aq−2DA a∗

A

)

b
,

(4.6)

with u A,B = a∗
Aq−2DA aB.

Proof. A similar formula is proved in [1], so the proof here is brief. Denote AA(ζ1, α),
CA(ζ1, α), DA(ζ1, α), AB(ζ2, α), CB(ζ2, α), DB(ζ2, α) by A1, C1, D1, A2, C2, D2.

First, consider (RHS) of (4.5). There are some cancellations. Namely, the term in
m(++)

[k,l](q−1ζ1, ζ2)which comes from the (1, 1) element in Mb,A,B(ζ ) cancels with the one

in m(++)
[k,l](qζ2, ζ1) from the (2, 2) element. This is a consequence of the

Yang-Baxter relation R33 D1 A2 = A2 D1 R33. Another cancellation comes from R22 A1
D2 = D2 A1 R22. So, we will prove the equality (4.5) for the rest.

From the Yang-Baxter relation (4.4) one finds that

C1C2 − R−1
44 C2C1 R11

= −R−1
44 R42 A1C2 + D1C2 R−1

33 R31 − R−1
44 R43 R−1

33 A2C1 R11 + R−1
44 D2C1 R21

+ R−1
44 (R43 R−1

33 R31 − R41)A1 A2 − D1 D2 R−1
44 (R43 R−1

33 R31 − R41). (4.7)
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We use (2.1) frequently in the calculation below. Rewrite (L H S) of (4.5), e.g.,

k(ζ1, α)k(ζ2, α + 1)(X[k,l])

= Tra,b,A,B

{
σ +

a σ
+
b T{a,A}(ζ1, α)ζ

α−S

1 q−2S[k,l]T{b,B}(ζ2, α+1)ζ α−S+1
2 (q−2S[k,l] X[k,l])

}

= ζ2
qζ1

Tra,b,A,B

{
q2DBσ +

a σ
+
b T{a,A}(ζ1, α)T{b,B}(ζ2, α)(ζ1ζ2)

α−S(q−4S[k,l] X[k,l])
}
.

(4.8)

Thus, we obtain

(L H S) = ζ2
qζ1

Tra,b,A,B

{
q2DB (C1C2 − R−1

44 C2C1 R11)(ζ1ζ2)
α−S(q−4S[k,l] X[k,l])

}
.

In the right-hand side evaluating, for example, the term with A2C1, one has to remember
that AB(ζ2, α) = TB(ζ2q, α)qα−S and move q−S through CA(ζ1, α) using

q−S
T{a,A}(ζ1, α) = q DA+ 1

2 σ
3
a T{a,A}(ζ1, α)q

−S−DA− 1
2 σ

3
a , (4.9)

and use the cyclicity of trace. After some calculations using (4.8), (4.9), the equality
(4.7) gives rise to (4.5). ��
Lemma 4.4. The singularity at ζ 2

1 = ζ 2
2 which is present in (4.6) cancels when Mb,A,B(ζ )

is substituted into m(++)
[k,l](ζ1, ζ2, α).

Proof. Indeed, suppose

m(++)
[k,l](ζ1, ζ2, α) = 1

ζ 2
1 − ζ 2

2

f (ζ 2
2 )ζ

2α
2 + regular,

where f (ζ 2
2 ) is a rational function. The left-hand side of (4.5) is regular at ζ 2

1 = ζ 2
2 q±2.

So, the poles at this point must cancel in the right-hand side. This requirement leads
to an equation for f (ζ 2

2 ) which has no rational solutions. Hence f (ζ 2
2 ) = 0 and the

singularity of m(++)
[k,l](ζ1, ζ2, α) is fictitious. ��

Integrating (4.5) in ζ1 and ζ2, and using the commutativity of two integrations assured
by Lemma 4.3, we have

Theorem 4.5. In the homogeneous case we have the commutation relations:

[c(ζ ), c(ζ ′)]+ = 0, [c̄(ζ ), c(ζ ′)]+ = 0, [c̄(ζ ), c̄(ζ ′)]+ = 0. (4.10)

Now we are ready to attack the much more complicated case of the commutation
relations between c and b∗. The operator b∗(ζ, α) is constructed via the operator f(ζ, α).
First, we derive the commutation relations between f and k.

Lemma 4.6. We have:

f[k,l](ζ, α)k[k,l](ξ, α + 1) + k[k,l](ξ, α)f[k,l](ζ, α + 1) 
ξ m(++)
[k,l](ζ, ξ, α). (4.11)
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Proof. Denote the difference (LHS)-(RHS) of (4.11) by x[k,l](ζ, ξ, α), we want to show
that it is q-exact in ξ . It is enough to prove this statement in the inhomogeneous case
where ξ j are distinct. Then, because of Lemma 4.4, it is equivalent to the vanishing

of the integrals y[k,l](ζ, α;�) = ∫
�

x[k,l](ζ, ξ, α) dξ2

ξ2 for � = C j , C̃ j . Let us prove
y[k,l](ζ, α;�) = 0. Recall that

�ζ f[k,l](ζ, α) = k[k,l](ζ, α)− c̄[k,l](ζ, α)− c[k,l](ζq, α)− c[k,l](ζq−1, α).

We know already that c[k,l](ζ, α), c̄[k,l](ζ, α) anti-commute with k[k,l](ξ, α) up to the
q-exact form in ξ . Therefore we have �ζx[k,l](ζ, ξ, α) 
ξ �ξm(++)

[k,l](ξ, ζ, α). Hence

�ζy[k,l](ζ, α;�) = �ζ

∫

�

x[k,l](ζ, ξ, α)
dξ2

ξ2 =
∫

�

�ξm(++)
[k,l](ξ, ζ, α)

dξ2

ξ2 = 0.

From this follows it that y[k,l](ζ, α;�) = 0, and therefore x[k,l](ζ, ξ, α) 
ξ 0. ��
Theorem 4.7. In the homogeneous case the operators c and b∗ anticommute:

[b∗(ζ ), c(ζ ′)]+ = 0. (4.12)

Proof. Consider the intervals [k,m], [k, l] for l > m. We may drop the suffix [k,m] in
the following formulas within the rules discussed in Subsect. 2.1. Use Lemma 4.1 in

k[k,l](ξ, α)b∗[k,l](ζ, α + 1)
(
X[k,m]

) = k[k,l](ξ, α)trcTc,[m+1,l](ζ )gc(ζ, α + 1)
(
X[k,m]

)


ξ TrcTc,[m+1,l](ζ )k[k,m]�c(ξ, α)gc(ζ, α + 1)
(
X[k,m]

)
mod (ζ 2 − 1)l−m .

On the other hand using the right reduction for k we have

b∗[k,l](ζ, α)k[k,l](ξ, α + 1)
(
X[k,m]

) 
ξ trcTc,[m+1,l](ζ )gc(ζ, α)k(ξ, α + 1)
(
X[k,m]

)
.

So, the anticommutator is of the form

{k[k,l](ξ, α)b∗[k,l](ζ, α + 1) + b∗[k,l](ζ, α)k[k,l](ξ, α + 1)} (X[k,m]
)


ξ TrcTc,[m+1,l](ζ )Xc,[k,m](ζ, ξ) mod (ζ 2 − 1)l−m,

Xc,[k,m](ζ, ξ) = {k[k,m]�c(ξ, α)gc(ζ, α + 1) + gc(ζ, α)k(ξ, α + 1)}(X[k,m]). (4.13)

We want to show that Xc,[k,m](ζ, ξ) 
ξ 0. Recall that

gc(ζ, α) = 1
2 f(ζq, α) + 1

2 f(ζq−1, α)− Tc(ζ, α)f(ζ, α) + uc(ζ, α).

Substitute this into (4.13). When gc(ζ, α + 1) is replaced with 1
2 f(ζq, α)+ 1

2 f(ζq−1, α),
we use the right reduction for k[k,m]�c(ξ, α) to drop c from it. When gc(ζ, α + 1) is
replaced with −Tc(ζ, α + 1)f(ζ, α + 1) we use the Yang-Baxter relation after rewriting

k[k,m]�c(ξ, α)Tc(ζ, α + 1)f(ζ, α + 1)(X[k,m])

= Tra,Bσ
+
b L{b,B},c(ξ/ζ )T{b,B}(ξ, α)ξ−Sc−Sq−σ 3

c −2S[k,m]Tc(ζ, α+1)f(ζ, α+1)(X[k,m]),
= Tra,Bσ

+
b L{b,B},c(ξ/ζ )T{b,B}(ξ, α)Tc(ζ, α)ξ

−Sq−2S[k,m] f(ζ, α + 1)(X[k,m]).
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Then the anticommutation relation (4.11) gives

Xc,[k,m](ζ, ξ) = { 1
2 m(++)(ζq, ξ, α) + 1

2 m(++)(ζq−1, ξ, α)− Tc(ζ, α)m(++)(ζ, ξ, α)

+ uc(ζ, α)k(ξ, α + 1) + k[k,m]�c(ξ, α)uc(ζ, α + 1)
}
(X[k,m]). (4.14)

Define η = ζ/ξ . We write Xc,[k,m](ζ, ξ) in the following form:

Xc,[k,m](ζ, ξ) = Tra,b,A,B

{
W (1)

a,b,c,A,B(η)T{a,A}(ζ, α)T{b,B}(ξ, α)

+ W (2)
a,b,c,A,B(η)T{b,B}(ξ, α)T{a,A}(ζ, α)

}
(ζ ξ)α−S

(
q−4S[k,m] X[k,m]

)
. (4.15)

The term with W (1)
a,b,c,A,B(η) comes from the first four terms in (4.14). It reads

W (1)
a,b,c,A,B(η) := 1

2 (q
−1β(η)τ+

a + qβ(η−1)τ−
a )Mb,A,B(η)

−F−1
a,A Pa,c Mb,A,B(η)Fa,A + σ +

b η
−1q2DB−1Ya,c,A, (4.16)

where Ya,c,A is given by (3.7). The only non-trivial point in this derivation is to understand
that

Tra,b,A,B Mb,A,B(ηq)TA(ζq, α)T{b,B}(ξ, α)(ζq)α−S

= Tra,bA,Bq−1β(η)Mb,A,B(η)τ
+
a T{a,A}(ζ, α)T{b,B}(ξ, α)ζ α−S. (4.17)

To see that one has to use (4.9). The last term in (RHS) of (4.14) gives rise to the second
term in (4.15), where

W (2)
a,b,c,A,B(η) := ηθc

(
L{b,B}c(η−1q−1)σ +

b Ya,c,Aqσ
3
c L{b,B}c(η−1q)−1

)
q2DA+σ 3

a .

In (4.15) there are two kinds of ambiguities: first, (RHS) of (4.11) does not change
if we add terms independent of c to Xc,[k,m](ζ, ξ); second, (RHS) of (4.15) does not
change if we add terms proportional to σ−

a or σ−
b to W (i)

a,b,c,A,B(η). In the following we
use ≡ to mean equality modulo such quantities, and read it “equal to modulo irrelevant
terms”.
Write

W (2)
a,b,c,A,B(η) ≡

(
σ +

b + γ (η−1)σ +
c τ

+
b

)
Na,c,A,B(η) + γ (η)τ−

b Na,c,A,B(η)σ
+
c , (4.18)

where

Na,c,A,B(η) := ηθc
(
L B,c(η

−1)q−σ 3
c /2Ya,c,Aqσ

3
c /2 L B,c(η

−1)−1)qσ
3
a +2DA .

Now we reverse the order of the product T{b,B}(ξ, α)T{a,A}(ζ, α) in (4.15) by using
the Yang-Baxter relation (A.6). However, before doing that it is very convenient to
subtract some q-exact forms in ξ . Comparing (4.16) and (4.18) we see that the structure
of singularities is different: (4.18) contains poles at η2 = q±2 and η2 = 1, while (4.16)
contains singularities at η2 = 1 only. The unwanted singularities in (4.18) will cancel
modulo irrelevant terms if we add the following term to W (2)

a,b,c,A,B(η):

W (3)
a,b,c,A,B(η) := W (2)

a,b,c,A,B(η) + W (4)
a,b,c,A,B(η),
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where

W (4)
a,b,c,A,B(η) := η(1 − 1

2 Trc)
{
q−1β(η−1)τ+

b σ
+
c Na,c,A,B(η)

}

+ qβ(η)τ−
b Na,c,A,B(η)σ

+
c

}
+ 1

2 q2DAη2q−1σ 3
b σ

+
a σ

+
c .

This term can be added to W (2)
a,b,c,A,B(η) because

Tra,b,A,B W (4)
a,b,c,A,B(ζ/ξ)T{b,B}(ξ, α)T{a,A}(ζ, α)(ζ ξ)α−S (4.19)

= �ξTra,A,B Sa,c,A,B(ζ/ξ)TB(ξ, α)T{a,A}(ζ, α)(ζ ξ)α−S,

where

Sa,c,A,B(η) = 1

1 − η−2

[ 1
2σ

3
c a∗

B

(
σ 3

a q−2DB−1a∗
B − σ +

a (η + q−2DB−1a∗
BaA)

)

− σ +
c σ

+
a

(
η(q−2DB − η−2)a∗

BaA − q2DB +1 + 1
2 (q + q−1)

)

+ σ +
c σ

3
a η(q

−2DB − η−2)a∗
B

]
qσ

3
a +2DA .

The q-exact form in (4.19) is singular (has pole at η2 = 1), but it is easy to see that
the singularity is harmless when we substitute k(ξ, α) in the definition of either c̄(ζ, α)
or c(ζ, α), so, (4.19) does not contribute to the commutation relations with c̄(ζ, α) and
c(ζ, α).

Now it remains to change the order of T{b,B}(ξ, α) and T{a,A}(ζ, α) in order to
compare it with (4.16). Using Yang-Baxter we come by necessity to calculate

R{a,A},{b,B}(η)−1W (3)
a,b,c,A,B(η)R{a,A},{b,B}(η) ≡ −W (1)

a,b,c,A,B . (4.20)

The latter identity is a result of straightforward, but really hard computation. So,

Xc,[k,m](ζ, ξ) 
ξ 0.

��

4.3. Commutation relations for b, b̄ and b∗. We now move on to the commutation
relations between operators with opposite spin, such as b∗(ζ ) with b(ζ ) or b̄(ζ ). The
derivation of these relations will follow basically the same line as in the previous sub-
section. Hence we shall mainly focus on the points which need further elaboration.

Recall that b(ζ, α) and b̄(ζ, α) are defined from the residues of the operator

φ(k)(ξ, α)(X[k,l]) = q−1 N (α − S − 1)Trb,B

(
σ−

b T
−
{b,B}(ξ, α)ξ

−α+S(q2S[k,l] X[k,l])
)
.

Here, monodromy matrices with superfix − are defined in terms of the L operators
obtained by spin reversal,

L−
A, j (ζ ) = σ 1

j L A, j (ζ ) σ
1
j , L−

{a,A}, j (ζ ) = σ 1
a σ

1
j L{a,A}, j (ζ ) σ

1
a σ

1
j . (4.21)

Within this subsection and in Appendix C, Appendix D the original L operators will be
denoted by L+

x, j (ζ ) = Lx, j (ζ ) (x = A, {a, A}) and likewise for T
+. (Warning: this sign
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convention for L± is opposite to the one in the previous papers [1,2]. We apologize to
the reader for making this change.)

When dealing with T
+ together with T

−, a technical obstacle is the absence of an R
matrix which ensures the Yang-Baxter relation to hold. This is due to the fact that the
q-oscillator representations W + ⊗ W − and W − ⊗ W + are not isomorphic to each other.
Nevertheless they have the same composition factors, and in most cases this is sufficient
for the computation of traces. Introduce the notation

UAB(η) = η a∗
A + aBq2DA , YAB(η) = (ηq2 − aAaB)q

2DA .

Under the trace, the order of the monodromy matrices can be exchanged according to
the following rule. There exists a 4 × 4 matrix Rquasi

{a A},{bB}(η) such that, for any matrix

Xa,b,A,B(η) in Va ⊗ Vb which is a polynomial in aB,UB A(η
−1), YB A(η

−1)±1 and

q±(2(DA−DB )+σ 3
a +σ 3

b ), we have

Tra,b,A,B

(
q−σ 3

a DB Xa,b,A,B(η)q
σ 3

a DB T
−
{b,B}(ξ, α)T

+{a,A}(ζ, α)
)

= Tra,b,A,B

(
qσ

3
b DA Rquasi

{a A},{bB}(η)
−1σ

(
Xa,b,A,B(η)

)

×Rquasi
{a A},{bB}(η)q

−σ 3
b DAT

+{a,A}(ζ, α)T
−
{b,B}(ξ, α)

)
. (4.22)

Here η = ζ/ξ , and σ is a linear map satisfying σ(P Q) = σ(P)σ (Q) and

σ
(
(1 − ηYB A(η

−1)−1)aB

)
= UAB(η),

σ
(

UB A(η
−1)
)

= (1 − η−1YAB(η)
−1)aA,

σ
(

YB A(η
−1)
)

= q2YAB(η)
−1.

We shall refer to Rquasi
{a A},{bB}(η) as ‘quasi R matrix’. The details about this formula will

be presented in Appendix C, Lemma C.4, along with the explicit formula (C.22) for the
quasi R matrix. From there we quote here another useful formula (see Lemma C.5):

Tra,b,A,B

(
q−2(DA−DB )−σ 3

a DB Xa,b,A,B(η)q
σ 3

a DB T
−
{b,B}(ξ, α)T

+{a,A}(ζ, α)
)

= η
N (α − S)

N (α − S − 1)
Tra,b,A,B

(
q−σ 3

a DB−1YB A(η
−1)Xa,b,A,B(η)q

σ 3
a DB

× T
−
{b,B}(ξ, α)T

+{a,A}(ζ, α)
)
, (4.23)

where η and Xa,b,A,B(η) have the same meaning as above. These formulas (and their
analogs wherein a, A are interchanged with b, B) will be frequently used in this subsec-
tion.

Let us start the calculation. Our first task is to find an ‘exact 2-form’ relation between
k(ζ, α) and φ(k)(ξ, α).

Lemma 4.8. We have

k(ζ, α)[k,l]φ(k)[k,l](ξ, α + 1) + φ(k)[k,l](ξ, α)k[k,l](ζ, α − 1)

= �ζm(+−)
[k,l] (ζ, ξ, α) +�ξm(−+)

[k,l] (ξ, ζ, α). (4.24)
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The operators on the right-hand side are given by

m(+−)(ζ, ξ, α)(X[k,l]) = N (α − S)Trb,A,B

×
(

M ′
b,A,B(η)T

+
A(ζ, α)T

−
{b,B}(ξ, α)(X[k,l])

)
ηα−S,

m(−+)
[k,l] (ζ, ξ, α) = −Jm(+−)

[k,l] (ζ, ξ, α)J,

M ′
b,A,B(η) = 1

η − η−1 qσ
3
b DA

( 1
2 (η + η−1)σ 3

b + η−1UAB(η)σ
−
b

)
q−σ 3

b DA ,

where we have set η = ζ/ξ .

Proof. Omitting the common suffix [k, l] rewrite (4.24) as

k(ζ, α)φ(k)(ξ, α + 1)−�ζm(+−)(ζ, ξ, α) = −φ(k)(ξ, α)k(ζ, α − 1)

+ �ξm(−+)(ξ, ζ, α),

so, that in the left-hand side the monodromy matrices under the trace are ordered as
T

+{a,A}(ζ, α)T
−
{b,B}(ξ, α) while in the right-hand side the order is opposite. Applying

(4.23) to −φ(k)(ξ, α)k(ζ, α − 1) and using (4.9) and suitable analogs of (4.8) obtain

(RH S)= N (α−S)Tra,b,A,B

(
q−σ 3

a DB Wa,b,A,B(η)q
σ 3

a DB T
−
{b,B}(ξ, α)T

+{a,A}(ζ, α)
)
ηα−S,

where

Wa,b,A,B(η)=−q−1YB A(η
−1)σ +

a σ
−
b − η2q2σ 3

b + 1

2(η2q2σ 3
b − 1)

σ 3
a − η

η2q2σ 3
b − 1

UB,A(η
−1)σ +

a .

Now apply (4.22), and verify that

Rquasi
{a A},{bB}(η)

−1σ
(
Wa,b,A,B(η)

)
Rquasi

{a A},{bB}(η) ≡ −σ 1
a σ

1
b Wb,a,B,A(η

−1)σ 1
a σ

1
b ,

where ≡ means identity up to terms proportional to σ−
a or σ +

b . ��
Unlike the previous case treated in Lemma 4.3, the ‘exact forms’ appearing in

Lemma 4.8 have a simple pole on the diagonal ζ 2 = ξ2. Indeed, their residues are
proportional to the identity:

Lemma 4.9. As ζ → ξ , we have

m(+−)
[k,l] (ζ, ξ, α) = ψ(ζ/ξ, α + S[k,l]) + O(1). (4.25)

The proof is given in Appendix C (see Lemma C.6).
As noted before, the singularity on the diagonal is irrelevant to the derivation of the

anti-commutation relations for annihilation operators. Thus Lemma 4.8 immediately
implies

Theorem 4.10. We have the anti-commutation relations for the annihilation operators

[c(ζ ),b(ζ ′)]+ = 0, [c̄(ζ ),b(ζ ′)]+ = 0, [c̄(ζ ), b̄(ζ ′)]+ = 0.
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To deduce the anti-commutators between creation and annihilation operators, the
pole of m(±∓) on the diagonal plays an important role. For that matter, it is convenient
to subtract from them the singular part

�ζm(+−)
[k,l] (ζ, ξ, α) +�ξm(−+)

[k,l] (ζ, ξ, α)(ξ, ζ, α)

=�ζ (m(+−)
[k,l] (ζ, ξ, α)−ψ(ζ/ξ, α + S[k,l]))+�ξ(m(−+)

[k,l] (ξ, ζ, α)−ψ(ζ/ξ, α + S[k,l])).

The terms in the right-hand side are q-exact forms in the strict sense (i.e., they do not
have singularities other than ζ 2 = 1). Therefore by the same arguments as in Lemma 4.6
we obtain

f[k,l](ζ, α)φ(k)[k,l](ξ, α + 1) + φ(k)[k,l](ξ, α)f[k,l](ζ, α − 1) (4.26)


ξ m(+−)
[k,l] (ζ, ξ, α)− ψ(ζ/ξ, α + S[k,l]).

Theorem 4.11. The following anti-commutation relations hold:

[b∗(ζ ),b(ζ ′)]+ = −ψ(ζ/ζ ′
,α + S), (4.27)

[b∗(ζ ), b̄(ζ ′)]+ = t∗(ζ )ψ(ζ/ζ ′
,α + S). (4.28)

Proof. Assume l > m. Reasoning as in the proof of Theorem 4.7 , we obtain the relations
(
φ(k[k,l])(ξ, α)b∗[k,l](ζ, α − 1) + b∗[k,l](ζ, α)φ(k[k,l])(ξ, α + 1)

) (
X[k,m]

)


ξ TrcTc,[m+1,l](ζ )X′
c,[k,m](ζ, ξ) mod (ζ 2 − 1)l−m,

X′
c,[k,m](ζ, ξ) = {φ(k)[k,m]�c(ξ, α)gc(ζ, α − 1) + gc(ζ, α)φ(k)(ξ, α + 1)}(X[k,m]).

From the relation (4.26) we find that X′
c,[k,m](ζ, ξ) = X

′sing
c,[k,m](ζ, ξ) + X

′reg
c,[k,m](ζ, ξ),

X
′reg
c,[k,m](ζ, ξ) = 1

2 m(+−)(ζq, ξ, α) + 1
2 m(+−)(ζq−1, ξ, α)

− Tc(ζ, α)m(+−)(ζ, ξ, α) + uc(ζ, α)φ(k)(ξ, α + 1) + k[k,m]�c(ξ, α)uc(ζ, α − 1),

and

X
′sing
c,[k,m](ζ, ξ) = − 1

2ψ(ζq/ξ, α + S)− 1
2ψ(ζq−1/ξ, α + S) + Tc(ζ, α)ψ(ζ/ξ, α + S).

From the residues of the last term, the right-hand sides of the anti-commutation relations
(4.27), (4.28) arise:

resξ2=1X
′sing
c,[k,m](ζ, ξ)ψ(ζ

′/ξ,−α − S)
dξ2

ξ2 = Tc(ζ, α)ψ(ζ/ζ
′, α + S),

(
resξ2=q2 + res

ξ2=q−2

)
X

′sing
c,[k,m](ζ, ξ)

×
(
ψ(qζ ′/ξ,−α − S) + ψ(q−1ζ ′/ξ,−α − S)

) dξ2

ξ2 = − 1
2ψ(ζ/ζ

′, α + S).

Hence the proof is reduced to showing that X
′reg
c,[k,m](ζ, ξ) 
ξ 0. We now sketch this

calculation.
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Define η = ζ/ξ . We have:

X
′reg
c,[k,m](ζ, ξ) = Tra,b,A,B

(
W ′(1)

a,b,c,A,B(η)T
+{a,A}(ζ, α)T

−
{b,B}(ξ, α)η

α−SN (α − S)

+ W ′(2)
a,b,c,A,B(η)T

−
{b,B}(ξ, α)T

+{a,A}(ζ, α)q−1ηα−S−1 N (α − S − 1)
)
(X[k,m]),

with

W ′(1)
a,b,c,A,B(η) := 1

2

(
qβ(η)τ+

a + q−1β(η−1)τ−
a

)
M ′

b,A,B(η)−F−1
a,A Pac M ′

b,A,B(η)Fa,A

+q−DA YAB(η)q
−DA Ya,c,Aσ

−
b ,

where we have used (4.23) to shift the argument of N (α−S +1) in the term with ucφ(k).
Let us use ≡ for calculations modulo terms proportional to σ−

a , σ +
b . For W ′(2) we have

W ′(2)
a,b,c,A,B(η) ≡ (σ−

b + γ (η−1)τ−
b σ

−
c )N

′
a,c,A,B(η) + γ (η)τ+

b N ′
a,c,A,B(η)σ

−
c ,

N ′
a,c,A,B(η) := −θc

(
L−

B,c(η
−1)qσ

3
c /2Ya,c,Aq−σ 3

c /2 L−
B,c(η

−1)−1q−2DA−σ 3
a

)
.

As was done in the previous section, it is simpler first to modify W
′(2)
a,b,c,A,B(η) by an

exact form, introducing

W ′(3)
a,b,c,A,B(η) = W ′(2)

a,b,c,A,B(η) + W ′(4)
a,b,c,A,B(η),

where

W ′(4)
a,b,c,A,B(η)(η) := η−1 (1 − 1

2 Trc
) (

q−1β(η)τ+
b N ′

a,c,A,B(η)σ
−
c

+ qβ(η−1)τ−
b σ

−
c N ′

a,c,A,B(η)− 1
2 q−2DA−σ 3

a η−1σ 3
b σ

+
a σ

−
c

)
.

We have the exact form:

Tra,b,A,B W ′(4)
a,b,c,A,B(ζ/ξ)T

−
{b,B}(ξ, α)T

+{a,A}(ζ, α)ηα−S−1 (4.29)

= �ξTra,A,B S′
a,c,A,B(ζ/ξ)TB,(ξ, α)T{a,A}(ζ, α)ηα−S,

where

S′
a,c,A,B(η) = 1

1 − η2 q−DA−σ 3
a
[ 1

2σ
3
c

(−σ 3
a q2DB +1 + σ +

a q2UB,A(η
−1)
)

+ σ−
c

(
σ 3

a q2DB +2aB + σ +
a (qη

−1YB,A(η
−1)− 1

2 (1 + q2))
)]

q−DA .

Noting that

q DBσ
3
a W ′(3)

a,b,c,A,Bq−DBσ
3
a

consists of right admissible quantities (for the definition, see the end of Subsect. C.2 and
the paragraph after Corollary C.3), we can change the order of monodromy matrices by
applying the quasi R-matrix. After a straightforward, albeit extremely lengthy, calcula-
tion we get:

Rquasi
{a,A},{b,B}(η)

−1σ
(
q DBσ

3
a W ′(3)

a,b,c,A,B(η)q
−DBσ

3
a
)
Rquasi

{a,A},{b,B}(η)

≡ −q−2DA+2DB YA,B(η)q
−σ 3

b DA W ′(1)
a,b,c,A,B(η)q

σ 3
b DA .

Now, shifting as usual the argument N (α − S − 1) we finish the proof of the theorem.
��
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4.4. Commutation relations of t∗ with b∗, c∗. In this paper we shall not prove all the
commutation relations between the creation operators, a weak variant of these relations
is sufficient for our goals as it will be discussed later. However, we give the proof of
commutativity of t∗ and b∗ because it is important from the general point of view. For
lack of space we consider the homogeneous case only.

Theorem 4.12. The following commutation relation holds in the homogeneous case:

b∗(ξ)t∗(ζ ) = t∗(ζ )b∗(ξ). (4.30)

Proof. Consider the formula (4.1). We used it for the commutation with annihilation
operators; for that reason we dropped q-exact forms in ξ . Written in full in the case
Yc,[k,m] = Tc,[k,m](ζ, α + 1)(X[k,m]) it looks as follows:

k[k,l](ξ, α)t∗(ζ, α + 1)
(
X[k,m]

)

= t∗[k,l](ζ, α)
(
k[k,m](ξ, α) +�ξv[k,l](ξ, α)

)
(X[k,m])

)
mod (ζ 2 − 1)l−m .(4.31)

Using the definition of b∗(ζ, α) we obtain:

b∗[k,l](ξ, α)t∗[k,l](ζ, α + 1)(X[k,m])

=
(

f[k,l](ξq, α) + f[k,l](ξq−1, α)− t∗[k,l](ξ, α)f[k,l](ξ, α)
)

t∗[k,l](ζ, α + 1)(X[k,m])

= t∗[k,l](ζ, α)
(
f[k,m](ξq, α) + f[k,m](ξq−1, α)− t∗[k,l](ξ, α)f[k,m](ξ, α)

+ v[k,l](ξq, α) + v[k,l](ξq−1, α)− t∗[k,l](ξ, α)v[k,l](ξ, α)
)
(X[k,m]).

From the proof of Proposition 3.7 (see Appendix B, (B.1) and (B.6)) one extracts

(
v[k,l](ξq, α) + v[k,l](ξq−1, α)− t∗[k,l](ξ, α)v[k,l](ξ, α)

)
(X[k,m])

= Trc Tc,[m+1,l](ξ)uc,[k,m](ξ, α)(X[k,m]).

Now the statement of the theorem follows from the reduction relation (3.6). ��

4.5. Commutation relations for the inhomogeneous case. Now let us consider the inho-
mogeneous case. Analyzing the proofs given in this section we realize that they consist
of two parts. First the interval [k, l] is reduced to [k,m] by using Lemma 4.1, then the
proofs consist of algebraic manipulations with operators on this, small, interval. So, if
we find a direct analog of Lemma 4.1 in the inhomogeneous case, the rest is simple.
This analog is

Lemma 4.13. In the inhomogeneous case we have for l < j ≤ m:

k[k,l](ξ, α)TrcTc,[m+1,l](ξ j )
(
Yc,[k,m]

) 
ξ TrcTc,[m+1,l](ξ j )k[k,m]�c(ξ, α)(Y[k,m],c),

where the inhomogeneity parameter associated with c is ξ j .

Since the proof is simple, we leave it to the reader. Using the above lemma we easily
repeat the proof of Theorem 4.7, Theorem 4.11, Theorem 4.12 in the inhomogeneous
case, deducing that
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Theorem 4.14. In the inhomogeneous case the following commutation relations hold
on (W)(−∞,n−1]:

[c(ζ ), t∗(ξn)] = 0, [c̄(ζ ), t∗(ξn)] = 0,

[c(ζ ),b∗(ξn)]+ = 0, [c̄(ζ ),b∗(ξn)]+ = 0,

(4.32)[b(ζ ),b∗(ξn)]+ = −ψ(ξn/ζ,α + S),

[b̄(ζ ),b∗(ξn)]+ = t∗(ξn)ψ(ξn/ζ,α + S).

In addition we have

[t∗(ξp),b∗(ξq)] = 0, [t∗(ξp), c∗(ξq)] = 0, (4.33)

for p ≥ n, q ≥ n, p = q.

5. Vacuum Expectation Values

We are now in a position to discuss the construction of a fermionic basis of quasi-local
operators, and calculate the vacuum expectation values (VEV). First we construct the
basis in the inhomogeneous case, and prove its completeness. In Subsect. 5.4 we give
the construction in the case of the infinite homogeneous chain. While the completeness
is still conjectural for the homogeneous case, the VEV’s of the base vectors are given
by a determinant as in the inhomogeneous case.

5.1. Fermionic basis. Let us consider the inhomogeneous chain. We want to construct a
basis of the subspace (W(α))[1,∞) using the operators b∗(ξk), c∗(ξk), t∗(ξk). Starting from
the primary field q2αS(0), define inductively the quasi-local operators Xλ1,...,λn (ξ1, . . . ,

ξn;α) labeled by λ j ∈ {+,−, 0,∅}:

Xλ1,...,λn (ξ1, . . . , ξn;α) :=

⎧
⎪⎪⎨

⎪⎪⎩

b∗(ξn)Xλ1,...,λn−1(ξ1, . . . , ξn−1;α) (λn = +),
c∗(ξn)(−1)S Xλ1,...,λn−1(ξ1, . . . , ξn−1;α) (λn = −),
1
2 t∗(ξn)Xλ1,...,λn−1(ξ1, . . . , ξn−1;α) (λn = 0),
Xλ1,...,λn−1(ξ1, . . . , ξn−1;α) (λn = ∅).

This operator has spin determined by the rule (2.17). We have

Lemma 5.1. For generic values of ξ1, ξ2 . . ., the set

{Xλ1,...,λn (ξ1, . . . , ξn;α), n = 0, 1, 2 . . .}
span (W(α))[1,∞).

Proof. Since for any n there are as many Xλ1,...,λn (ξ1, . . . , ξn;α) as dim
(
(W(α))[1,n]

)
, it

suffices to prove their linear independence. Let Y±,Y∅,Y0 ∈ (W(α))[1,n−1], and suppose
we have a linear relation

Y∅ + t∗(ξn)(Y0) + b∗(ξn)(Y+) + c∗(ξn)(Y−) = 0.

Apply b(ζ ) or c(ζ ) to both sides and take the residue at ζ = ξn . Then from the com-
mutation relations (4.33) we find that Y± = 0. Furthermore, in the limit ξn → ∞ we
have

t∗(ξn)(Y0) = qασ
3
n +σ 3

n S[1,n−1](Y0) + O(ξ−1
n ).

Comparing the nth tensor component we find Y∅ = Y0 = 0. The assertion follows from
these by induction. ��
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5.2. κ-trace. In this subsection, we prepare a lemma which will be used to calculate the
weighted traces of fermionic basis elements.

Introducing a new parameter κ , we set

trκ[k,l](X[k,l]) = tr[k,l](q−κS[k,l] X[k,l])
tr[k,l](q−κS[k,l])

. (5.1)

Note that if i, j ∈ [k, l],
trκ[k,l]Ři, j (ζ )(X[k,l]) = trκ[k,l](X[k,l]). (5.2)

We shall use this property in the form

trκ[k,l]Tc,[k,l](ξl)(Y[k,m],c) = trκ[k,l](Y[k,m],l), (5.3)

where k ≤ m < l and Y[k,m],c ∈ M[k,m] ⊗ Mc. Now set

ω0(ζ, α) = −
(

1 − qα

1 + qα

)2

�ζψ(ζ, α). (5.4)

The following formulas will be used in the next subsection.

Lemma 5.2. Assume that k ≤ m < l. Then we have

trκ[k,l]t∗[k,l](ξl , α)(X[k,m]) = 2
qα + qκ−α

1 + qκ
trκ[k,m](X[k,m]), (5.5)

trκ[k,l]b∗[k,l](ξl , α)(X[k,m]) =
(

1 − qκ

1 + qκ
· 1 + qα

1 − qα

)2

× 1

2π i

∮

�

ω0(ξl/ξ, α)trκ[k,m]c[k,m](ξ, α)(X[k,m])
dξ2

ξ2 . (5.6)

Here the contour � encircles ξ2
j while keeping q±2ξ2

j ( j ∈ [k,m]) and q±2ξ2
l outside.

Proof. Formula (5.5) follows from (5.3). Let us consider (5.6). In the rest of the proof
we set J = [k,m] and K = [m + 1, l]. We may restrict to the case when the spin of X J
is s = −1, since otherwise the trace is zero.

Substituting ζ = ξl in (3.6) and using (5.3), we obtain

trκJ�K b∗
J�K (ξl , α)(X J ) = 2trκJ�{l}gl,J (ξl , α)(X J ) = trκJ HJ (ξl),

where

HJ (ζ ) =
(

f(qζ, α) + f(q−1ζ, α)− 2
qα + qκ−α

1 + qκ
f(ζ, α)− 1 − qκ

1 + qκ
k(ζ, α)

)

(X J ).

The second equality follows after taking the trace over the space l. Hence, with the
notation

H ′
J (ζ ) =

(
1 − qκ

1 + qκ

)2 1

2π i

∮

�

�ζψ(ζ/ξ, α) trκ[k,m]c[k,m](ξ, α)(X[k,m])
dξ2

ξ2 ,
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the proof is reduced to showing the identity

trκJ
(
HJ (ζ ) + H ′

J (ζ )
) = 0. (5.7)

The left-hand side of (5.7) has the form ζ αF(ζ 2) with some rational function F(ζ 2)

(we recall that X J has spin −1). By Lemma 3.8, HJ (ζ ) is regular at ζ 2 = ξ2
j , and from

the definition H ′
J (ζ ) is also regular there.

Let us calculate the residues of (5.7) at ξl = q±1ξ j . From the R-matrix symmetry,
Lemma 2.2 and the relations qκ/2trκ(σ +x) = q−κ/2trκ(xσ +) = tr(σ +x), the two resi-
dues trκJ kJ (ζ, α)(X J ) at ζ = q−1ξ j and qξ j ( j ∈ J ) are proportional to each other.
From this fact and the definition of fJ (ζ, α) and cJ (ζ, α), we obtain

resξ=ξ j ξ
−αtrκJ fJ (ξ, α)(X J )

dξ2

ξ2 = 1 − qκ

1 + qκ
C j ,

resξ=q±1ξ j
ξ−αtrκJ kJ (ξ, α)(X J )

dξ2

ξ2 = 2q∓α

1 + q∓κ C j , (5.8)

where

C j = res
ξ=ξ j

ξ−αtrκJ cJ (ξ, α)(X J )
dξ2

ξ2 .

Combining these we conclude that F(ζ 2) is regular at ζ 2 = q±2ξ2
j . Clearly it is also

regular at ζ 2 = 0 and ∞. Hence F must be a constant. The value at ∞ can be calculated
using

lim
ζ 2→∞

ζ−αtrκJ kJ (ζ, α)(X J ) = 0,

lim
ζ 2→∞

ζ−αtrκJ fJ (ζ, α)(X J ) = 1 − qκ

2(1 + qκ)

∑

j∈J

C j ,

lim
ζ 2→∞

ζ−αtrκJ H ′
J (ζ ) = 1

2 (q
α − q−α)

(
1 − qκ

1 + qκ

)2∑

j∈J

C j .

It follows that F(∞) = 0 and hence F(ζ 2) ≡ 0. This completes the proof. ��
Remark 5.3. For the purpose of calculating the VEV of quasi-local operators q2αS(0)O,
we will need only the case κ = α (see the next subsection). However Lemma 5.2 holds
for all κ , and in particular, for the ordinary trace we have

tr[k,l]b∗[k,l](ξl , α)(X[k,m]) = 0.

5.3. Determinant formula for expectation values. The weighted trace trα is a well defi-
ned linear map on Wα . According to the main formula of [1], the VEV of a quasi-local
operator q2αS(0)O is expressed as follows:

〈vac|q2αS(0)O|vac〉
〈vac|q2αS(0)|vac〉 = trα

(
e�
(
q2αS(0)O

))
. (5.9)
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Here � is an operator on W given by

� = 1

(2π i)2

∮

�

∮

�

ω(ζ1/ζ2,α + S)b(ζ1)c(ζ2)
dζ 2

1

ζ 2
1

dζ 2
2

ζ 2
2

.

The scalar function ω(ζ, α) consists of two pieces,

ω(ζ, α) = ωtrans(ζ, α)− 4qα

(1 − qα)2
ω0(ζ, α). (5.10)

The elementary piece ω0(ζ, α) is defined by (5.4), and the transcendental piece
ωtrans(ζ, α) is given by

ωtrans(ζ, α) = P

i∞∫

−i∞
ζ u+α sin π

2 (u − ν(u + α))

sin π
2 u cos πν2 (u + α)

du,

where P
i∞∫

−i∞
means the principal value (1/2)(

i∞−0∫

−i∞−0
+

i∞+0∫

−i∞+0
). Consider the operator

�0 = 1

(2π i)2

∮

�

∮

�

ω0(ζ1/ζ2,α + S)b(ζ1) c(ζ2)
dζ 2

1

ζ 2
1

dζ 2
2

ζ 2
2

, (5.11)

and define the linear functional vα by

vα(·) = trα
(
e�0(·)).

From the commutation relations (4.33) and Lemma 5.2, for X ∈ (W(α))[1,n−1] we find

vα(t∗(ξn)(X)) = 2vα(X), vα(b∗(ξn)(X)) = vα(c∗(ξn)(X)) = 0.

Thus the functional vα plays a role of the dual vacuum.
Now let us calculate the expectation value of an element of the fermionic basis

Xλ1,...,λn (ξ1, . . . , ξn;α). Since � commutes with �0, we have

trα
(
e�(Xλ1,...,λn (ξ1, . . . , ξn;α))) = vα

(
e�−�0(Xλ1,...,λn (ξ1, . . . , ξn;α))) .

Together with (5.12) it gives immediately:

Theorem 5.4. The vacuum expectation value of Xλ1,...,λn (ξ1, . . . , ξn;α) is 0 unless it
has spin 0. In the latter case it is given by the determinant

〈vac|Xλ1,...,λn (ξ1, . . . , ξn;α)|vac〉
〈vac|q2αS(0)|vac〉 = det

(
(ω − ω0)(ξi+

p
/ξi−q , α)

)

1≤p,q≤m
. (5.12)

Here the indices i±p are defined by

{i | λi = ±} = {i±1 , . . . , i±m } (i±1 < · · · < i±m ).
Remark 5.5. The VEV in the massive regime 0 < q < 1 is also given by the formula
(5.12), where the transcendental part ωtrans in the definition of ω is replaced by

ωtrans(ζ, α) = 2ζ α

⎛

⎝1 − (ζ + ζ−1)
∑

n≥1

(−1)n
( q(α+2)nζ

1 − q2nζ 2 +
q(−α+2)nζ−1

1 − q2nζ−2

)
⎞

⎠ .

The other parts are the same as in the massless regime.
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5.4. The homogeneous case. The calculation of VEV carries over to the homogeneous
chain as well, on the basis of the following analog of Lemma 5.2. We shall restrict to
the case of κ = α.

Lemma 5.6. We have

trαt∗(ζ )(X) = 2 trα(X), (5.13)

trαb∗(ζ )(X) = 1

2π i

∮

�

ω0(ζ/ξ, α) trαc(ξ)(X)
dξ2

ξ2 , (5.14)

where X ∈ Wα in (5.13), and X ∈ Wα+1 in (5.14).

Proof. Let Y[k,m],c ∈ M[k,m] ⊗ Mc and k ≤ m < l. Using Lemma 3.1 and noting that

trα[k,l](ri, j ( · )) = 0 (i, j ∈ [k, l]),
we obtain modulo (ζ 2 − 1)l−m ,

trα[k,l]Tc,[k,l](ζ )(Y[k,m],c) ≡ trα[k,l]ζSm+1Tm+1,[k,m](ζ )(Y[k,m],m+1)

= trα[k,m+1](Y[k,m],m+1).

Hence if X = q2αS(k−1)X[k,m], then we have

1
2 trαt∗(ζ, α)(X) = lim

l→∞ trα[k,l] 1
2 TrcTc,[k,l](ζ )(qασ

3
c X[k,m]) = trα[k,m](X[k,m]),

proving (5.13). Similarly, by the reduction relation (3.6), (5.14) is reduced to the identity
(5.7), which has been proved in Lemma 5.2. ��

Now let us introduce generating functions of quasi-local operators. Let ε=(ε1,. . ., εn)

be a sequence in {0,+,−}n . (Notice that ∅ is not allowed.) We define X ε(ζ1, . . . , ζn;α)
from the primary field q2αS(0) inductively by

X ε1,...,εn (ζ1, . . . , ζn;α) :=
⎧
⎨

⎩

b∗(ζn)X ε1,...,εn−1(ζ1, . . . , ζn−1;α) (εn = +),
c∗(ζn)(−1)S X ε1,...,εn−1(ζ1, . . . , ζn−1;α) (εn = −),
1
2 t∗(ζn)X ε1,...,εn−1(ζ1, . . . , ζn−1;α) (εn = 0).

Even though the notations are similar, this object is different from the fermionic basis
Xλ1,...,λn (ξ1, . . . , ξn;α) considered in the inhomogeneous case. The former is a power
series in the variables (ζ 2

j − 1), each coefficient being a quasi-local operator in W(α).
Now define the operator �0 by (5.11). From the canonical commutation relations

given by Theorem 4.7, Theorem 4.11 and Lemma 5.6, the functional vα(·) := trα
(
e�0(·))

plays a role of the dual vacuum as in the inhomogeneous case. Then a calculation similar
to the one in Subsect. 5.3 leads us to the following determinant formula for the vacuum
expectation values:

Theorem 5.7. The vacuum expectation value of X ε1,...,εn (ζ1, . . . , ζn;α) is 0 unless it
has spin 0. In the latter case it is given by the determinant

〈vac|X ε(ζ1, . . . , ζn;α)|vac〉
〈vac|q2αS(0)|vac〉 = det

(
(ω − ω0)(ζi+

p
/ζi−q , α)

)

1≤p,q≤m
. (5.15)

Here the indices i±p are defined as in Theorem 5.4.
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In spite of the different meaning of the operators in the left-hand sides, the formulae
(5.12) and (5.15) look identical. Why is it so? The formulae (5.15) must be understood
as a generating function of VEV for quasi-local operators created by b∗

p, c∗
p, t∗p (the latter

operators do not change VEV). The formula (5.15) gives for such quasi-local operators
determinants composed of Taylor coefficients of function ω − ω0. On the other hand
consider (5.12). In order to take the homogeneous limit one has to construct suitable
linear combinations of X (ξ ;α)’s, often with singular coefficients, and then send ξ j → 1.
We could give examples, but for lack of space we leave it for a future publication. The
result will again be determinants composed of Taylor coefficients ofω−ω0. Establishing
exact correspondence between operators in homogeneous and inhomogeneous cases is
related to the problem of completeness for the former case; again, it is left for a future
publication.

Appendix A. Representations of Uqb+ and L Operators

In this appendix, we collect several facts about quantum affine algebras and L operators
used in the text.

A.1. Quantum algebras. Consider the quantum affine algebra Uq(ŝl2) with Chevalley
generators ei , fi , ti = qhi (i = 0, 1) and qd , equipped with the coproduct �,

�(ei )=ei ⊗ 1 + ti ⊗ ei , �( fi )= fi ⊗ t−1
i + 1 ⊗ fi , �(q

h)=qh ⊗ qh (h = hi , d).

We shall follow closely the notational convention in [5]. However, in this paper we
denote the antipode by S:

S(ei ) = −t−1
i ei , S( fi ) = − fi ti , S(qh) = q−h (h = hi , d).

(We use S only in this appendix; it is not to be confused with the total spin.) We denote
by U ′

q(ŝl2) the subalgebra generated by ei , fi , ti (i = 0, 1), and by Uqb+ (resp. Uqb−)
the Borel subalgebra generated by ei , ti (resp. fi , ti ) (i = 0, 1).

Let further E, F, q H be the standard generators of Uq(sl2). For ζ ∈ C
×, the evalua-

tion homomorphism evζ : U ′
q(ŝl2) → Uq(sl2) is defined by

evζ (e0) = ζ F, evζ ( f0) = ζ−1 E, evζ (t0) = q−H,

evζ (e1) = ζ E, evζ ( f1) = ζ−1 F, evζ (t1) = q H.

A representation � : Uq(sl2) → End(W ) gives rise to the evaluation representation
�ζ = � ◦ evζ : U ′

q(ŝl2) → End(W ). We write the latter also as Wζ . Of frequent use is

the case of the two-dimensional representation (�,W ) = (π(1), V ), V = C
2, with

π(1)(E) = σ +, π(1)(F) = σ−, π(1)(q H ) = qσ
3
.
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A.2. q-oscillator representations. The q-oscillator algebra Osc is an associative C(qα)-
algebra with generators a, a∗, q D and defining relations

q Da q−D = q−1a, q D a∗q−D = q a∗,
a a∗ = 1 − q2D+2, a∗a = 1 − q2D.

Representations of Osc relevant to us are ρ± : Osc → End(W ±) defined by

W + = ⊕k≥0C|k〉, W − = ⊕k<0C|k〉,
q D|k〉 = qk |k〉, a|k〉 = (1 − q2k)|k − 1〉, a∗|k〉 = (1 − δk,−1)|k + 1〉. (A.1)

We shall use the trace functional Tr(q2αD·) : Osc → C(qα) given as follows. For
each x ∈ Osc and y ∈ C, the ordinary trace ±TrW±(yDx) on W ± is well-defined
for sufficiently small |y|±1, and gives the same rational function gx (y) in y. By defini-
tion, Tr(q2αDx) means gx (q2α) ∈ C(qα). Notice that Tr(q2αD·) is a purely algebraic
operation characterized as the unique linear map with the properties

Tr(q2αD XY ) = Tr(q2αDq2αd(X)Y X) (X,Y ∈ Osc, q D Xq−D = qd(X)X),

Tr(q2αDqm D) = 1

1 − q2α+m
(m ∈ Z).

There is a homomorphism of algebras oζ : Uqb+ → Osc given by

oζ (e0) = ζ

q − q−1 a, oζ (e1) = ζ

q − q−1 a∗, oζ (t0) = q−2D, oζ (t1) = q2D .

We define representations o±
ζ : Uqb+ → End(W ±) by

o+
ζ = ρ+ ◦ oζ , o−

ζ = ρ− ◦ oζ ◦ ι,
where ι denotes the involution ei → e1−i , ti → t1−i of Uqb+.

A.3. L operators. In the main text, we make use of L operators associated with the
auxiliary space Va or W +

A, and the quantum space Vj . They are given as images of the
universal R matrix of Uq(ŝl2),

R = R · q−(h1⊗h1/2+c⊗d+d⊗c),

R = 1 − (q − q−1)
∑

i=0,1

ei ⊗ fi + · · · ∈ Uqb+ ⊗ Uqb−.

Set R′ := R · qc⊗d+d⊗c. From the standard product formula for the universal R matrix
[6] we obtain

(πζ ⊗ πξ )R
′ = ρ(ζ/ξ) · L◦

aj (ζ/ξ),

(o±
ζ ⊗ πξ )R

′ = σ(ζ/ξ) · L◦
Aj

±(ζ/ξ).

Here L◦
aj (ζ ), L◦

Aj
+(ζ ) = L◦

Aj (ζ ) are given by (2.4), (2.8) in the text and

L◦
Aj

−(ζ ) = σ 1
j L◦

Aj (ζ )σ
1
j .
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The scalar factors ρ(ζ ), σ(ζ ) are formal power series in ζ 2 subject to the relations

ρ(ζ ) = q−1/2 σ(q
−1ζ )

σ (ζ )
, σ (ζ )σ (q−1ζ ) = 1

1 − ζ 2 . (A.2)

Their explicit formulas will not be used in this paper.

A.4. R matrix for W +
ζ1

⊗ W +
ζ2

. For generic ζ1, ζ2, the tensor product W +
ζ1

⊗ W +
ζ2

is
irreducible, and is isomorphic to the tensor product in the opposite order. As in the main
text, let us use A (resp. B) to label the first (resp. second) tensor component. An R matrix
intertwining the L operators

RA,B(ζ1/ζ2)L A, j (ζ1)L B, j (ζ2) = L B, j (ζ2)L A, j (ζ1)RA,B(ζ1/ζ2)

can be written as

RA,B(ζ ) = PA,Bh(ζ, u A,B)ζ
DA+DB , (A.3)

where we have set u A,B = a∗
Aq−2DA aB , and h(ζ, u) is the unique formal power series

in u satisfying

(1 + ζu)h(ζ, u) = (1 + ζ−1u)h(ζ, q2u), (A.4)

h(ζ, u) = (1 + ζ−1u)(1 + q−2ζu)h(q−2ζ, u) (A.5)

and h(ζ, 0) = 1.
The R matrix intertwining the fused L operators

R{a,A},{b,B}(ζ1/ζ2)L{A,a}, j (ζ1)L{B,b}, j (ζ2)= L{B,b}, j (ζ2)L{A,a}, j (ζ1)R{a,A},{b,B}(ζ1/ζ2)

is composed of (A.3) and the L operators as 2

R{a,A},{b,B}(ζ ) = (Fa,A Fb,B)
−1L−

B,a(ζ
−1)−1 Ra,b(ζ )RA,B(ζ )L

−
A,b(ζ )Fa,A Fb,B .

We have the Yang-Baxter relation with the monodromy matrices with twist,

R{a,A},{b,B}(ζ1/ζ2)T{A,a}(ζ1, α)T{B,b}(ζ2, α) (A.6)

= T{B,b}(ζ2, α)T{A,a}(ζ1, α)R{a,A},{b,B}(ζ1/ζ2).

Taking the standard basis v+, v− of V = C
2, we regard it as a 4 × 4 matrix with

respect to the basis v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v− of Va ⊗ Vb, and set

R{a,A},{b,B}(ζ ) =
⎛

⎜
⎝

R11 0 0 0
R21 R22 0 0
R31 0 R33 0
R41 R42 R43 R44

⎞

⎟
⎠ . (A.7)

2 This matrix is not the same as a similar matrix given in (A.2), [2].
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The entries are given as follows:

R11 = −ζ 2q DA RA,B(ζ )q
−DB ,

R21 = qζ 3

1 − q2ζ 2 RA,B(qζ )a∗
Aq−DA−DB ,

R22 = − qζ 2

1 − q2ζ 2 q−DA RA,B(q
2ζ )q−DB ,

R33 = −ζ(q−1ζ − qζ−1)q DA RA,B(q
−2ζ )q DB ,

R43 = −ζ RA,B(q
−1ζ )a∗

Aq−DA+DB ,

R44 = q−DA RA,B(ζ )q
DB ,

R31 = −qζ q−2DB a∗
B RA,B(q

−1ζ )q DA+DB ,

R41 = qζ 2

1 − q2ζ 2 q−DB a∗
B RA,B(ζ )a∗

Aq−DA ,

R42 = − ζ

1 − q2ζ 2 a∗
B RA,B(qζ )q

−DA−DB .

Appendix B. Proof of Lemma 3.7

In this section we denote J = [k,m] and K = [m + 1, l]. We decompose the left-hand
side of (3.6) as

b∗
J�K (ζ, α)(X J ) = b∗(ζ, α)(X J ) + I + I I + I I I + I V,

where

I = (fJ�K (qζ, α)− f(qζ, α)) (X J ),

I I =
(

fJ�K (q
−1ζ, α)− f(q−1ζ, α)

)
(X J ),

I I I = −t∗J�K (ζ, α) (fJ�K (ζ, α)− f(ζ, α)) (X J ),

I V = (
t∗J�K (ζ, α)− t∗(ζ, α)

)
f(ζ, α)(X J ).

Note that

Trc
{
Tc,K (ζ ) (gc(ζ, α)− uc(ζ, α)) (X J )

} = b∗(ζ, α)(X J ) + I V .

We want to show that

Trc
{
Tc,K (ζ )uc(ζ, α)(X J )

} = I + I I + I I I. (B.1)

The main part of the proof is computing I I I . Set

X̃{a,A},J = T{a,A}(ζ, α)ζ α−S(q−2SJ X J ).



922 H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama

Separating the K part from the J part, we have

I I I = TrA,a

{
θK (Za,A,K )X̃{a,A},J

}
,

Za,A,K = F−1
a,ATa,K (q

−1ζ )CA,K (ζ )q
SK Fa,AT{a,A},K (qζ )−1

=
(

1 aA
1

)(
aK (q−1ζ ) bK (q−1ζ )

cK (q−1ζ ) dK (q−1ζ )

)

CA,K (ζ )q
SK

(
1 −aA

1

)

×
(

1 0
−q−SK TA,K (ζ )

−1CA,K (qζ ) 1

)(
q SK TA,K (q2ζ )−1 0

0 q−SK TA,K (ζ )
−1

)

.

We use several identities.
Fusion relation:

(
1 aA

1

)(
aK (ζ ) bK (ζ )

cK (ζ ) dK (ζ )

)

TA,K (ζ )

(
1 −aA

1

)

=
(

TA,K (qζ )q−SK 0
CA,K (ζ ) TA,K (q−1ζ )q SK

)

, (B.2)

or equivalently,

TA,K (ζ ) =
(

dK (q−1ζ ) −bK (q−1ζ )

−cK (q−1ζ ) aK (q−1ζ )

)(
1 −aA

1

)

×
(

TA,K (qζ )q−SK 0
CA,K (ζ ) TA,K (q−1ζ )q SK

)(
1 aA

1

)

. (B.3)

Crossing symmetry:

(
dK (q−1ζ ) −bK (q−1ζ )

−cK (q−1ζ ) aK (q−1ζ )

)(
aK (ζ ) bK (ζ )

cK (ζ ) dK (ζ )

)

=
(

1 0
0 1

)

. (B.4)

We define x3
K (ζ ), x±

K (ζ ) by

(
aK (q−1ζ ) bK (q−1ζ )

cK (q−1ζ ) dK (q−1ζ )

)(
dK (ζ ) −bK (ζ )

−cK (ζ ) aK (ζ )

)

= 1 + x3
K (ζ )σ

3 + x+
K (ζ )σ

+ + x−
K (ζ )σ

−. (B.5)

(Za,A,K )1,2: From the (2, 1) element in (B.2) we obtain CA,K (ζ ) = cK (ζ )TA,K (ζ ).
Using this we obtain

(Za,A,K )1,2 = −(aK (q
−1ζ ) + aAcK (q

−1ζ ))cK (ζ )TA,K (ζ )aATA,K (ζ )
−1

+(bK (q
−1ζ ) + aAdK (q

−1ζ ))cK (ζ ).

From the (2, 1) element in (B.4) we obtain aK (q−1ζ )cK (ζ ) = cK (q−1ζ )aK (ζ ). From
the (1, 2) element in (B.2) we obtain

(aK (ζ ) + aAcK (ζ )) TA,K (ζ )aATA,K (ζ )
−1 = bK (ζ ) + aAdK (ζ ).
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Using these equalities we have

(Za,A,K )1,2 = bK (q
−1ζ )cK (ζ )− cK (q

−1ζ )bK (ζ )

+aA

(
dK (q

−1ζ )cK (ζ )− cK (q
−1ζ )dK (ζ )

)

= −x3
K (ζ )− aAx−

K (ζ ).

(Za,A,K )2,2: The calculation is similar, but we use the (2,2) element in (B.2). We obtain

(Za,A,K )2,2 = −x−
K (ζ ) + CA,K (q

−1ζ )q SK TA,K (ζ )
−1.

(Za,A,K )1,1: Reducing a part of the computation to that for (Za,A,K )1,2, we obtain

(Za,A,K )1,1 =
(

aK (q
−1ζ ) + aAcK (q

−1ζ )
)

CA,K (ζ )q
2SK TA,K (q

2ζ )−1

+
(

x3
K (ζ ) + aAx−

K (ζ )
)

CA,K (qζ )q
SK TA,K (q

2ζ )−1.

The (2, 1) element of (B.3) can be rewritten as
(

aK (q
−1ζ ) + aAcK (q

−1ζ )
)

CA,K (ζ ) = cK (q
−1ζ )TA,K (qζ )q

−SK .

Multiply
(
cK (q−1ζ ), dK (q−1ζ )

)
from the left to (B.3) with ζ replaced by qζ . Use (B.5)

and take the first component. The result is

cK (q
−1ζ )TA,K (qζ ) = x−

K (ζ )
(

TA,K (q
2ζ )q−SK − aACA,K (qζ )

)

+ (1 − x3
K (ζ ))CA,K (qζ ).

Combining all these we obtain

(Za,A,K )1,1 = x−
K (ζ ) + CA,K (qζ )q

SK TA,K (q
2ζ )−1.

Now the proof is easy. Recall that X̃{a,A},J is lower triangular. If we substitute

Za,A,K =
(

x−
K (ζ ) −x3

K (ζ )− aAx−
K (ζ )∗ x−

K (ζ )

)

+ Da,A,K ,

Da,A,K =
(

CA,K (qζ )q SK TA,K (q2ζ )−1 0
0 CA,K (q−1ζ )q SK TA,K (ζ )

−1

)

, (B.6)

we obtain I I I . The second diagonal term cancels with I + I I . The last trick is introducing
another auxiliary space in order to write the formula without using θK . In fact, we have

Trc
{
Tc,K (ζ )uc(ζ, α)(X J )

} = TrA,a,cθK (1 + x3
K (ζ )σ

3 + x+
K (ζ )σ

+ + x−
K (ζ )σ

−)

×
(

−1

2
σ 3

c σ
+
a + σ +

c s3
a − aaσ

+
a )

)

X̃{a,A},J

= TrA,aθK

(
x−

K (ζ )σ
3
a − (x3

K (ζ ) + aAx−
K (ζ ))σ

+
a

)
X̃{a,A},J .

The proof is complete.
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Appendix C. Bazhanov-Lukyanov-Zamolodchikov Construction

As has been mentioned in the main text, there is no R-matrix which intertwines the
tensor products W +

ζ1
⊗ W −

ζ2
and W −

ζ2
⊗ W +

ζ1
. In order to calculate the commutation

relations between operators such as b and b∗, it is necessary to find some substitute for
the R-matrix. In this appendix we explain that the Bazhanov-Lukyanov-Zamolodchikov
(BLZ) construction [3] offers a way to do that. We shall use the notation (4.21) for the
L operators L±

x, j .

C.1. Shifted Verma modules. The key point of the BLZ construction is to relate the
tensor products W ± ⊗ W ∓ with Verma modules of Uq(sl2). Let �(�) : Uq(sl2) →
End(V (�)) be the lowest weight Verma representation with lowest weight �, and let
�
(�)
ζ = �(�) ◦ evζ be the evaluation representation. Up to a scalar multiple, the

corresponding L-operator (�(�)
ζ ⊗ π

(1)
ξ )R′ is given by

L(η) =
(

1 − η2q H+1 −(q − q−1)ηF
−(q − q−1)ηE 1 − η2q−H+1

)

q−Hσ 3/2, (C.1)

where η = ζ/ξ . Where necessary, we use the letter v as a label for the Verma module.
As usual the monodromy matrix is defined by

Tv,[k,l](ζ, α)(X[k,l]) = Tv,[k,l](ζ ) qαH X[k,l] Tv,[k,l](ζ )−1,

Tv,[k,l](ζ ) = Lv,l(ζ/ξl) · · · Lv,k(ζ/ξk).

For our purposes it is convenient to twist �(�)
η by the automorphism of Uqb+,

γm(e0) = e0, γm(e1) = e1, γm(t0) = q−mt0, γm(t1) = qmt1,

where m ∈ C is a parameter. We call �(�)
η,m = �

(�)
η ◦ γm : Uqb+ → End(V (�)) a

shifted Verma representation, and denote it by Vη,m(�). In an appropriate basis {v j } j≥0,
the generators act on Vη,m(�) by

(q − q−1)2e0v j = η2q−�+1(q�−H−2 − 1)(q�+H − 1)v j−1, e1v j = v j+1, (C.2)

t0v j = q−H−mv j , t1v j = q H+mv j , (C.3)

where q Hv j = q�+2 jv j and v−1 = 0. The shift parameter m enters the corresponding
L operator simply via

(�(�)
η,m ⊗ π

(1)
ξ )R′ = (scalar) · Lv, j (η)q

−mσ 3/2.

C.2. Filtrations of the tensor product W ±⊗W ∓. Let us introduce the following elements
of Osc⊗2 which will play a role in the sequel.

UA,B(ζ ) = ζa∗
A + aBq2DA , (C.4)

VA,B(ζ ) = ζa∗
B + aAq2DB , (C.5)

YA,B(ζ ) = (ζq2 − aAaB)q
2DA , (C.6)

Z A,B(ζ ) = ζ−1q2DB +2 − a∗
Aa∗

Bq−2DA . (C.7)
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These operators appear as matrix elements of products of L-operators,

L◦
A

+(ζ1)L
◦
B

−(ζ2)

=
(

1−ζ1ζ2YA,B(ζ ) −ζ1(1−ζ−1q−2 Z A,B(ζ ))aA−c(ζ1, ζ2)VA,B(ζ )

−ζ2UA,B(ζ ) 1 − ζ1ζ2 Z A,B(ζ )

)

q−(DA−DB )σ
3
,

(C.8)

L◦
B

−(ζ2)L
◦
A

+(ζ1)

=
(

1−ζ1ζ2 Z B,A(ζ
−1) −ζ1UB,A(ζ

−1)

−ζ2(1−ζq−2 Z B,A(ζ
−1))aB −c(ζ2, ζ1)VB,A(ζ

−1) 1−ζ1ζ2YB,A(ζ
−1)

)

q(DB−DA)σ
3
.

(C.9)

Here we have set ζ = ζ1/ζ2, and c(ζ1, ζ2) = ζ−1
1 ζ 2

2 (1 − ζ 2
1 q2).

Let us list the commutation relations that are relevant to us.
• UA,B , YA,B , Z A,B , aA among themselves:

YA,B(ζ )UA,B(ζ ) = q2UA,B(ζ )YA,B(ζ ),

Z A,B(ζ )UA,B(ζ ) = q−2UA,B(ζ )Z A,B(ζ ),

aAUA,B(ζ )− q2UA,B(ζ )aA = ζ(1 − q2),

YA,B(ζ )aA = q−2aAYA,B(ζ )

Z A,B(ζ )aA = q2aA Z A,B(ζ ) + q2(1 − q2)ζ−1VA,B(ζ ),

YA,B(ζ )Z A,B(ζ ) = q2 − ζ−1q4UA,B(ζ )VA,B(ζ ),

Z A,B(ζ )YA,B(ζ ) = q2 − ζ−1q2UA,B(ζ )VA,B(ζ ). (C.10)

• UA,B , YA,B , Z A,B , aA, aB with VA,B :

[VA,B(ζ ), X ] = 0 for X = UA,B(ζ ),YA,B(ζ ), Z A,B(ζ ), aA,

VA,B(ζ )aB − q−2aB VA,B(ζ ) = ζ(1 − q−2). (C.11)

• UA,B , YA,B , Z A,B , aA with aB :

[UA,B(ζ ), aB] = [YA,B(ζ ), aB] = [aA, aB] = 0,

Z A,B(ζ )aB = aB Z A,B(ζ ) + ζ−1(1 − q2)UA,B(ζ )q
2(DB−DA). (C.12)

The following result can be extracted from [3].

Lemma C.1. Set

ζ = ζ1

ζ2
, q� = qζ. (C.13)

The tensor product W +
ζ1

⊗ W −
ζ2

has an increasing filtration by Uqb+-submodules,

{0} = W (−1)
L ⊂ W (0)

L ⊂ W (1)
L ⊂ · · · ⊂ W (m)

L ⊂ · · · ⊂ W +
ζ1

⊗ W −
ζ2
,

∞⋃

m=−1

W (m)
L = W +

ζ1
⊗ W −

ζ2
, (C.14)



926 H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama

such that each subquotient is isomorphic to a shifted Verma module

ιL : W (m)
L /W (m−1)

L
∼→ V√

ζ1ζ2,2m(�). (C.15)

The tensor product W −
ζ2

⊗ W +
ζ1

in the opposite order has a decreasing filtration by
Uqb+-submodules,

W −
ζ2

⊗ W +
ζ1

= W (−1)
R ⊃ W (0)

R ⊃ · · · ⊃ W (m)
R ⊃ · · · , (C.16)

∞⋂

l=−1

W (m)
R = 0,

such that each subquotient is isomorphic to a shifted Verma module

ιR : W (m−1)
R /W (m)

R
∼→ V√

ζ1ζ2,2m(�). (C.17)

Proof. The vector space W + ⊗ W − has the following basis:

e j,p = UA,B(ζ )
j ap

B |0〉 ⊗ | − 1〉 ( j, p ∈ Z≥0).

Let W (m)
L denote the linear span of e j,p with j ≥ 0 and p ≤ m. Introduce the operator

H by q H e j,m = ζq2 j+1e j,m . A direct calculation using (C.10)–(C.12) shows that (with
� denoting an irrelevant constant)

UA,B(ζ )e j,m = e j+1,m,

YA,B(ζ )e j,m = q H+1e j,m,

Z A,B(ζ )e j,m = q−H+1e j,m + � e j+1,m−1,

(1 − ζ−1q−2 Z A,B(ζ ))aAe j,m = ζ−1(ζq−H−1 − 1)(ζq H+1 − 1)e j−1,m + � e j,m−1,

VA,B(ζ )e j,m = � e j,m−1,

q2(DA−DB )e j,m = ζ−1q H+2m+1e j,m .

In view of the relations

(q − q−1)�(e0) = ζ1(1 − q−2ζ−1 Z A,B(ζ ))aA + ζ−1
1 ζ 2

2 VA,B(ζ ),

(q − q−1)�(e1) = ζ2UA,B(ζ ),

�(t0)
−1 = �(t1) = q2(DA−DB ),

we see that W (m)
L are Uqb+-submodules. Comparing these with (C.2), (C.3) we obtain

the first statement of the lemma.
Similarly, for W −

ζ2
⊗ W +

ζ1
we introduce a basis

f j,p =
(
(1 − ζq−2 Z B,A(ζ

−1))aB

) j
VB,A(ζ

−1)p| − 1〉 ⊗ |0〉.
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Table 1. Correspondence of operators: W +
ζ1

⊗ W−
ζ2

(left), Vζ (�) (middle), W−
ζ2

⊗ W +
ζ1

(right)

XL X XR

VA,B (ζ ) 0 �

� 0 VB,A(ζ
−1)

YA,B (ζ ) q H+1 Z B,A(ζ
−1)

Z A,B (ζ ) q−H+1 YB,A(ζ
−1)√

ζ (1 − ζ−1q−2 Z A,B (ζ ))aA (q − q−1)F
√
ζ UB,A(ζ

−1)√
ζ
−1UA,B (ζ ) (q − q−1)E

√
ζ
−1
(1 − ζq−2 Z B,A(ζ

−1))aB

Let W (m)
R be the linear span of f j,p with j ≥ 0 and p > m. Setting

q H f j,m = ζq2 j+1 f j,m , we have

(1 − ζq−2 Z B,A(ζ
−1)) aB f j,m = f j+1,m,

UB,A(ζ
−1) f j,m = ζ−1(ζq−H−1 − 1)(ζq H+1 − 1) f j−1,m,

Z B,A(ζ
−1) f j,m = q H+1 f j,m + � f j−1,m+1,

YB,A(ζ
−1) f j,m = q−H+1 f j,m,

VB,A(ζ
−1) f j,m = f j,m+1,

q2(DA−DB ) f j,m = ζ−1q H+2m+1 f j,m . (C.18)

The second statement follows from these. ��
Let us say that an operator XL(ζ ) ∈ End(W +⊗W −) (resp. XR(ζ ) ∈ End(W −⊗W +))

is left (resp. right) admissible if it preserves the filtration (C.14) (resp. (C.16)). The
operators

UA,B(ζ ), VA,B(ζ ), YA,B(ζ ), Z A,B(ζ ), aA, q2(DA−DB )

are left admissible, and

UB,A(ζ
−1), VB,A(ζ

−1),YB,A(ζ
−1), Z B,A(ζ

−1), aB, q2(DA−DB )

are right admissible. By the isomorphisms (C.15),(C.17), we have the correspondence
of operators on each subquotient,

ιL ◦ XL(ζ ) ◦ ι−1
L = X(ζ ) = ιR ◦ XR(ζ ) ◦ ι−1

R ,

where XL(ζ ), XR(ζ ) and X(ζ ) are related to each other via the following Table 1:

C.3. Exchange relations under the trace. Lemma C.1 has two corollaries which are
important to us. We shall omit writing the intervals [k, l].
Corollary C.2. If XL(ζ ) is left admissible, then

N (α − S)TrA,B

{
XL(ζ ) T

+
A(ζ1, α)T

−
B (ζ2, α)

}
ζ α−S

= −TrV (�)

{
X(ζ ) Tv(

√
ζ1ζ2, α)

}

= N (α − S)TrA,B

{
XR(ζ ) T

−
B (ζ2, α)T

+
A(ζ1, α)

}
ζ α−S. (C.19)

The operators X(ζ ), XR(ζ ) are obtained from XL(ζ ) via Table 1.
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Proof. Comparing (C.8), (C.9) with (C.1), we have the relations on each subquotient
V√

ζ1ζ2,2m(�),

ιL ◦ T
+
A(ζ1, α)T

−
B (ζ2, α) ◦ ι−1

L = Tv(
√
ζ1ζ2, α)ζ

−α+Sq(α−S)(2m+1),

ιR ◦ T
−
B (ζ2, α)T

+
A(ζ1, α) ◦ ι−1

R = Tv(
√
ζ1ζ2, α)ζ

−α+Sq(α−S)(2m+1).

Taking traces and summing geometric series over m, we obtain the desired relations.
The minus sign enters because TrB = −TrW−

B
(see the definition of the trace functional

Tr after (A.1) in Appendix A). ��
Often it becomes necessary to compare the traces which have multipliers N (α − S)

with shifted arguments. The following lemma tells how to do that.

Corollary C.3. For left admissible XA,B(ζ ), we have

N (α − S + 1)Tr
(

q2DA−2DB XA,B(ζ )T
+
A(ζ1, α)T

−
B (ζ2, α)

)

= ζ−1 N (α − S)Tr
(

q−1YA,B(ζ )XA,B(ζ )T
+
A(ζ1, α)T

−
B (ζ2, α)

)
. (C.20)

Let us proceed to traces of products of fused monodromy matrices T
+{a,A}(ζ1, α) and

T
−
{b,B}(ζ2, α). As it turns out, proper analogues of the left and right admissible operators

in this case are elements of Ma ⊗ Mb of the form

qσ
3
b DAXL

A,B,a,b(ζ )q
−σ 3

b DA , q−σ 3
a DB XR

a,b,A,B(ζ )q
σ 3

a DB ,

where each entry of XL
A,B,a,b(ζ ) (resp. XR

a,b,A,B(ζ )) is a left (resp. right) admissible
operator in the sense defined already. Let us explain the origin of this definition taking
as an example the case of right admissible operators,

Tr
(

qm(2DA−2DB +σ 3
a +σ 3

b )q−σ 3
a DB XR

A,B,a,b(ζ )q
σ 3

a DB T
−
{b,B}(ζ2, α)T

+{a,A}(ζ1, α)
)
.

First undo the fusion,

T
−
{b,B}(ζ2, α)T

+{a,A}(ζ1, α)

= (F+
a,A F−

b,B)
−1

Tb(ζ2, α)T
−
B (ζ2, α)Ta(ζ1, α)T

+
A(ζ1, α)F

+
a,A F−

b,B .

Now move T
−
B (ζ2, α) and T

+
A(ζ1, α) next to each other using the Yang-Baxter equation:

T
−
B (ζ2, α)Ta(ζ1, α) = L−

B,a(ζ2/ζ1)
−1

Ta(ζ1, α)T
−
B (ζ2, α)L

−
B,a(ζ2/ζ1).

Using the cyclicity of the trace, we obtain

Tra,b,A,B Va,b,A,BXR
a,b,A,B(ζ )V

−1
a,b,A,B(ζ )Tb(ζ2, α)Ta(ζ1, α)T

−
B (ζ2, α)T

+
A(ζ1, α),

where we have set

Va,b,A,B(ζ ) = L−
B,a(ζ )F

+
a,A F−

b,Bq−DBσ
3
a .

Using the explicit formula for L−
B,a(ζ ) and F±, it can be shown that each entry of the

matrix Va,b,A,B(ζ ) ∈ Ma ⊗ Mb is a right admissible operator. Hence we can change
their order according to Table 1. After some calculations we obtain the following result.
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Lemma C.4. Let XR
a,b,A,B(ζ ) be an element of Ma ⊗ Mb with right admissible matrix

elements. Then

Tr
(

qm(2DA−2DB +σ 3
a +σ 3

b )q−σ 3
a DB XR

a,b,A,B(ζ )q
σ 3

a DB T
−
{b,B}(ζ2, α)T

+{a,A}(ζ1, α)
)

= Tr
(

qm(2DA−2DB +σ 3
a +σ 3

b )qσ
3
b DAYA,B,a,b(ζ )q

−σ 3
b DAT

+{a,A}(ζ1, α)T
−
{b,B}(ζ2, α)

)

(C.21)

and

YA,B,a,b(ζ ) = Rquasi
{a,A},{b,B}(ζ )

−1XL
a,b,A,B(ζ )R

quasi
{a,A},{b,B}(ζ ),

where XL
a,b,A,B(ζ ) is obtained from XR

a,b,A,B(ζ ) according to (Table 1. The quasi-

R-matrix Rquasi
{a,A},{b,B}(ζ ) is given by

Rquasi
{a,A},{b,B}(ζ ) =

⎛

⎜
⎜
⎜
⎝

Rquasi
11 Rquasi

12 0 0
0 Rquasi

22 0 0
Rquasi

3,1 Rquasi
3,2 Rquasi

3,3 Rquasi
3,4

0 Rquasi
4,2 0 Rquasi

4,4

⎞

⎟
⎟
⎟
⎠

a,b

. (C.22)

Here, setting Y = YA,B(ζ ) and U = UA,B(ζ ), we have

Rquasi
11 = Y −1(1 − ζY )(1 − ζq2Y ), Rquasi

12 = −ζq2Y −1(1 − ζY )aA,

Rquasi
22 = q(1 − ζ 2q2)Y −1,

Rquasi
33 = −(1 − ζ 2q2)q−1Y, Rquasi

34 = (1 − ζ 2q2)q−3ζ
Y

1 − ζq−2Y
aA,

Rquasi
44 = −q−2(1 − ζ 2q2)(1 − ζ 2q−2)

Y

(1 − ζq−2Y )(1 − ζq−4Y )
,

Rquasi
31 = −U, Rquasi

32 = −ζq
q−3Y − ζq

1 − ζq−2Y
,

Rquasi
42 = −q

1 − ζ 2q2

(1 − ζq−2Y )(1 − ζq−4Y )
U.

The following analogs of (C.20) are also useful.

Lemma C.5. We have

Tr
(

q−2DA+2DB q−σ 3
a DB XR

a,b,A,B(ζ )q
σ 3

a DB T
−
{b,B}(ζ2, α)T

+{a,A}(ζ1, α)
)

= ζ
N (α−S)

N (α−S − 1)
Tr
(
q−σ 3

a DB−1YB,A(ζ
−1)XR

a,b,A,B(ζ )q
σ 3

a DB T
−
{b,B}(ζ2, α)T

+{a,A}(ζ1, α)
)
;

a similar formula for opposite order of multipliers is obtained by spin reversal and
α → −α.
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C.4. Proof of Lemma 4.9. Here we prove the following lemma.

Lemma C.6. Let m(+−)(ζ, ξ, α) be as in (4.24), and set η = ζ/ξ . Then as η → 1 we
have

m(+−)(ζ, ξ, α) = 1

η − η−1 + O(1).

Proof. The proof is based on the following identity:

−N (α − S)Tra,b,A,B

{
q−2DAσ +

a σ
−
b T

+{a,A}(ζ, α)T
−
{b,B}(ξ, α)

}
ηα−S

+ N (α − S)�ζTra,b,A,B

{
M̃b,A,B(η)T

+
A(ζ, α)T

−
{b,B}(ξ, α)

}
ηα−S

= Tra,b

{
B0

a,b(η)Ta(ζ, α)Tb(ξ, α)
}

TrV (�)Tv(
√
ζ ξ, α)

− 1

ηq − η−1q−1 TrV (�+2)Tv(
√
ζ ξ, α)− 1

ηq−1 − η−1q
TrV (�−2)Tv(

√
ζ ξ, α),

(C.23)

where q� = qη,

B0(η)= (η − η−1)

(ηq − η−1q−1)(ηq−1 − η−1q)

(
qτ+

a τ
−
b + q−1τ−

a τ
+
b −η−1σ +

a σ
−
b − ησ−

a σ
+
b

)
,

and

M̃b,A,B(η) = 1

η − η−1 qσ
3
b DA

(
σ 3

b + UAB(η)σ
−
b

)
q−σ 3

b DA .

To prove the identity (C.23), start with

Tra,b

{
B0

a,b(η)Ta(ζ, α)Tb(ξ, α)
}

TrV�Tv(
√
ζ ξ, α)

= −N (α − S)Tra,b,A,B B0
a,b(η)Ta(ζ, α)Tb(ξ, α)T

+
A(ζ, α)T

−
B (ξ, α)η

α−S

= −N (α − S)Tra,b,A,B Ha,b,A,B(η)T
+{a,A}(ζ, α)T

−
{b,B}(ξ, α)η

α−S,

where

Ha,b,A,B(η) =
(

F+
a,A F−

b,B

)−1
L A,b(η)

−1 B0
a,b(η)L A,b(η)F

+
a,A F−

b,B .

The rest of the proof is a direct computation of Ha,b,A,B(η).
Consider the residue of both sides of (C.23) at η2 = q−2. Since M̃b,A,B(η) and

M ′
b,A,B(η) have the same residue at η = 1, the residue of the left-hand side gives

resη2=1m(+−)(ζ, ξ, α). On the other hand, the quantum determinant relation gives
resη2=1Tra,b B0

a,b(η)Ta(ζ )Tb(ξ) = 1. Hence in the right-hand side we have

(
TrV (0) − TrV (2)

)
Tv(ζq, α) = 1.

This completes the proof. ��
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Appendix D. Equivalence to the Previous Definition

In our previous papers [1,2], annihilation operators were introduced in a way different
from the one in the present paper. The old definition in [1] reads

cO L D
[k,l] (ζ, α + 1) = sing (1 − q2(α−S+1))kO L D

[k,l] (ζ, α + 1),

bO L D
[k,l] (ζ, α) = (q−α+S − qα−S)−1

J cO L D(ζ,−α) J,

where

kO L D(ζ, α + 1)(X[k,l]) = Tra,A

[
q2αDAσ +

a Ta(ζ )
−1

T
−
A(ζ )

−1(qζ )α−S(X[k,l])
]
,

and

sing f (ζ ) =
∫

�

dξ

2π i

f (ξ)

ζ − ξ
.

They are related to the present definition via

cO L D
[k,l] (ζ, α + 1) = −2qα(1 − q2(α−S+1))sing c[k,l](ζ, α), (D.1)

bO L D
[k,l] (ζ, α − 1) = 2q−α+1 1

1 − q2(α−S−1)
sing b[k,l](ζ, α). (D.2)

In particular we have

bO L D
[k,l] (ζ1, α − 1)cO L D

[k,l] (ζ2, α)
dζ1

ζ1

dζ2

ζ2
= −sing b[k,l](ζ1, α)c[k,l](ζ2, α − 1)

dζ 2
1

ζ 2
1

dζ 2
2

ζ 2
2

.

In the following we shall show (D.1).
Introduce an anti-involution τ of the q-oscillator algebra Osc by

τ(a) = −a∗q−2D−1, τ (a∗) = −a q2D−1, τ (q D) = q D .

We have

τ(L±
A, j (ζ )

−1) = L∓
A, j (q

−1ζ ),

and

TrA

(
q2αDτ(x)

)
= TrA(q

2αDx) (x ∈ Osc).

Applying τ ◦ θa inside the trace, we obtain

kO L D(ζ, α + 1)(X[k,l]) = −Tra,A

×
[
T{a,A}(q−1ζ )q2αDAσ +

a (qζ )
α−S(X[k,l])T{a,A}(qζ )−1

]

= −qα
{

TrA

[
TA(ζ )q

−2S[k,l]+2αDAζ α−S(X[k,l])C̃A(qζ )
]

+TrA

[
CA(q

−1ζ )q−S[k,l]+2αDAζ α−S(X[k,l])TA(ζ )
−1
]}
. (D.3)

Here C̃A(ζ ) denotes the (2, 1) block of T{a,A}(ζ )−1.



932 H. Boos, M. Jimbo, T. Miwa, F. Smirnov, Y. Takeyama

On the other hand, the operator k[k,l](ζ, α) is written as

k(ζ, α)(X[k,l]) = TrA

[
TA(q

−1ζ )q−2S[k,l]+2αDA (q−1ζ )α−S(X[k,l])C̃A(ζ )
]

+TrA

[
CA(ζ )q

−S[k,l]+2αDA (qζ )α−S(X[k,l])TA(qζ )
−1
]
.

Using the explicit formula for L{a,A}, j (ζ ) it can be shown that in the last line only one
term is singular at each of the poles ζ 2 = q±2ξ2

j , i.e.,

sing k(qζ, α)(X[k,l]) = sing TrA

[
TA(ζ )q

−2S[k,l]+2αDAζ α−S(X[k,l])C̃A(qζ )
]
, (D.4)

sing k(q−1ζ, α)(X[k,l]) = sing TrA

[
CA(q

−1ζ )q−S[k,l]+2αDAζ α−S(X[k,l])TA(ζ )
−1
]
.

(D.5)

It follows from (D.4), (D.5), (D.3) that

sing
(

k[k,l](qζ, α) + k[k,l](q−1ζ, α)
)

= sing kO L D
[k,l] (ζ, α + 1), (D.6)

which implies the desired relation (D.1).
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