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Abstract: We evaluate the path integral of the Poisson sigma model on the sphere and
study the correlators of quantum observables. We argue that for the path integral to be
well-defined the corresponding Poisson structure should be unimodular. The construc-
tion of the finite dimensional BV theory is presented and we argue that it is responsible
for the leading semiclassical contribution. For a (twisted) generalized Kähler manifold
we discuss the gauge fixed action for the Poisson sigma model. Using the localization
we prove that for the holomorphic Poisson structure the semiclassical result for the
correlators is indeed the full quantum result.

1. Introduction

The Poisson sigma model (PSM), introduced in [24,43], is a topological two-dimen-
sional field theory with target a Poisson manifold M , whose Poisson tensor we will
denote by α throughout. Recently PSM has attracted a lot of attention due to its role in
the deformation quantization [6]. In particular the star product is given by a semiclassical
expansion of the path integral of the PSM over the disk. In the present paper we study
the PSM defined over the sphere.

Let us start with a brief reminder of PSM. Take � to be a two-dimensional oriented
compact manifold without boundary. The starting point is the classical action functional
S defined on the space of vector bundle morphisms X̂ : T� → T ∗M from the tangent
bundle T� to the cotangent bundle T ∗M of the Poisson manifold M . Such a map X̂ is
given by its base map X : �→ M and the linear map η between fibers, which may also
be regarded as a section in �(�, Hom(T�, X∗(T ∗M))). The pairing 〈 , 〉 between the
cotangent and tangent space at each point of M induces a pairing between the differen-
tial forms on � with values in the pull-backs X∗(T ∗M) and X∗(T M) respectively. It is
defined as pairing of the values and the exterior product of differential forms. Then the
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action functional S of the theory is

S(X, η) =
∫
�

〈η, d X〉 +
1

2
〈η, (α ◦ X)η〉. (1.1)

Here η and d X are viewed as one-forms on � with the values in the pull-back of the
cotangent and tangent bundles of M correspondingly. Thus, in local coordinates, we can
rewrite the action (1.1) as follows:

S(X, η) =
∫

D
ηµ ∧ d Xµ +

1

2
αµν(X)ηµ ∧ ην. (1.2)

The variation of the action gives rise to the following equations of motion:

dηρ +
1

2
(∂ρα

µν)ηµ ∧ ην = 0, d Xµ + αµνην = 0. (1.3)

In covariant language these equations are equivalent to the statement that the bundle mor-
phism X̂ is a Lie algebroid morphism from T� (with standard Lie algebroid structure)
to T ∗M (with Lie algebroid structure canonically induced by the Poisson structure). The
action (1.2) is invariant under the infinitesimal gauge transformations

δβXµ = αµνβν, δβηµ = −dβµ − (∂µανρ)ηνβρ, (1.4)

which form a closed algebra only on-shell (i.e., modulo the equations of motion (1.3)).
In order to quantize the PSM we have to resolve the Batalin–Vilkovisky (BV) for-

malism [3] which we will review later. In what follows we will concentrate mainly on
the case when the world-sheet� is the two-sphere S2. Our goal is to calculate a leading
term for PSM correlators on S2. We will argue that the notion of unimodularity appears
naturally in the construction of the correlators. Indeed our construction is very similar to
the one presented in [41] and is a generalization of the correlators for A- and B-models
(see [23] for review). It is not surprising since the notion of generalized Calabi-Yau
manifold given in [20] is a complex version of the notion of unimodularity of a Lie
algebroid. In particular the unimodularity of the Poisson manifold is a real analog of the
generalized Calabi-Yau condition. Previously in a different context the path integral for
PSM and related models was also discussed in [4,19,32].

In the second part of the paper we consider a particular gauge fixing which involves
a choice of an (almost) complex structure. The whole setup is realized on (twisted)
generalized Kähler manifolds. For these gauge fixed models there exists a residual BRST
symmetry which allows to use the localization. Thus we are able to produce examples
where the leading term is a full answer for the quantum theory.

The paper is organized as follows. In Sect. 2 we review basic concepts of BV formal-
ism. Section 3 is devoted to overview of BV treatment of PSM. In particular we discuss
the classical observables. In Sect. 4 we consider the truncation of the full BV theory to a
finite dimensional BV theory which is responsible for the leading semiclassical contri-
bution in the correlators. We discuss this finite dimensional BV theory in detail. In this
context the unimodularity of the Poisson manifold arises naturally from the quantum
master equation. In Sect. 5 the specific gauge fixing is discussed. Indeed the geometrical
set-up we are using is the same as for the N = 2 supersymmetric PSM [5]. We work out
the details of gauge fixing and discuss the residual BRST transformations of the gauge
fixed action and present the calculations of the correlators for the gauge fixed model.
Finally Sect. 6 summarizes the results and discusses open issues.
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In addition we have Appendices A and B where the relevant mathematical material
is collected. The material presented there is not entirely original and furthermore we
could not find appropriate references with all material. Many of the results presented
in the Appendices are scattered throughout the literature. Moreover we would like to
link two different languages used by different communities. In particular the notion of
generalized Calabi-Yau manifold introduced by Hitchin [20] is related to the notion of
unimodularity for a complex Lie algebroid.

Throughout the paper we use the language of graded manifolds which are superman-
ifolds with a Z-refinement of Z2-grading, e.g. see [42] for the review.

2. Review of BV Formalism

In this section we briefly review the relevant concepts within the general BV framework.
For further details the reader may consult the following reviews [8,13,18].

Definition 1. A graded algebra A with an odd bracket {, } is called an odd Poisson
algebra (Gerstenhaber algebra) if the bracket satisfies

{ f, g} = −(−1)(| f |+1)(|g|+1){g, f },
{ f, {g, h}} = {{ f, g}, h} + (−1)(| f |+1)(|g|+1){g, { f, h}},
{ f, gh} = { f, g}h + (−1)(| f |+1)|g|g{ f, h}.

Quite often such an odd Poisson bracket is called either a Gerstenhaber bracket or an
antibracket.

Definition 2. A Gerstenhaber algebra (A, {, }) together with an odd R-linear map


 : A −→ A,
which squares to zero 
2 = 0 and generates the bracket {, } as

{ f, g} = (−1)| f |
( f g) + (−1)| f |+1(
 f )g − f (
g),

is called a BV-algebra. 
 is called an odd Laplace operator (odd Laplacian).

The canonical example of BV algebra is given by the space of functions on W⊕�W ∗,
where W is a superspace, W ∗ is its dual and � stands for the reversed parity functor.
W ⊕�W ∗ is equipped with an odd non-degenerate pairing. Let ya be the coordinates
on W (the fields) and y+

a be the corresponding coordinates on�W ∗ (the antifields). We
denote the parity of ya as (−1)|ya | and that of y+

a as (−1)|y+
a | = (−1)|ya |+1. Then the

odd Laplacian is defined as follows:


 = (−1)|ya | ∂
∂y+

a

∂

∂ya
. (2.5)

It generates the canonical antibracket on C∞(W ⊕�W ∗),

{ f, g} = (−1)|ya |
←−
∂ f

∂y+
a

−→
∂ g

∂ya
+ (−1)|ya |

←−
∂ f

∂ya

−→
∂ g

∂y+
a
, (2.6)
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where we use the notation
−→
∂ v f = ∂v f and

←−
∂ v f = (−1)|v|| f |∂v f . Indeed the bracket

(2.6) is non degenerate and defines the canonical odd symplectic structure on W⊕�W ∗.
A Lagrangian submanifold L ⊂ W ⊕�W ∗ is an isotropic supermanifold of maxi-

mal dimension. The volume form dy1 . . . dyndy+
1 . . . dy+

n induces a well defined volume
form on L. Thus the integral

∫
L

f, f ∈ C∞(W ⊕�W ∗) (2.7)

is defined for any L. The following is the main theorem of BV-formalism.

Theorem 3. If 
 f = 0, then
∫
L f depends only on the homology class of L. Moreover∫

L
 f = 0 for any Lagrangian L.

The canonical example W ⊕ �W ∗ can be generalized to the cotangent bundle
T ∗[−1]M of any graded manifold M [44]. As a cotangent bundle, T ∗[−1]M is natu-
rally equipped with an odd Poisson bracket that makes C∞(T ∗[−1]M) a Gerstenhaber
algebra according to Definiton 1. The idea is that locally one can map T ∗[−1]M to
W ⊕�W ∗, define the bracket on coordinates with (2.6) and then glue the patches in a
consistent manner.

Now in order to define the odd Laplacian
 we need an integration over T ∗[−1]M.
Namely, the choice of a volume form v on M produces the corresponding volume form
µv on T ∗[−1]M. The divergence operator is defined as a map from the vector fields on
T ∗[−1]M to C∞(T ∗[−1]M) through the following integral relation

∫
T ∗[−1]M

X ( f ) µv = −
∫

T ∗[−1]M
divµv X f µv,∀ f ∈ C∞(T ∗[−1]M), (2.8)

with X being a vector field. As one can easily check, for any function f and vector field
X the divergence satisfies

divµv ( f X) = f divµv (X) + (−1)| f ||X |X ( f ). (2.9)

Now the odd Laplacian of f ∈ C∞(T ∗[−1]M) is defined through the divergence
of the corresponding Hamiltonian vector field as


v f = (−1)| f |

2
divµv X f , { f, g} = X f (g). (2.10)

Indeed one can check that thanks to (2.9) 
v generates the bracket and 
2
v = 0. Thus

C∞(T ∗[−1]M) is a BV-algebra according to Definition 2, see [29] for the explicit
calculations. If the volume form is written in terms of an even density ρv as

µv = ρvdy1 · · · dyndy+
1 · · · dy+

n ,

then the Laplacian can be written as


v = (−1)|ya | ∂
∂y+

a

∂

∂ya
+

1

2
{log ρv,−}. (2.11)



Poisson Sigma Model on the Sphere 1037

There exists a canonical way (up to a sign) of restricting a volume form µv on
T ∗[−1]M to a volume form on a Lagrangian submanifold L. We denote such restric-
tion as

√
µv and consider the integrals of the form

∫
L
√
µv f, f ∈ C∞(T ∗[−1]M). (2.12)

Thus Theorem 3 will remain true for the general case. In particular we are interested in
the situation when the integrands in (2.12) are of the form

∫
L
√
µv �eS ≡ 〈�〉, (2.13)

where we assume naturally that 
v(�eS) = 0. If � = 1 then we get the following
relation:


v

(
eS

)
= 0 ⇐⇒ 
vS +

1

2
{S, S} = 0, (2.14)

which is known as the quantum master equation. In the general case we have


v

(
�eS

)
= 0 ⇐⇒ 
(v,S)� = 
v� + {S, �} = 0, (2.15)

where we refer to 
(v,S) as the quantum Laplacian. In the derivation of (2.15) we
have used the quantum master equation (2.14). A function S that satisfies the quantum
master equation is called a quantum BV action and � satisfying (2.15) is a quantum
observable. Indeed the quantum observables are elements of the cohomology H(
(v,S));
by the above construction it is clear that S defines the isomorphism

H•(
v) ≈ H•(
(v,S)). (2.16)

If we change S to S/�, we see that in the classical limit (� → 0) S must satisfy
the classical master equation {S, S} = 0 and the classical observables � are such that
δBV� ≡ {S, �} = 0. Due to the classical master equation the vector field δBV squares
to zero and defines the cohomology H(δBV ) of classical observables.

If M is a finite dimensional manifold then everything is well-defined. However in
field theory one deals with M being infinite dimensional. In fact, M is usually the space
of the physical fields, ghosts and Lagrange multipliers, that is infinite dimensional. We
extend this set of fields by adding antifields such that together they form T ∗[−1]M,
where an odd Poisson bracket is well-defined on a large enough class of functions, as
described above. However there are no well-defined measure on M and thus there are
no well-defined odd Laplace operators. In the physics literature, the naive Laplacian
of the form (2.6) is used. Moreover the field theory suffers from the problems with
renormalization which can be resolved within the perturbative setup.

3. BV Formalism for PSM

The quantization of PSM requires the machinery of the BV formalism. In this section
we set the notation and give a background information on the BV treatment of PSM. We
mainly review the relevant results from from [6] and [7]. Furthermore we discuss the
classical observables.
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3.1. BV action. The PSM action (1.2) has gauge symmetries which do not close off-shell.
Therefore one should resort to the BV formalism. We may organize the fields, ghosts
and antifields into superfields (X, η) which correspond to the components of supermap
T [1]� → T ∗[1]M . Introducing the local coordinates on � and M the superfields read
as

Xµ = Xµ + θαη+µ
α −

1

2
θαθββ

+µ
αβ ,

ηµ = βµ + θαηαµ +
1

2
θαθβX+

αβµ,

with θ being the odd coordinate on �T�, α, β are labels for local coordinates on �
and µ are labels for local coordinates on M . In the expansion β is a ghost with the
ghost number 1, while η+, β+ and X+ are antifields of ghost number −1, −2 and −1
respectively. The full BV action reads

SBV =
∫

d2θd2u

(
ηµDXµ +

1

2
αµν(X)ηµην

)
, (3.17)

where D = θα∂α . An elegant way to derive this action is to use the AKSZ formalism
[1] as done in [7]. On T ∗[−1]M the odd symplectic structure is

ω =
∫
�

(
δX ∧ δX+ + δη ∧ δη+ + δβ ∧ δβ+)

, (3.18)

where M is an infinite dimensional manifold corresponding to the fields (X, η, β).
The action (3.17) satisfies both classical and naive quantum master equations [6]. The
corresponding BRST operator δBV acts on the superfields as follows:

δBV Xµ = DXµ + αµν(X)ην, (3.19)

δBV ηµ = Dηµ +
1

2
∂µα

νρ(X)ηνηρ. (3.20)

In component the BV action (3.17) has the form

SBV =
∫
�

ηµ ∧ d Xµ +
1

2
αµν(X)ηµ ∧ ην + X+

µα
µν(X)βν − η+µ

∧ (
dβµ + ∂µα

ρν(X)ηρβν
)− 1

2
β+µ∂µα

ρν(X)βρβν

−1

4
η+µ ∧ η+ν∂µ∂να

ρσ (X)βρβσ . (3.21)

The component version of the BV transformations (3.19)–(3.20) is

δBV Xµ = αµν(X)βν, (3.22)

δBV η
+µ = −d Xµ − αµν(X)ην − ∂ναµρ(X)η+νβρ, (3.23)

δBVβ
+µ = −dη+µ − αµν(X)X+

ν +
1

2
∂ν∂ρα

µσ (X)η+ν ∧ η+ρβσ

+∂ρα
µν(X)η+ρ ∧ ην + ∂ρα

µν(X)β+ρβν, (3.24)
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δBVβµ = 1

2
∂µα

νρ(X)βνβρ, (3.25)

δBV ηµ = −dβµ − ∂µανρ(X)ηνβρ − 1

2
∂µ∂να

ρσ (X)η+νβρβσ , (3.26)

δBV X+
µ = dηµ + ∂µα

νρ(X)X+
ν βρ − ∂µ∂ναρσ (X)η+ν ∧ ηρβσ +

1

2
∂µα

νρ(X)ην ∧ ηρ

−1

4
∂µ∂ν∂ρα

στ (X)η+ν ∧ η+ρβσβτ − 1

2
∂µ∂να

ρσ (X)β+νβρβσ . (3.27)

3.2. Classical observables. Next we consider the classical observables for PSM. By an
observable we mean a BRST invariant operator which is not BRST exact.

Let us take the antisymmetric multivector field w ∈ �(∧pT M) and construct the
superfieldwµ1...µp (X)ηµ1

. . . ηµp
. Using (3.19)–(3.20) we calculate the BRST transfor-

mation of this superfield

δBV (w
µ1...µpηµ1

. . . ηµp
) = D(wµ1...µpηµ1

. . . ηµp
)

−1

2
([α,w]s)µ0µ1...µpηµ0

ηµ1
. . . ηµp

. (3.28)

The last term on the right-hand side vanishes if dL Pw = [α,w]s = 0. Moreover we
do not want the superfield wµ1...µpηµ1

. . . ηµp
to be BRST exact. Thus we have to take

w to be an element in the Lichnerowicz-Poisson cohomoogy H•L P (M). Now assuming
[w] ∈ H•L P (M), we can interpret (3.28) in components. The superfield has the expansion

wµ1...µpηµ1
. . . ηµp

= O p
0 + θα(O p−1

1 )α +
1

2
θαθβ(O p−2

2 )αβ

on which the BRST differential δBV acts as

δBV (w
µ1...µpηµ1

. . . ηµp
) = δBV O p

0 − θαδBV (O
p−1
1 )α +

1

2
θαθβδBV (O

p−2
2 )αβ.

The operator D = θα∂α acts on the component fields as the de Rham differential. Thus
for [w] ∈ H•L P (M) the condition (3.28) implies the descent equations for the compo-
nents

δBV O p
0 = 0, δBV O p−1

1 = −d Q p
0 , δBV O p−2

2 = d Q p−1
1 . (3.29)

More explicitly for a nontrivial element [w] ∈ H p
L P (M) we can formally define the

cocycles

O p
0 (w) = wµ1...µpβµ1 . . . βµp , (3.30)

O p−1
1 (w) = ∂ρwµ1...µpη+ρβµ1 . . . βµp + pwµ1µ2...µpηµ1βµ2 . . . βµp , (3.31)

O p−2
2 (w) = −1

2
∂ρ∂σw

µ1...µpη+ρ ∧ η+σ βµ1 . . . βµp − ∂ρwµ1...µpβ+ρβµ1 . . . βµp

−p∂ρw
µ1...µpη+ρ ∧ ηµ1βµ2 . . . βµp + pwµ1...µp X+

µ1
βµ2 . . . βµp

+p(p − 1)wµ1...µpηµ1 ∧ ηµ2βµ3 . . . βµp , (3.32)
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where in O p−i
i (w) the upper index stands for the ghost number and the lower index for

the degree of the differential form on �. Q p−i
i (w) satisfy ( 3.29) and thus O p

0 (w) are
BRST-invariant local observables labeled by the elements of the Lichnerowicz-Poisson
cohomology H•L P (M). From O p−i

i (w) with i > 0 we can construct BRST-invariant
non-local observables as integrals

W (w, ci ) =
∫

ci

O p−i
i (w), (3.33)

where ci is an i-cycle on �. These observables depend only on the homology class of
ci . The antibracket {, } of two non-local observables

{W (w,�),W (λ,�)} = −W ([w, λ]s, �) (3.34)

gets mapped into the Schouten bracket between the multivector fields [6].

3.3. General comments on the path integral. The main task is to calculate the correlation
functions of observables which can be represented as the path integral expression

〈W (w1, ci1) . . .W (wn, cin )〉 =
∫
L

DXDη W (w1, ci1) . . .W (wn, cin ) e
i
�

SBV . (3.35)

For this integral to make sense at least perturbatively we have to integrate not over the
whole functional space but over the “Lagrangian” submanifold L. The choice of L is
called the gauge fixing and it is typically generated by a gauge fixing fermion �. The
path integral (3.35) is invariant under the deformations of the Lagrangian submanifold
L.

However due to the absence of any well-defined measure on the space of fields we
cannot treat this integral non-perturbatively. Despite this difficulty we can address and
even sometimes solve it completely from the different direction, namely by reducing to
an appropriate finite dimensional problem. We would expect that the correlator (3.35)
has a well-defined expansion in non-negative powers of �. In particular there will be
a leading term in this expansion which we can evaluate by consistent reduction of the
full theory to a finite dimensional BV theory for which all objects can be defined. This
reduction will produce the leading terms in the correlators. Indeed for some models
these terms correspond to a full quantum result. In Sect. 4 we will consider the finite
dimensional BV theory responsible for leading terms in the correlators on S2.

In Sect. 5 we present the details for a concrete choice of L. The gauge fixed theory
will have residual BRST symmetry which allows us to localize the infinite dimensional
integrals to finite dimensional.

4. The Reduced BV Theory

In this section we consider a consistent truncation of the infinite dimensional BV theory
to a finite dimensional one, that computes the contribution of constant configurations.
We conjecture that this reduced BV theory controls the leading contribution into the path
integral in the limit �→ 0.
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This procedure can be considered as a reduction of BV -manifolds and for a Riemann
surface �g of genus g the truncation can be organized in the following fashion. We
define the submanifold C of the whole space of fields by requiring that all fields are
closed forms

d X = 0, dβ = 0, dη = 0, dη+ = 0, d X+ = 0, dβ+ = 0. (4.36)

These equations define a set of first class constraints (the conditions d X+ = dβ+ = 0
are redundant since X+ and β+ are the top forms), i.e. C is a coisotropic submani-
fold. The gauge transformations generated by the constraints (4.36) shift the field by
an exact form. Therefore the reduced BV space is obtained by going to the cohomol-
ogy of �g . The reduced variables are then defined by the integration of the fields over
all cycles of �g . Thus zero-forms X and β are constants, and we use the same sym-
bols to indicate the reduced coordinates. For one-forms we choose the basis {ca} in
H1(�g,R) = H1(�g,R) and introduce the reduced coordinates

ηa =
∫

ca

η, η+
a =

∫
ca

η+.

While two-forms X+ and β+ are integrated over whole � and give

X+ =
∫
�g

X+, β+ =
∫
�g

β+.

All the BV structure goes to the quotient and defines a finite dimensional BV manifold.
The space H1(�g,R) is symplectic with the structure ωab. Therefore on the reduced
finite dimensional manifold, the odd symplectic structure (3.18) reads

ω = d Xµd X+
µ + ωabdηadη+

b + dβµdβ+µ. (4.37)

Moreover, the BV action SBV defined in (3.21) when restricted to C depends only on
the reduced variables, i.e. it is a pull-back of a function on the reduced manifold. We
use the same notation SBV for it.

However we are interested in zero genus case, and we leave for future investigations
the case of genus g > 0. In this situation the corresponding finite dimensional BV
manifold is F = T ∗[−1]T ∗[1]M , where the odd symplectic structure is written in the
coordinates z = (Xµ, βµ, X+

µ, β
+µ) as

ω = d Xµd X+
µ + dβµdβ+µ. (4.38)

The degree of the coordinates is the one induced from the corresponding fields. Under
a coordinate change X̃ i (Xµ), the new coordinates z̃ = (X̃ i , β̃i , X̃+i , β̃†i ) are

β̃i = Tµi βµ, β̃+i = T i
µβ

+µ, X̃+
i = X+

µTµi − β+µβν
∂T νj
∂Y i

(T−1) j
µ, (4.39)

where Tµi = ∂Xµ/∂ X̃ i . The BV action (3.21) becomes

SBV = X+
µα

µν(X)βν − 1

2
β+µ∂µα

ρν(X)βρβν, (4.40)
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which obviously satisfies the classical master equation. In the following discussion we
will analyze this finite dimensional BV theory and claim that it gives the leading con-
tribution to PSM correlators. Later using a particular gauge fixing we will confirm this
statement.

In addition to the BV reduction described above we can provide a different heuristic
argument in the support of our construction. The action (4.40) can be understood as
a leading term in the effective BV theory with the “constant” maps as IR degrees of
freedom. The reader may consult [31,40] for the explanation the effective actions within
the BV framework.

4.1. Integration on finite dimensional BV manifold. We start by defining the integra-
tion over F = T ∗[−1]T ∗[1]M . This will allow us to define an odd Laplacian which is
necessary for a proper BV description, according to the lines outlined in Sect. 2.

Integration on F can be defined by putting together berezinian integration in the odd
directions of X+

µ and βµ and fiberwise integration in the even directions of β+µ. Let us
choose a volume form � = �µ1···µn d Xµ1 · · · d Xµn = ρ�d X1 · · · d Xn on M .

We introduce the volume form µ� = ρ4
�Dz, where Dz = d X1 · · · dβ1 · · ·

d X+
1 · · · dβ+1 · · · is the coordinate volume form. Since under the change of coordinates

(4.39) the coordinate volume form transforms as

Dz̃ = Ber
∂ z̃

∂z
Dz, Ber

(
I00 I01
I10 I11

)
= det(I00 − I01 I−1

11 I10)

det I11
,

it is simple to check that µ� is well defined. By applying (2.11), we get


� = ∂

∂X+
µ

∂

∂Xµ
− ∂

∂β+µ

∂

∂βµ
+ 2{log ρ�,−}.

The restriction to F of local and the non-local observables (3.32) associated to multi-
vector fields defines the corresponding observables on the reduced manifold F . Namely,
to w ∈ �(∧pT M) we associate the local observable

O p
0 (w) = wµ1···µpβµ1 · · ·βµp , (4.41)

and the non-local one

O p−2
2 (w) = −∂ρwµ1···µpβ+ρβµ1 · · ·βµp + pwµ1···µp X+

µ1
βµ2 · · ·βµp . (4.42)

It is straightforward to check that they are covariant under the transformation of coordi-
nates (4.39). The antibracket defined by the odd symplectic structure (4.37) between
local and non-local observables can be expressed in terms of the Schouten bracket; let
w ∈ �(�pT M), λ ∈ �(��T M), then we have that

{O p−2
2 (w), O�

0(λ)} = −O p+�−1
0 ([w, λ]s)

{O p−2
2 (w), O�−2

2 (λ)} = −O p+�−3
2 ([w, λ]s), (4.43)

in analogy with (3.34). The odd Laplacian 
� acts on this observable as follows:


�O p−2
2 (w) = −2(D�(w))

µ1···µp−1βµ1 · · ·βµp−1 = −2O p−1
0 (D�(w)), (4.44)
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where D� is the divergence associated to the volume form � defined in Appendix A.
The BV -differential also descends to the reduced manifold as δBV (F) = {SBV , F}, for
any F ∈ C∞(F).

The action SBV = 1/2 O0
2 (α) defined in ( 4.40) satisfies the quantum master equation

( 2.14) if the following holds:


�SBV +
1

2
{SBV , SBV } = 0 ⇐⇒ D�α = 0, [α, α]s = 0, (4.45)

where [, ]s is the Schouten bracket on multivector fields, see Appendix A for the def-
initions. Thus the classical and quantum master equations have to be satisfied simulta-
neously. The geometrical meaning of the quantum master equation is clear: the volume
form�must be invariant under the flow of the hamiltonian vector fields of α. The exis-
tence of such a volume form is equivalent to the unimodularity of the Poisson tensor, see
the discussion in Appendix A. More generally, we may say that the action (4.40) is the
zero order in � of the solution of the quantum master equation if and only if α is Poisson
and unimodular1. If � is not an invariant form then the unimodularity of α implies

D�α = −dL P f, (4.46)

for some function f (X). This would correspond to the addition to

SBV + 2� f (X).

Equivalently this amounts to the redefinition� by e� f�. In what follows we set � = 1.
By applying formulas (4.43), we see that for any w ∈ �(�•T M) we have


(�,α)O
p
0 (w) = 0 ⇐⇒ dL P (w) = 0, (4.47)

and thus the local observable associated to w is a quantum observable iff dL Pw = 0.
The non-local observable O p−2

2 (w) will be quantum if the following holds:


�

(
O p−2

2 (w)eSBV
)
= 0 ⇐⇒ 
(�,α)(O

p−2
2 (w)) = 0

⇐⇒ D�w = 0, dL Pw = 0. (4.48)

Moreover, by applying (4.43) we see that local and nonlocal observables form a sub-
complex of the quantum laplacian 
(�,α) = 
� + δBV . See the next subsection for the
discussion of these observables.

Finally we can evaluate the path integral. We have to choose a Lagrangian submani-
fold L and the most obvious choice is L = {X+ = 0, β+ = 0}. In order to compensate
the odd integration we have to insert into the path integral the local observables

∫
L

O p1
0 (w1) . . . . O pk

0 (wk) eSBV = tr�(w1 ∧ . . . ∧ wk), (4.49)

where the trace map is defined in Appendix B. This expression is non-zero only if
p1 + · · ·+ pk = d. With this choice of lagrangian submanifold, the nonlocal observables
are identically zero.

We conclude that in the present finite dimensional BV -theory the action (4.40) satis-
fies the quantum master equation if the Poisson tensor α is unimodular. This is equivalent

1 Within the general BV framework it can be shown that the modular class corresponds to the first obstruc-
tion to the existence of a quantum master action [36].
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to the requirement that there exists a trace map tr� satisfying two properties in Theorem
9 of Appendix A. In Appendix A we present the mathematical discussion of these prop-
erties. Below we present “physical” derivation of those identities. The first property of
tr� from Theorem 9 is a consequence of the quantum master equation for SBV (i.e., the
unimodularity of Poisson structure α). Namely we have the following chain of relations

tr�
(

dL P (w) ∧ λ− (−1)|w|+1w ∧ dL P (λ)
)
= tr� (dL P (w ∧ λ))

= −2
∫
L
{eSBV , O |w|+|λ|0 (w ∧ λ)} = −2

∫
L

�

(
eSBV O |w|+|λ|0 (w ∧ λ)

)
= 0.

This property implies that the trace map tr� descends to the Lichnerowicz–Poisson
cohomology H•L P (M). The second property in Theorem 9 is a simple consequence of
the fundamental BV Theorem 3. To be specific for the multivector fields w, λ we have
the following relations:

tr�
(

D�(w) ∧ λ− (−1)|w|w ∧ D�(λ)
)

=
∫
L

(
O |w|−1

0 (D�w)O
|λ|
0 (λ)− (−1)|w|O |w|0 (w)O |λ|−1

0 (D�λ)
)

= −2
∫
L

�

(
O |w|−2

2 (w)O |λ|0 (λ)− O |w|0 (w)O |λ|−2
2 (λ)

)
= 0,

where (4.45) and (4.48) have been used. This property implies that the trace descends
to the cohomology of D�. The cohomology of D� on the multivectors H•(D�) is
isomorphic to the de Rham cohomology H•d R(M).

In the present context it is worthwhile to mention another interesting property of the
trace map tr� on multivector fields. For the unimodular Poisson structure α there is the
following relation:

e−αD�eα = dL P + D�, (4.50)

where eα acts on the multivector field w as

eαw = w + α ∧ w +
1

2
α ∧ α ∧ w + · · · ,

and D�eα = 0 is used. The relation (4.50) implies the isomorphism of cohomologies,
H•(dL P + D�) ≈ H•d R(M). Moreover the trace map tr� descends to the cohomology
H•(dL P + D�).

4.2. Maurer-Cartan equation and formal Frobenius manifolds. In this subsection we
comment on the relation between the BV setting described above and the construction
of Frobenius manifolds from BV -manifolds which appeared previously in mathemati-
cal works, in particular in the papers by Barannikov and Kontsevich [2] and by Manin
[38,39]. Our observations have preliminary and speculative character. We plan to come
back to this subject elsewhere.

The BV theory discussed in the previous section can be deformed by adding to
the solution (4.40) of the quantum master equation any observable of ghost number 0.
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Take w(t) ∈ �(�2T M[[t]]) with t being a formal parameter of degree zero such that
w = w(0). Consider the deformed action

SBV (t) = SBV +
t

2
O0

2 (w(t)). (4.51)

Obviously, SBV (t) satisfies the quantum master equation if and only if α + tw(t) is an
unimodular Poisson structure with the invariant volume form �. This is equivalent to
the Maurer–Cartan equation for w(t),

dL Pw(t) +
t

2
[w(t), w(t)]s = 0, D�w(t) = 0. (4.52)

At the infinitesimal level this means dL Pw = D�w = 0 and thus O0
2 (w) is a quantum

non-local observable. However it is natural to allow the volume form � to vary and use
the argument presented around Eq. (4.46). Therefore we can describe the infinitesimal
deformations as follows:

dL Pw = 0, D�w + dL P f = 0, (4.53)

with w + f ∈ �(∧2T M ⊕ ∧0T M), where w corresponds to the deformations of uni-
modular Poisson structure and f to the deformations of the volume form. Eqs. (4.53)
can be equivalently rewritten as follows:

(dL P + D�)(w + f ) = e−αD�eα(w + f ) = 0, (4.54)

where we assume that � is an invariant volume form for α. In BV theory the deforma-
tion will be trivial if it is in the image of the quantum Laplacian 
(�,α). However the
question is to understand the geometrical description of these trivial BV deformations.
For example, the diffeomorphisms give a trivial deformation of the BV theory. Namely
for w = Lξ α = dL P (ξ) and f = D�ξ for ξ ∈ �(T M) the deformation is trivial,

1

2
O0

2 (w) + 2O0
0 ( f ) = −
(�,α)O−1

2 (ξ).

However the formula (4.54) suggests that the deformations is trivial if

w + f = (dL P + D�)ξ = e−αD�(e
αξ), (4.55)

with ξ ∈ �(∧•T M), not just simply a vector. One has to show that the corresponding
deformations of the BV theory are trivial. Unfortunately we are unable to do it in all
generality. Nevertheless we give some plausible arguments in its favor and analyze the
problem in special cases.

The linear space of deformations defined as the condition (4.54) modulo the identi-
fication (4.55) would be interpreted as the tangent space to some kind of modular space
of unimodular Poisson structures (if such space exists). The crucial point motivated by
the BV consideration is that the Poisson tensors may be equivalent even if they are
not diffeomorphic. Indeed the equivalence relation (4.55) looks very natural in terms of
the pure spinor description (see Appendix B for the details). The unimodular Poisson
structure can be described in terms of closed pure spinor ρ = eα�. The deformation of
the pure spinor would be given by

δρ = (w + f ) · ρ,
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where the finite deformation is eα+we f�. The property (4.54) implies that d(δρ) = 0.
If the deformation satisfies (4.55) then

δρ = (w + f ) · ρ = −d (ξ · ρ),
where we used Theorem 13 in Appendix B. Thus we look at the deformations of closed
pure spinor modulo exact ones which correspond to the subspace of the de Rham coho-
mology group, namely

{[(w + f ) · ρ] ∈ H•d R(M), (w + f ) ∈ �(∧2T M ⊕∧0T M)},
where we deal with the alternative grading of the differential forms, see Appendix B.
Following standard terminology, we refer to the corresponding space of deformations
of the BV theory modulo the trivial ones as the geometric moduli space.

Let us get back to the BV theory. More generally we want to understand the subspace
of the cohomology of the quantum Laplacian spanned by non-local observables

Hnonloc(
(�,α)) = {[O2(w)] ∈ H(
(�,α)), w ∈ �(�•T M)}.
In particular we want to understand if it is finite dimensional and moreover related to the
de Rham cohomology Hd R(M) ≈ H(D�) ≈ H(dL P + D�). We are unable to answer
this question in all generality. However we can analyze two special cases which give a
positive answer.

Let us discuss first the case of the trivial Poisson structure, α = 0. In this case a quan-
tum non-local observable O p−2

2 (w) corresponds to the multivector fieldw ∈ �(∧pT M)

such that D�w = 0. Then we can show that O p−2
2 (D�ν), D�ν ∈ �pT M , is trivial.

In fact it is always possible to write ν = ∑
i fi D�λi , for some fi ∈ C∞(M) and

λi ∈ �(�p+2T M). This is obviously equivalent to say that the de Rham differential
finitely generates the module of forms. Then using the basic properties of the antibrack-
et we arrive to

O p−2
2 (D�ν) =

∑
i

O p−2
2 ([ fi , D�λi ]s) = −

∑
i

{O−2
2 ( fi ), O p−1

2 (D�λi )}

= −
�
(∑

i

O−2
2 ( fi )O

p−1
2 (D�λi )

)
. (4.56)

Therefore the correspondence w → O p−2
2 (w) defines a surjection from H(D�) to

Hnonloc(
�). Thus the corresponding geometrical moduli space is finite dimensional.
Next consider the case of the non-trivial Poisson structureα such that two differentials

(dL P , D�) satisfy the ∂∂̄-lemma, i.e.

ImdL P D� = ImdL P ∩ KerD� = KerdL P ∩ ImD�. (4.57)

The condition (4.57) is satisfied for a large class of symplectic manifolds obeying the
strong Lefschetz property (see [39]). However the ∂∂̄-lemma does not hold for a generic
Poisson manifold since HL P (M) is infinite dimensional. One of the consequences of
the ∂∂̄-lemma is the isomorphism of the cohomologies, HL P (M) ≈ Hd R(M). The
extreme example of the failure for this lemma is the trivial Poisson structure. Con-
sider w ∈ �(�pT M) which defines a trivial class in (dL P + D�)-chomology, i.e.
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w = dL Pξp−1 + D�ξp+1, 0 = dL Pξk−1 + D�ξk+1 for k �= p. After straightforward
calculation we arrive at the following relation:

O p−2
2 (w) = −2
(�,α)(O2(ξp−1) + 4O0(ξp−3)) + O2(D�ξp+1).

Since D�ξp+1 ∈ ImD� ∩ KerdL P = ImD�dL P , there exists νp such that D�ξp+1 =
D�dL Pνp and O2(D�ξp+1) = 2
(�,α)O2(D�νp). Thus we conclude that also in this

case the correspondencew→ O p−2
2 (w) defines a surjective map from the finite dimen-

sional space H p
d R(M, α) to Hnonloc(
(�,α)) where H p

d R(M) is defined as follows:

H p
d R(M, α) = {[w · ρ] ∈ H•d R(M), w ∈ �(∧pT M)}.

Motivated by these two examples we conjecture that the space Hnonloc(
(�,α))

is finite dimensional. Thus in general the action SBV can be deformed for arbitrary
ghost number, mimicking the construction of Frobenius manifolds of [2] and [38]. Let
{wk ∈ �(�pk T M)} define a basis {O pk−2

2 (wk)} of Hnonloc(
(�,α)). We introduce the
formal variables {tk} of degree 2− pk and extend the full BV machinery to F ⊗R[[tk]].
Clearly S(t) = SBV +

∑
k tk O pk−2

2 (wk) the quantum master equation solves at the infin-
itesimal level. Interpreting Hnonloc(
(�,α)) as the tangent space of the extended moduli
space the main problem is to find a finite deformation, i.e. a solution of the Maurer-Cartan
equation

δBV S(t) +
1

2
{S(t), S(t)} = 0. (4.58)

In [2,38,39] the solution of such an equation is discussed within the BV setup. The main
difference with the setup in [2,38,39] is the requirement of ∂∂̄-lemma that we want
to avoid because it excludes the non-symplectic cases. Is it possible to solve the Ma-
urer-Cartan equation (4.58) in this context? The ∂∂̄-lemma provides the isomorphism
between the spaces of the classical and quantum observables. While for the generic
unimodular Poisson manifold, the space of classical observables is infinite dimensional
and the space of quantum observables is expected to be finite dimensional.

5. Gauge Fixing

In this section we perform the gauge fixing by choosing an appropriate Lagrangian
submanifold. In particular we use a complex structure for the gauge fixing.

5.1. Geometrical setup. Let us start from the description of the relevant geometric setup.
It turns out to be very convenient to consider the N = 2 supersymmetric PSM [5].
The existence of the extended supersymmetry for PSM requires a generalized complex
strucrure

J =
(

J P
L −J t

)
, (5.59)

such that [R,J ] = 0, where

R =
(

1d α

0 −1d

)
. (5.60)
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These conditions can be worked out completely. To be specific L = 0, J is a complex
structure and moreover the (2, 0) + (0, 2) part of α

P = 1

2
(Jα + α J t ), (5.61)

is a holomorphic Poisson structure. If we switch to the complex coordinates with the
labels (i, ī) then the (2, 0)-part αi j is a holomorphic Poisson structure if the following
holds:

∂k̄α
i j = 0, αil∂lα

jk + α jl∂lα
ki + αkl∂lα

i j = 0. (5.62)

Indeed the geometrical setup we will use can be summarized as follows: a Poisson man-
ifold (M, α, J ) with a complex structure J such that (2, 0)-part of α is holomorphic.
The fact that (2, 0)-part is Poisson itself follows from this.

It may look at first that the geometry we just described is somewhat exotic. However
that is not the case and this Poisson geometry is always realized on (twisted) generalized
Kähler manifolds [37,15,21]. The (twisted) generalized Kähler manifold can be charac-
terized as a bihermitian geometry (g, J+, J−), where J± are two complex structures and
g is a metric which is hermitian with respect to both complex structures. In addition there
are certain integrability conditions on two-forms g J±. The (twisted) generalized Kähler
manifold has two real Poisson structures π± = (J+ ± J−)g−1 [37]. Moreover their
(2, 0)-part with respect to J+ (or J−) is a holomorphic Poisson structure with respect to
J+ (or J−), [21].

5.2. Gauge fixed action. Let us assume that the Poisson manifold (M, α) admits a com-
plex structure J such that the (2, 0)-part of α is a holomorphic Poisson structure and the
world-sheet � is equipped with a complex structure. We will concentrate our attention
on the case of the two-sphere where the complex structure is unique. Introducing the
complex coordinates on M and � we define the following Lagrangian submanifold in
the space of (anti)fields:

ηzi = 0, ηz̄ī = 0, η+i
z = 0, η+ī

z̄ = 0, X+ = 0, β+ = 0, (5.63)

where (i, ī) stand for the complex coordinates on M and (z, z̄) are the complex coor-
dinates on �. The odd symplectic structure (3.18) is zero on (5.63). Equivalently we
could write the conditions (5.63) using the projectors constructed out of J and complex
structure on �, in the same fashion as in [47]. Indeed we do not need to assume that
J is integrable, it is enough for J to be an almost complex structure. However in what
follows we are in the geometrical setup described in the previous subsection. In this case
many calculations simplify drastically.

Assuming the gauge (5.63) the gauge fixed action is

SG F = i
∫
�

d2σ
[
ηzī∂z̄ X ī − ηz̄i∂z Xi + α ī jηzīηz̄ j + η+i

z̄ (∂zβi + ∂iα
l̄sηzl̄βs)

−η+ī
z (∂z̄βī + ∂īα

l s̄ηz̄lβs̄)− ∂ī∂ jα
kl̄η+ī

z η
+ j
z̄ βkβl̄

]
, (5.64)
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which is just the action (3.21) restricted to ( 5.63). The action (5.64) is invariant under
the following BRST transformations:

δXi = αi jβ j + αi j̄β j̄ , (5.65)

δXī = α ī j̄β j̄ + α ī jβ j , (5.66)

δη+i
z̄ = −∂z̄ X i − αi jηz̄ j − ∂kα

i j̄η+k
z̄ β j̄ − ∂kα

i jη+k
z̄ β j , (5.67)

δη+ī
z = −∂z X ī − α ī j̄ηz j̄ − ∂k̄α

ī jη+k̄
z β j − ∂k̄α

ī j̄η+k̄
z β j̄ , (5.68)

δβi = ∂iα
k j̄βkβ j̄ +

1

2
∂iα

k jβkβ j , (5.69)

δβī = ∂īα
k̄ jβk̄β j +

1

2
∂īα

k̄ j̄βk̄β j̄ , (5.70)

δηzī = −∂zβī − ∂īα
k̄lηzk̄βl − ∂īα

k̄l̄ηzk̄βl̄ − ∂ī∂s̄α
kl̄η+s̄

z βkβl̄

−1

2
∂ī∂s̄α

k̄l̄η+s̄
z βk̄βl̄ , (5.71)

δηz̄i = −∂z̄βi − ∂iα
kl̄ηz̄kβl̄ − ∂iα

klηz̄kβl − ∂i∂sα
k̄lη+s

z̄ βk̄βl

−1

2
∂i∂sα

klη+s
z̄ βkβl , (5.72)

which are nilpotent only on-shell. The existence of such residual BRST symmetry within
BV formalism is discussed in [18,1].

Next using the gauge fixed action (5.64) we can calculate the path integral explicitly
on the sphere. In particular let us perform the one-loop calculation around the constant
map. We take a classical solution η = 0 and X = x0 with x0 being a constant and the
rest of the fields are zero. Consider the fluctuations around this configuration

X = x0 + X f , η = 0 + η f , β = 0 + β f , η+ = 0 + η+
f , (5.73)

where naturally by η and η+ we understand only non-vanishing components (ηz̄i , ηzī )

and (η+i
z̄ , η

+ī
z ) correspondingly. We take the expansion (5.73) and plug it into the gauge

fixed action (5.64) while keeping only up to the quadratic terms in the fluctuations. The
bosonic part of the resulting action can be written schematically as

1

2

(
X η

) (
0 D
−D A

) (
X
η

)
, (5.74)

where A is a part composed from the Poisson tensor α and D is a first order differential
operator

D =
(
∂z 0
0 −∂z

)
.

While the fermionic part of the corresponding action is written as

ηt Dβ, (5.75)
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with the same D. We can perform easily the gaussian integral over the bosonic (5.74)
and the fermionic parts (5.75). The integration produces the ratio of determinants of D
which is exactly 1. Thus the result of this gaussian integration is just one. However the
integration over zero modes of D will remain. The fields η and η+ do not have any zero
modes since there are no (anti)holomorphic 1-forms on the sphere. While β have con-
stant zero modes and X does as well. These zero modes give an integration over the finite
dimensional graded manifold T ∗[1]M which is defined by choosing a volume form �

on M . In order to compensate the odd integration we have to insert the local observables
into the path integral. Thus the final result for the correlators of local observales is

〈O p1
0 (w1) . . . . O pk

0 (wk)〉 = tr�(w1 ∧ · · · ∧ wk), (5.76)

where the trace map tr� is defined in the Appendix and the correlator agrees with (4.49).
Since the number of zero modes for β corresponds to the dimensionality of M we have
that the correlator (5.76) is non-zero only if p1 + · · · pk = d. Moreover if we require
that the correlator is invariant under the BRST symmetry (5.65)–(5.72) then the Poisson
tensor α should be unimodular and � is the corresponding invariant volume form. To
prove this we need to remember how BRST symmetry (5.65)–(5.72) acts on the local
observables and the theorem 8 from the Appendix A. Notice that as far as the fields
X and β concern the action of BV symmetry (3.22)–(3.27) and the BRST symmetry
(5.65)–(5.72) is the same. Since the local observables are constructed from X and β only
we can apply the discussion of Subsect. 3.2 to the analysis of BRST invariant observables
in the present setup.

We conclude that the present calculation is in complete agreement with our previ-
ous analysis within the finite dimensional BV framework. Although the unimodularity
of α is argued completely differently, now through the BRST invariance of the zero-
mode measure. The answer (5.76) is just the leading contribution into the full quantum
correlator.

Finally we comment when the geometry required for the present gauge fixing is
compatible with the unimodularity. Indeed for a generalized Calabi-Yau manifold the
corresponding Poisson structure is always unimodular [16]. Thus as a possible example,
we may consider the generalized Kähler geometry where one of the generalized complex
structures satisfies a generalized Calabi-Yau condition. Actually the gauge fixing can
be performed for a generalized Calabi-Yau manifold by itself with the use of an almost
generalized complex structure. However we have to stress that unimodularity of Poisson
structure is a real condition and indeed much weaker than the generalized Calabi-Yau
condition.

5.3. Relation to A-model. If we assume that αi j = 0 and α is invertible, then we are on
the Kähler manifold where ω = α−1 is the Kähler form and g = −ωJ is the hermitian
metric. Due to the fact that α is invertible we can perform the integration over ηzī and
ηz̄i in the path integral with the gauge fixed action (5.64). Introducing the following
notation:

ψ i = −igi j̄β j̄ , ψ ī = igī jβ j , ψ i
z̄ = −iη+i

z̄ , ψ ī
z = −iη+ī

z , (5.77)

the result of the integration of η is

SA =
∫

d2σ
[
∂z̄ X ī gī j∂z X j + iψ ī

z gī j∇z̄ψ
j + iψ i

z̄ gi j̄∇zψ
k̄ −Rpī j n̄ψ

j
z̄ ψ

ī
zψ

pψ n̄
]
,

(5.78)
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where we adopted the following notation:

∇z̄ψ
k = ∂z̄ψ

k + �k
nl∂z̄ Xnψ l , ∇zψ

k̄ = ∂zψ
k̄ + �k̄

n̄l̄
∂z X n̄ψ l̄ (5.79)

with � being the Levi–Civita connection and R the corresponding Riemann tensor. The
first term in the action (5.78) can be rewritten as

∂z̄ X ī gī j∂z X j = 1

2

√
hhαβ∂αXī gī j∂βX j +

1

2
εαβ∂αXī (igī j )∂βX j , (5.80)

where the last term is a topological, the pull-back of the Kähler form ω. The BRST
transformations (5.65)-(5.72) become

δXi = ψ i , δXī = ψ ī , δψ i = 0, δψ ī = 0, (5.81)

δψ+i
z̄ = i∂z̄ X i + �i

lkψ
k
z̄ ψ

l , δψ+ī
z = i∂z X ī + � ī

l̄ k̄
ψ k̄

z ψ
l̄ . (5.82)

The action (5.78) with the BRST transformations (5.82) corresponds to the topological
sigma model [47] on the Kähler manifold which corresponds to the A-twist of N = (2, 2)
supersymmetric sigma model [48]. Previously the BV treatment of the A-model has been
discussed in [1]. Here we presented the improved analysis of the relation between the
BV-formulation of PSM and the A-model.

Any symplectic manifold with symplectic structure ω is unimodular with the volume
form given by� = ωd/2. Moreover there exists a natural isomorphism between the Lich-
nerowicz–Poisson cohomology and the de Rham cohomology, H•L P (M) ≈ Hd R(M)
which is provided by the symplectic structureω. Therefore the observable corresponding
to a multivector field can be mapped into the observable corresponding to the differential
form through the identification (5.77). Thus the correlator (5.76) can be rewritten as

tr�(w1 ∧ . . . ∧ wk) =
∫

M
(�w1) ∧ · · · (�wk), (5.83)

where �wl is a differential form corresponding to a multivector field wl constructed
through the map � : ∧•T M → ∧•T ∗M defined by the symplectic structure ω. Indeed
the correlator (5.83) is the standard one for the A-model and can be interpreted as the
intersection number of the Poincaré dual cycles to �wl . In the full quantum theory the
correlator (5.83) gets corrections from the holomorphic maps on which the theory is
localized. These instanton corrections are related to the Gromov–Witten invariants. This
is well-developed subject, see [23] for a review.

5.4. Zero Poisson structure. As a next example we consider the case of zero Poisson
structure, α = 0. In this case the gauge fixed action (5.64) is of the form

SG F = i
∫
�

d2σ
[
ηzī∂z̄ X ī − ηz̄i∂z Xi + η+i

z̄ ∂zβi − η+ī
z ∂z̄βī

]
, (5.84)

while the BRST transformations (5.65)–(5.72) become

δXi = 0, δXī = 0, δη+i
z̄ = −∂z̄ X i , δη+ī

z = −∂z X ī , (5.85)

δβi = 0, δβī = 0, δηzī = −∂zβī , δηz̄i = −∂z̄βi . (5.86)
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Now these transformations are nilpotent off-shell. The action (5.84) is reminiscent of
the action obtained through the infinite volume limit of the A-model [14]. However
our BRST symmetry differs from the one discussed in [14] and thus these are different
theories. As well the action (5.84) with the symmetries (5.85)–(5.86) has appeared in
different context in [52] as a specific gauge fixed version of the “Hitchin sigma model”
[51].

Next we argue that the correlator (5.76) is a full quantum answer for the PSM with
α = 0. We can use the BRST symmetry (5.85)–(5.86) to localize the theory on the
holomorphic maps, ∂z̄ X i = 0. Namely we can add to the action (5.84) the BRST exact
term

−tδ
∫
�

d2σ
(
η+ī

z gī j∂z̄ X j + η+i
z̄ gi j̄∂z X j̄

)
= t

∫
�

d2σ
(
∂z X ī gī j∂z̄ X j + ∂z̄ X i gi j̄∂z X j̄

)
,

(5.87)

where t is any real number and this exact term is positive definite. The addition of this
exact term to the action cannot change the theory and the result is independent from the
parameter t . By sending t to infinity the dominant contribution to the path integral will
come from the holomorphic maps, ∂z̄ X i = 0 and ∂z X ī = 0. Moreover we can perform
the integration over η which imposes the conditions ∂z̄ X ī = 0 and ∂z Xi = 0 which
together with the BRST argument imply that only the constant maps contribute to the
path integrals. Thus in the evaluation of the path integral on the sphere with the insertion
of local observables the only remaining integration is the integration over M and the
corresponding zero modes of β. On the sphere there will be no zero modes for η and η+.

Thus we have proven that for the PSM with zero Poisson structure the leading result
(5.76) for the correlators of local observables is indeed exact. Actually this should not
be a surprise since the Poisson tensor controls �-corrections. In the general action (3.17)
the fields can be rescaled in such way that � appears in front of α only.

5.5. Holomorphic Poisson structure. Another interesting case is when there exists such a
complex structure J that α is a holomorphic Poisson structure. In other words
the (1, 1)-part of α vanishes and thus the gauge fixed action (5.64) is independent of α.
The gauge fixed action for the holomorphic Poisson structure is the same as (5.84) for the
zero Poisson structure. However the Poisson structure enters into the BRST transforma-
tions. For the case of holomorphic Poisson structure the transformations (5.65)–(5.72)
become

δXi = αi jβ j , (5.88)

δXī = α ī j̄β j̄ , (5.89)

δη+i
z̄ = −∂z̄ X i − αi jηz̄ j − ∂kα

i jη+k
z̄ β j , (5.90)

δη+ī
z = −∂z X ī − α ī j̄ηz j̄ − ∂k̄α

ī j̄η+k̄
z β j̄ , (5.91)

δβi = 1

2
∂iα

k jβkβ j , (5.92)

δβī =
1

2
∂īα

k̄ j̄βk̄β j̄ , (5.93)
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δηzī = −∂zβī − ∂īα
k̄l̄ηzk̄βl̄ −

1

2
∂ī∂s̄α

k̄l̄η+s̄
z βk̄βl̄ , (5.94)

δηz̄i = −∂z̄βi − ∂iα
klηz̄kβl − 1

2
∂i∂sα

klη+s
z̄ βkβl . (5.95)

These transformations are nilpotent δ2 = 0 off-shell and the action (5.84) is invariant
under them. Indeed there is not a single BRST transformation but a whole family. In
the transformations (5.88)–(5.95) we can put a complex parameter t ∈ C in front of all
terms containing αi j and correspondingly t̄ in front of terms with α ī j̄ . This would define
a complex family of the BRST transformations δt which are nilpotent δ2

t = 0 off-shell
and the action (5.84) is invariant under δt .

We can repeat the argument from the previous subsection. Using the localization with
respect to δt for any t (including zero) and the integration over η we arrive at the conclu-
sion that the path integral is localized on the constant maps. Thus again the correlator
(5.76) of local observables is a full quantum result.

The example of holomorphic Poisson structure is provided by the hyperKähler man-
ifold which admits a holomorphic symplectic structure with respect to the appropriate
complex structure. Therefore the A-model on the hyperKähler manifold can be localized
to constant maps and the semi-classical result is exact. However our results are applica-
ble for the wide class of Poisson holomorphic manifold, e.g. the Del Pezzo surfaces, the
Poisson Fano varieties, CP2, etc. These examples have attracted a lot attention recently,
especially in the context of generalized complex geometry (see [33,16] for the general
discussion and examples [22,17]).

One may observe that the PSM for a holomorphic Poisson manifold has striking sim-
ilarities with the B-model [41] defined for the following generalized complex structure:

(
J α

0 −J t

)
, (5.96)

where α = α(2,0) + α(0,2) is the real part of a holomorphic Poisson structure. However
to define the B-model we need a closed pure spinor

ρ = eα
(2,0)
�,

where � is a closed holomorphic volume form. Indeed this condition gives the holo-
morphic analog of unimodularity. However for the PSM discussed above we need a real
version of unimodularity of α which is a weaker condition on a real volume form. Thus
the unimodular deformations of holomorphic Poisson structure cannot be mapped to
the corresponding deformations of generalized Calabi-Yau structure corresponding to
(5.96). Therefore for a given geometrical setup the B-model and PSM are two different
models, with different moduli dependence.

6. Conclusions

In this work we have attempted to study the Poisson sigma model beyond the perturba-
tive expansion. The main lesson is that the quantum theory requires the corresponding
Poisson tensor α to be unimodular. We argued this additional property of α in different
ways. In the BV framework the unimodularity is related to the quantum master equation,
which requires additional care in its definition. Moreover for the specific gauge fixing
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we obtained the unimodularity as from the requirement of the BRST invariance of the
zero mode measure.

Alternatively one can provide a different heuristic argument2 for the unimodularity
of the Poisson tensor coming from the perturbative analysis as in [6]. In the perturbative
expansion all integrals are absolutely convergent except those containing tadpole dia-
grams. One may try to regularize the tadpoles by point-splitting using the vector field
with no zeros on �. However such a vector does not exist on S2 and thus the tadpoles
should be dealt with differently. Since the tadpoles correspond to the bidifferential oper-
ators involving the divergence of the Poisson tensor then the unimodularity is the way
to eliminate them.

The unimodulary of the Poisson tensor reformulated in terms of pure spinors allows
us to treat the PSM exactly in the same fashion as A- and B-models [23] together with
their generalized complex relatives [25,26,34,41]. Indeed the Poisson structure defines
a real analog of the generalized complex structure and the unimodulary of α is a real
analog of the generalized Calabi-Yau condition. We believe that it is important that all
these models can be treated uniformly and there is an intricate interrelation between all
these models.

There are several open questions we would like to address in the future, in particular
the generalization of the construction of Frobenius manifolds from [2] and [38] for the
case when the ∂∂̄-lemma fails, as in a generic Poisson case. Also we plan to use further
the localization for PSM along the lines presented in Sect. 5. There is an indication
that the Gromov-Witten story can be generalized for PSM defined over the generalized
Kähler manifold. Furthermore it would be interesting to develop the present analysis for
PSM for the higher genus surfaces.

Acknowledgement. We are grateful to Alberto Cattaneo, Gil Cavalcanti, Andrei Losev, Vasily Pestun, Gabriele
Vezzosi and Roberto Zucchini for the discussions. We thank Alberto Cattaneo, Yvette Kosmann-Schwarzbach
and Vasily Pestun for reading and commenting on the manuscript. We thank the referee for the comments and
suggestions. We thank the Erwin Schrödinger International Institute for Mathematical Physics for hospitality.
M.Z. thanks INFN Sezione di Firenze and Università di Firenze where part of this work was carried out. The
research of M.Z. was supported by VR-grant 621-2004-3177.

A. The Multivector Calculus

Throughout the Appendices A and B we consider mainly the case of the compact mani-
fold M . This condition can be relaxed if we require the appropriate integrals to be defined
and integration by parts should work without any boundary contributions.

In this Appendix we review the relevant structures on the multivector fields�(∧•T M)
over a smooth manifold M . For further details the reader may consult the textbook by
Vaisman [45].

The Lie bracket on the vector fields can be extended to a bracket on the multivectors.
This bracket is called the Schouten bracket. In local coordinates the multivector fields
P and Q are written as

P = Pµ1...µp∂µ1 ∧ . . . ∧ ∂µp ,

Q = Qµ1...µq ∂µ1 ∧ . . . ∧ ∂µq ,

2 We thank Alberto Cattaneo for sharing this argument with us. Also see [12] for the related discussion and
another interesting work [9] on the relation between the deformation quantization and unimodularity.
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and their Schouten bracket is defined by the following expression:3

[P, Q]s =
(

p Pµ1...µp−1ρ∂ρQµp ...µq+p−1 − q ∂ρPµ1...µp Qρµp+1...µq+p−1
)

∂µ1 ∧ · · · ∧ ∂µq+p−1 . (A.1)

The algebra (�(∧•T M), ∧, [, ]s) is a Gerstenhaber algebra (see Definition 1).
If further we specify a volume form � on M and a closed one-form λ then we can

introduce an operator D�,λ,

D�,λP = div�P + iλP,

where div is a divergence operator defined by � and iλ is a contraction with one-form
λ. In local coordinates with the volume form written as � = ρ dx1 ∧ · · · ∧ dxd the
divergence operator is

(div�P)µ2...µp = −p
1

ρ
∂µ1

(
ρ Pµ1µ2...µd

)
.

Equivalently, in coordinate free notation, the divergence can be written as

div�P = − ∗−1 d ∗ P,

where ∗P = iP� provides a map from �(∧pT M) to differential forms and d is de
Rham differential.

Assuming that dλ = 0 we have (D�,λ)2 P = 0 and moreover

[P, Q]s = (−1)p D�,λ(P ∧ Q) + (−1)p+1(D�,λP) ∧ Q − P ∧ D�,λQ. (A.2)

Indeed D�,λ is the most general operator which generates the Schouten bracket [49].
Therefore the algebra (�(∧•T M), ∧, [, ]s, D�,λ) is a BV algebra (see Definition 2).

Definition 4. The bivector α ∈ �(∧2T M) is called a Poisson structure if it satisfies

[α, α]s = 0.

The manifold with such α is called a Poisson manifold.

The Poisson structure defines a Lichnerowicz–Poisson differential dL P on multivector
fields

dL P P ≡ [α, P]s, P ∈ �(∧•T M).

The corresponding cohomology H•L P (M) is called the Lichnerowicz–Poisson cohomol-
ogy group.

We assume that M is orientable and thus we can choose a volume form �. Then we
can study how the Hamiltonian vector fields X f = α(d f ), f ∈ C∞(M) act on �. In
particular there exists a vector field φ� such that

LX f � = φ�( f )�.

φ� is named the modular vector field. Indeed the vector field φ� defines a class [φ�] ∈
H1

L P (M). This class is independent of �,

LX f (e
g�) =

(
φ� +

1

2
dL P g

)
( f )eg�,

and [φ�] is called the Poisson modular class.

3 Our definition differs by the overall factor (−1)p−1 compared to the one in [45].
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Definition 5. A Poisson manifold (M, α) is called unimodular [46] if [φ�] = 0. In other
words there exists such� that LX f � = 0 for any Hamiltonian vector field X f . We refer
to such � as an invariant volume form.

For a Poisson manifold (M, α) we can introduce a (Koszul-)Brylinski differential δB
on the differential forms �•(M)

δB = iαd − diα,

where iα is a contraction with a Poisson tensor α and d is a de Rham differential [30].

Theorem 6. A Poisson manifold (M, α) is unimodular if and only if there exists a volume
form � such that δB� = 0 or alternatively D�α = 0.

Proof. We use notation D� ≡ D�,0. The proof of the theorem follows straightforwardly
from the relation δB� = −iφ��. This relation arises from the definition of the modular
vector field φ� given above and the following identities:

d(iX f �) = −d f ∧ δB�, φ�( f )� = d f ∧ iφ��.

Moreover using the definition of D� the modular vector field can also be defined using
the divergence operator with respect to � as D�α = −φ�. For more details and the
related discussion the reader may consult [28,46]. ��

Thus we refer to an unimodular Poisson manifold as a triple (M, α,�), where � is a
volume form which is closed under the Brylinski differential.

Definition 7. For a manifold M with a volume form � we define a trace map over the
multivector fields

tr� : �(∧topT M)→ R

as follows:

tr�(P) =
∫

M
� ∧ iP�.

Theorem 8. For a Poisson manifold (M, α) with a trace map tr� the relation

tr�(dL P P ∧ Q) = (−1)p+1tr�(P ∧ dL P Q)

is satisfied if and only if (M, α) is an unimodular and � is an invariant volume form.

Proof. To prove this statement we use the formulas from Vaisman’s textbook [45]. The
relation in the theorem is equivalent to the following statement:

∫
M
� ∧ i(dL P W )� = 0, W ∈ �(∧d−1T M).

For this to hold it would be enough to show that�∧ i(dL P W )� is an exact d-form. Using
the Lichnerowicz definition of the Schouten bracket (see the formula (1.16) in [45]) we
rewrite

� ∧ i(dL P W )� = −� ∧ iW δB� + (−1)d−1� ∧ δB(iW�).
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Assuming that the one-form iW� = f dg and using the properties of the Brylinski
differential, we recast the two terms in the above expression as follows:

−� ∧ iW δB� = (−1)d−1 f LXg�,

(−1)d−1� ∧ δB( f dg) = (−1)d{g, f }� = (−1)dLXg ( f�) + (−1)d−1 f LXg�.

To derive the first relation we have used δB� = −iφ��. If we require that the above
forms are exact for any g and f then the manifold should be unimodular and � is an
invariant volume form. Since any one form can be written as the sum of the terms like
f dg we can extend our proof for a generic situation. ��

We can summarize the relevant properties of an unimodular Poisson manifold in the
following theorem.

Theorem 9. If (M, α,�) is a unimodular Poisson manifold then (�(∧•T M), ∧, [, ]s,
D�, dL P ) is a graded differential BV algebra such that

D�dL P + dL P D� = 0.

Moreover there exists a trace map tr� such that

tr�(dL P P ∧ Q) = (−1)p+1tr�(P ∧ dL P Q),

tr�(D�P ∧ Q) = (−1)ptr�(P ∧ D�Q).

Proof. The first part of the theorem has been discussed in [28,49]. We have explained
most of the statements already. The relation between dL P and D� is derived as follows:

D�dL P P = D� (D�(α ∧ P)− α ∧ D�P) = −D�(α ∧ D�P) = −dL P D�P,

where we use the unimodularity, D�α = 0. The property of the trace with respect to
the divergence operator D� is valid for any manifold with a volume form and is just a
simple consequence of the Stokes theorem for the differential forms. ��

B. Poisson Geometry and Pure Spinors

In this Appendix we reformulate the previous Appendix in a different language. This
allows us to put the whole formalism into the wider context which is related to generalized
geometry on the sum T M ⊕ T ∗M ≡ T ⊕ T ∗ of the tangent and contangent bundles.
Below we review very briefly the notions of generalized complex structure, generalized
Calabi-Yau condition and their real analogs. For more details we refer the reader to the
reviews [15,16,50].

The sum of tangent and cotangent bundles T ⊕ T ∗ has a natural O(d, d) structure
given by the natural pairing

〈v + ξ, s + λ〉 = 1

2
(ivλ + isξ),

where we adopt the notation (v + ξ), (s + λ) ∈ �(T ⊕ T ∗). We are interested in a real
(complex) Dirac structure which is defined as a maximally isotropic subbundle of T⊕T ∗
(or (T ⊕ T ∗)⊗C) and this subbundle is involutive with respect to the Courant bracket.
The Dirac structure is an example of the Lie algebroid with the bracket originated from
the restriction of the Courant bracket. In particular we are interested in the case when
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tangent plus cotangent bundles (or its complexification) can be decomposed as a sum of
two real (complex) Dirac structures

T ⊕ T ∗ = L ⊕ L∗, (T ⊕ T ∗)⊗ C = L ⊕ L∗.
This decomposition gives us a real (complex) bialgebroid. Furthermore there is the
structure a differential Gerstenhaber algebra [27,35]

(�(∧•L∗),∧, {, }, dL),

where {, } is the extension of the Lie bracket from L∗ to∧•L∗ and dL is the Lie algebroid
differential. In the complex case it is natural to impose an extra condition, namely the
dual space L∗ is a complex conjugate of L . Thus the corresponding bialgebroid is

(T ⊕ T ∗)⊗ C = L ⊕ L̄.

This special case corresponds to the notion of generalized complex structure [15,20].
Alternatively the Dirac structures can be described by means of the pure spinor lines.

We define the action of a section (v + ξ) ∈ �(T M ⊕ T ∗M) on a differential form
ρ ∈ �(∧•T ∗M),

(v + ξ) · ρ ≡ ivρ + ξ ∧ ρ,
which corresponds to the action of Cl(T ⊕ T ∗) on ∧•T ∗. Thus the differential forms
form a natural representation of Cl(T ⊕ T ∗). Consider the Dirac structure L and define
a subbundle U0 of ∧•T ∗ as follows:

L = {(v + ξ) ∈ �(T ⊕ T ∗), (v + ξ) ·U0 = 0}.
We refer to U0 as a pure spinor line. The Dirac structure L induces the alternative grading
on the differential forms

∧•T ∗ =
dim M⊕
k=0

Uk, Uk = (∧k L∗) ·U0,

where · stands for the extension of Cl(T ⊕ T ∗) action to ∧•T ∗. The property that L is
involutive under the Courant bracket is equivalent to the following:

d(�(U0)) ⊂ �(U1),

where d is de Rham differential. Indeed we can define a Dirac structure through the
subbundle U0 of∧•T ∗ with the above properties. With respect to the alternative grading
we can decompose the de Rham differential as follows:

d = ∂̄ + ∂, �(Uk−1)
∂← �(Uk)

∂̄→ �(Uk+1),

such that ∂2 = 0 and ∂̄2 = 0. We borrow the notation from the generalized complex
geometry and in the present context bar over ∂ does not mean complex conjugation.

From now on we assume that the bundle U0 is trivial and there exists a global section,
a pure spinor form ρ which defines L completely. The integrability of L is equivalent to
the statement

dρ = (v + ξ) · ρ,
for some section (v + ξ) ∈ �(L∗). Since for given L the pure spinor ρ is defined non
uniquely, namely for any f ∈ C∞(M) the form e f ρ is also a pure spinor. Thus there is
a cohomology class [(v + ξ)] ∈ H1(dL), which is just proportional to the modular class
of the Lie algebroid [11]. Thus we arrive at the following theorem.
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Theorem 10. The Dirac structure L admits the description in terms of closed pure
spinor if and only if the corresponding U0 bundle is trivial and the Lie algebroid L is
unimodular.

Since U0 is a line bundle then its triviality is analyzed differently in the real and com-
plex cases. For instance, in the complex case we have to require the trivial first Chern
class, c1(U0) = 0. In the generalized complex case (T ⊕ T ∗)⊗ C = L ⊕ L̄ the ability
to describe L in terms of a closed pure spinor corresponds to the generalized Calabi-
Yau condition, the notion introduced by Hitchin [20]. Thus the generalized Calabi-Yau
condition is equivalent to two requirements, c1(U0) = 0 and the unimodularity of Lie
algebroid L .

From now on we assume that L admits the description in terms of a closed pure
spinor ρ. For A ∈ �(∧•L∗) and a closed pure spinor ρ there are the following relations:

(dL A) · ρ = ∂̄(A · ρ), (D A) · ρ = ∂(A · ρ),
where the last relation can be regarded as the definition of the operator D such that
D2 = 0. Indeed D generates the bracket {, } on ∧•L∗. Therefore one can show that
(�(∧•L∗),∧, {, }, D, dL) is a differential BV-algebra [49,26,34]. In addition the closed
pure spinor provides the isomorphisms of the cohomologies, H•(dL) ≈ H•(∂̄) and
H•(D) ≈ H•(∂).

There exists an invariant form on spinors which, in the present context, corresponds
to the Mukai pairing of the differential forms

(ρ, φ) =
∑

j

(−1) j (ρ2 j ∧ φn−2 j + ρ2 j+1 ∧ φn−2 j−1),

where n = dim M and the forms decomposed by the standard degree ρ = ∑
ρi ,

φ =∑
φi . We can introduce the trace map as

trρ(A) =
∫

M
(ρ, A · ρ), A ∈ �(∧n L∗).

We can summarize these observations in the following theorem:

Theorem 11. For a Lie bialgebroid T ⊕ T ∗ = L ⊕ L∗ with L being a Dirac structure
described by the closed pure spinor ρ,

(�(∧•L∗),∧, {, }, D, dL)

is a differential BV-algebra and there exists a trace map with the following properties:

trρ(dL A ∧ B) = (−1)|A|+1trρ(A ∧ dL B),

trρ(D A ∧ B) = (−1)|A|trρ(A ∧ DB),

where A, B are sections of ∧•L∗.
Proof. The proof of this theorem is straightforward and the different elements of the
proof are scattered in the literature, see [49,26,34]. Let us sketch the main idea behind
the proof. For any differential form ρ ∈ �(∧•T ∗) and any sections A, B ∈ �(T ⊕ T ∗),
there is the following identity:

A · B · dρ = d(A · B · ρ) + B · d(A · ρ)− A · d(B · ρ) + [A, B]c · ρ − d〈A, B〉 ∧ ρ,
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where [, ]c is the Courant bracket and 〈, 〉 is the natural pairing on T ⊕ T ∗. If we have
a Lie bialgebroid T ⊕ T ∗ = L ⊕ L∗ with L being a Dirac structure described by the
closed pure spinor ρ then the above formula implies

d(A · B · ρ) + B · d(A · ρ)− A · d(B · ρ) + {A, B} · ρ = 0,

where now A, B ∈ �(L∗) and {, } is a Lie bracket on L∗, which is a restriction of the
Courant bracket to L∗. This formula can be extended to the general case when A, B are
sections of definite degree in �(∧•L∗). This extension together with the definition

(dL + D)A · ρ = d(A · ρ), ∧k L∗ dL→ ∧k+1L∗, ∧k L∗ D→ ∧k−1L∗

allow us to we recover that D generates the bracket on �(∧•L∗) and moreover �(∧•L∗)
is a differential BV algebra. The properties of the trace map can be proven easily also
using the above properties. ��

Using this language we now recast the previous definitions in Poisson geometry in a
new language. Let us start from the following theorem.

Theorem 12. The manifold M is a unimodular Poisson manifold if and only there exists
a closed pure spinor of the form

ρ = eα� = � + iα� +
1

2
i2
α� + · · · ,

where α is a bivector and � is a volume form.

Proof. If we have a unimodular Poisson manifold (M, α,�) then we can construct a
pure spinor ρ = eα� which satisfies

dρ = δB� +
1

2
δB(iα�) + · · · = 0,

since δB� = 0 and δBiα = iαδB . In the opposite direction we can start from a closed
pure spinor ρ = eα� which defines the following maximally isotropic subbundle of
T ⊕ T ∗:

L = eα(T ∗) = {iξα + ξ : ξ ∈ �(T ∗)}.
Since ρ is closed, L is a Dirac structure and thus α is an Poisson structure. Moreover the
volume � would be an invariant volume form with respect to the unimodular Poisson
structure α. ��

Thus the Poisson structure on M gives the real Lie bialgebroid T ⊕T ∗ = eα(T ∗)⊕T .
If the Poisson structure is unimodular then there exists a closed pure spinor ρ = eα�
and �(∧•T ) is a differential BV algebra. Indeed the trace map tr� defined in the pre-
vious appendix coincides with the one defined here, trρ , since only the top form part
contributes in ρ.

On an unimodular Poisson manifold (M, α,�) with the pure spinor ρ = eα� we
can calculate the differentials ∂ and ∂̄ associated with the alternative grading on the
differential forms

∧•T ∗ =
dim M⊕
k=0

(∧k T ) · eα�.

Indeed in this case we have ∂̄ = −δB and ∂ = d + δB , see the following theorem:
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Theorem 13. For a unimodular Poisson manifold (M, α,�)with the closed pure spinor
ρ = eα�, the following relations hold:

(D�P) · ρ = −(d + δB)(P · ρ),
(dL P P) · ρ = δB(P · ρ).

Proof. Let us start from the proof of the first relation. Ifα = 0 then this is just a definition
of D� given in the previous appendix. In the general case α �= 0 a simple calculation
produces the following formula [10]:

d + δB = eαde−α,

which together with the definition of D� gives the desired relation.
Next we prove the second relation in the theorem. Using the fact that D� generates

the Schouten bracket and the manifold is unimodular, D�α = 0, we get

(dL P P) · ρ = (D�(α ∧ P)− α ∧ D�P) · ρ
= −(d + δB)(iαiPρ) + iα(d + δB)(iPρ) = δB(iPρ),

where we used the previously proved relation and the property iαδB = δBiα . ��
This theorem implies the isomorphism of certain cohomologies. For any Poisson man-

ifold (M, α) there are the following isomorphisms:

H•d R(M) ≈ H•(D�) ≈ H•(d + δB),

while for the unimodular Poisson manifold in addition we have

H•L P (M) ≈ H•(δB).
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