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Abstract: We study the fluid interface problem given by two incompressible fluids
with different densities evolving by Darcy’s law. This scenario is known as the Muskat
problem for fluids with the same viscosities, being in two dimensions mathematically
analogous to the two-phase Hele-Shaw cell. We prove in the stable case (the denser fluid
is below) a maximum principle for the L∞ norm of the free boundary.

1. Introduction

The Muskat problem models the fluid interface problem given by two fluids in a porous
medium with different characteristics. The problem was proposed by Muskat (see [13])
in a study about the encroachment of water into oil in a porous medium. In this phenom-
ena, Darcy’s law is used to govern the dynamics of the different fluids [2]. This law is
represented by the following formula:

µ

κ
v = −∇ p − (0, 0, g ρ),

where v is the velocity of the fluid, p is the pressure, µ is the dynamic viscosity, κ is the
permeability of the isotropic medium, ρ is the liquid density and g is the acceleration
due to gravity.

Saffman and Taylor [14] considered this problem in a study of the dynamics of the
interface between two fluids with different viscosities and densities in a Hele–Shaw cell.
In this physical scenario (see [11]) the fluid is trapped between two fixed parallel plates,
that are close enough together, so that the fluid essentially only moves in two directions.
The mean velocity of the fluid is given by

12µ

b2 v = −∇ p − (0, g ρ),
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where b is the distance between the plates. Darcy’s law, in two dimensions, and the above
formula become analogous if we consider the permeability of the medium κ equal to
the constant b2/12.

The Muskat problem and the two–phase Hele–Shaw flow have been extensively stud-
ied (see [4] and [12] and the references therein). These free boundary problems can be
modeled with surface tension [9] using the Laplace–Young condition. In this case there
is a jump of discontinuity in the pressure of the fluids across the interface proportional
to the local curvature of the free boundary.

Here we shall consider the case without surface tension where the pressures are equal
on the interface. Ambrose studies this scenario in [1], where he treats the two dimensional
case with initial data satisfying

(ρ2 − ρ1)g cos(θ(α, 0)) + 2
µ1 − µ2

µ1 + µ2
U (α, 0) > 0.

Here θ is the angle that the tangent to the curve forms with the horizontal, U is the
normal velocity (given by the Birkhoff-Rott integral), ρi are the densities and µi are the
viscosities of the fluids, for i = 1, 2. In this work he uses the arclength and the tangent
angle formulation given by Hou, Lowengrub and Shelley in [12] to get energy estimates
for the free boundary assuming that the arc-chord condition is satisfied locally in time.
One of the authors shows in [10] that this is not enough to obtain local-existence for
this kind of contour dynamics equations, since a regular interface could touch itself with
order infinity and without satisfying the arc-chord condition.

Siegel, Caflisch and Howison analyze this problem in [15], where they show
ill-posedness in an unstable case and global-in-time existence of small initial data in
a stable case. They describe the two-dimensional dynamics of the incompressible flow
as follows

v = −a∇ p − (0, V ),

where a takes two positive constant values

ai = b2

12µi
, for i = 1, 2,

on each fluid, and V is a constant. With our notation, this case is equivalent to consider
in the two-dimensional problem

µi

κ
= 1

ai
, and g ρi = V

ai
.

The results rely on the assumption that there is a jump of viscosities on the interface,
say µ1 �= µ2.

We shall study the fluid interface due to a jump of densities, hence µ1 = µ2. In
order to simplify notation we can take κ = b2/12 = 1 and µ1 = µ2 = g = 1 without
loss of generality. This case describes, among others, the dynamics of moist and dry
regions in porous media. This scenario is treated by Dombre, Pumir and Siggia [8],
but in a different context. They study the interface dynamics for convection in porous
media where the density plays the role of the temperature. They analyze the unstable
case, namely when the denser fluid (or the fluid with larger temperature) is above. They
consider meromorphic initial conditions with complex poles and study the dynamics of
these critical points.
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It is well-known [12] that for these contour dynamics systems, the velocity in the
tangential direction does not alter the shape of the interface. If we change the tangen-
tial component of the velocity, we only change the parametrization. In [7] we used this
property to parameterize the interface as a function (x, f (x, t)), obtaining the following
equations:

ft (x, t) = ρ2 − ρ1

4π
PV

∫
R2

(∇ f (x, t) − ∇ f (x − y, t)) · y

[|y|2 + ( f (x, t) − f (x − y, t))2]3/2 dy,

f (x, 0) = f0(x), x ∈ R
2

(1)

for a two-dimensional interface and

ft (α, t) = ρ2 − ρ1

2π
PV

∫
R

(∂x f (α, t) − ∂x f (α − β, t))β

β2 + ( f (α, t) − f (α − β, t))2 dβ,

f (α, 0) = f0(α), α ∈ R,

(2)

for a one-dimensional interface. We point out that with these formulations the arc-chord
condition is satisfied locally in time if local-existence for the systems is reached. This
avoids a kind of singularity in the fluid when the interface collapses (see [6] for example).
We also proved that when the denser fluid is below the other fluid, ρ2 > ρ1, the problem
is well-posed given local-existence and uniqueness for the systems (1) and (2). When
the less dense fluid is below, ρ2 < ρ1, we prove ill-posedness showing that Eqs. (1)
and (2) are ill-posed. We get this result using global solutions of (2) in the stable case,
ρ2 > ρ1, for small initial data in a similar way as in [15].

If we neglect the terms of order two in (1), the linearized equation is obtained. It
reads

ft = ρ1 − ρ2

2
(R1∂x1 f + R2∂x2 f ) = ρ1 − ρ2

2
� f,

f (x, 0) = f0(x),

(3)

where R1 and R2 are the Riesz transforms (see [16]) and the operator � f is defined by
the Fourier transform �̂ f (ξ) = |ξ | f̂ (ξ). In the stable case ρ1 < ρ2 (the greater density
is below), the linear equation is dissipative and it is clear that the following maximum
principle is reached:

‖ f ‖L∞(t) ≤ ‖ f0‖L∞ .

We devote Sects. 3 and 4 to derive similar estimates for the nonlinear systems (1) and (2).
To this end, we follow the evolution of the maximum of the absolute value of f (x, t).
This technique was used by one of the authors in [5] in a family of dissipative transport
equations for incompressible fluids. Also, we would like to cite the work of A. Const-
antin and J. Echer where they study the shallow water equation in the same way. By a
similar approach, in Sect. 5, we obtain a global bound on the derivative for small initial
data.
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2. Parameterizing the Interface in Terms of a Function

In this section we briefly explain how to parameterize the free boundary in terms of a
function (see [7] for more details). The way of writing the nonlocal equation is crucial
in order to check the evolution of the maximum of the absolute value of the function
which yields the maximum principle.

In our case, Darcy’s law can be written as follows:

v(x1, x2, x3, t) = −∇ p(x1, x2, x3, t) − (0, 0, ρ(x1, x2, x3, t)), (4)

where (x1, x2, x3) ∈ R
3 are the spatial variables and t ≥ 0 denotes the time. Here ρ is

defined by

ρ(x1, x2, x3, t) =
{

ρ1 in 
1(t)
ρ2 in 
2(t),

with ρ1, ρ2 ≥ 0 constants and ρ1 �= ρ2. The sets 
 j (t) are defined by


1(t) = {x3 > f (x1, x2, t)}
and


2(t) = {x3 < f (x1, x2, t)},
f (x1, x2, t) being the fluid interface. If we apply the curl operator to Darcy’s law twice
then the pressure disappears. Considering the incompressibility of the fluid, we have
curl curl v = −�v, and we can express the velocity in terms of the density as follows:

v = (∂x1�
−1∂x3ρ, ∂x2�

−1∂x3ρ,−∂x1�
−1∂x1ρ − ∂x2�

−1∂x2ρ). (5)

The density ρ has a jump of discontinuity on the free boundary, therefore the gradient
of the function is given by a Dirac distribution δ,

∇ρ = (ρ2 − ρ1)(∂x1 f (x1, x2, t), ∂x2 f (x1, x2, t),−1)δ(x3 − f (x1, x2, t)). (6)

Using the kernels for ∂x1�
−1 and ∂x2�

−1 we obtain

v(x1, x2, x3, t) = −ρ2 − ρ1

4π
PV

∫
R2

(y1, y2,∇ f (x − y, t) · y)

[|y|2 + (x3 − f (x − y, t))2]3/2 dy, (7)

where x3 �= f (x, t), x = (x1, x2) and y = (y1, y2). The principal value is taken at
infinity (see [16]). The vorticity is at the same level as the gradient of the density, so
it is determined by a delta function. This forces the velocity to have a discontinuity on
the free boundary. Just checking the incompressibility of the fluid in the sense of the
distributions, we obtain that this discontinuity is in the tangential direction, i.e. it does
not affect the shape of the interface (see [7]). Ignoring the tangential terms we obtain
that the velocity on the free boundary is given by

v(x, f (x, t), t) = −ρ2 − ρ1

4π
PV

∫
R2

(y1, y2,∇ f (x − y, t) · y)

[|y|2 + ( f (x, t) − f (x − y, t))2]3/2 dy. (8)

If we want to parameterize the free boundary in terms of a function, it is necessary that
the velocity v = (v1, v2, v3) satisfies v1 = v2 = 0, since otherwise the points on the
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plane are not fixed and they would depend on time. If we add the following tangential
terms to (8):

ρ2 − ρ1

4π
PV

∫
R2

y1

[|y|2 + ( f (x, t) − f (x − y, t))2]3/2 dy(1, 0, ∂x1 f (x, t)),

ρ2 − ρ1

4π
PV

∫
R2

y2

[|y|2 + ( f (x, t) − f (x − y, t))2]3/2 dy(0, 1, ∂x2 f (x, t)),

we do not alter the interface and we obtain

v(x, f (x, t), t) = ρ2−ρ1

4π
(0, 0, PV

∫
R2

(∇ f (x, t) − ∇ f (x−y, t)) · y

[|y|2 + ( f (x, t) − f (x−y, t))2]3/2 dy). (9)

Then the contour equation is given by

ft (x, t) = ρ2 − ρ1

4π
PV

∫
R2

(∇ f (x, t) − ∇ f (x − y, t)) · y

[|y|2 + ( f (x, t) − f (x − y, t))2]3/2 dy,

f (x, 0) = f0(x).

(10)

This formula is well defined for a periodic interface and for a free boundary near planar
at infinity. In both cases it presents a principal value only at infinity. If we suppose that
the function f (x, t) only depends on x1, integrating in x2, the contour equation in the
2-D case is

ft (x, t) = ρ2 − ρ1

2π
PV

∫
R

(∂x f (x, t) − ∂x f (x − α, t))α

α2 + ( f (x, t) − f (x − α, t))2 dα,

f (x, 0) = f0(x); x ∈ R.

(11)

We check in [7] that as long as this equation is satisfied we obtain weak solutions of the
following system:

ρt + v · ∇ρ = 0,

v = −∇ p − (0, 0, ρ), div v = 0.
(12)

3. Two Dimensional Case (1-D Interface)

Next we shall show that the L∞ norm of the system (11) decreases in time in the stable
case (ρ2 > ρ1). We shall consider the set 
 equal to R or T. The following theorem is
the main result of the section.

Theorem 3.1. Let f0 ∈ Hk(
) with k ≥ 3 and ρ2 > ρ1. Then the unique solution to
the system (11) satisfies the following inequality:

‖ f ‖L∞(t) ≤ ‖ f0‖L∞ .

Proof. For f0 ∈ Hk with k ≥ 3, we prove in [7] that there exists a time T > 0 such
that the unique solution f (x, t) to (11) belongs to C1([0, T ]; Hk). In particular we have
f (x, t) ∈ C1([0, T ] × 
), hence the Rademacher theorem shows that the functions

M(t) = max
x

f (x, t),
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and

m(t) = min
x

f (x, t),

are differentiable at almost every t . In the non periodic case, we also notice that by the
Riemann-Lebesgue lemma there always exists a point xt ∈ R where

| f (xt , t)| = max
x

| f (x, t)|,
since f (·, t) ∈ Hs with s > 1/2 implies that f (x, t) tends to 0 when |x | → ∞. First, we
suppose that this point xt satisfies that 0 < f (xt , t) = M(t) (a similar argument can be
used for m(t) = f (xt , t) < 0). Let us consider a point in which M(t) is differentiable,
then we have

M ′(t) = lim
h→0+

M(t + h) − M(t)

h

= lim
h→0+

f (xt+h, t + h) − f (xt , t)

h

= lim
h→0+

f (xt+h, t + h) − f (xt , t + h)

h
+

f (xt , t + h) − f (xt , t)

h
.

Since f (x, t + h) takes its maximum value at x = xt+h , it follows

M ′(t)≥ lim
h→0+

f (xt , t + h) − f (xt , t)

h
= ft (xt , t).

Computing for h > 0,

M ′(t) = lim
h→0+

M(t) − M(t − h)

h

= lim
h→0+

f (xt , t) − f (xt−h, t − h)

h

= lim
h→0+

f (xt , t − h) − f (xt−h, t − h)

h
+

f (xt , t) − f (xt , t − h)

h

≤ lim
h→0+

f (xt , t) − f (xt , t − h)

h
≤ ft (xt , t),

and we obtain finally

M ′(t) = ft (xt , t). (13)

If we take the value x = xt in Eq. (11), the above identity yields

M ′(t) = −ρ2 − ρ1

2π
PV

∫
R

∂x f (xt − α, t)α

α2 + (( f (xt , t) − f (xt − α, t)))2 dα,

using the fact that ∂x f (xt , t) = 0. Integrating by parts

M ′(t) = −ρ2−ρ1

2π
PV

∫
R

∂α( f (xt , t)− f (xt −α, t))

α

1

1 +

(
f (xt , t) − f (xt −α, t)

α

)2 dα

= I1 + I2,
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where

I1 = −ρ2 − ρ1

2π
PV

∫
R

f (xt , t) − f (xt − α, t)

α2

1

1 +

(
f (xt , t) − f (xt − α, t)

α

)2 dα,

and

I2 =

− ρ2 − ρ1

2π

∫
R

2

(
f (xt , t) − f (xt − α, t)

α

)2

(
1 +

(
f (xt , t) − f (xt − α, t)

α

)2
)2 ∂α

(
f (xt , t)− f (xt −α, t)

α

)
dα.

Using the function

G(x) = − x

1 + x2 + arctan x,

we can write I2 as follows:

I2 = −ρ2 − ρ1

2π
PV

∫
R

∂α G

(
f (xt , t) − f (xt − α, t)

α

)
dα.

Integrating we obtain

I2 = −ρ2 − ρ1

2π
[G

(
lim

α→+∞
f (xt , t) − f (xt − α, t)

α

)

−G

(
lim

α→−∞
f (xt , t) − f (xt − α, t)

α

)
] = 0.

The I1 term is equal to

I1 = −ρ2 − ρ1

2π
PV

∫
R

M(t) − f (xt − α, t)

α2 + (M(t) − f (xt − α, t))2 dα ≤ 0,

so that M ′(t) ≤ 0 for almost every t . In a similar way we obtain for m(t) the following
inequality

m′(t) = −ρ2 − ρ1

2π
PV

∫
R

m(t) − f (xt − α, t)

α2 + (m(t) − f (xt − α, t))2 dα ≥ 0,

for almost every t . Integrating in time we conclude the argument and obtain the maximum
principle.

In the periodic case, 
 = T, the maximum principle leads to the following decay
estimates of the L∞ norm. 
�
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Proposition 3.2. Let f0 ∈ Hk(T) with k ≥ 3 and ρ2 > ρ1. If
∫

T

f0(x)dx = 0,

then the unique solution to the system (11) satisfies the following inequality

‖ f ‖L∞(t) ≤ ‖ f0‖L∞e−(ρ2−ρ1)C(‖ f0‖L∞ )t ,

with C(‖ f0‖L∞) > 0.

Proof. Suppose that
∫

T

f0(x)dx = 0.

We can write (11) as follows:

ft (x, t) = ρ2 − ρ1

2π
PV

∫
R

∂x arctan

(
f (x, t) − f (x − α, t)

α

)
dα,

and therefore we have∫
T

ft (x, t)dx = ρ2 − ρ1

2π

∫
T

PV
∫

R

∂x arctan

(
f (x, t) − f (x − α, t)

α

)
dαdx

= ρ2 − ρ1

2π
PV

∫
R

∫
T

∂x arctan

(
f (x, t) − f (x − α, t)

α

)
dxdα

= 0.

Integrating in time we obtain
∫

T

f (x, t)dx = 0, ∀t ≥ 0. (14)

As we showed in the proof of the previous theorem, we have

d

dt
‖ f ‖L∞(t) = −ρ2 − ρ1

2π
PV

∫
R

‖ f ‖L∞(t) − f (xt − α, t)

α2 + (‖ f ‖L∞(t) − f (xt − α, t))2 dα,

for almost every t . Applying the maximum principle, for |α| ≤ r we get

α2 + (‖ f ‖L∞(t) − f (xt − α, t))2 ≤ r2 + 4‖ f0‖2
L∞ ,

and

d

dt
‖ f ‖L∞(t) ≤ −ρ2 − ρ1

2π
PV

∫
|α|≤r

‖ f ‖L∞(t) − f (xt − α, t)

α2 + (‖ f ‖L∞(t) − f (xt − α, t))2 dα

≤ −ρ2 − ρ1

2π

2r

r2 + 4‖ f0‖2
L∞

‖ f ‖L∞(t)

+
ρ2 − ρ1

2π

1

r2 + 4‖ f0‖2
L∞

∫
|α|≤r

f (xt − α)dα.
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If we take r = nπ for n ∈ N, from (14) we obtain

d

dt
‖ f ‖L∞(t) ≤ −ρ2 − ρ1

2π

2nπ

n2π2 + 4‖ f0‖2
L∞

‖ f ‖L∞(t),

and integrating in time we conclude the proof. 
�
For 
 = R we obtain the following result.

Proposition 3.3. Let f0 ∈ Hk(R) with k ≥ 3 and ρ2 > ρ1. If f0(x) ≤ 0 or f0(x) ≥ 0,
then the unique solution to the system (11) satisfies the following inequality

‖ f ‖L∞(t) ≤ ‖ f0‖L∞

1 + (ρ2 − ρ1)C(‖ f0‖L∞ , ‖ f0‖L1)t
,

with C(‖ f0‖L∞ , ‖ f0‖L1) > 0.

Proof. Let us consider f0(x) ≥ 0 (the argument is similar to f0(x) ≤ 0). Our maximum
principle shows that

m′(t) = −ρ2 − ρ1

2π
PV

∫
R

m(t) − f (xt − α, t)

α2 + (m(t) − f (xt − α, t))2 dα ≥ 0,

for almost every t . Hence, if f0(x) ≥ 0, then f (x, t) ≥ 0. In a similar way as in the
previous result, we have ∫

R

ft (x, t)dx = 0,

and therefore ∫
R

f (x, t)dx =
∫

R

f0(x)dx .

Since f is nonnegative, we control the L1 norm of the solution, hence ‖ f ‖L1(t) =
‖ f0‖L1 . We have ‖ f ‖L∞(t) = f (xt , t), and

d

dt
‖ f ‖L∞(t) = −I,

with

I = ρ2 − ρ1

2π
PV

∫
R

f (xt , t) − f (xt − α, t)

α2 + ( f (xt , t) − f (xt − α, t))2 dα,

for almost every t . If we consider the interval [−r, r ] for r > 0,

U1 = {α ∈ [−r, r ] : f (xt , t) − f (xt − α, t) ≥ f (xt , t)/2},
and

U2 = {α ∈ [−r, r ] : f (xt , t) − f (xt − α, t) < f (xt , t)/2},
we get

I ≥ ρ2 − ρ1

2π
PV

∫
U1

f (xt , t) − f (xt − α, t)

α2 + ( f (xt , t) − f (xt − α, t))2 dα ≥ ρ2 − ρ1

2π

f (xt , t)/2

r2 + 4‖ f0‖2
L∞

|U1|.



690 D. Córdoba, F. Gancedo

In order to estimate |U1|, we use that |U1| = 2r − |U2|, and

‖ f0‖L1 =
∫

R

f (xt − α, t)dα ≥
∫

U2

f (xt − α, t)dα ≥ f (xt , t)

2
|U2|,

which implies the lower bound |U1| ≥ 2(r − ‖ f0‖L1/ f (xt , t)). This estimate yields

I ≥ ρ2 − ρ1

2π

f (xt , t)/2

r2 + 4‖ f0‖2
L∞

|U1| ≥ ρ2 − ρ1

2π

r f (xt , t) − ‖ f0‖L1

r2 + 4‖ f0‖2
L∞

,

and this function reaches its maximum at

r =
(

‖ f0‖L1 +
√

‖ f0‖2
L1 + 4‖ f0‖2

L∞ f 2(xt , t)

)
/ f (xt , t).

Using the maximum principle

I ≥ ρ2 − ρ1

8π

‖ f0‖L1 f 2(xt , t)

‖ f0‖2
L1 + 2‖ f0‖L1‖ f0‖2

L∞ + 2‖ f0‖4
L∞

≥ (ρ2 − ρ1)C(‖ f0‖L1 , ‖ f0‖L∞) f 2(xt , t).

Finally, we obtain

d

dt
‖ f ‖L∞(t) ≤ −(ρ2 − ρ1)C(‖ f0‖L1 , ‖ f0‖L∞)‖ f ‖2

L∞(t),

which ends the proof. 
�

4. Three Dimensional Case (2-D Interface)

In this section, by applying the same technique, we extend the maximum principle for
the three dimensional stable case. We consider the set 
 to be the plane or the periodic
setting.

Theorem 4.1. Let f0 ∈ Hk(
) for k ≥ 4, and ρ2 > ρ1. Then the unique solution to
(10) satisfies that

‖ f ‖L∞(t) ≤ ‖ f0‖L∞ .

Proof. From [7] we know that there exists a time T > 0 and a unique solution f (x, t) ∈
C1([0, T ]; Hk(
)) of (10). In the case 
 = R

2, there always exists a point xt ∈ R
2

where | f (x, t)| reaches its maximum due to the fact that f (·, t) ∈ Hs with s > 1. Sup-
pose that this point is for M(t) = f (xt , t) > 0. A similar argument can be used for
m(t) = f (xt , t) < 0. By the Rademacher theorem, the function M(t) is differentiable
almost everywhere and by a similar argument as before we obtain

M ′(t) = ft (xt , t), (15)

for almost every t. Using Eq. (10) and the fact that ∇ f (xt , t) = 0, we have

M ′(t) = ρ2 − ρ1

4π
PV

∫
R2

−∇ f (y, t) · (xt − y)

[|xt − y|2 + ( f (xt , t) − f (y, t))2]3/2 dy.
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Integrating by parts

M ′(t)

= ρ2 − ρ1

4π
PV

∫
R2

∇y( f (xt , t) − f (y, t)) · xt − y

|xt − y|3
(

1 +

(
f (xt , t) − f (y, t)

|xt − y|
)2

)−3/2

dy

= −ρ2−ρ1

4π
PV

∫
R2

( f (xt , t) − f (y, t))

(
div y

xt −y

|xt −y|3
)(

1 +

(
f (xt , t) − f (y, t)

|xt − y|
)2

)−3/2

dy

−ρ2 − ρ1

4π
PV

∫
R2

f (xt , t) − f (y, t)

|xt − y|
xt − y

|xt − y|2 · ∇y

(
1 +

(
f (xt , t) − f (y, t)

|xt − y|
)2

)−3/2

dy

= J1 + J2.

We have

J2 = −ρ2 − ρ1

4π
PV

∫
R2

∇y(ln |xt − y|) · ∇y H

(
f (xt , t) − f (y, t)

|xt − y|
)

dy,

where

H(x) = x3

(1 + x2)3/2 .

The identity �y(ln |xt − y|)/4π = δ(xt ) and the following limit

lim
y→xt

f (xt , t) − f (y, t)

|xt − y| = lim
y→xt

f (xt , t) − f (y, t) − ∇ f (xt , t) · (xt − y)

|xt − y| = 0,

show that

J2 = ρ2 − ρ1

4π
PV

∫
R2

�y(ln |xt − y|)H

(
f (xt , t) − f (y, t)

|xt − y|
)

dy = (ρ2 − ρ1)H(0),

and consequently J2 = 0. The J1 term is equal to

J1 = −ρ2 − ρ1

4π
PV

∫
R2

M(t) − f (y, t)

[|xt − y|2 + (M(t) − f (y, t))2]3/2 dy ≤ 0,

which implies that M ′(t) ≤ 0 for almost every t . For m(t) we have m′(t) ≥ 0. 
�
As in the previous section, using this maximum principle we get the following decay

of the L∞ norm.

Proposition 4.2. Let f0 ∈ Hk(T2) with k ≥ 4 and ρ2 > ρ1. If
∫

T2
f0(x)dx = 0,

then the unique solution to the system (11) satisfies the following inequality

‖ f ‖L∞(t) ≤ ‖ f0‖L∞e−(ρ2−ρ1)C(‖ f0‖L∞ )t ,

with C(‖ f0‖L∞) > 0
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Proof. We can write (10) as follows:

ft (x, t) = ρ2 − ρ1

4π
PV

∫
R2

y

|y|2 · ∇x P

(
f (x) − f (x − y)

|y|
)

dy,

f (x, 0) = f0(x),

with

P(x) = x√
1 + x2

.

Checking the evolution of the integral of f on T
2, we obtain

∫
T2

f (x, t)dx = 0. (16)

The proof of the previous theorem shows that

d

dt
‖ f ‖L∞(t) = −ρ2 − ρ1

4π
PV

∫
R2

‖ f ‖L∞(t) − f (y, t)

[|xt − y|2 + (‖ f ‖L∞(t) − f (y, t))2]3/2 dy,

for almost every t . If we consider xt − y ∈ [−nπ, nπ ]× [−nπ, nπ ] = An, with n ∈ N,

we have

|xt − y|2 + (‖ f ‖L∞(t) − f (xt − α, t))2 ≤ 2(nπ)2 + 4‖ f0‖2
L∞ .

Using (16), the above inequality gives

d

dt
‖ f ‖L∞(t) ≤ −ρ2 − ρ1

4π
PV

∫
(xt −y)∈An

‖ f ‖L∞(t) − f (y, t)

[|xt − y|2 + (‖ f ‖L∞(t) − f (y, t))2]3/2 dy

≤ −ρ2 − ρ1

4π

(2nπ)2

[2(nπ)2 + 4‖ f0‖2
L∞]3/2

‖ f ‖L∞(t),

and the desired estimate follows. 
�
Proposition 4.3. Let f0 ∈ Hk(R2) with k ≥ 4 and ρ2 > ρ1. If f0(x) ≤ 0 or f0(x) ≥ 0,
then the unique solution to the system (11) satisfies the following inequality:

‖ f ‖L∞(t) ≤ ‖ f0‖L∞

(1 + (ρ2 − ρ1)C(‖ f0‖L∞ , ‖ f0‖L1)t)2 ,

with C(‖ f0‖L∞ , ‖ f0‖L1) > 0.

Proof. Let us consider f0(x) ≥ 0, the same estimate is obtained for f0(x) ≤ 0. We
know that f (x, t) ≥ 0 and ‖ f ‖L1(t) = ‖ f0‖L1 . We have ‖ f ‖L∞(t) = f (xt , t) and

d

dt
‖ f ‖L∞(t) = −J

for almost every t , with

J = ρ2 − ρ1

4π
PV

∫
R2

f (xt , t) − f (y, t)

[|xt − y|2 + ( f (xt , t) − f (y, t))2]3/2 dy.
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If we define the set Br (xt ) = {y : |xt − y| ≤ r} for r > 0,

V1 = {y ∈ Br (xt ) : f (xt , t) − f (y, t) ≥ f (xt , t)/2},

and

V2 = {y ∈ Br (xt ) : f (xt , t) − f (y, t) < f (xt , t)/2},

we get

J ≥ ρ2 − ρ1

4π

f (xt , t)/2

[r2 + 4‖ f0‖2
L∞]3/2

|V1|.

Using that |V1| = πr2 − |V2| and

‖ f0‖L1 ≥
∫

V2

f (y, t)dy ≥ f (xt , t)

2
|V2|,

we can estimate from below |V1| ≥ πr2 − 2‖ f0‖L1/ f (xt , t). Then

J ≥ ρ2 − ρ1

8π

πr2 f (xt , t) − 2‖ f0‖L1

[r2 + 4‖ f0‖2
L∞]3/2

.

Taking

r =
(

2‖ f0‖L1/π + 1

f (xt , t)

)1/2

,

we find

J ≥ ρ2−ρ1

8π

π( f (xt , t))3/2

[1 + 2‖ f0‖L1/π + 4‖ f0‖2
L∞ f (xt , t)]3/2

≥ ρ2−ρ1

8

( f (xt , t))3/2

[1 + 2‖ f0‖L1/π + 4‖ f0‖3
L∞]3/2

.

Finally, the following estimate is obtained

d

dt
‖ f ‖L∞(t) ≤ −(ρ2 − ρ1)C(‖ f0‖L1 , ‖ f0‖L∞)‖ f ‖3/2

L∞(t).


�
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5. Small Initial Data

In the two-dimensional case, we prove in [7] that if the following quantity of the initial
data is small:

∑
|ξ || f̂ (ξ)|,

then there is global-in-time solution of the system (11). The aim of this section is to
show that if initially the L∞ norm of the first derivative is less than one then it continues
less than one for all time.

Lemma 5.1. Let f0 ∈ Hs with s ≥ 3, and ‖∂x f0‖L∞ < 1. Then the unique solution of
the system (11) satisfies

‖∂x f ‖L∞(t) < 1.

Proof. We consider the following term in (11):

K = −ρ2 − ρ1

2π
PV

∫
R

∂x f (x − α, t)α

α2 + ( f (x, t) − f (x − α, t))2 dα,

we can integrate by parts and get

K = −ρ2 − ρ1

2π
PV

∫
R

∂α( f (x, t) − f (x − α, t))

α

1

1 +

(
f (x, t) − f (x − α, t)

α

)2 dα

= −ρ2 − ρ1

2π
PV

∫
R

f (x, t) − f (x − α, t)

α2

1

1 +

(
f (x, t) − f (x − α, t)

α

)2 dα

−ρ2 − ρ1

2π

∫
R

2

(
f (x, t) − f (x − α, t)

α

)2

(
1+

(
f (x, t) − f (x − α, t)

α

)2
)2 ∂α

(
f (x, t) − f (x − α, t)

α

)
dα

= L1 + L2.

As we showed before

L2 = −ρ2 − ρ1

2π
PV

∫
R

∂α G

(
f (x, t) − f (x − α, t)

α

)
dα = 0,

so K = L1. Making a change of variables we find the following equivalent system:

ft (x, t) = ρ2 − ρ1

2π
PV

∫
R

∂x f (x, t)(x − α) − ( f (x, t) − f (α, t))

(x − α)2 + ( f (x, t) − f (α, t))2 dα.

Taking one derivative in this formula, we have

∂x ft (x) = N1(x) + N2(x), (17)
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with

N1(x) = ρ2 − ρ1

2π
PV

∫
R

∂2
x f (x)(x−α)

(x−α)2 +( f (x)− f (α))2 dα,

N2(x) = −ρ2 − ρ1

2π
PV

∫
R

∂x f (x) − �α f (x)

(x − α)2 Q(x, α)dα,

where

Q(x, α) = 2
1 + ∂x f (x)�α f (x)

(1 + (�α f (x))2)2 ,

and

�α f (x) = f (x) − f (α)

x − α
.

Next, we set

M(t) = ‖∂x f ‖L∞(t),

then M(t) = maxx ∂x f (x, t) = ∂x f (xt , t), where xt is the trajectory of the maximum.
Similar conclusions are obtained for m(t) = minx ∂x f (x, t). Using the Rademacher the-
orem as in the previous section, we have that M ′(t) = ∂x ft (xt , t) and ∂2

x f (xt , t) = 0.
Therefore by taking x = xt in (17) we get

M ′(t) = N2(xt ),

since N1(xt ) = 0. The inequality

|�α f (xt )| ≤ M(t),

shows that for M(t) < 1 the integral N2(xt ) ≤ 0, and therefore M ′(t) ≤ 0. If M(0) < 1,
using the theorem of local existence, we have that for short time M(t) < 1 which implies
M ′(t) ≤ 0 for almost every t. Consequently we obtain M(t) < 1. In the case of m(t)
we find m(t) > −1. 
�
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