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Abstract: We prove general nonlinear stability and existence theorems for rotating star
solutions which are axi-symmetric steady- state solutions of the compressible isentropic
Euler-Poisson equations in 3 spatial dimensions. We apply our results to rotating white
dwarf and high density supermassive (extreme relativistic) stars, stars which are in con-
vective equilibrium and have uniform chemical composition. Also, we prove nonlinear
dynamical stability of non-rotating white dwarfs with general perturbation without any
symmetry restrictions. This paper is a continuation of our earlier work ([26]).
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1. Introduction

The motion of a compressible isentropic perfect fluid with self-gravitation is modeled
by the Euler-Poisson equations in three space dimensions (cf. [5]):

⎧
⎪⎨

⎪⎩

ρt + ∇ · (ρv) = 0,
(ρv)t + ∇ · (ρv ⊗ v) + ∇ p(ρ) = −ρ∇�,
�� = 4πρ.

(1.1)
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Here ρ, v = (v1, v2, v3), p(ρ) and � denote the density, velocity, pressure and gravita-
tional potential, respectively. The gravitational potential is given by

�(x) = −
∫

R3

ρ(y)

|x − y|dy = −ρ ∗ 1

|x | , (1.2)

where ∗ denotes convolution. System (1.1) is used to model the evolution of a Newto-
nian gaseous star ([5]). In the study of time-independent solutions of system (1.1), there
are two cases, non-rotating stars and rotating stars. An important question concerns the
stability of such solutions. Physicists call such star solutions stable provided that they
are minima of an associated energy functional ([37], p.305 & [33]). Mathematicians,
on the other hand, consider dynamical nonlinear stability via solutions of the Cauchy
problem. The main purpose of this paper is to prove a general theorem which relates
these two notions and shows that for a wide class of Newtonian rotating stars, minima of
the energy functional are in fact, dynamically stable. This is done for various equations
of state p = p(ρ) which includes polytropes, supermassive, and white dwarf stars.

For non-rotating stars, Rein ([32]) has proved nonlinear stability under various hypoth-
eses on the equation of state, including in particular, polytropes where p = kργ ,
γ > 4/3; his theory applies to neither white dwarf nor supermassive stars. In a recent
paper, [26], we studied nonlinear stability of rotating polytropic stars, where p = kργ ,
γ > 4/3. In this paper, we generalize these results to rotating white dwarf and super-
massive stars, thereby completing the nonlinear stability theory for rotating (and non-
rotating) compressible Newtonian stars.1

Our main theorem applies to minimizers of an energy functional with a total mass
constraint. The crucial hypotheses are that the infimum of the energy functional in the
requisite class, be finite and negative. This is verified for both white dwarf and super-
massive stars by combining a scaling technique used by Rein ([31]), together with our
method in [26] where we use some particular solutions of the Euler-Poisson equations
in order to simplify the energy functional. It should be noticed that neither the scaling
technique in [31] nor the method in [26] using particular solutions of Euler-Poisson
equations apply to white dwarf stars directly. As a by-product of our method, we prove
the existence of a minimizer for the energy functional, which is a rotating white dwarf
star solution, in a class of functions having less symmetry than those solutions obtained
in [1] and [10]. The method in [1] and [10] is to construct a specific minimizing sequence
of the energy functional, each element in the sequence being a local minimizer of the
energy functional. In contrast, our method is to show that any minimizing sequence of
the energy functional must be compact (cf. Theorem 3.1 below). This fact is crucial for
both existence and stability results.

For a white dwarf star (a star in which gravity is balanced by electron degeneracy
pressure), the pressure function p(ρ) obeys the following asymptotics ([5], Chap. 10):

{
p(ρ) = c1ρ

4/3 − c2ρ
2/3 + · · · , ρ → ∞,

p(ρ) = d1ρ
5/3 − d2ρ

7/3 + O(ρ3), ρ → 0,
(1.3)

1 In all cases under consideration, stability is only “conditional” because no global in time solutions have
been constructed so far for compressible Euler-type equations in three spatial dimensions; this is a major
open problem. In the stability result in [32], it was assumed that the solutions of the Cauchy problem for the
evolutionary Euler-Poisson equations exist and preserve the total mass and energy. In general, shock waves
appear in compressible fluid flows. In the presence of shock waves, the total energy should be non-increasing
in time due to the entropy condition. We prove the conservation of total mass for general weak solutions and
the non-increase of the total energy for entropy weak solutions if the weak solutions are in certain L p spaces
(see Theorem 3.2). Those two properties are important for our stability analysis.
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where c1, c2, d1 and d2 are positive constants. The existence theory for non-rotating
white dwarf stars is classical provided the mass M of the star is not greater than a critical
mass Mc (M ≤ Mc) ([5]). For rotating white dwarf stars with prescribed total mass and
angular momentum distribution, Auchumuty and Beals ([1]) proved that if the angular
momentum distribution is nonnegative, then existence holds if M ≤ Mc. Friedman and
Turkington ([10]) proved existence for any mass provided that the angular momentum
distribution is everywhere positive; see Li ([21]), Chanillo & Li ([6]) and Luo & Smol-
ler ([25]) for related results for rotating star solutions with prescribed constant angular
velocity. To the best of our knowledge, our stability theorem in this paper for rotating and
non-rotating white dwarf stars with M ≤ Mc is the first nonlinear dynamical stability
theorem for such stars.

For a supermassive star (a star which is supported by the pressure of radiation rather
than that of matter; sometimes called an extreme relativistic degenerate star [33]), the
pressure p(ρ) is given by ([37]):

p(ρ) = kργ , γ = 4/3, (1.4)

where k > 0 is a constant. For non-rotating spherically symmetric solutions for super-
massive stars, Weinberg ([37]) showed that the total energy vanishes; thus to quote
Weinberg ([37], p. 327) “the polytrope with γ = 4/3 is trembling between stability
and instability”, and he remarks that one needs to use general relativity to settle this
stability problem. For rotating supermassive star solutions, we show here that the energy
is negative E < 0 due to the rotational kinetic energy (see (4.26) below). Thus the sta-
bility problem falls within the framework of Newtonian mechanics and so our general
stability theorem applies to show that rotating supermassive stars are nonlinearly stable,
provided that M ≤ Mc.

For the stability of both white dwarfs and supermassive stars, we require that the
total mass of each one lies below a corresponding critical mass, a “Chandrasekhar”
limit. We show that this holds because the pressure function for both is of the order ρ4/3

as ρ → ∞.
The above dynamical stability results for rotating stars apply for axi-symmetric per-

turbations with some restrictions on angular momentum. For non-rotating stars, G. Rein
([32]) proved nonlinear dynamical stability for general perturbations. However, his result
does not apply to white dwarf stars. For non-rotating white dwarf stars, the problem was
formulated by Chandrasekhar [4] in 1931 (and also in [8] and [16]) and leads to an
equation for the density which was called the “ Chandrasekhar equation ” by Lieb and
Yau in [22]. This equation predicts the gravitational collapse at some critical mass ([4]
and [5]). This gravitational collapse was also verified by Lieb and Yau ([22]) as the limit
of Quantum Mechanics. In Sect. 5, we prove the nonlinear dynamical stability for non-
rotating white dwarf stars with general perturbations without any symmetry assumption
provided that the total mass is below some critical mass.

Other related results besides those mentioned above for compressible fluid rotating
stars can be found in [2, 3, 9, and 25].

The linearized stability and instability for non-rotating and rotating stars were dis-
cussed by Lin ([23]), Lebovitz ([18]) and Lebovitz & Lifschitz ([19]). Related nonlinear
stability and instability results for galaxies, globular and gaseous stellar objects can be
found in Guo & Rein ([12,13]) and Jang ([11]). Related results for the Euler- Poisson
equations of self-gravitating fluids can be found in [7, 15, 28 and 36].
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2. Rotating Star Solutions

We now introduce some notation which will be used throughout this paper. We use
∫

to
denote

∫

R3 , and use || · ||q to denote || · ||Lq (R3). For any point x = (x1, x2, x3) ∈ R
3, let

r(x) =
√

x2
1 + x2

2 , z(x) = x3, BR(x) = {y ∈ R
3, |y − x | < R}. (2.1)

For any function f ∈ L1(R3), we define the operator B by

B f (x) =
∫

f (y)

|x − y|dy = f ∗ 1

|x | . (2.2)

Also, we use ∇ to denote the spatial gradient, i.e., ∇ = ∇x = (∂x1, ∂x2 , ∂x3). C will
denote a generic positive constant.

A rotating star solution (ρ̃, ṽ, �̃)(r, z), where r =
√

x2
1 + x2

2 and z = x3,

x = (x1, x2, x3) ∈ R
3, is an axi-symmetric time-independent solution of system

(1.1), which models a star rotating about the x3- axis. Suppose the angular momentum
(per unit mass), J (mρ̃ (r)) is prescribed, where

mρ̃ (r) =
∫

√

x2
1 +x2

2<r
ρ̃(x)dx =

∫ r

0
2πs

∫ +∞

−∞
ρ̃(s, z)dsdz, (2.3)

is the mass in the cylinder {x = (x1, x2, x3) :
√

x2
1 + x2

2 < r}, and J is a given function.

In this case, the velocity field ṽ(x) = (v1, v2, v3) takes the form

ṽ(x) = (− x2 J (mρ̃ (r))

r2 ,
x1 J (mρ̃ (r))

r2 , 0).

Substituting this in (1.1), we find that ρ̃(r, z) satisfies the following two equations:
{

∂r p(ρ̃) = ρ̃∂r (Bρ̃) + ρ̃L(mρ̃ (r))r−3,

∂z p(ρ̃) = ρ̃∂z(Bρ̃),
(2.4)

where the operator B is defined in (2.2), and

L(mρ̃ ) = J 2(mρ̃ )

is the square of the angular momentum. We define

A(ρ) = ρ

∫ ρ

0

p(s)

s2 ds. (2.5)

It is easy to verify that (cf. [1]) (2.4) is equivalent to

A′(ρ̃(x)) +
∫ ∞

r(x)
L(mρ̃ (s)s

−3ds − Bρ̃(x) = λ, where ρ̃(x) > 0, (2.6)

for some constant λ. Here r(x) and z(x) are as in (2.1). Let M be a positive constant
and let WM be the set of functions ρ defined by

WM = {ρ : R
3 → R, ρ is axisymmetric, ρ ≥ 0, a.e.,

∫

ρ(x)dx = M,
∫ (

A(ρ(x)) +
ρ(x)L(mρ(r(x)))

r(x)2
+ρ(x)Bρ(x)

)

dx < +∞}.
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For ρ ∈ WM , we define the energy functional F by

F(ρ) =
∫

[A(ρ(x)) +
1

2

ρ(x)L(mρ(r(x)))

r(x)2
− 1

2
ρ(x)Bρ(x)]dx . (2.7)

In (2.7), the first term denotes the potential energy, the middle term denotes the rotational
kinetic energy and the third term is the gravitational energy.

For a white dwarf star, the pressure function p(ρ) satisfies the following conditions:

lim
ρ→0+

p(ρ)

ρ4/3 = 0, lim
ρ→∞

p(ρ)

ρ4/3 = K, p′(ρ) > 0 as ρ > 0, (2.8)

where K is a finite positive constant. Assuming that the function L ∈ C1[0,M] and
satisfies

L(0) = 0, L(m) ≥ 0, f or 0 ≤ m ≤ M, (2.9)

Auchmuty and Beals (cf. [1]) proved the existence of a minimizer of the functional F(ρ)
in the class of functions WM,S = WM ∩ Wsym , where

Wsym = {ρ : R
3 → R, ρ(x1, x2,−x3) = ρ(x1, x2, x3), xi ∈ R, i = 1, 2, 3}. (2.10)

Their result is given in the following theorem.

Theorem 2.1 ([1]). If the pressure function p satisfies (2.8) (for either 0 < K < +∞
or K = +∞ ) and (2.9) holds, then there exists a constant Mc > 0 depending on the
constant K in (2.8) (if K = +∞ then Mc = +∞, if 0 < K < +∞, then 0 < Mc < +∞)
such that, if

M < Mc, (2.11)

then there exists a function ρ̂(x) ∈ WM,S which minimizes F(ρ) in WM,S. Moreover, if

G = {x ∈ R
3 : ρ̂(x) > 0}, (2.12)

then Ḡ is a compact set in R
3, and ρ̂ ∈ C1(G) ∩ Cβ(R3) for some 0 < β < 1.

Furthermore, there exists a constant µ < 0 such that
{

A′(ρ̂(x)) +
∫ ∞

r(x) L(mρ̂ (s)s
−3ds − Bρ̂(x) = µ, x ∈ G,

∫ ∞
r(x) L(mρ̂ (s)s

−3ds − Bρ̂(x) ≥ µ, x ∈ R
3 − G.

(2.13)

Remark 1. When 0 < K < ∞, the constant 0 < Mc < +∞ in (2.11) is called criti-
cal mass. The critical mass was first found by Chandrasekhar (cf. [5]) in the study of
non- rotating white dwarf stars. When 0 < K < ∞, it was proved by Friedman and
Turkington ([10]) that, if the angular momentum satisfies the following condition

J ∈ C1([0,M]), J ′(m) ≥ 0, for 0≤m ≤ M, J (0) = 0, J (m)>0 for 0<m ≤ M,

(2.14)

where J is the angular momentum, then the condition (2.11) can be removed, i.e., the
above theorem holds for any positive total mass M .
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In this paper, we are interested in minimizers of functional F in the larger class WM .
By the same argument as in [1], it is easy to prove the following theorem on the regularity
of a minimizer.

Theorem 2.2. Suppose that the pressure function p satisfies:

lim
ρ→0+

p(ρ)

ρ6/5
= 0, lim

ρ→∞
p(ρ)

ρ6/5
= ∞, p′(ρ) > 0 as ρ > 0, (2.15)

and the angular momentum satisfies (2.9). Let ρ̃ be a minimizer of the energy functional
F in WM and let

	 = {x ∈ R
3 : ρ̃(x) > 0}, (2.16)

then ρ̃ ∈ C(R3) ∩ C1(	). Moreover, there exists a constant λ such that
{

A′(ρ̃(x)) +
∫ ∞

r(x) L(mρ̃ (s)s−3ds − Bρ̃(x) = λ, x ∈ 	,
∫ ∞

r(x) L(mρ̃ (s)s−3ds − Bρ̃(x) ≥ λ, x ∈ R
3 − 	.

(2.17)

We call such a minimizer ρ̃ a rotating star solution with total mass M and angular
momentum

√
L(m).

3. General Existence and Stability Theorems

For the angular momentum, besides the condition (2.9), we also assume that it satisfies
the following conditions:

L(am) ≥ a4/3L(m), 0 < a ≤ 1, 0 ≤ m ≤ M, (3.1)

L ′(m) ≥ 0, 0 ≤ m ≤ M. (3.2)

Condition (3.2) is called the Sölberg stability criterion ([35]).

3.1. Compactness of minimizing sequence. In this section, we first establish a compact-
ness result for the minimizing sequences of the functional F . This compactness result
is crucial for the existence and stability analyses.

Theorem 3.1. Suppose that the square of the angular momentum L satisfies (2.9), (3.1)
and (3.2), and the pressure function p satisfies the following conditions:

p ∈ C1[0,+∞),

∫ 1

0

p(ρ)

ρ2 dρ<+∞, lim
ρ→∞

p(ρ)

ργ
= K , p(ρ)≥0, p′(ρ)>0 for ρ>0,

(3.3)

where 0 < K < +∞ and γ ≥ 4/3. If

(1)

inf
ρ∈WM

F(ρ) < 0, (3.4)

and
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(2) for ρ ∈ WM ,

∫

[A(ρ)(x) +
1

2

ρ(x)L(mρ(r(x)))

r(x)2
]dx ≤ C1 F(ρ) + C2, (3.5)

for some positive constants C1 and C2, then the following hold:

(a) If {ρi } ⊂ WM is a minimizing sequence for the functional F, then there exist
a sequence of vertical shifts ai e3 (ai ∈ R, e3 = (0, 0, 1)), a subsequence of
{ρi }, (still labeled {ρi }), and a function ρ̃ ∈ WM , such that for any ε > 0 there
exists R > 0 with

∫

|x |≥R
Tρi (x)dx ≤ ε, i ∈ N, (3.6)

and

Tρi (x) ⇀ ρ̃, weakly in Lγ (R3), as i → ∞, (3.7)

where Tρi (x) := ρi (x + ai e3).
Moreover

(b)

∇B(Tρi ) → ∇B(ρ̃) strongly in L2(R3), as i → ∞. (3.8)

(c) ρ̃ is a minimizer of F in WM .

Thus ρ̃ is a rotating star solution with total mass M and angular momentum
√

L .

Remark 2. i) The assumption (3.4) is crucial for our compactness and stability anal-
ysis. The physical meaning of this is that the gravitational energy, the negative
part of the energy F , should be greater than the positive part, which means the
gravitation should be strong enough to hold the star together. In Sect. 4, we will
verify this assumption. Roughly speaking, in addition to (3.3), if we require

lim
ρ→0+

p(ρ)

ργ1
= α, (3.9)

for some constants γ1 > 4/3 and 0 < α < +∞, then (3.4) holds for the following
cases:
(a) When γ = 4/3 (where γ is the constant in (3.3)), if the total mass M is less

than a ”critical mass” Mc, then (3.4) holds. This case includes white dwarf
stars. For a white dwarf star, γ1 = 5/3.

(b) When γ > 4/3, (3.4) holds for arbitrary positive total mass M . This gener-
alizes our previous result in [26] for the polytropic stars with p(ρ) = ρβ ,
β > 4/3.
It should be noted that (3.9) does not apply to supermassive star, i.e. p(ρ) =
kρ4/3. For the supermassive star, in order that (3.4) holds, in addition to requir-
ing that the total mass is less than a ”critical mass”, we also require that the
angular momentum (per unit mass) J is not identically zero.
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ii) Assumption (2) in the above theorem implies that the functional F is bounded
below, i.e.,

inf
ρ∈WM

F(ρ) > −∞. (3.10)

We will verify this assumption in Sect. 4 (see Theorem 4.1).
iii) The inequality (3.6) is crucial for the compactness result (3.8). One of the difficul-

ties in the analysis is the loss of compactness because we consider the problem in
an unbounded space, R

3. The inequality (3.6) means the masses of the elements
in the minimizing sequence Tρi (x) ”almost” concentrate in a ball BR(0).

iv) It is easy to verify that the functional F is invariant under any vertical shift, i.e.,
if ρ(·) ∈ WM , then ρ̄(x) =: ρ(x + ae3) ∈ WM and F(ρ̄) = F(ρ) for any
a ∈ R. Therefore, if {ρi } is a minimizing sequence of F in WM , then {Tρi } =:=
ρi (x + ai e3) is also a minimizing sequence in WM .

Theorem 3.1 is proved in a sequence of lemmas with some modifications of the argu-
ments in [26]. We only sketch the proofs of those lemmas and Theorem 3.1. Complete
details can be followed as in [26]. We first give some inequalities which will be used
later. We begin with Young’s inequality (see [14], p. 146.)

Lemma 3.1. If f ∈ L p ∩ Lr , 1 ≤ p < q < r ≤ +∞, then

|| f ||q ≤ || f ||ap|| f ||1−a
r , a = q−1 − r−1

p−1 − r−1 . (3.11)

The following two lemmas are proved in [1].

Lemma 3.2. Suppose the function f ∈ L1(R3) ∩ Lq(R3). If 1 < q ≤ 3/2, then
B f =: f ∗ 1

|x | is in Lr (R3) for 3 < r < 3q/(3 − 2q), and

||B f ||r ≤ C
(
|| f ||b1|| f ||1−b

q + || f ||c1|| f ||1−c
q

)
, (3.12)

for some constants C > 0, 0 < b < 1, and 0 < c < 1. If q > 3/2, then B f (x) is a
bounded continuous function, and satisfies (3.12) with r = ∞.

Lemma 3.3. For any function f ∈ L1(R3) ∩ L4/3(R3), ∇B f ∈ L2(R3). Moreover,

|
∫

f (x)B f (x)dx | = 1

4π
||∇B f ||22 ≤ C

(∫

| f |4/3(x)dx

) (∫

| f |(x)dx

)2/3

, (3.13)

for some constant C.

We also need the following lemma.

Lemma 3.4. Suppose that the pressure function p satisfies (3.3) and that (3.5) holds. Let
{ρi } ⊂ WM be a minimizing sequence for the functional F. Then there exists a constant
C > 0 such that

∫

[(ρi )γ (x) +
1

2

ρi (x)L(mρi (r(x)))

r(x)2
]dx ≤ C, for all i ≥ 1, (3.14)

where γ ≥ 4/3 is the constant in (3.3). So, the sequence {ρi } is bounded in Lγ (R3).
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Proof. By (3.5), we know that

∫

[A(ρi )(x) +
1

2

ρi (x)L(mρi (r(x)))

r(x)2
]dx ≤ C, for all i ≥ 1, (3.15)

for any minimizing sequence {ρi } ⊂ WM for the functional F , where we have used that
{F(ρi )} is bounded from above since it converges to infWM F . It is easy to verify that,
by virtue of (3.3) and (2.5),

lim
ρ→∞

A(ρ)

ργ
= K

γ − 1
, A(ρ) > 0 for ρ > 0. (3.16)

Therefore, there exits a constant ρ∗ > 0 such that

αA(ρ) ≥ ργ , for ρ ≥ ρ∗, (3.17)

where α = 2(γ−1)
K . Hence, for ρ ∈ WM ,

∫

ργ dx ≤
∫

ρ<ρ∗
(ρ∗)γ−1ρdx + α

∫

ρ≥ρ∗
A(ρ)dx

≤ (ρ∗)γ−1 M + α
∫

A(ρ)dx . (3.18)

Applying this inequality to ρi , we conclude that the sequence {ρi } is bounded in Lγ (R3)

by using (3.15). 
�
For any M > 0, we let

fM = inf
ρ∈WM

F(ρ). (3.19)

Lemma 3.5. If (3.1) holds, then fM̄ ≥ (M̄/M)5/3 fM for every M > M̄ > 0.

Proof. The proof follows from a scaling argument as in [31] and [26]. Take
a = (M/M̄)1/3 and let ρ̄(x) = ρ(ax) for any ρ ∈ WM . It is easy to verify that ρ̄ ∈ WM̄ .
Moreover, for r ≥ 0, it is easy to verify (as in [26]) that

mρ̄ (r) = 1

a3 mρ(ar). (3.20)

Since L satisfies (3.1) and a > 1, we have

L(mρ̄ (r)) ≥ 1

a4 L(mρ(ar)). (3.21)

Thus, as in [26], we can show that
∫
ρ̄(x)L(mρ̄ (r(x)))

r(x)2
dx ≥ 1

a5

∫
ρ(x)L(mρ(r(x)))

r(x)2
dx . (3.22)
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Therefore, since a ≥ 1, it follows from (3.21) and (3.22) that

F(ρ̄) ≥ a−3
∫

A(ρ)dx − a−5

2

∫

ρBρdx +
a−5

2

∫
ρ(x)L(mρ(r(x)))

r(x)2
dx

≥ a−5
(∫

A(ρ)dx − 1

2

∫

ρBρdx +
1

2

∫
ρ(x)L(mρ(r(x)))

r(x)2
dx

)

= (M̄/M)5/3 F(ρ). (3.23)

Since ρ → ρ̄ is one-to-one between WM and WM̄ , this proves the lemma. 
�
Lemma 3.6. Let {ρi } ⊂ WM be a minimizing sequence for F. Then there exist constants
r0 > 0, δ0 > 0, i0 ∈ N and xi ∈ R

3 with r(xi ) ≤ r0, such that
∫

B1(xi )

ρi (x)dx ≥ δ0, i ≥ i0. (3.24)

Proof. First, since limi→∞ F(ρi ) → fM and fM < 0 (see (3.4)), for large i ,

− fM

2
≤ −F(ρi ) ≤ 1

2

∫

ρi Bρi dx . (3.25)

For any i , let

δi = sup
x∈R3

∫

|y−x |<1
ρi (y)dy. (3.26)

Now
∫

ρi Bρi (x)dx (3.27)

=
∫

R3
ρi (x)

{∫

|y−x |<1
+

∫

1<|y−x |<r
+

∫

|y−x |>r

}
ρi (y)

|y − x |dydx

=: D1 + D2 + D3, (3.28)

and D3 ≤ M2r−1. The shell 1 < |y − x | < r can be covered by at most Cr3 balls
of radius 1, so D2 ≤ C Mδi r3. By using Hölder’s inequality and applying (3.12) to the
restriction of ρi to {y : |y − x | < 1}, we get

D1 ≤ ‖ρi‖4/3‖
∫

|y−x |<1

ρi (y)

|y − x |dy‖4

≤ C‖ρi‖4/3

(
‖χB1(x)ρ

i‖b
1‖ρi‖1−b

4/3 + ‖χB1(x)ρ
i‖c

1‖ρi‖1−c
4/3

)

≤ C‖ρi‖4/3

(
δb

i ‖ρi‖1−b
4/3 + δc

i ‖ρi‖1−c
4/3

)
, (3.29)

where 0 < b < 1 and 0 < c < 1. Now since {‖ρi‖γ } is bounded, it follows that
{‖ρi‖4/3} is bounded due to the fact γ ≥ 4/3 in view of (3.11) and ‖ρi‖1 = M ; this
gives D1 ≤ C(δb

i +δc
i ). It follows that we could choose r so large that the above estimates

give
∫
ρi Bρi (x)dx < − fM if δi were small enough. This would contradict (3.25). So
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there exists δ0 > 0 such that δi ≥ δ0 for large i . Thus, as i is large, there exist xi ∈ R
3

and i0 ∈ N such that

∫

B1(xi )

ρi (x)dx ≥ δ0, i ≥ i0. (3.30)

We now prove that there exists r0 > 0 independent of i such that xi must satisfy
r(xi ) ≤ r0 for i large. Namely, since ρi has mass at least δ0 in the unit ball centered at
xi , and is axially symmetric, it has mass ≥ Cr(xi )δ0 in the torus obtained by revolving
this ball around the x3-axis (or z- axis).Therefore r(xi ) ≤ (Cδ0)

−1 M. 
�
In order to prove Theorem 3.1, we will need the following lemma.

Lemma 3.7. Let { f i } be a bounded sequence in Lγ (R3) (γ ≥ 4/3) and suppose

f i ⇀ f 0 weakly in Lγ (R3).

Then

(a) For any R > 0,

∇B(χBR(0) f i ) → ∇B(χBR(0) f 0) strongly in L2(R3),

where χ is the characteristic function.
(b) If in addition { f i } is bounded in L1(R3), f 0 ∈ L1(R3), and for any ε > 0 there

exist R > 0 and i0 ∈ N such that

∫

|x |>R
| f i (x)|dx < ε, i ≥ i0, (3.31)

then

∇B f i → ∇B f 0 strongly in L2(R3).

Proof. This lemma follows easily from the proof of Lemma 3.7 in [31], due to the fol-
lowing observation:
The map: ρ ∈ Lγ (R3) �→ χBR(0)∇B(χBR(0)ρ) is compact for any R > 0, if γ ≥ 4/3,
where χ denotes the characteristic function. 
�

With the above lemmas, the proof of Theorem 3.1 is similar to that in [26]. So we
only outline the main steps.

Proof of Theorem 3.1.

Step 1. Splitting. We begin with a splitting as in [31]. For ρ ∈ WM , for any 0 < R1 < R2,
we have

ρ = ρχ|x |≤R1 + ρχR1<|x |≤R2 + ρχ|x |>R2 =: ρ1 + ρ2 + ρ3, (3.32)
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where again χ is the characteristic function. It is easy to verify that

∫
ρ(x)L(mρ(r(x)))

r2(x)
dx =

3∑

j=1

∫
ρ j (x)L(mρ j (r(x)))

r2(x)
dx

+
3∑

j=1

∫
ρ j (x)(L(mρ(r(x)))− L(mρ j (r(x)))

r2(x)
dx,

≥
3∑

j=1

∫
ρ j (x)L(mρ j (r(x)))

r2(x)
dx . (3.33)

In the last inequality above, we have used (3.2). So, we have

F(ρ) ≥
3∑

j=1

F(ρ j )−
∑

1≤i< j≤3

Ii j , (3.34)

where

Ii j =
∫

R3

∫

R3
|x − y|−1ρi (x)ρ j (y)dxdy, 1 ≤ i < j ≤ 3.

If we choose R2 > 2R1 in the splitting (3.32), then

I13 ≤ C

R2
. (3.35)

By (3.12) and (3.13), we have

I12 + I23

= 1

4π

∫

∇(Bρ1 + Bρ3) · ∇Bρ2dx ≤ C‖∇(Bρ1 + Bρ3)‖2‖∇Bρ2‖2

≤ C M1/3‖ρ1 + ρ3‖2/3
4/3‖∇Bρ2‖2 ≤ C M1/3‖ρ‖2/3

4/3‖∇Bρ2‖2. (3.36)

Using Lemma 3.5, (3.4), (3.34), (3.35) and (3.36), and following an argument as in the
proof of Theorem 3.1 in [31], we can show that

fM − F(ρ)

≤ (1 − (
M1

M
)5/3 − (

M2

M
)5/3 − (

M3

M
)5/3) fM + C(R−1

2 + M1/3‖ρ‖2/3
4/3||∇Bρ2||2)

≤ C fM M1 M3 + C(R−1
2 + M1/3‖ρ‖2/3

4/3||∇Bρ2||2), (3.37)

by choosing R2 > 2R1 in the splitting (3.32), where Mi = ∫
ρi (x)dx (i = 1, 2, 3.)

Step 2. Compactness. Let {ρi } be a minimizing sequence of F in WM . By Lemma 3.6,
we know that there exists i0 ∈ N and δ0 > 0 independent of i such that

∫

ai e3+BR0(0)

ρi (x)dx ≥ δ0, i f i ≥ i0, (3.38)
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where ai = z(xi ) and R0 = r0 + 1, xi and r0 are those quantities in Lemma 3.6,
e3 = (0, 0, 1). Having proved (3.38), we can follow the argument in the proof of Theo-
rem 3.1 in [31] to verify (3.31) for

f i (x) = Tρi (x) =: ρi (· + ai e3)

by using (3.34) and (3.38) and choosing suitable R1 and R2 in the splitting (3.32). We
sketch this as follows. The sequence Tρi =: ρi (· + ai e3), i ≥ i0, is a minimizing
sequence of F in WM (see Remark 2 after Theorem 3.1). We rewrite (3.38) as

∫

BR0 (0)
Tρi (x)dx ≥ δ0, i ≥ i0. (3.39)

Applying (3.37) with Tρi replacing ρ, and noticing that {Tρi } is bounded in Lγ (R3)

(see Lemma 3.4) (so {‖Tρi‖4/3} is bounded if γ ≥ 4/3 in view of (3.11) and the fact
‖ρi‖1 = M), we obtain, if R2 > 2R1,

− C fM Mi
1 Mi

3 ≤ C(R−1
2 + ||∇BTρi

2||2) + F(Tρi )− fM , (3.40)

where Mi
1 = ∫

Tρi
1(x)dx =∫

|x |<R1
Tρi (x)dx,, Mi

3 = ∫
Tρi

3(x)dx =∫

|x |>R2
Tρi (x)dx

and Tρi
2 = χR1<|x |≤R2 Tρi . Since {Tρi } is bounded in Lγ (R3), there exists a subse-

quence, still labeled by {Tρi }, and a function ρ̃ ∈ WM such that

Tρi ⇀ ρ̃ weakly in Lγ (R3).

This proves (3.7). By (3.39), we know that Mi
1 in (3.40) satisfies Mi

1 ≥ δ0 for i ≥ i0 by
choosing R1 ≥ R0 where R0 is the constant in (3.39). Therefore, by (3.40) and the fact
that fM < 0 (cf. (3.4)) , we have

− C fMδ0 Mi
3 ≤ C R−1

2 + C ||∇Bρ̃2||2+C ||∇BTρi
2−∇Bρ̃2||2) + F(Tρi )− fM , (3.41)

where ρ̃2 = χ|x |>R2 ρ̃. Given any ε > 0, by the same argument as [31], we can increase
R1 > R0 such that the second term on the right hand side of (3.41) is small, say less
than ε/4. Next choose R2 > 2R1 such that the first term is small. Now that R1 and R2
are fixed, the third term on the right hand side of (3.41) converges to zero by Lemma
3.7(a). Since {Tρi } is a minimizing sequence of F in WM , we can make F(Tρi )− fM
small by taking i large. Therefore, for i sufficiently large, we can make

Mi
3 =:

∫

|x |>R2

Tρi (x)dx < ε. (3.42)

This verifies (3.31) in Lemma 3.7 for f i = Tρi . By weak convergence we have that for
any ε > 0 there exists R > 0 such that

M − ε ≤
∫

BR(0)
ρ̃(x)dx ≤ M,

which implies ρ̃ ∈ L1(R3) with
∫
ρ̃dx = M . Therefore, by Lemma 3.7(b), we have

||∇BTρi − ∇Bρ̃||2 → 0, i → +∞. (3.43)

This proves (3.8). Equation (3.6) in Theorem 3.1 follows from (3.42) by taking R = R2.
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Step 3. Lower Semi-Continuity. Let {ρi } be a minimizing sequence of the energy func-
tional F , and let ρ̃ be a weak limit of {Tρi } in Lγ (R3). We will prove that ρ̃ is a minimizer
of F in WM ; that is

F(ρ̃) ≤ lim inf
i→∞ F(Tρi ). (3.44)

By (3.3), there exist positive constants C and ρ∗ such that

A′(ρ) ≤ Cργ−1, f or ρ ≥ ρ∗, (3.45)

where γ ≥ 4/3 is the constant in (3.3). Since ρ̃ ∈ Lγ and
∫
ρ̃dx = M , we can conclude

A′(ρ̃) ∈ Lγ
′
, where Lγ

′
is the dual space of Lγ , i.e., γ ′ = γ

γ−1 . In view of (2.5) and
(3.3), we have

A′′(ρ) = p′(ρ)/ρ > 0, for ρ > 0, (3.46)

so that

∫

A(Tρi )dx ≥
∫

A(ρ̃)dx +
∫

A′(ρ̃)(Tρi − ρ̃), for i ≥ 1. (3.47)

Since A′(ρ̃) ∈ Lγ
′

and Tρi weakly converges to ρ̃ in Lγ ,

∫

A′(ρ̃)(Tρi − ρ̃) → 0, as i → +∞. (3.48)

Therefore,

∫

A(ρ̃)dx ≤ lim inf
i→∞

∫

A(Tρi )dx . (3.49)

Next, following the proof in [26], we can show that

lim
i→∞ inf

∫
Tρi (x)L(mTρi (r(x))− ρ̃(x)L(mρ̃ (r(x))

r2(x)
dx ≥ 0, (3.50)

by showing that the mass function

mρ̃ (r) =:
∫

√

x2
1 +x2

2≤r
ρ̃(x)dx

is continuous for r ≥ 0, and using (3.6). Then (3.44) follows from (3.43), (3.49) and
(3.50).
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3.2. Stability. In this section, we assume that the pressure function p satisfies

p ∈ C1[0,+∞), lim
ρ→0+

p(ρ)

ρ6/5
= 0, lim

ρ→∞
p(ρ)

ργ
= K , p′(ρ) > 0 for ρ > 0. (3.51)

where 0 < K < +∞ and γ ≥ 4/3 are constants. It should be noticed that (3.51) implies
both (2.15) and (3.3). We consider the Cauchy problem for (1.1) with the initial data

ρ(x, 0) = ρ0(x), v(x, 0) = v0(x). (3.52)

We begin by giving the definition of a weak solution.

Definition 3.1. Let ρv = m. The triple (ρ,m,�)(x, t) (x ∈ R3, t ∈ [0, T ]) (T > 0)
and� given by (1.2), with ρ ≥ 0, p(ρ), m, m⊗m/ρ and ρ∇� being in L1(R3×[0, T ]),
is called a weak solution of the Cauchy problem (1.1) and (3.52) on R3 × [0, T ] if for
any Lipschitz continuous test function ψ with compact support in R3 × [0, T ],

∫ T

0

∫

(ρψt + m · ∇ψ + p(ρ)∇ψ) dxdt +
∫

ρ0(x)ψ(x, 0)dx = 0, (3.53)

and
∫ T

0

∫ (

mψt + (p(ρ)I +
m ⊗ m
ρ

)∇ψ
)

dxdt +
∫

m0(x)ψ(x, 0)dx

=
∫ T

0

∫

ρ∇�ψdxdt, (3.54)

where I is the 3 × 3 unit matrix.
The total energy of system (1.1) at time t is

E(t)= E(ρ(t), v(t))=
∫ (

A(ρ) +
1

2
ρ|v|2

)

(x, t)dx− 1

8π

∫

|∇�|2(x, t)dx, (3.55)

where as before,

A(ρ) = ρ

∫ ρ

0

p(s)

s2 ds. (3.56)

For a solution of (1.1) without shock waves, the total energy is conserved, i.e., E(t) =
E(0) (t ≥ 0)(cf. [35]). For solutions with shock waves, the energy should be
non-increasing in time, so that for all t ≥ 0,

E(t) ≤ E(0), (3.57)

due to the entropy conditions, which is described below.

Definition 3.2. A weak solution (defined above) on R
3×[0, T ] is called an entropy weak

solution of (1.1) if it satisfies the following “entropy inequality”:

∂tη +
3∑

j=1

∂x j q j + ρ
3∑

j=1

ηm j�x j ≤ 0, (3.58)
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in the sense of distributions; i.e.,

∫ T

0

∫

R3

⎛

⎝ηβt + q · ∇β − ρ

3∑

j=1

ηm j�x jβ

⎞

⎠ dxdt +
∫

R3
β(x, 0)η(x, 0)dx ≥ 0, (3.59)

for any nonnegative Lipschitz continuous test functionβ with compact support in [0, T )×
R

3. Here the “entropy” function η and “entropy flux” functions q j and q, are defined
by

⎧
⎪⎪⎨

⎪⎪⎩

η = |m|2
2ρ + ρ

∫ ρ
0

p(s)
s2 ds,

q j = |m|2m j

2ρ2 + m j
∫ ρ

0
p′(s)

s ds,

q = (q1, q2, q3).

(3.60)

Remark 3. The inequality (3.58) is motivated by the second law of thermodynamics
([17]), and plays an important role in shock wave theory ([34]). For smooth solutions,
the inequality in (3.58) can be replaced by equality.

Some properties of entropy weak solutions are given in the following theorem.

Theorem 3.2. If (ρ,m) ∈ L∞([0, T ]; L1(R3)) satisfies the first equation in (1.1) in the
sense of distributions, then

∫

R3
ρ(x, t)dx =

∫

R3
ρ(x, 0)dx =: M, 0 < t < T . (3.61)

Let (ρ,m,�) be a weak solution defined in Definition 3.1. Suppose (ρ,m,�) satisfies
the entropy condition (3.58), ρ ∈ L∞([0, T ]; L1(R3))∩ L∞([0, T ]; Lr (R3)) for some r
satisfying r > 3/2 and r ≥ γ (γ ≥ 4/3 is the constant in 3.51),
m ∈ L∞([0, T ]; Ls(R3)) (s > 3), (η,q) ∈ L∞([0, T ]; L1(R3)), where η and q are
given in (4.3). Moreover, we assume that (ρ,m) has the following additional regularity:

lim
h→0

∫ t

0

∫

R3
|ρ(x, τ + h)− ρ(x, τ )|dxdτ = 0, t ∈ (0, T ), a.e. (3.62)

Then

E(t) ≤ E(0), 0 < t < T, (3.63)

where E(t) is defined in (3.55).

The proof of this theorem is the same as that for Theorem 5.1 in [26], so we omit it.

Remark 4. The local existence of smooth solutions of the Cauchy problem (1.1) and
(3.52) can be found in [29]. The local existence of solutions with shock fronts for the
equations of compressible fluids can be found in [27]. The global existence of solutions
for compressible fluids in three dimensions has been a major open problem. It would be
possible to prove the global existence of entropy weak solutions with symmetry, by using
some ideas for compressible Euler equations as in [20]. In this paper, we consider the
weak solutions of the Cauchy problem satisfying some physically reasonable properties.
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We consider axi-symmetric initial data, which takes the form

ρ0(x) = ρ(r, z),

v0(x) = vr
0(r, z)er + vθ0 (r, z)eθ + v3

0(ρ, z)e3. (3.64)

Here r =
√

x2
1 + x2

2 , z = x3, x = (x1, x2, x3) ∈ R
3 (as before), and

er = (x1/r, x2/r, 0)T, eθ = (−x2/r, x1/r, 0)T, e3 = (0, 0, 1)T. (3.65)

We seek axi-symmetric solutions of the form

ρ(x, t) = ρ(r, z, t),

v(x, t) = vr (r, z, t)er + vθ (r, z, t)eθ + v3(r, z, t)e3, (3.66)

�(x, t) = �(r, z, t) = −Bρ(r, z, t). (3.67)

We call a vector field u(x, t) = (u1, u2, u3)(x) (x ∈ R
3 ) axi-symmetric if it can be

written in the form

u(x) = ur (r, z)er + uθ (r, z)eθ + u3(ρ, z)e3.

For the velocity field v = (v1, v2, v3)(x, t), we define the angular momentum (per unit
mass) j (x, t) about the x3-axis at (x, t) , t ≥ 0, by

j (x, t) = x1v2 − x2v1. (3.68)

For an axi-symmetric velocity field

v(x, t) = vr (r, z, t)er + vθ (r, z, t)eθ + v3(ρ, z, t)e3, (3.69)

v1 = x1

r
vr − x2

r
vθ , v2 = x2

r
vr +

x1

r
vθ , v3 = v3, (3.70)

so that

j (x, t) = rvθ (r, z, t). (3.71)

In view of ( 3.69) and (3.71), we have

|v|2 = |vr |2 +
j2

r2 + |v3|2. (3.72)

Therefore, the total energy at time t can be written as

E(ρ(t), v(t)) =
∫

A(ρ)(x, t)dx +
1

2

∫
ρ j2(x, t)

r2(x)
dx

− 1

8π

∫

|∇Bρ|2(x, t)dx +
1

2

∫

ρ(|vr |2 + |v3|2)(x, t)dx . (3.73)

There is an important conserved quantity for the Euler-Poisson equations (1.1);
namely the angular momentum. In order to describe these, we define Dt , the non-vacuum
region at time t ≥ 0 of the solution by

Dt = {x ∈ R
3 : ρ(x, t) > 0}. (3.74)
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We will make the following assumption of the conservation of angular momentum for
the axi-symmetric solutions of the Cauchy problem (1.1), which is motivated by physical
considerations, cf. [35]).

A1) For any t ≥ 0, there exists a measurable subset Gt ⊂ Dt with meas(Dt−Gt ) = 0
(meas denotes Lebsegue measure) such that, for any x ∈ Gt , the angular momentum
j (x, t) defined in (3.68) only depends on the mass in the cylinder with radius r(x), i.e.,

j (x, t) = jt (mρt (r(x)), (3.75)

where

mρt (r(x) =
∫

√

y2
1 +y2

2≤r(x)
ρ(y, t)dy, y = (y1, y2, y3) ∈ R

3.

Moreover, for t ≥ 0 and x ∈ Gt , there exists a point x0(t) ∈ G0 satisfying

mρt (r(x)) = mρ0(r(x0(t))), (3.76)

and

j (x, t) = jt (mρt (r(x)) = j0(mρ0(r(x0(t))). (3.77)

Remark 5. For axi-symmetric motion, we have formally

Dj

Dt
= 0, (3.78)

where Dj
Dt is the material derivative, i. e., Dj

Dt := ∂ j
∂t + v · ∇ j . This means that the angu-

lar momentum (per unit mass) is transported by the fluids. On the other hand, by the
conservation of mass, the mass enclosed within any material volume cannot change as
we follow the volume in its motion ( [35], p. 47)). Mathematically, this means that, for
any point x0 ∈ G0, along the particle path x = ψ(t) satisfying dψ

dt = v(ψ(t), t) and
ψ(0) = x0,

mρ(t)(r(ψ(t))) = mρ0(r(x0))

and

j (ψ(t), t) = j (x0, 0).

Also, we need a technical assumption; namely,
A2)

lim
r→0+

L(mρ(t)(r) + mρ̃ (r))mσ(t)(r)

r2 = 0, (3.79)

for t ≥ 0, where σ(t) = ρ(t) − ρ̃ and L is the distribution of the square of angular
momentum for the rotating star solution.
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Remark 6. Equation (3.79) can be understood as follows. For any ρ ∈ WM , we have
limr→0+ mρ(r) = 0. Therefore limr→0+ L(mρ(t)(r) + mρ̃ (r)) = L(0) = 0, so if we
define

ρ̂(s, t)− ˆ̃ρ(s) =
∫ +∞

−∞
(ρ(s, z, t)− ρ̃(s, z))dz,

then if

mσ(t)(r)

r2 =
∫ r

0 (2πs(ρ̂(s, t)− ˆ̃ρ(s))ds

r2 ∈ L∞(0, δ) f or some δ > 0, (3.80)

(3.79) will hold. If ρ̂(·, t) − ˆ̃ρ(·) ∈ L∞(0, δ), then (3.80) holds. This can be assured
by assuming that ρ(r, z, t) − ρ̃(r, z) ∈ L∞((0, δ) × R × R

+) and decays fast enough
in the z direction. For example, when ρ(x, t) − ρ̃(x) has compact support in R

3 and
ρ(·, t)− ρ̃(·) ∈ L∞(R3), then (3.79) holds.

We next make some assumptions on the initial data; namely, we assume that the initial
data is such that the initial total mass and angular momentum are the same as those of
the rotating star solution (those two quantities are conserved quantities). Therefore, we
require

I1)
∫

ρ0(x)dx =
∫

ρ̃(x)dx = M. (3.81)

Moreover we assume
I2) For the initial angular momentum j (x, 0) = rvθ0 (r, z) =: j0(r, z) (r =

√

x2
1 + x2

2 ,
z = x3 for x = (x1, x2, x3), we assume j (x, 0) only depends on the total mass in the
cylinder {y ∈ R

3, r(y) ≤ r(x)}, i.e. ,

j (x, 0) = j0
(
mρ0(r(x))

)
. (3.82)

(This implies that we require that vθ0 (r, z) only depends on r .) Finally, we assume that the
initial profile of the angular momentum per unit mass is the same as that of the rotating
star solution, i. e.,

I3)

j2
0 (m) = L(m), 0 ≤ m ≤ M, (3.83)

where L(m) is the profile of the square of the angular momentum of the rotating star
defined in Sect. 2.

In order to state our stability result, we need some notation. Let λ be the constant in
Theorem 2.2, i.e.,

{
A′(ρ̃(x)) +

∫ ∞
r(x) L(mρ̃ (s))s−3ds − Bρ̃(x) = λ, x ∈ 	,

∫ ∞
r(x) L(mρ̃ )(s))s−3ds − Bρ̃(x) ≥ λ, x ∈ R

3 − 	,
(3.84)

with A defined in (3.56) and 	 defined in (2.16).
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For ρ ∈ WM , we define,

d(ρ, ρ̃) =
∫

[A(ρ)− A(ρ̃)] + (ρ − ρ̃){
∫ ∞

r(x)

L(mρ̃ (s))

s3 ds − λ− Bρ̃}dx . (3.85)

For x ∈ 	, in view of the convexity of the function A (cf. (3.46)) and (3.84), we have,

(A(ρ)− A(ρ̃))(x) + (
∫ ∞

r(x)

L(mρ̃ (s))

s3 ds − λ− Bρ̃(x))(ρ − ρ̃)

= (A(ρ)− A(ρ̃)− A′(ρ̃)(ρ − ρ̃))(x) ≥ 0. (3.86)

For x ∈ R
3 − 	, ρ̃(x) = 0, so we have A(ρ̃)(x)) = 0. This is because since A(0) = 0

due to p(0) = 0 (cf. (3.3)) and (2.5). Therefore, by (3.84), we have, for ρ ∈ WM and
x ∈ R

3 − 	,

(A(ρ)− A(ρ̃))(x) + (
∫ ∞

r(x)

L(mρ̃ (s))

s3 ds − λ− Bρ̃(x))(ρ − ρ̃)

= A(ρ) ≥ 0. (3.87)

Thus, for ρ ∈ WM ,

d(ρ, ρ̃) ≥ 0. (3.88)

We also define

d1(ρ, ρ̃) = 1

2

∫
ρ(x)L(mρ(r(x)))− ρ̃(x)L(mρ̃ (r(x))

r2(x)
dx

−
∫ ∫ ∞

r(x)
s−3L(mρ̃ (s))ds(ρ(x)− ρ̃(x))dx, (3.89)

for ρ ∈ WM . We shall show later that d1 ≥ 0. Our main stability result in this paper is
the following global-in- time stability theorem.

Theorem 3.3. Suppose that the pressure function satisfies (3.51), and both (3.4), (3.5)
hold. Let ρ̃ be a minimizer of the functional F in WM , and assume that it is unique
up to a vertical shift. Assume that I1)- I3), [(3.81)–(3.83)] hold. Moreover, assume that
the angular momentum of the rotating star solution ρ̃ satisfies (2.9), (3.1) and (3.2).
Let (ρ, v,�)(x, t) be an entropy weak solution of the Cauchy problem (1.1) and (3.52)
satisfying (3.61) and (3.63) with axi-symmetry. If the angular momentum j satisfies
Assumption A1) and Assumption A2) holds, then for every ε > 0, there exists a number
δ > 0 such that if

d(ρ0, ρ̃) +
1

8π
||∇Bρ0 − ∇Bρ̃||22 + |d1(ρ0, ρ̃)|

+
1

2

∫

ρ0(x)(|vr
0|2 + |v3

0 |2)(x)dx < δ, (3.90)

then for every t > 0, there is a vertical shift a(t)e3 (a(t) ∈ R, e3 = (0, 0, 1)) such that,

d(ρ(t), T a(t)ρ̃) +
1

8π
||∇Bρ(t)− ∇BT a(t)ρ̃||22 + |d1(ρ(t), T a(t)ρ̃)|

+
1

2

∫

ρ(x, t)(|vr (x, t)|2 + |v3(x, t)|2)dx < ε, (3.91)

where T a(t)ρ̃(x) =: ρ̃(x + a(t)e3).
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Remark 7. The above stability results of rotating star solutions apply for axi-symmetric
perturbations. For the stability of non-rotating star solutions, we can consider general
perturbations without axi- symmetry. Also, Assumptions A1)- A2) and I2)-I3) in the
above theorem are used to control the angular momentum, for the stability of non-rotating
stars, those assumptions are not needed. Moreover, the uniqueness assumption for min-
imizers of the energy functional is not needed for non-rotating star solutions since this
uniqueness was proved in [22]. We give a general result of the stability for non-rotating
white dwarf stars in Sect. 5, for which the stability results of non-rotating stars in [32]
do not apply.

Remark 8. The integral terms in (3.90) and (3.91) can be understood as follows; namely
for rotating stars, the velocity has no r or z components, so it is natural that these terms
be small.

Remark 9. Without the uniqueness assumption for the minimizer of F in WM , we can
have the following type of stability result, as observed in [32] for the non-rotating star
solutions. Suppose the assumptions in Theorem 3.3 hold. Let SM be the set of all min-
imizers of F in WM and (ρ, v,�)(x, t) be an axi-symmetric weak entropy solution of
the Cauchy problem (1.1) and (3.52) satisfying (3.61) and (3.63). Then for every ε > 0,
there exists a number δ > 0 such that if

inf
ρ̃∈SM

[

d(ρ0, ρ̃) +
1

8π
||∇Bρ0 − ∇Bρ̃||22 + |d1(ρ0, ρ̃)|

]

+
1

2

∫

ρ0(x)(|vr
0|2 + |v3

0 |2)(x)dx < δ, (3.92)

then for every t > 0, there is a vertical shift a(t)e3 (a ∈ R, e3 = (0, 0, 1)) such that

inf
ρ̃∈SM

[

d(ρ(t), T a(t)ρ̃) +
1

8π
||∇Bρ(t)− ∇BT a(t)ρ̃||22 + |d1(ρ(t), T a(t)ρ̃)|

]

+
1

2

∫

ρ(x, t)(|vr (x, t)|2 + |v3(x, t)|2)(x)dx < ε, (3.93)

where T a(t)ρ̃(x) =: ρ̃(x + a(t)e3). In the case of non-rotating stars, i.e. L = 0, the
uniqueness of minimizers of the energy functional was proved by Lieb and Yau in [22].
There has been no uniqueness results for the case of rotating stars. It might be expected
that this problem can be solved by using some ideas in [22].

The proof of Theorem 3.3 follows from several lemmas. The proofs of these lemmas
are similar to those in [26], and therefore we only sketch them. First we have

Lemma 3.8. Suppose the angular momentum of the rotating star solutions satisfies (2.9),
(3.1) and (3.2). For any ρ(x) ∈ WM , if

lim
r→0+

L(mρ(r) + mρ̃ (r))mσ (r)r
−2 = 0, (3.94)

where σ = ρ − ρ̃, then

d1(ρ, ρ̃) ≥ 0, (3.95)

where d1 is defined by (3.89).
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Proof. For an axi-symmetric function f (x) = f (r, z) (r =
√

x2
1 + x2

2 , z = x3 for
x = (x1, x2, x3)), we let

f̂ (r) = 2πr
∫ +∞

−∞
f (r, z)dz, (3.96)

m f (r) =
∫

{x :
√

x2
1 +x2

2≤r}
f (x)dx =

∫ r

0
f̂ (s)ds, (3.97)

so that

m′
f (r) = f̂ (r). (3.98)

In order to show (3.95), we let

σ(x) = (ρ − ρ̃)(x), (3.99)

and for 0 ≤ α ≤ 1, we define

Q(α) = 1

2

∫
(ρ̃ + ασ)(x)L(mρ̃+ασ (r(x)))− ρ̃(x)L(mρ̃ (r(x)))

r2(x)
dx

−α
∫ ∫ ∞

r(x)
s−3L(mρ̃ (s))dsσ(x)dx . (3.100)

Then

Q(0) = 0, Q(1) = d1(ρ, ρ̃). (3.101)

By the assumption that L ′(m) ≥ 0 for 0 ≤ m ≤ M (cf. (3.2)) and (3.94), we can show
that

Q′(α) =
∫ +∞

0
σ̂ (r)

∫ ∞

r
s−3(L(mρ̃+ασ (s))− L(mρ̃ (s)))dsdr, (3.102)

and therefore

Q(0) = Q′(0) = 0. (3.103)

This is done by interchanging the order of integration and integrating by parts (details
can be found in [26]). Differentiating (3.103) again and interchanging the order of inte-
gration, we get

d2 Q(α)

dα2 = α

∫ +∞

0
s−3L ′(mρ̃+ασ (s))(mσ (s))

2ds. (3.104)

Therefore, if L ′(m) ≥ 0 for 0 ≤ m ≤ M , then

d2 Q(α)

dα2 ≥ 0, f or 0 ≤ α ≤ 1. (3.105)

This, together with (3.103) and (3.101), yields d1(ρ, ρ̃) = Q(1) ≥ 0. 
�
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Lemma 3.9. Let (ρ, v) be a solution of the Cauchy problem (1.1) and (3.52) as stated
in Theorem 3.3, then

E(ρ, v)(t)− F(ρ̃)

= d(ρ(t), ρ̃) + d1(ρ(t), ρ̃)− 1

8π
||∇Bρ(·, t)− ∇Bρ̃||22

+
1

2

∫

ρ(|vr |2 + |v3|2)(x, t)dx . (3.106)

Proof. From (3.75) and (3.77) in A1), we have, for x ∈ Gt = {x |ρ(x, t) > 0},
j2(x, t) = ( jt (mρt (r(x)))

2 = ( j0(mρ0(r(x0(t))))
2 = L(mρ0(r(x0(t))

= L(mρt (r(x))). (3.107)

Therefore, by (3.73), we have

E(ρ(t), v(t)) =
∫

A(ρ)(x, t)dx +
1

2

∫
ρ(x, t)L(mρ(t)(r(x))

r2(x)
dx

− 1

8π

∫

|∇Bρ|2(x, t)dx +
1

2

∫

ρ(|vr |2 + |v3|2)(x, t)dx .

(3.108)

Equation (3.106) follows from (3.108) and the following identities:

(||∇Bρ(·, t)||22 − ||∇Bρ̃||22)
= ||∇(Bρ(·, t))− ∇Bρ̃)||22 + 2

∫

∇Bρ̃(x) · (∇Bρ(x, t)− ∇Bρ̃(x))dx

= ||∇(Bρ(·, t))− ∇Bρ̃)||22 − 8π
∫

Bρ̃(x)(ρ(x, t)− ρ̃(x))dx,

and
∫

ρ(x, t)dx =
∫

ρ̃(x)dx = M.


�
Having established these lemmas, the proof of Theorem 3.3 is similar to the proof of
Theorem 3.1 in [26]. We sketch it as follows.
Proof of Theorem 3.3 . Assume the theorem is false. Then there exist ε0 > 0, tn > 0 and
initial data ρn(x, 0) ∈ WM and vn(x, 0) such that for all n ∈ N,

d(ρn(0), ρ̃) + d1(ρ0, ρ̃) +
1

8π
||∇Bρn(0)− ∇Bρ̃||22

+
1

2

∫

ρn(x, 0)(|vr
n(x, 0)|2 + |v3

n(x, 0)|2)(x)dx <
1

n
, (3.109)

but for any a(tn) ∈ R,

d(ρn(tn), T a(tn)ρ̃) + d1(ρn(tn), T a(tn)ρ̃) +
1

8π
||∇Bρn(tn)− ∇BT a(tn)ρ̃||22

+
1

2

∫

ρn(x, tn)(|vr
n(x, tn)|2 + |v3

n(x, tn)|2)(x)dx ≥ ε0. (3.110)
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By (3.106) and (3.109), we have

lim
n→∞ E(ρn(0), vn(0)) = F(ρ̃). (3.111)

Since E(ρn(t), vn(t)) is non-increasing in time,

lim
n→∞ sup F(ρn(tn))≤ lim

n→∞ E(ρn(tn), vn(tn))≤ lim
n→∞ E(ρn(0), vn(0)) = F(ρ̃). (3.112)

Therefore {ρn(·, tn)} ⊂ WM is a minimizing sequence for the functional F . We then
can apply Theorem 3.1 to conclude that there exists a sequence {an} ⊂ R such that up
to a subsequence,

||∇(Bρn(tn)− BT an ρ̃)||2 → 0, (3.113)

as n → ∞; this is where we use the assumption that the minimizer is unique up to a
vertical shift. By (3.106), the fact that the energy is non-increasing in time, and
F(T aρ) = F(ρ), we have for any ρ ∈ WM and a ∈ R,

E(ρn(tn), vn(tn))− F(T an ρ̃)

= d(ρn(tn), T an ρ̃) + d1(ρ(tn), T an ρ̃)

− 1

8π
||∇(Bρn(tn)− BT an ρ̃)||22

+
1

2

∫

ρn(|vr
n|2 + |v3

n |2)(x, tn)dx

≤ E(ρn(0), vn(0))− F(T an ρ̃)

= E(ρn(0), vn(0))− F(ρ̃) → 0, (3.114)

as n → ∞. Since

||∇Bρn(tn)− ∇BT an ρ̃||2 → 0,

as n → ∞, d(ρn(tn), ρ̃) ≥ 0,

d(ρn(tn), T an ρ̃) + d1(ρ(tn), T an ρ̃)

+
1

8π
||∇(Bρn(tn)− T an Bρ̃)||22

+
1

2

∫

ρn(|vr
n|2 + |v3

n |2)(x, tn)dx → 0, (3.115)

as n → ∞. This contradicts (3.110), and completes the proof.

4. Applications to White Dwarf and Supermassive Stars

In this section, we want to verify the assumptions (3.4) and (3.5) in Theorem 3.2 for
both white dwarfs and supermassive stars. Once we verify (3.4) and (3.5), we can apply
Theorems 3.1 and 3.3. We begin with the following theorem which verifies (3.5) for
white dwarfs, supermassive stars, and polytropes with γ > 4/3, in both the rotating and
non-rotating cases.
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Theorem 4.1. Assume that the pressure function p satisfies (3.3). Then there exists a
constant Mc satisfying 0 < Mc < ∞ if γ = 4/3 and Mc = ∞ if γ > 4/3, such that if
M < Mc, then (3.5) holds for ρ ∈ WM .

Proof. Using (3.13), we have, for ρ ∈ WM ,

F(ρ) =
∫

[A(ρ) +
1

2

ρ(x)L(mρ(r(x)))

r(x)2
− 1

2
ρBρ]dx

≥
∫

[A(ρ) +
1

2

ρ(x)L(mρ(r(x)))

r(x)2
]dx − C

∫

ρ4/3dx

(∫

ρ dx

)2/3

=
∫

[A(ρ) +
1

2

ρ(x)L(mρ(r(x)))

r(x)2
]dx − C M2/3

∫

ρ4/3dx . (4.1)

Taking p = 1, q = 4/3, r = γ , and a = 3
4 γ−1
γ−1 (where γ ≥ 4/3 is the constant in (3.3))

in Young’s inequality (3.11), we obtain,

||ρ||4/3 ≤ ||ρ||a1||ρ||1−a
γ = Ma ||ρ||1−a

γ . (4.2)

This, together with (3.16)–(3.18) yields

∫

ρ4/3dx ≤ M
4
3 a(

∫

ργ dx)b ≤ M
4
3 a

(

(ρ∗)γ−1 M + α
∫

A(ρ)dx

)b

≤ C

(

M
4
3 a+b(ρ∗)1/3 + αM

4
3 a(

∫

A(ρ)dx)b
)

, (4.3)

where b = 1
3(γ−1) , α and ρ∗ are the constants in (3.17) and we have used the elementary

inequality (x + y)b ≤ C(xb + yb), for x, y > 0, 0 < b < 1, for some constant C .
Therefore, (4.1) and (4.3) imply

∫

[A(ρ) +
1

2

ρ(x)L(mρ(r(x)))

r(x)2
]dx ≤ F(ρ) + CαM

4
3 a+ 2

3 (

∫

A(ρ)dx)b

+C M
4
3 a+b+ 2

3 (ρ∗)1/3. (4.4)

If γ > 4/3, then 0 < b < 1, if γ = 4/3, then b = 1. Therefore (4.4) implies (3.5). 
�
The next result shows that (3.4) holds for a wide class of (rotating or non-rotating) stars,
including White Dwarfs.

Theorem 4.2. Suppose that the pressure function p satisfies (3.3) and

lim
ρ→0+

p(ρ)

ργ1
= β, (4.5)

for some constants γ1 > 4/3 and 0 < β < +∞, and assume that the angular momen-
tum (per unit mass) satisfies (2.9). Then there exists Mc satisfying 0 < Mc < +∞ if
γ = 4/3 and Mc = +∞ if γ > 4/3 such that if M < Mc, then (3.4) holds, where γ is
the constant in (3.3).

Remark 10. White dwarfs satisfy (3.3) and (4.5) with γ = 4/3 and γ1 = 5/3.
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Proof of Theorem 4.2. Due to (3.3) and (4.5), we can apply Theorem 2.1. Let ρ̂(x) ∈
WM,S be a minimizer of F(ρ) in WM,S as described in Theorem 2.1, and let

G = {x ∈ R
3 : ρ̂(x) > 0}.

Then Ḡ is a compact set in R
3, and ρ̂ ∈ C1(G). Furthermore, there exists a constant

µ < 0 such that
{

A′(ρ̂(x)) +
∫ ∞

r(x) L(mρ̂ (s)s
−3ds − Bρ̂(x) = µ, x ∈ G,

∫ ∞
r(x) L(mρ̂ (s)s

−3ds − Bρ̂(x) ≥ µ, x ∈ R
3 − G.

(4.6)

It follows from [1] that there exists ρ̂ ∈ WM,S ⊂ WM such that F(ρ̂) = infρ∈WM,S F(ρ).

It is easy to verify that the triple (ρ̂, v̂, �̂) is a time-independent solution of the Euler-
Poisson equations (1.1) in the region G = {x ∈ R

3: ρ̂(x) > 0}, where

v̂ = (− x2 J (mρ̂ (r))
r ,

x1 J (mρ̂ (r))
r , 0) and �̂ = −Bρ̂. Therefore

∇x p(ρ̂) = ρ̂∇x (Bρ̂) + ρ̂L(mρ̂ )r(x)
−3er , x ∈ G, (4.7)

where er = ( x1
r(x) ,

x2
r(x) , 0). Moreover, it is proved in [3] that the boundary ∂G of G

is smooth enough to apply the Gauss-Green formula on G. Applying the Gauss-Green
formula on G and noting that ρ̂|∂G = 0, we obtain,

∫

G
x · ∇x p(ρ̂)dx = −3

∫

G
p(ρ̂)dx = −3

∫

p(ρ̂)dx . (4.8)

As in [26], we have
∫

G
x · ρ̂∇x Bρ̂dx = −1

2

∫

G
ρ̂Bρ̂dx = −1

2

∫

ρ̂Bρ̂dx . (4.9)

Next, since x · er = r(x), we have
∫

G
x · ρ̂(x)L(mρ̂ (r(x))r

−3(x)er dx

=
∫

G
ρ̂(x)L(mρ̂ (r(x))r

−2(x)dx

=
∫

ρ̂(x)L(mρ̂ (r(x))r
−2(x)dx . (4.10)

Therefore, from (4.8)–(4.10) we have

− 3
∫

p(ρ̂)dx = −1

2

∫

ρ̂Bρ̂dx +
∫

ρ̂(x)L(mρ̂ (r(x))r
−2(x)dx . (4.11)

Let ρ̄(x) = b3ρ̂(bx), for b > 0; then ρ̄ ∈ WM . Also, it is easy to verify that the following
identities hold,

∫

ρ̄Bρ̄dx =
∫

R3

∫

R3

ρ̄(x)ρ̄(y)

|x − y| dxdy,

= b
∫ ∫

R3

∫

R3

ρ̂(x)ρ̂(y)

|x − y| dxdy = b
∫

ρ̂Bρ̂dx (4.12)
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∫

A(ρ̄)dx = b−3
∫

A(b3ρ̂(x))dx . (4.13)

Moreover, for r ≥ 0,

mρ̄ (r) = 2π
∫ r

0
s
∫ ∞

−∞
ρ̄(s, z)dsdz

= 2π
∫ r

0
s
∫ ∞

−∞
ρ̂(bs, bz)dsdz

= 2π
∫ br

0
s′

∫ ∞

−∞
ρ(s′, z′)ds′dz′

= mρ(br). (4.14)

Therefore,

∫
ρ̄(x)L(mρ̄ (r(x)))

r(x)2
dx =

∫
b3ρ̂(x)L(mρ̂ (br(x)))

r(x)2
dx

= b2
∫
ρ̂(x)L(mρ̂ (r(x)))

r(x)2
dx . (4.15)

It follows from (4.12)–(4.15) that

F(ρ̄) = b−3
∫

A(b3ρ̂)dx − 1

2
b

∫

ρ̂Bρ̂dx

+
b2

2

∫
ρ̂(x)L(mρ̂ (r(x)))

r(x)2
dx . (4.16)

Hence, (4.11) and (4.16) give

F(ρ̄) =
∫ (

b−3 A(b3ρ̂)− 3bp(ρ̂(x))
)

dx

+

(
b2

2
− b

) ∫
ρ̂(x)L(mρ̂ (r(x)))

r(x)2
dx . (4.17)

In view of (2.9), we have

(
b2

2
− b

) ∫
ρ̂(x)L(mρ̂ (r(x)))

r(x)2
dx ≤ 0, (4.18)

if b > 0 is small. It follows from (3.9) that

1

2
βργ1 ≤ p(ρ) ≤ 2βργ1 , for small ρ. (4.19)

Thus, when b is small, since ρ̂ is bounded, we have

β

2(γ1 − 1)
b3γ1(ρ̂)γ1(x) ≤ A(b3ρ̂(x)) ≤ 2β

γ1 − 1
b3γ1(ρ̂)γ1(x), (4.20)
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for x ∈ R
3. Hence, (4.18) and (4.19) imply

∫ (
b−3 A(b3ρ̂)− 3bp(ρ̂(x))

)
dx

≤ β

∫ (
2

γ1 − 1
b3γ1−3 − 3

2

)

(ρ̂)γ1 dx . (4.21)

Since γ1 > 4/3, we have 3γ1 − 3 > 1. Therefore, we conclude that
∫ (

b−3 A(b3ρ̂)− 3bp(ρ̂(x))
)

dx < 0, (4.22)

for small b. Equation (3.4) follows from (4.17), (4.18) and (4.22). This completes the
proof of Theorem 4.2. 
�

We show next that if the angular momentum distribution is everywhere positive, we
may apply the existence theorem of Friedman and Tarkington, [10], to conclude that
(3.4) holds with no total mass restriction. This result applies also to White Dwarfs.

Theorem 4.3. Suppose that the pressure function p satisfies (3.3) with γ = 4/3 and
(3.9) holds. Assume that the angular momentum (per unit mass) J (m) = √

L(m) satis-
fies (2.14), then (3.4) holds for any 0 < M < +∞.

Proof. By the existence theorem in [10], if (2.14) is satisfied, then for any 0 < M < +∞,
there exists ρ̃ ∈ WM,S such that F(ρ̃) = infρ∈WM,S F(ρ). Also, all the properties of
ρ̃ in Theorem 2.1 are satisfied. Moreover, the regularity of the boundary ∂G is smooth
enough to apply the Gauss-Green formula (cf. [3]). The proof now follows exactly as in
Theorem 4.2. 
�

We finally turn to the case of rotating supermassive stars.

Theorem 4.4. Consider a supermassive star; i.e.,

p(ρ) = kρ4/3, k > 0 is a constant. (4.23)

If there exists ρ̂ ∈ WM such that ρ̂ ∈ C1(G)∩C(R3) and (ρ̂, v̂ is a steady state solution

of the Euler-Poisson equation , where v̂ = (− x2
√

L(mρ̂ (r))
r ,

x1
√

L(mρ̂ (r))
r , 0), in an open

bounded set G ⊂ R
3 with the Lipschitz boundary ∂G, i.e.,

{
∇x p(ρ̂) = ρ̂∇x (Bρ̂) + ρ̂L(mρ̂ )r(x)

−3er , x ∈ G,
ρ̂ = 0, x ∈ R

3 − G.
(4.24)

then (3.4) holds provided L satisfies (2.9) and

L(m0) > 0, for some m0 ∈ (0,M). (4.25)

Remark 11. The existence of ρ̂ described above is unknown. The significance of this
theorem is that if there exists such a ρ̂ , which solves the Euler-Poisson equation, together

with the induced velocity field v̂ = (− x2
√

L(mρ̂ (r))
r ,

x1
√

L(mρ̂ (r))
r , 0), then we can apply

the stability theorem, Theorem 3.3.
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Proof. Following along the same lines as (4.7)–(4.10), we obtain the same equality as
(4.11). Therefore,

F(ρ̂) = −1

2

∫

ρ̂(x)L(mρ̂ (r(x))r
−2(x)dx, (4.26)

in view of (4.23) and (4.11). Since ρ̂ ∈ C1(G) ∩ C(R3) and ρ̂ = 0 for x ∈ R
3 − G, it

is easy to show that mρ̂ (r) is continuous in r . Moreover, mρ̂ (0) = 0 and mρ̂ (R) = M ,
where R = maxx∈Ḡ(r(x). Therefore, there exists r0 ∈ (0,M) such that

mρ̂ (r0) = m0, (4.27)

where m0 is the constant in (4.25). Thus,

L(mρ̂ (r0)) > 0, (4.28)

in view of (4.25). Since mρ̂ (r) is continuous in r and L(m) is continuous in m, we
conclude that

∫

ρ̂(x)L(mρ̂ (r(x))r
−2(x)dx > 0. (4.29)

The inequality (3.4) now follows from (4.26)). 
�
The preceding theorems, together with Theorem 3.3 show that polytropes (p(ρ) =

kργ ) with γ > 4/3 and White Dwarf stars, in both the rotating and non-rotating cases,
as well as rotating supermassive stars are dynamically stable. Moreover, if the angular
momentum distribution is not everywhere positive and the pressure p behaves asymptot-
ically near infinity like ρ4/3, then dynamic stability holds only under a (Chandrasekhar)
mass restriction, M ≤ Mc.

5. Nonlinear Dynamical Stability of Non-Rotating White Dwarf Stars
With General Perturbations

The dynamical stability results in Sect. 3 apply for axi-symmetric perturbations. Also,
for the stability of rotating stars, Assumptions A1), A2) and I2), I3) are made in Theorem
3.3 to control the angular momentum. Moreover, the uniqueness of minimizers of the
energy functional for rotating stars is not known. However, uniqueness for non-rotat-
ing stars was proved by Lieb and Yau in [22]. In this section, we prove a very general
nonlinear dynamical stability for non-rotating white dwarf stars without Assumptions
A1), A2) and I2), I3), and for general perturbations. For white dwarf stars, as mentioned
before, the pressure function satisfies

p ∈ C1[0,+∞), lim
ρ→0+

p(ρ)

ργ1
= β, lim

ρ→∞
p(ρ)

ργ
= K , p′(ρ) > 0 for ρ > 0, (5.1)

where γ1 > 4/3, 0 < β < +∞ and 0 < K < +∞ are constants. In this section, we
always assume that the pressure function satisfies (5.1). First, we define for 0 < M <

+∞,

X M = {ρ : R
3 → R, ρ ≥ 0, a.e.,

∫

ρ(x)dx = M,
∫

[A(ρ(x)) +
1

2
ρ(x)Bρ(x)]dx < +∞}, (5.2)
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where A(ρ) is the function given in (2.5). For ρ ∈ X M , we define the energy functional
G for non-rotating stars by

G(ρ) =
∫

[A(ρ(x))− 1

2
ρ(x)Bρ(x)]dx . (5.3)

We begin with the following theorem.

Theorem 5.1. Suppose that the pressure function p satisfies (5.1). Let ρ̃N be a minimizer
of the energy functional G in X M and let

	N = {x ∈ R
3 : ρ̃N (x) > 0}, (5.4)

then there exists a constant λN such that
{

A′(ρ̃N (x))− Bρ̃N (x) = λN , x ∈ 	N ,

−Bρ̃N (x) ≥ λN , x ∈ R
3 − 	N .

(5.5)

The proof of this theorem is well-known, cf. [32] or [1].

Remark 12. 1) We call the minimizer ρ̃N of the functional G in X M a non-rotating star
solution.

2) It follows from [22] that the minimizer ρ̃N of the functional G in X M is actually
radial, and has a compact support.

Similar to Theorem 3.1, we have the following compactness theorem.

Theorem 5.2. Suppose that the pressure function p satisfies (5.1). There exists a constant
Mc (0 < Mc < ∞) such that if M < Mc, then the following hold:

(1)

inf
ρ∈X M

G(ρ) < 0, (5.6)

(2) for ρ ∈ X M ,
∫

A(ρ)(x)dx ≤ C1G(ρ) + C2, (5.7)

for some positive constants C1 and C2,
(3) if {ρi } ⊂ X M is a minimizing sequence for the functional G, then there exist a

sequence of translations {xi } ⊂ R
3, a subsequence of {ρi }, (still labeled {ρi }), and

a function ρ̃N ∈ X M , such that for any ε > 0 there exists R > 0 with
∫

|x |≥R
Tρi (x)dx ≤ ε, i ∈ N, (5.8)

and

Tρi (x) ⇀ ρ̃N , weakly in L4/3(R3), as i → ∞, (5.9)

where Tρi (x) := ρi (x + xi ).
Moreover
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(4)

∇B(Tρi ) → ∇B(ρ̃N ) strongly in L2(R3), as i → ∞, (5.10)

and
(5) ρ̃N is a minimizer of G in X M .
(6) The minimizers of G in X M are unique up to a translation ρN (x) → ρN (x + y).

Proof. First, the proofs of (1) and (2) are the same as Theorems 4.1 and 4.2 by taking
L = 0 (it is easy to check the axial symmetry is not used in the proof of Theorems 4.1
and 4.2 if L = 0). Lemmas 3.4, 3.5 and 3.7 still hold by taking γ = 4/3 and L = 0, and
replacing WM by X M , F by G and fM by infρ∈X M G(ρ). Also, it is easy to check that
(3.25)–(3.29) in the proof of Lemma 3.6 still hold by replacing fM by infρ∈X M G(ρ).
Therefore, following the proof of Lemma 3.6, we conclude:
If {ρi } ⊂ X M is a minimizing sequence for G, then there exists constant δ0 > 0, i0 ∈ N
and xi ∈ R

3, such that
∫

B1(xi )

ρi (x)dx ≥ δ0, i ≥ i0.

Therefore, if we let

Tρi (x) := ρi (x + xi ), (5.11)

then
∫

B1(0)
Tρi (x)dx ≥ δ0, i ≥ i0.

This is similar to (3.39). Having established this inequality and the other analogues of
Lemmas 3.4, 3.5 and 3.7, we can prove this theorem in a similar manner as the proof of
Theorem 3.1. The uniqueness of minimizers is proved in [22]. 
�

For the stability, we consider the Cauchy problem (1.1) with the initial data (3.53).
We do not assume that the initial data have any symmetry.

Let ρ̃N be the minimizer of G on X M and λN be the constant in (5.5). For ρ ∈ X M ,
we define

d(ρ, ρ̃N ) =
∫

{[A(ρ)− A(ρ̃N )] − (ρ − ρ̃N )(λN + Bρ̃N }dx,

=
∫

{[A(ρ)− A(ρ̃N )] − Bρ̃N (ρ − ρ̃N )}dx, (5.12)

where we have used the identity
∫

ρdx =
∫

ρ̃N dx = M,

for ρ ∈ X M . By a similar argument as (3.86)–(3.88), we have

d(ρ, ρ̃N ) ≥ 0, (5.13)

for any ρ ∈ X M , in view of (4.6). Our nonlinear stability theorem of non-rotating white
dwarf star solutions is the following theorem, which extends the results in [32].
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Theorem 5.3. Suppose that the pressure function satisfies (5.1). Let ρ̃N be the minimizer
of the functional G in X M . Let (ρ, v,�)(x, t) be an entropy weak solution of the Cauchy
problem (1.1) and (3.52) stated in Theorem 3.2 satisfying (3.61) and (3.63). If the initial
data satisfies

∫

ρ0(x) =
∫

ρN (x)dx = M,

then there exists a constant Mc (0 < Mc < ∞) such that if M < Mc, then for every
ε > 0, there exists a number δ > 0 such that if

d(ρ0, ρ̃N ) +
1

8π
||∇Bρ0 − ∇Bρ̃N ||22 +

1

2

∫

ρ0(x)(|v0|2)(x)dx < δ, (5.14)

then for every t > 0, there is a translation y(t) ∈ R
3 such that,

d(ρ(t), T y(t)ρ̃N )+
1

8π
||∇Bρ(t)−∇BT y(t)ρ̃N ||22+

1

2

∫

ρ(x, t)|v(x, t)|2)dx<ε, (5.15)

where T y(t)ρ̃N (x) =: ρ̃N (x + y(t)).

The proof of this theorem follows from the compactness result (Theorem 5.2), and
the arguments as in the proof of Theorem 3.3 and in [32], and is thus omitted.
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