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Abstract: In this paper we prove that, for a C2 (non-invertible but non-degenerate) map
on a compact manifold, an invariant measure satisfies an equality relating entropy, fold-
ing entropy and negative Lyapunov exponents if and, under a condition on the Jacobian
of the map, only if the measure has absolutely continuous conditional measures on the
stable manifolds.

1. Introduction

Let M be a connected compact Riemannian manifold without boundary, f : M → M
a C2 non-invertible map and µ an f -invariant measure. The entropy production eµ( f )
of the dynamical system ( f, µ) is defined by Ruelle [10] as

eµ( f ) := Fµ( f )−
∫

log | det Tx f | dµ,

where Fµ( f ) := Hµ(ε | f −1ε) with ε being the partition of M into single points and
it is called the folding entropy of ( f, µ). Let hµ( f ) be the (measure-theoretic) entropy
of ( f, µ) and, for µ-a.e. x , let −∞ ≤ λ1(x) < λ2(x) < · · · < λr(x)(x) < +∞ be the
Lyapunov exponents of f at x with mi (x) denoting the multiplicity of λi (x). Under a set
of conditions on degenerate points of the map, Liu [3] proved the following inequality
conjectured by Ruelle [10]:

hµ( f ) ≤ Fµ( f )−
∫ ∑

i

λi (x)
−mi (x) dµ (1.1)
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(where a− := min{a, 0}). When µ satisfies the Pesin entropy formula

hµ( f ) =
∫ ∑

i

λi (x)
+mi (x) dµ (1.2)

with a+ := max{a, 0} (such a measure µ is sometimes called an SRB measure), one
obtains the non-negativity of the entropy production since

eµ( f ) = Fµ( f )−
∫

log | det Tx f | dµ

= Fµ( f )−
∫ ∑

i

λi (x)
−mi (x) dµ− hµ( f )

+ hµ( f )−
∫ ∑

i

λi (x)
+mi (x) dµ

≥ 0.

In this article, we further investigate the question when eµ( f ) = 0 or eµ( f ) > 0. We
show that, when f has no degenerate points, the formula

hµ( f ) = Fµ( f )−
∫ ∑

i

λi (x)
−mi (x) dµ (1.3)

holds if and, under a somewhat restrictive condition on the Jacobian of ( f, µ), only if µ
has absolutely continuous conditional measures on the stable manifolds of ( f, µ).

This paper is organized in the following way. Section 2 is devoted to the definitions
and statement of the results. The rest of the sections are devoted to the proofs.

2. Definitions and Statement of the Results

Let f : M → M be a C2 non-invertible map such that Tx f is non-degenerate at every
x ∈ M (i.e. det Tx f �= 0 at every x ∈ M), and let µ be an invariant measure of f .
Choose a Borel set � such that µ(�) = 1, f� ⊂ � and every point x ∈ � is regular
in the sense of Oseledec, that is, there exist a sequence of subspaces of Tx M ,

{0} = V0(x) ⊂ V1(x) ⊂ · · · ⊂ Vr(x)(x) = Tx M,

such that

lim
n→+∞

1

n
log |Tx f nv| = λi (x)

for all v ∈ Vi (x)\Vi−1(x), 1 ≤ i ≤ r(x).
Set I = {x ∈ � : λi (x) ≥ 0 for all 1 ≤ i ≤ r(x)} and � = �\ I . For x ∈ I , define

W s(x) = {x}. For x ∈ �, define

W s(x) = {y ∈ M : lim sup
n→+∞

1

n
log d( f n y, f n x) < 0}

(log 0 := −∞) and call it the stable manifold of f at x . The arguments in Liu and Qian
[5, Sects. III.1-III.3] restricted to a deterministic map show that, for µ-a.e. x ∈ �, there
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exist a sequence of C1,1 embedded k-dimensional discs {W ( f n x)}+∞n=0 (k = dim Es(x)
and Es(x) =⋃

λi (x)<0 Vi (x)) such that f W ( f n x) ⊂ W ( f n+1x) for all n ≥ 0 and

W s(x) =
+∞⋃
n=0

f −nW ( f n x).

Let V s(x) denote the arc connected component of W s(x) which contains x . It is a C1,1

immersed submanifold of M .
Let Bµ(M) denote the completion of the Borel σ -algebra of M with respect to µ so

that (M,Bµ(M), µ) constitutes a Lebesgue space.

Definition 2.1. A measurable partition ξ of (M,Bµ(M), µ) is said to be subordinate
to the W s-manifolds of ( f, µ) if for µ-a.e. x one has ξ(x) ⊂ W s(x) (ξ(x) denotes the
element of ξ which contains x) and ξ(x) contains an open neighborhood of x in V s(x)
(with respect to the submanifold topology of V s(x)).

Definition 2.2. µ is said to have absolutely continuous conditional measures (abbrevi-
ated as accm) on the stable manifolds if for every measurable partition ξ subordinate
to the W s-manifolds of ( f, µ) one has for µ-a.e. x,

µξx 	 λs
x

where µξx is the conditional measure of µ on ξ(x) and λs
x denotes the Lebesgue mea-

sure on W s(x) induced by its inherited Riemannian structure as a submanifold of M
(λs

x := δx if W s(x) = {x}).
Theorem 2.3 (Sufficiency). Let ( f, µ) be as given at the beginning of Sect. 2. If µ has
accm on the stable manifolds, then the equality (1.3) holds true.

Remark 2.4. If f has no negative Lyapunov exponents at µ-a.e. x , one has

hµ( f ) = Fµ( f ).

This follows directly from the inequality (1.1) and the fact that hµ( f ) ≥ Hµ(ε| f −1ε) =
Fµ( f ).

In order to prove that µ having accm on W s-manifolds is necessary for the equality
(1.3), we make further assumptions. Recall now the notion of Jacobian of measure-
preserving transformations (Parry [7]). Let T : (X,A, ν) → (Y,B, ρ) be a measure-
preserving transformation between two probability spaces. Assume that there is a
countable partition of X (ν-mod 0) into measurable sets α = {Ai } such that for each Ai
the map Ti := T |Ai : Ai → Y is absolutely continuous (with respect to ν and ρ), i.e.,

(i) Ti is injective;
(ii) Ti A is measurable if A is a measurable subset of Ai ;

(iii) ρ(Ti A) = 0 if A ⊂ Ai is measurable and ν(A) = 0.

(i) and (ii) allow us to define a measure νTi on each Ai by νTi (A) := ρ(Ti A) for
measurable A ⊂ Ai . By (iii), νTi 	 ν. Define

JT (x) = dνTi

dν
(x) if x ∈ Ai .
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Clearly the definition of JT is ν-mod 0 independent of the choice of the partition α. JT
is called the Jacobian of T . It is clear that

JT (x) ≥ 1, ν − a.e. x . (2.1)

When (X,A, ν) and (Y,B, ρ) are both Lebesgue spaces and ε is the partition of Y into
single points, Parry [7, Lemma 10.5] gives a very useful property of the Jacobian

− log νT−1ε
x ({x}) = log JT (x), ν − a.e. x . (2.2)

For a C1 measure-preserving map g : (M,B(M), ν) ←↩ with ν(�) = 0, where
� = {x ∈ M : det Tx g = 0}, it is always possible to define the Jacobian of g on a
measurable set of full ν-measure. In fact, since Tx g is non-degenerate for any x ∈ M\�,
a countable Borel partition α = {Ai } of M\� satisfying (i)–(ii) above clearly exists. Let

 = {x ∈ M\� : νg−1ε
x ({x}) > 0}.

Clearly ν() = 1 and it is easy to check that g|Ai∩ : Ai ∩  → M and ν satisfy (iii)
for each Ai and hence Jg is well defined on . Moreover, if ν(� ∪ g�) = 0, then, since
g preserves ν, one has for ν-a.e. y ∈ M ,

∑
z:gz=y

1

Jg(z)
= 1. (2.3)

We now make an assumption on the Jacobian of f : (M, µ)←↩ which seems rather
restrictive.

(H) There is a Hölder continuous function J f : M → [1,+∞) such that

µ( f B) =
∫

B
J f (y) dµ(y) (2.4)

for any Borel B ⊂ M which is so that f : B → f B is injective.

Assumption (H) clearly implies that (2.3) is true for every y ∈ M . Actually we need the
following weaker conditions.

(H)’ For µ-a.e. x , J f (y) is well defined on V s(x),
∏+∞

k=0
J f ( f k x)
J f ( f k y)

converges and is

bounded away from 0 and +∞ on any given neighborhood of x in V s(x) whose
ds-diameter is finite, where ds is the distance along V s(x); moreover, (2.3) is true
λs

x almost everywhere on V s(x).

Assumption (H) clearly implies (H)’. The author does not know how often (H)’ is
satisfied, but it is an almost necessary condition forµ having accm on the W s-manifolds
(see Subsect. 4.1). In some particular cases, J f = l is constant everywhere, where
l = # f −1{x} for any x ∈ M .

Example 2.5. Let f : M → M be a C1 map so that Tx f is non-degenerate for every
x ∈ M . Let l = # f −1{x} for all x ∈ M . Take x0 ∈ M . Let µk be the probability so that
µk({z}) = 1

lk for any z ∈ f −k{x0}. Let µ be any weak limit point of { 1n
∑n−1

k=0 µk}n≥0.
Then µ is an f -invariant measure and f : (M, µ) ←↩ has constant Jacobian J f = l
which satisfies (2.4).
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Theorem 2.6 (Necessity). Let ( f, µ) be as given at the beginning of Sect. 2 and assume
(H) or (H)’. If (1.3) holds true, then µ has accm on the stable manifolds.

Guess 2.7. Ifµ is hyperbolic (that is, λi (x) �= 0, 1 ≤ i ≤ r(x) forµ-a.e. x), has property
(H) or (H)’ and satisfies both formulae (1.2) and (1.3), then µ is absolutely continuous
with respect to the Lebesgue measure on M .

Note that, whenµ satisfies the Pesin formula (1.2), the entropy production eµ( f ) = 0
if and only ifµ satisfies the formula (1.3). Hence, Guess 2.7 implies that, ifµ is moreover
hyperbolic and satisfies (H) or (H)’, eµ( f ) = 0 if (see Remark 2.9 below) and only if µ
is absolutely continuous with respect to the Lebesgue measure on M .

Remark 2.8. The referee indicated to the author the following outline of an argument
which hopefully can confirm that Guess 2.7 is true (a rigorous proof is, however, still
lacking). In the natural extension or inverse limit system ( f̄ , µ̄) of ( f, µ), µ̄ has abso-
lutely continuous conditional measures along the unstable manifolds ([8]). On M , the
stable foliation is absolutely continuous. To describe the transverse measure, one should
take a transversal T and project µ on T along local stable leaves. By projection from
µ̄, the measure µ is an average of the projections from the natural extension of the
conditional measures on unstable manifolds. Each of these projections is an absolutely
continuous measure on the projection of the corresponding unstable manifold, which is
transversal to the stable foliation. By absolute continuity of the stable foliation, these
are carried to T into an absolutely continuous measure on T . The transversal measure
on T , which is an average of these last ones, is also absolutely continuous. Now, by
Theorem 2.6, the measure µ has moreover absolutely continuous conditional measures
on the stable manifolds. Pairing with an absolutely continuous measure on transversals
yields an absolutely continuous measure on M .

Remark 2.9. For any C2 measure-preserving map f : (M, µ)←↩ (possibly with degen-
erate points), if µ is absolutely continuous with respect to the Lebesgue, then µ satisfies
both formulae (1.2) and (1.3) and hence eµ( f ) = 0. In fact, µ satisfying (1.2) is proved
in Liu [4]. On the other hand,

J f (x) = φ( f x)

φ(x)
| det Tx f |, µ−a.e. x,

where φ = dµ/dLeb. By (2.2),

− logµ f −1ε
x ({x}) = log J f (x), µ−a.e. x .

By Liu [4], log | det Tx f | ∈ L1(M, µ) (this follows from the fact that µ 	Leb.) and
log φ◦ f

φ
dµ = 0. Hence

Hµ(ε| f −1ε) =
∫
− logµ f −1ε

x ({x})dµ(x)

=
∫

log
φ( f x)

φ(x)
dµ +

∫
log | det Tx f |dµ

=
∫ ∑

i

λi (x)
−mi (x) dµ +

∫ ∑
i

λi (x)
+mi (x) dµ,

and thus

Fµ( f )−
∫ ∑

i

λi (x)
−mi (x) dµ =

∫ ∑
i

λi (x)
+mi (x) dµ = hµ( f ).
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3. Proof of Theorem 2.3

By Liu [3], (1.1) holds true for ( f, µ) since we assume here that f has no degenerate
points. It remains to prove

hµ( f ) ≥ Fµ( f )−
∫ ∑

i

λi (x)
−mi (x) dµ. (3.1)

With a little modification of the sets chosen in Sect. 2, take a Borel set � with
µ(�) = 1, f� ⊂ � and � = I ∪ � so that, for every x ∈ I , λi (x) ≥ 0 for all i and
W s(x) = {x}, and, for every x ∈ �, λ1(x) < 0 and W s(x) = ⋃+∞

n=0 f −nW ( f n x). We
may take � so that W s(x) ⊂ � for every x ∈ �.

Lemma 3.1. There exists a measurable partition η of (�,µ|�) which has the following
properties:

(1) f −1η ≤ η (meaning that ( f −1η)(x) ⊃ η(x) for µ-a.e. x ∈ �);
(2) η is subordinate to the W s-manifolds of ( f, µ);
(3) for every Borel set B the function

PB(x) = λs
x (η(x) ∩ B)

is measurable and is µ almost everywhere finite on �.

The proof of this lemma is omitted here since it is almost the same as that of Liu and
Qian [5, Prop. IV.2.1] restricted to the case of a deterministic map.

Property (3) just above allows one to define a σ -finite Borel measure λ∗ on � by

λ∗(B) =
∫
λs

x (η(x) ∩ B) dµ

for each Borel B ⊂ �. From the assumption of µ having accm on W s-manifolds it
follows that µ	 λ∗. Put

h = dµ

dλ∗
.

By arguments similar to Ledrappier and Strelcyn [1, Prop. 4.1] or [5, Prop. IV.2.2] we
have for µ-a.e. x ∈ �,

h = dµηx
dλs

x
λs

x almost everywhere on η(x). (3.2)

Let x ∈ � and consider the measure-preserving map between Lebesgue spaces

fx := f |( f −1η)(x) : (( f −1η)(x), µ f −1η
x ) −→ (η( f x), µηf x ).

Since Tx f is non-degenerate at every x ∈ M and µ f −1η
x 	 λs

x and µηf x 	 λs
f x , we

know that fx admits a Jacobian which, using (3.2), is given by

J fx (z) =
1

µ
f −1η
x (η(z))

· h( f z)

h(z)
· | det(Tz f |Es (z))|
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for µ f −1η
x -a.e. z ∈ ( f −1η)(x). With a bit of abuse of notations, let ε be the partition of

η(x) into single points. By (2.2), for µ f −1η
x -a.e. z ∈ ( f −1η)(x),

− log(µ f −1η
x )

( fx )
−1ε

z ({z}) = log J fx (z)

which, by the transitivity of conditional measures, implies that for µ-a.e. z ∈ �,

− logµ f −1ε
z ({z}) = − logµ f −1η

z (η(z)) + log
h( f z)

h(z)
+ log | det(Tz f |Es (z))|. (3.3)

Since
∫ − logµ f −1ε

z ({z})dµ(z) ≤ l (to recall, l = # f −1{x} for all x ∈ M), we know
that the left hand of (3.3) isµ-integrable. Since, by Ruelle inequality [11], hµ( f ) < +∞,

we know that − logµ f −1η
z (η(z)) ∈ L1(µ) since Hµ(η| f −1η) ≤ hµ( f ). The last term

in the right side of (3.3) is clearly integrable. Thus
∫

log
h( f z)

h(z)
dµ(z) = 0.

Taking integration of the two sides of (3.3), we have
∫
�

− logµ f −1ε
z ({z})dµ =

∫
�

− logµ f −1η
z (η(z))dµ +

∫
�

∑
i

λi (z)
−mi (z) dµ.

Letting η = ε on I , the above equality clearly holds true with � being replaced by I .
Thus

Hµ(ε| f −1ε) = Hµ(η| f −1η) +
∫

M

∑
i

λi (z)
−mi (z) dµ,

which implies

hµ( f ) ≥ Hµ(η| f −1η) = Fµ( f )−
∫

M

∑
i

λi (z)
−mi (z) dµ.

4. Proof of Theorem 2.6

In this section we largely use the strategy of Ledrappier and Young [2] which deals with
unstable manifolds of diffeomorphisms. Our maps under consideration are non-invertible
and unstable manifolds can not be defined for the system f : (M, µ) ←↩ (but can be
defined for its inverse limit system). We deal with stable manifolds and use the Jacobian
and the inverse limit space.

4.1. Increasing partitions subordinate to W s-manifolds and the necessity. We first
assume that ( f, µ) is ergodic. Let −∞ < λ1 < λ2 < · · · < λr < +∞ be the Lyapunov
exponents of ( f, µ) with mi being the multiplicity of λi . If λ1 ≥ 0, W s(x) = {x} for
µ-a.e. x ∈ M and the conditional measure of µ on W s(x) is δx , Theorem 2.6 is trivial
in this case (cf. Remark 2.4). We will assume that λ1 < 0 and λ1 < λ2 < · · · < λs < 0
are all the negative exponents.
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Let M̄ = {x̄ = (· · · , x−1, x0, x1, · · · ) : xi ∈ M, f xi = xi+1, i ∈ Z} be the inverse
limit space of (M, f ), π : M̄ → M, x̄ �→ x0 the natural projection, τ : M̄ → M̄ the
left shift transformation, and µ̄ the unique τ -invariant measure such that πµ̄ = µ.

Proposition 4.1.1. There exists a measurable partition ξ of (M,Bµ(M), µ) with the
following properties:

(1) f −1ξ ≤ ξ , and ξ is subordinate to the W s-manifolds of ( f, µ);

(2)
∨+∞

n=0 τ
n(π−1ξ) is the partition of M̄ into single points.

This result and its proof are similar to Lemma 3.1 (see [5, Prop. IV.2.1] for details).
We will give an outline of the proof here since it produces certain additional properties of
the partition that will be useful in the next subsection. This is similar to [2, Lemma 3.1.1].
Outline of construction. There is a measurable set S with the following properties:

(a) µ(S) > 0;
(b) S is the disjoint union of a continuous family of embedded discs {Dα} where each

Dα is an open neighborhood of xα in V s(xα);
(c) For µ-a.e. x , there is an open neighborhood Ux of x in V s(x) such that, for each

n ≥ 0, either f nUx ∩ S = ∅ or f nUx ⊂ Dα for some α;
(d) There is γ > 0 such that: i) the ds-diameter of every Dα in S is less than γ ; ii)

if x, y ∈ S are such that y ∈ V s(x) and ds(x, y) > γ , then x, y lie on distinct
Dα-discs.

Let ξ̂ be the partition of M defined by

ξ̂ (x) =
{

Dα if x ∈ Dα,

M\S if x �∈ S.

Then ξ := ξ̂− =∨+∞
n=0 f −n ξ̂ is the partition we desire. ��

The partitions whose construction is just outlined have the following alternate char-
acterization: There is a set S satisfying (a)–(d) such that, if σ = ∨+∞

n=0 f −n{S,M \S},
then, for every x ∈ M , y ∈ ξ(x) if and only if y ∈ σ(x) and ds( f n y, f n x) ≤ γ

whenever f n x ∈ S.

Proposition 4.1.2. Let ξ be a partition given in Proposition 4.1.1. Then

hµ( f ) = Hµ(ξ | f −1ξ).

A discussion of the proof of this proposition will be given in Subsect. 4.2. We first show

Hµ(ξ | f −1ξ) = Fµ( f )−
∑

i

λ−i mi =⇒ µξx 	 λs
x for µ−a.e. x . (4.1.1)

Let Ds(x) = | det(Tx f |Es (x))|. Suppose we know that µξx 	 λs
x for µ-a.e. x . Then

dµξx = hdλs
x µ almost everywhere for some function h (see (3.2)). By Liu [4, Proof of

Claim 2.1], this function must satisfy

µ
f −1ξ
x (ξ(x)) = 1

J f (y)
· h( f y)

h(y)
· | det(Ty f |Es (y))|
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for λs
x -a.e. y ∈ ξ(x) and hence

h(y)

h(x)
= h( f y)

h( f x)
· J f (x)

J f (y)
· | det(Ty f |Es(y))|
| det(Tx f |Es(x))|

= · · · · · ·
=

+∞∏
k=0

J f ( f k x)

J f ( f k y)
· Ds( f k y)

Ds( f k x)

=: �(x, y)

as long as h( f k y)
h( f k x)

→ 1 as k → +∞ and �(x, y) is well defined. A candidate for h is
then

h(y) = �(x, y)∫
ξ(x) �(x, y)dλs

x (y)
, ∀y ∈ ξ(x). (4.1.2)

Also note that the same observation holds if we replace ξ by f −mξ for m ≥ 0.

Lemma 4.1.3. Let m ≥ 0. There exists a measurable function hm : M → (0,+∞) such
that for µ-a.e. x,

hm(y) = �(x, y)∫
( f −mξ)(x) �(x, y)dλs

x (y)
, ∀y ∈ ( f −mξ)(x). (4.1.3)

This lemma follows from our assumption (H) or (H)’ in Sect. 2 and the fact that
Es(y) is Lipschitz continuous along each V s(x). The detailed proof is the same as that
of [5, Lemma VI.8.2] and is omitted here.

Lemma 4.1.4. For µ-a.e. x one has
∫
( f −1ξ)(x)

�(x, y)dλs
x (y) =

J f (x)

Ds(x)

∫
ξ( f x)

�( f x, y)dλs
f x (y). (4.1.4)

Proof. Let y0 ∈ ξ( f x). Since Tz f is assumed to be non-degenerate at any z ∈ M ,
there is an open neighborhood Uy0 of y0 in M such that f −1Uy0 =

⋃l
i=1 Vzi , where

zi ∈ f −1{y0} and Vzi is an open neighborhood of zi so that fi := f |Vzi
: Vzi → Uy0 is

a diffeomorphism. For any Borel set B ⊂ Uy0 ∩ ξ( f x), put Ci = Vzi ∩ f −1 B. Then
∫

f −1 B
�(x, z) dλs

x (z)

=
l∑

i=1

∫
Ci

�(x, z) dλs
x (z)

=
l∑

i=1

∫
B
�(x, f −1

i y)| det(Ty f −1
i |Es (y))| dλs

f x (y)

=
l∑

i=1

∫
B

�(x, f −1
i y)

| det(T f −1
i y f |Es ( f −1

i y))|
dλs

f x (y)
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=
l∑

i=1

∫
B

+∞∏
k=0

J f ( f k x)

J f ( f k( f −1
i y))

· Ds( f k( f −1
i y))

Ds( f k x)
· 1

Ds( f −1
i y)

dλs
f x (y)

= J f (x)

Ds(x)

∫
B

l∑
i=1

1

J f ( f −1
i y)

�( f x, y) dλs
f x (y)

= J f (x)

Ds(x)

∫
B
�( f x, y) dλs

f x (y),

the last equality uses (2.3). Taking a finite cover of ξ( f x) by open sets of the type of
Uy0 , we get (4.1.4). ��

Let (M̄, τ, µ̄) be the inverse limit system of (M, f, µ) and set ξ̄ = π−1ξ . We
now define a Borel probability ν̄ on M̄ by letting ν̄ = µ̄ on B(ξ̄ ), the σ -algebra

generated by ξ̄ , and by introducing a conditional measure ν̄ξ̄x̄ on ξ̄ (x̄) (where x̄ =
(· · · , x−1, x0, x1, · · · ) ∈ M̄) in the following way. For every cylinder set

C̄ = {ȳ = (· · · , y−1, y0, y1, · · · ) ∈ M̄ : yi ∈ Ai , i = −p, · · · ,−1, 0, 1, · · · , q},

let

C = {y ∈ ( f −pξ)(x−p) : y ∈ A−p, f y ∈ A−p+1, · · · , f p+q y ∈ Aq}

and define

ν̄
ξ̄
x̄ (C̄) =

∫
C �(x−p, y) dλs

x−p
(y)∫

( f −pξ)(x−p)
�(x−p, y) dλs

x−p
(y)

.

From Lemma 4.1.4 and its proof we know that for any Borel B ⊂ ξ( f x),

∫
f −1 B �(x, y) dλs

x (y)∫
( f −1ξ)(x) �(x, y) dλs

x (y)
=

∫
B �( f x, y) dλs

f x (y)∫
ξ( f x) �( f x, y) dλs

f x (y)
.

This implies that ν̄ξ̄x̄ is well defined.

Replacing ξ with f −(m−1)ξ in Lemma 4.1.4, we get for m ≥ 1,

∫
( f −mξ)(x)

�(x, y) dλs
x (y) =

J f (x) · · · J f ( f m−1x)

Ds(x) · · · Ds( f m−1x)

∫
ξ( f m x)

�( f m x, y)dλs
f m x (y).

(4.1.5)

Lemma 4.1.5. For m ≥ 1,

1

m

∫
M̄
− log ν̄ξ̄x̄ ((τ

m ξ̄ )(x̄)) dµ̄(x̄) = Fµ( f )−
∑

i

λ−i mi .
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Proof. Put L(x̄) = ∫
ξ(x0)

�(x0, y) dλs
x0
(y). Then

qm(x̄) := ν̄ξ̄x̄ ((τm ξ̄ )(x̄)) =
∫
ξ(x−m )

�(x−m, y) dλs
x−m
(y)∫

( f −mξ)(x−m)
�(x−m, y) dλs

x−m
(y)

= L(τ−m x̄)

L(x̄)
· Ds(x−m) · · · Ds(x−1)

J f (x−m) · · · J f (x−1)
.

Since qm(x̄)≤1 and log Ds and log J f areµ-integrable, we know
∫

log+ L◦τ−m

L dµ̄<+∞
and hence

∫
log L◦τ−m

L dµ̄ = 0. This yields

∫
− log qm(x̄) dµ̄ =

∫ m∑
j=1

log J f (x− j ) dµ̄(x̄)−
∫ m∑

j=1

log Ds(x− j ) dµ̄(x̄)

= m

[∫
log J f (x) dµ(x)−

∫
log Ds(x) dµ(x)

]

= m

[
Fµ( f )−

∑
i

λ−i mi

]
.

This proves the lemma. ��
Lemma 4.1.6. 1

m Hµ̄(τm ξ̄ | ξ̄ ) = Fµ( f )−∑
i
λ−i mi implies ν̄ = µ̄ on B(τm ξ̄ ).

The proof of this lemma is similar to that of [2, Lemma 6.1.3] and is omitted here.
Noting that 1

m Hµ̄(τm ξ̄ | ξ̄ ) = 1
m Hµ(ξ | f −mξ) = hµ( f ) and

∨+∞
m=0 τ

m ξ̄ is the partition
of M̄ into single points, we know that ν̄ = µ̄, and hence πν̄ = πµ̄ = µ. This completes
the proof of the ergodic case of Theorem 2.6.

In what follows we complete the proof of Theorem 2.6 in the non-ergodic case. The
arguments are similar to [2, Subsect. (6.2)] or [5, Subsect. VI.8.B] and are only outlined.
Given ( f, µ), by Rokhlin [9], there is a unique (µ-mod 0) measurable partition ζ = {C}
of (M,Bµ(M), µ) such that f −1C = C for each C ∈ ζ and f |C : (C, µC ) ←↩ is
ergodic for µζ -a.e. C ∈ M/ζ , where µC is the conditional measure of µ on C and
(M/ζ, µζ ) is the factor space of (M, µ) with respect to ζ . Suppose

hµ( f ) = Fµ( f )−
∫ ∑

i

λi (x)
−mi (x) dµ.

Since

hµ( f ) =
∫

M/ζ
hµC ( f ) dµζ (C)

and

Fµ( f )−
∫ ∑

i

λi (x)
−mi (x) dµ =

∫
M/ζ

[
FµC ( f )−

∫ ∑
i

λi (x)
−mi (x)dµC

]
dµζ (C),
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by the inequality (1.1), we have

hµC ( f ) = FµC ( f )−
∫ ∑

i

λi (x)
−mi (x)dµC

for µζ -a.e. C . Let ξ be a measurable partition of M subordinate to the W s-manifolds of
(M, µ). Since, by [5, Lemma IV.2.2], ξ refines ζ , we have

µξx = (µC )
ξ
x if x ∈ C,

and hence µξx 	 λs
x for µ-a.e. x .

4.2. Proof of Proposition 4.1.2 in the hyperbolic case. The proof follows largely the
arguments of Ledrappier and Young [2], but we will use the inverse limit space and
some modifications are necessary. A complete proof is quite long and it is in fact more
similar to the arguments in [5, Chap. V] where a version of [2] for random diffeomor-
phisms is presented. In order to avoid similar arguments, we will only present a proof for
the case when ( f, µ) is hyperbolic, that is, ( f, µ) does not have zero Lyapunov exponent.
Though it is much simpler than that for the general case, such a presentation is sufficient
for the reader to get the full flavor of the necessary modifications of [2] for the complete
proof.

Lyapunov charts. Since Tx f is assumed to be non-degenerate for any x ∈ M , there are
ρ0, ρ1 > 0 such that, for any x ∈ M , fx := f |B(x,ρ0) : B(x, ρ0) → M is a diffeo-
morphism to the image which contains B( f x, ρ1). Let f −1

x : f B(x, ρ0) → B(x, ρ0)

denote the local inverse.
Assume ( f, µ) is ergodic and let λ1 < λ2 < · · · < λr be all the Lyapunov exponents

with λi �= 0 for all i . Then there is a Borel set 0 ⊂ M̄ with µ̄(0) = 1 and for each
x̄ ∈ 0 there exists a measurable (in x̄) splitting

Tx0 M = E1(x̄)⊕ E2(x̄)⊕ · · · ⊕ Er (x̄)

such that for each 1 ≤ i ≤ r ,

lim
n→±∞

1

n
log |D(x̄, n)v| = λi for 0 �= v ∈ Ei (x̄),

where D(x̄, n) = Tx0 f n for n ≥ 0 and D(x̄, n) = (Txn f )−1◦· · ·◦(Tx−1 f )−1 for n < 0.
Put Es(x̄) = ⊕λi<0 Ei (x̄), Eu(x̄) = ⊕λi>0 Ei (x̄), s = dim Es(x̄), u = dim Eu(x̄),

d = dim M .
For (vs, vu) ∈ Rs × Ru , define ‖(vs, vu)‖ = max{‖vs‖s, ‖vu‖u} where ‖ · ‖s and

‖ · ‖u are the usual Euclidean norms on Rs and Ru respectively. The closed disk in Rs

of radius ρ centered at 0 is denoted by Rs(ρ) and R(ρ) := Rs(ρ)× Ru(ρ).
Put λ− = max{ λi : λi < 0} and λ+ = min{ λi : λi > 0}. Let 0 < ε <

min{−λ−/100, λ+/100} be given. Then there is a Borel set  ⊂ 0 with µ̄() = 1 and
τ =  and there is a measurable function l :  → [1,+∞) with l(τ±1 x̄) ≤ eεl(x̄)
such that for each x̄ ∈  one can define an embedding �x̄ : R(l(x̄)−1)→ M with the
following properties:
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i) �x̄ (0) = x0, T0�x̄ takes Rs , Ru to Es(x̄), Eu(x̄) respectively.
ii) Put fx̄ := �−1

τ x̄ ◦ f ◦ �x̄ and f −1
x̄ := �−1

τ−1 x̄
◦ f −1

x−1
◦ �x̄ , defined wherever they

make sense. Then

‖T0 fx̄v‖ ≤ eλ
−+ε‖v‖ for v ∈ Rs

and

‖T0 fx̄v‖ ≥ eλ
+−ε‖v‖ for v ∈ Ru .

iii) Let L(g) denote the Lipschitz constant of a map g. Then

L( fx̄ − T0 fx̄ ) ≤ ε, L( f −1
x̄ − T0 f −1

x̄ ) ≤ ε
and

L(T· fx̄ ) ≤ l(x̄), L(T· f −1
x̄ ) ≤ l(x̄).

iv) ‖ fx̄v‖ ≤ eλ‖v‖ and ‖ f −1
x̄ v‖ ≤ eλ‖v‖ for all v ∈ R(e−λ−εl(x̄)−1), where

λ > 0 is a number depending only on ε and the exponents. In particular,
f −1
x̄ R(e−λ−εl(x̄)−1) ⊂ R(l(τ−1 x̄)−1).

v) For any v, v′ ∈ R(l(x̄)−1) we have

K−1d(�x̄v, �x̄v
′) ≤ ‖v − v′‖ ≤ l(x̄)d(�x̄v, �x̄v

′)

for some universal constant K > 0.

The proof of the above facts is similar to [2, Appendix] or [5, Proof of Proposition
VI.3.1] (by replacing ω with x̄) and is omitted here. Any system of local charts {�x̄ :
x̄ ∈ } satisfying i)–v) above will be referred to as (ε, l)-charts.

Let {�x̄ : x̄ ∈ } be a system of (ε, l)-charts and let 0 < δ ≤ 1 be a reduction factor.
For x̄ ∈  define

Ss
δ (x̄) = {z ∈ R(l(x̄)−1) : ‖�−1

τ n x̄ ◦ f n ◦�x̄ z‖ ≤ δl(τ n x̄)−1, ∀n ≥ 0}.
Then�x̄ Ss

δ (x̄) ⊂ V s(x0) for µ̄-a.e. x̄ ∈ . And, when δ > 0 is small, Ss
δ (x̄) is the graph

of a function hx̄ : Rs(δl(x̄)−1)→ Ru(δl(x̄)−1) with hx̄ (0) = 0 and ‖T·hx̄‖ ≤ 1
3 .

Partitions adapted to Lyapunov charts. A measurable partition P of (M̄, µ̄) is said
to be adapted to ({�x̄ }, δ) if for µ̄-a.e. x̄ ∈  one has πP−(x̄) ⊂ �x̄ Ss

δ (x̄), where
P− =∨+∞

n=0 τ
−nP .

Lemma 4.2.1. Given {�x̄ } and 0 < δ ≤ 1, there is a finite entropy partition P of (M̄, µ̄)
such that P is adapted to ({�x̄ }, δ).
Proof. Fix some l0 > 0 so that � := {x̄ ∈  : l(x̄) ≤ l0} has positive µ̄ measure.
For x̄ ∈ �, let r(x̄) be the smallest positive integer k such that τ−k x̄ ∈ �. Define
ψ : M̄ → (0,+∞) by

ψ(x̄) =
{

min{δ, ρ0} if x̄ �∈ �,
min{δl−2

0 e−(λ+ε)r(x̄), ρ0} if x̄ ∈ �.
Thenψ is defined µ̄ almost everywhere and logψ is µ̄-integrable since

∫
�

r(x̄)dµ̄ = 1.
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Take numbers C > 0 and r0 > 0 such that, for any 0 < r ≤ r0, there exists a
measurable partition αr of M which satisfies

diam αr (x) ≤ r for all x ∈ M

and

|αr | ≤ C

(
1

r

)d

,

where |αr | denotes the number of elements of αr .
Put Un = {x̄ ∈ M̄ : e−(n+1) < ψ(x̄) ≤ e−n}. Define a partition P of M̄ by requiring

that P ≥ {Un : n ≥ 0} and P|Un = {π−1 A : A ∈ αrn }|Un , where rn = e−(n+1). Clearly

diam πP(x̄) ≤ ψ(x̄) for any x̄ ∈ M̄,

and, by the µ̄-integrability of logψ one has Hµ̄(P) < +∞ (see Mané [6]).
We now check that πP−(x̄) ⊂ �x̄ R(δl(x̄)−1) for µ̄-a.e. x̄ ∈ ⋃

n≥0 τ
−n�. This

clearly implies that πP−(x̄) ⊂ �x̄ Ss
δ (x̄) for µ̄-a.e. x̄ ∈ M̄ . First consider x̄ ∈ �.

By the choice of P , we have πP−(x̄) ⊂ πP(x̄) ⊂ B(x0, ψ(x̄)) which is contained
in �x̄ R(δl(x̄)−1) because l(x̄)ψ(x̄) = l(x̄) · δl−2

0 e−(λ+ε)r(x̄) ≤ δl(x̄)−1. Suppose now
x̄ �∈ � and n > 0 is the smallest positive integer n such that τ n x̄ ∈ �. Then

πτ nP−(x̄) ⊂ πP−(τ n x̄) ⊂ B(xn, ψ(τ
n x̄))

⊂ �τ n x̄ R(δl(τ n x̄)−1e−(λ+ε)r(τ n x̄)).

Now

πP−(x̄) ⊂ �x̄ f −1
τ x̄ ◦ · · · ◦ f −1

τ n−1 x̄
◦ f −1

τ n x̄ R(δl(τ n x̄)−1e−(λ+ε)r(τ n x̄))

⊂ �x̄ R(δl(τ n x̄)−1e−(λ+ε)r(τ n x̄)eλn)

⊂ �x̄ R(δl(x̄)−1),

since n ≤ r(τ n x̄). This completes the proof. ��
Proof of Hµ(ξ | f −1ξ) = hµ( f ). Fix arbitrarily κ > 0. Given {�x̄ } and 0 < δ ≤ 1,
take a finite entropy partition P of (M̄, µ̄) such that P refines π−1{S,M\S} (where S is
the set given in the outline of the proof of Proposition 4.1.1), P is adapted to ({�x̄ }, δ)
and hµ̄(τ,P) ≥ hµ̄(τ )− κ = hµ( f )− κ .

Put

η1 = ξ̄ ∨ P− and η2 = P−

(recall that ξ̄ = π−1ξ ). Then

hµ̄(τ, η2) = hµ̄(τ,P) (4.2.1)

and

hµ̄(τ, η1) = Hµ̄(ξ̄ | τ−1ξ̄ ). (4.2.2)
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The equality (4.2.1) is straightforward. The proof of (4.2.2) is similar to [2, Lemma 3.2.1]
and we present it here for completeness.

hµ̄(τ, η1) = hµ̄(τ, ξ̄ ∨ τ−nP−)
= Hµ̄(ξ̄ ∨ τ−nP− | τ−1ξ̄ ∨ τ−(n+1)P−)
= Hµ̄(ξ̄ | τ−1ξ̄ ∨ τ−(n+1)P−) + Hµ̄(P− | τ n ξ̄ ∨ τ−1P−),

where the first term is ≤ Hµ̄(ξ̄ | τ−1ξ̄ ) and the second term goes to 0 as n→ +∞ since
τ n ξ̄ goes to the partition of M̄ into single points. On the other hand,

hµ̄(τ, η1) = hµ̄(τ, ξ̄ ∨ P) ≥ hµ̄(τ, ξ̄ ),

since Hµ̄(P) < +∞. This proves (4.2.2).
We now show that for sufficiently small δ > 0 we have

P−(x̄) = (ξ̄ ∨ P−)(x̄), µ̄−a.e. x̄, (4.2.3)

which implies

Hµ̄(ξ̄ | P−) = 0. (4.2.4)

In order to prove (4.2.3), it is sufficient to show that, if ȳ ∈ P−(x̄), then y0 ∈ ξ(x0). Since
P refines π−1{S,M \S} and ȳ ∈ P−(x̄), it suffices to prove that ds( f n y0, f n x0) ≤ γ
whenever f n x0 ∈ S. This is in fact true for all n ≥ 0 since

ds( f n y0, f n x0) ≤ K · ‖ f n
x̄ �
−1
x̄ y0 − f n

x̄ �
−1
x̄ x0‖

≤ K · e(λ−+2ε)n‖�−1
x̄ y0 −�−1

x̄ x0‖ ≤ K · 2δl(x̄)−1 ≤ γ.
Then, by (4.2.4), we know that

Hµ(ξ | f −1ξ) = hµ̄(τ, η1) ≥ hµ̄(τ, η2) ≥ hµ( f )− κ.
Since κ > 0 is arbitrary, we get Hµ(ξ | f −1ξ) = hµ( f ).

Acknowledgement. The author expresses his sincere thanks to the anonymous referee for careful reading of
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