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Abstract: In this paper the W -algebra W (2, 2) and its representation theory are stud-
ied. It is proved that a simple vertex operator algebra generated by two weight 2 vectors
is either a vertex operator algebra associated to an irreducible highest weight W (2, 2)-
module or a tensor product of two simple Virasoro vertex operator algebras. Further-
more, we show that any rational, C2-cofinite and simple vertex operator algebra whose
weight 1 subspace is zero, weight 2 subspace is 2-dimensional and with central charge
c = 1 is isomorphic to L( 1

2 , 0) ⊗ L( 1
2 , 0).

1. Introduction

Motivated partially by the problem of classification of rational vertex operator algebras
with central charge c = 1 and by the Frenkel-Lepowsky-Meurman’s uniqueness con-
jecture on the moonshine vertex operator algebra V � [FLM], we give a characterization
of the vertex operator algebra L(1/2, 0) ⊗ L(1/2, 0) in terms of the central charge and
the dimensions of weights 1 and 2 subspaces in this paper. Here L(1/2, 0) is the vertex
operator algebra associated to the irreducible highest weight module for the Virasoro
algebra with central charge 1/2 which is the smallest central charge among the discrete
unitary series for the Virasoro algebra.

The classification of rational conformal field theories with c = 1 at character level
has been achieved in the physics literature under the assumption that the sum of the
square of the norm of the irreducible characters is a modular function over the full mod-
ular group [K]. But the classification of rational vertex operator algebras with c = 1
remains open. If a vertex operator algebra V = ∑

n≥0 Vn with dim V0 = 1 is rational
and C2-cofinite, then V1 is a reductive Lie algebra and its rank is less than or equal to the
effective central charge c̃ [DM1]. Also, the vertex operator subalgebra generated by V1
is a tensor product of vertex operator algebras associated to integrable highest weight
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modules for affine Kac-Moody algebras and the lattice vertex operator algebra [DM2].
In the case that c = c̃ = 1, we can classify the vertex operator algebras with dim V1 �= 0.

Since V1 is a reductive Lie algebra whose rank is less than or equal to 1, we immediately
see that V1 is either 1-dimensional or 3-dimensional, as a result, V is isomorphic to a
vertex operator algebra associated to a rank 1 lattice. So one can assume that V1 = 0.

There are two cases: dim V2 > 1 and dim V2 = 1. The L(1/2, 0)⊗ L(1/2, 0) is the only
known such vertex operator algebra whose weight two subspace is not one-dimensional.
So a characterization of L(1/2, 0) ⊗ L(1/2, 0) can be regarded as a part of a program
of classification of rational vertex operator algebras with c = 1.

The vertex operator algebra L(1/2, 0)⊗L(1/2, 0) plays an important role in the study
of the moonshine vertex operator algebra V �. The moonshine vertex operator algebra V �

which is fundamental in shaping the field of vertex operator algebra was constructed as a
bosonic orbifold theory based on the Leech lattice [FLM]. The discovery of existence of
L(1/2, 0)⊗48 inside the moonshine vertex operator algebra V � [DMZ] opens a different
way to study V �. This leads to the theory of code and framed vertex operator algebras
[M2,DGH]. This discovery is also essential in a proof that V � is holomorphic [D], a
new construction of V � [M3], proofs of weak versions of the Frenkel-Lepowsky-Meur-
man’s uniqueness conjecture on V � [DGL,LY] and a study of V � in terms of conformal
nets [KL]. There is no doubt that a characterization of L(1/2, 0) ⊗ L(1/2, 0) will be
very helpful in the study of the structure of V � and the Frenkel-Lepowsky-Meurman’s
uniqueness conjecture.

The W (2, 2) and its highest weight modules enter the picture naturally during our
discussion on L(1/2, 0) ⊗ L(1/2, 0). The W -algebra W (2, 2) is an extension of the
Virasoro algebra and also has a very good highest weight module theory (see Sect. 2).
Its highest weight modules produce a new class of vertex operator algebras. In contrast
to the Virasoro algebra case, this class of vertex operator algebras are always irrational.
From this point of view, this class of vertex operator algebras are not interesting.

The W (2, 2) and associated vertex operator algebras are also closely related to the
classification of the simple vertex operator algebra with two generators. It is well known
that each homogeneous subspace Vn of a vertex operator algebra V = ∑

n∈Z
Vn is some

kind of algebra under the product u ·v = un−1v for u, v ∈ Vn , where un−1 is the compo-
nent operator of Y (u, z) = ∑

m∈Z
um z−m−1. If a vertex operator algebra V = ∑

n≥0 Vn
with dim V0 = 1 is rational and C2-cofinite, then V1 and the vertex operator subalgebra
generated by V1 are well understood [DM1]. So it is natural to turn our attention to V2.

This is still a very hard problem even with V1 = 0. A simple vertex operator algebra
V satisfying V1 = 0 is called the moonshine type. The V2 in this case is a commutative
nonassociative algebra. The simple vertex operator algebras of the moonshine type with
dim V2 = 2 and generated by V2 are also classified in this paper. There are two families
of such algebras. One of this family consists of the tensor product of two vertex operator
algebras associated to the irreducible highest weight modules for the Virasoro algebra
and the other family consists of the vertex operator algebras associated to the highest
weight modules for the W -algebra W (2, 2).

The paper is organized as follows. We define and study the W -algebra W (2, 2) in
Sect. 2. In particular we use the bilinear form on Verma modules V (c, h1, h2) to deter-
mine the irreducible quotient modules L(c, h1, h2) for W (2, 2) for most c and hi . In
Sect. 3 we classify the simple vertex operator algebras of the moonshine type generated
by two weight 2 vectors. Section 4 is devoted to the characterization of rational vertex
operator algebra L(1/2, 0) ⊗ L(1/2, 0). The main idea is to use the modular invariance
of the graded characters of the irreducible modules [Z] to control the growth of the
graded dimensions of the vertex operator algebra.
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2. W -Algebra W(2, 2)

The W -algebra W (2, 2) considered in this paper is an infinite dimensional Lie algebra
with basis Lm, Wm, C for m ∈ Z and Lie brackets

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm+n,0C, (2.1)

[Lm, Wn] = (m − n)Wm+n +
m3 − m

12
δm+n,0C, (2.2)

[Wm, Wn] = 0 (2.3)

for m, n ∈ Z, where C is a central element. Since the adjoint action of L0 is semi-
simple with integral eigenvalues, W (2, 2) is a Z-graded algebra and has the triangular
decomposition

W(n) = CL−n ⊕ CW−n for n �= 0,

W(0) = CL0 ⊕ CW0 ⊕ CC,

W (2, 2) = W+ ⊕ W(0) ⊕ W−,

where W+ = ⊕n≥1W(n), W− = ⊕n≥1W(−n). In this section we study the highest weight
modules for this algebra and the corresponding vertex operator algebras.

Let c, h1, h2 ∈ C, and we denote by V (c, h1, h2) the Verma module for W (2, 2) with
central charge c and highest weight (h1, h2). Then V (c, h1, h2) = U (W (2, 2))/Ic,h1,h2 ,
where Ic,h1,h2 is the left ideal of the universal enveloping algebra U (W (2, 2)) generated
by Lm, Wm, C − c, L0 − h1 and W0 − h2 for positive m. The V (c, h1, h2) can also
be realized as an induced module as in the case of Virasoro algebra. By PBW theorem
V (c, h1, h2) has basis

{W−m1 · · · W−ms L−n1 · · · L−nt 1|m1 ≥ · · · ≥ ms ≥ 1, n1 ≥ · · · ≥ nt ≥ 1},
where 1 = 1 + Ic,h1,h2 . Then V (c, h1, h2) is graded by the L0-eigenvalues:

V (c, h1, h2) =
⊕

n≥0

V (c, h1, h2)n+h1,

where

V (c, h1, h2)n+h1 = {v ∈ V (c, h1, h2)|L0v = (n + h1)v}
is spanned by W−m1 · · · W−ms L−n1 · · · L−nt 1 with m1 + · · · + ms + n1 + · · · + nt = n.

Note that V (c, h1, h2)h1 = C1. A highest weight W (2, 2)-module is a quotient module
of the Verma module with the same central charge and highest weight. It is standard
that V (c, h1, h2) has a unique maximal submodule J (c, h1, h2) so that L(c, h1, h2) =
V (c, h1, h2)/J (c, h1, h2) is an irreducible highest weight module.

As in the case of Virasoro algebra, there is an anti-involution α for W (2, 2) defined by
α(Ln) = L−n, α(Wn) = W−n, α(C) = C . The α can be extended to an anti-involution
of U (W (2, 2)). So we get a symmetric bilinear form (,) on V (c, h1, h2) by

(A1, B1)1 = Ph1(α(A)B1) (2.4)



994 W. Zhang, C. Dong

for A, B ∈ U (W (2, 2)), where Ph1 is the projection from V (c, h1, h2) to V (c, h1, h2)h1 .

Then the bilinear form is invariant in the sense:

(Lmu, v) = (u, L−mv), (Wmu, v) = (u, W−mv), (1, 1) = 1 (2.5)

for u, v ∈ V (c, h1, h2) and m ∈ Z. Moreover, the radical of this bilinear form is exactly
the maximal submodule J (c, h1, h2).

Let X be a proper submodule of V (c, h1, h2). Then X is a submodule of J (c, h1, h2)

and the bilinear form (,) on V (c, h1, h2) induces an invariant symmetric bilinear form
(,) on the quotient module V (c, h1, h2)/X.

As in the classical case we need to answer the basic question: What is J (c, h1, h2)?
We first consider the case (c, h1, h2) = (c, 0, 0). Clearly, L(0, 0, 0) = C. So we now
assume that c �= 0. Note that U (W (2, 2))L−11 + U (W (2, 2))W−11 is a proper submod-
ule of V (c, 0, 0).

Theorem 2.1. If c �= 0, then J (c, 0, 0) = U (W (2, 2))L−11 + U (W (2, 2))W−11 and
L(c, 0, 0) has a basis

{W−m1 · · · W−ms L−n1 · · · L−nt 1|m1 ≥ · · · ≥ ms > 1, n1 ≥ · · · ≥ nt > 1}, (2.6)

where 1 is the canonical highest weight vector of L(c, 0, 0).

Proof. Set V̄ (c, 0, 0) = V (c, 0, 0)/(U (W (2, 2))L−11 + U (W (2, 2))W−11) and let S
be the set consisting of vectors given by (2.6) with 1 being the canonical highest weight
vector of V̄ (c, 0, 0). Then S forms a basis of V̄ (c, 0, 0) by PBW theorem. For n ≥ 0 we
set Sn = S ∩ V̄ (c, 0, 0)n . We prove the irreducibility of V̄ (c, 0, 0) by showing that the
Gram matrix of (,) with respect to the basis Sn of V̄ (c, 0, 0)n is nondegenerated for all
n ≥ 0.

For short we set

u(m1, . . . , ms; n1, . . . , nt ) = W−m1 · · · W−ms L−n1 · · · L−nt 1

with m1 ≥ · · · ≥ ms > 1, n1 ≥ · · · ≥ nt > 1.

Let

P = {(m1, . . . , ms)|s ≥ 1, m1 ≥ · · · ≥ ms > 1}
which is a set of partitions of n without 1. We define a total order on P so that

(m1, . . . , ms) > (n1, . . . , nt )

if there exists 1 ≤ k ≤ s such that mi = ni for i < k and mk > nk . For n ≥ 0 we define
a total order for Sn as follows:

u(m1, . . . , ms; n1, . . . , nt ) > u(k1, . . . , kp; l1, . . . , lq)

if (a)
∑

mi <
∑

k j (if there is no m term, the
∑

mi is understood to be 0 and simi-
larly for

∑
k j ), or (b)

∑
mi = ∑

k j and (m1, . . . , ms) > (k1, . . . , kp) or (c)
∑

mi =∑
k j , (m1, . . . , ms) = (k1, . . . , kp) and (n1, . . . , nt ) < (l1, . . . , lq). For example, S6

is ordered in the following way from the largest to the smallest:

L3−21, L2−31, L−4L−21, L−61, W−2 L2−21, W−2 L−41, W−3L−31,

W−4L−21, W 2−2 L−21, W−61, W−4W−21, W 2−31, W 3−21.
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Observe that if (m1, . . . , ms) ∈ P and m ≥ m1 then

Lm W−m1 · · · W−ms 1 = m3 − m

12
c

∂

∂W−m
W−m1 · · · W−ms 1.

Using (2.4) and (2.5) we immediately see that

(L−n1 · · · L−nt 1, W−m1 · · · W−ms 1)1 = Lnt · · · Ln1 W−m1 · · · W−ms 1 = 0

if (m1, . . . , ms) < (n1, . . . , nt ). Since c �= 0,

(L−m1 · · · L−ms 1, W−m1 · · · W−ms 1)1 = Lms · · · Lm1 W−m1 · · · W−ms 1 �= 0.

Let u = W−m1 · · · W−ms L−n1 · · · L−nt 1, v = W−k1 · · · W−kp L−l1 · · · L−lq 1 ∈ Sn .

Again using (2.4) and (2.5) we have

(u, v)1 = Lnt · · · Ln1 W−k1 · · · W−kp Wms · · · Wm1 L−l1 · · · L−lq 1
= Llq · · · Ll1 W−m1 · · · W−ms Wkp · · · Wk1 L−n1 · · · L−nt 1,

where we have used the fact that Wm commute with each other (2.3). It is clear that
(u, v) = 0 if

∑
mi >

∑
l j or

∑
ki >

∑
n j . If

∑
mi = ∑

l j and
∑

ni = ∑
k j we

have

(u, v) = (W−m1 · · · W−ms 1, L−l1 · · · L−lq 1)(W−k1 · · · W−kp 1, L−n1 · · · L−nt 1).

This implies that (u, v) = 0 if either (l1, . . . , lq) > (m1, . . . , ms) or (n1, . . . , nt ) >

(k1, . . . , kp).

Now let s be the cardinality of Sn we can label vectors in Sn by u1, . . . , us such that
ui > u j if i > j. Set A = (ai j ), where ai j = (us+1−i , u j ) for i, j = 1, . . . , s. Note that
if ui = W−m1 · · · W−ms L−n1 · · · L−nt 1, then us+1−i = W−n1 · · · W−nt L−m1 · · ·−ms 1.

It immediately follows that aii = (us+1−i , ui ) �= 0 for all i.We prove next that ai j = 0
if i > j.Let ui =W−m1 · · · W−ms L−n1 · · · L−nt 1 and u j =W−k1 · · · W−kp L−l1 · · · L−lq 1.

So

us+1−i = u(n1, . . . , nt ; m1, . . . , ms), u j = u(k1, . . . , kp; l1, . . . , lq).

Since ui > u j then either (a)
∑

mi <
∑

k j , or (b)
∑

mi = ∑
k j and (m1, . . . , ms) >

(k1, . . . , kp) or (c)
∑

mi = ∑
k j , (m1, . . . , ms) = (k1, . . . , kp) and (n1, . . . , nt ) <

(l1, . . . , lq). From the discussion above, it is obvious that (us+1−i , u j ) = 0 in all cases.
That is, ai j = 0 if i > j. As a result, the Gram matrix A is an upper triangular matrix
with every entry in the diagonal being nonzero. This shows that V̄ (c, 0, 0) is irreducible
and L(c, 0, 0) = V̄ (c, 0, 0). �	
Remark 2.2. Although W (2, 2) is an extension of the Virasoro algebra, the representa-
tion theory for W (2, 2) is different from that for the Virasoro algebra in a fundamental
way. For W (2, 2), the structure of L(c, 0, 0) for c �= 0 is uniform and simple. But for the
Virasoro algebra, the situation is totally different. Let L(c, h) be the irreducible highest
weight module for the Virasoro algebra with central charge c and highest weight h. In
the case c �= cs,t = 1 − 6(s − t)2/st , where s, t are two coprime positive integers
1 < s < t, then L(c, 0) = V̄ (c, 0), where V̄ (c, 0) = V (c, 0)/U (V ir)L−1v and v is
a nonzero highest weight vector of the Verma module V (c, 0) (see [FF]). The structure
of L(cs,t , 0) is much more complicated. On the other hand, from the point of view of
vertex operator algebra, L(cs,t , 0) is a rational vertex operator algebra for all cs,t but
L(c, 0) is not if c �= cs,t (see [FZ] and [W]).
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Next we discuss the vertex operator algebras associated to the highest weight modules
for W (2, 2). Let 1 be the canonical highest weight vector of V (c, 0, 0). From the axiom
of vertex operator algebra we must modulo out the submodule generated by L−11. From
the commutator relation (2.2) we know that Wn should be the component operators of a
weight two vector. That is, there is a weight two vector x such that

Y (x, z) =
∑

n∈Z

xnz−n−1 =
∑

n∈Z

Wnz−n−2.

Moreover, we must modulo out the submodule generated by W−11, since L−1W01 =
[L−1, W0]1 + W0 L−11 = −W−11 + W0 L−11 by (2.2).

A W (2, 2)-module M is restricted if for any w ∈ M, Lmw = Wmw = 0 if m is suf-
ficiently large. Recall the weak module, admissible module and ordinary module from
[DLM1].

Theorem 2.3. Assume that c �= 0. Then
(1) There is a unique vertex operator algebra structure on L(c, 0, 0) with the vacuum

vector 1 and the Virasoro element ω = L−21. Moreover, L(c, 0, 0) is generated by
ω and x = W−21 with Y (ω, z) = ∑

n∈Z
Lnz−n−2 and Y (x, z) = ∑

n∈Z
Wnz−n−2.

(2) If M is a restricted W (2, 2)-module with central charge c, then M is a weak
L(c, 0, 0)-module with YM (ω, z) = ∑

n∈Z
Lnz−n−2 and YM (x, z) = ∑

n∈Z

Wnz−n−2. In particular, any quotient module of V (c, h1, h2) is an ordinary module
for L(c, 0, 0).

(3) Any irreducible admissible L(c, 0, 0)-module is ordinary.
(4) {L(c, h1, h2)|hi ∈ C} gives a complete list of irreducible L(c, 0, 0)-modules up to

isomorphism.

Proof. (1) and (2) are fairly standard following from the local system theory (see
[L2,LL]). (3) and (4) follow from the fact that any irreducible admissible module for
L(c, 0, 0) is an irreducible highest weight module for W (2, 2). �	

We now turn our attention to the Verma module V (c, h1, h2) in general. As in general
highest weight module theory, we want to know when V (c, h1, h2) = L(c, h1, h2) is
irreducible.

Theorem 2.4. The Verma module V (c, h1, h2) is irreducible if and only if m2−1
12 c+2h2 �=0

for any nonzero integer m.

Proof. The proof is similar to that of Theorem 2.1. Note that

V (c, h1, h2) = ⊕n≥0V (c, h1, h2)h1+n .

By PBW theorem, V (c, h1, h2)h1+n has a basis S consisiting of vectors

W−m1 · · · W−ms L−n1 · · · L−nt 1,

where m1 ≥ · · · ≥ ms > 0, n1 ≥ · · · ≥ nt > 0,
∑

mi +
∑

n j = n. We also define a
total order on Sn as before. Let Sn = {u1, . . . , us} and ui < u j if i < j. Set An = (ai j ),
where ai j = (us+1−i , u j ). Then V (c, h1, h2) = L(c, h1, h2) if and only if det An �= 0
for all n > 0.

Note that if m ≥ m1 ≥ · · · ≥ ms > 0,

Lm W−m1 · · · W−ms 1 =
(

m3 − m

12
c + 2mh2

)
∂

∂W−m
W−m1 · · · W−ms 1.
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If m2−1
12 c +2h2 �= 0 for all 0 �= m ∈ Z, we see immediately that the same argument used

in the proof of Theorem 2.1 works for V (c, h1, h2). That is, An is an upper triangular
matrix with every entry in the diagonal being nonzero for all n ≥ 0, and V (c, h1, h2) is
irreducible in this case.

If m2−1
12 c + 2h2 = 0 for some 0 < m, then Am is still an upper triangular matrix

and one of the entries in the diagonal is (L−m1, W−m1) which is the coefficient of 1 in
Lm W−m1 = 0. As a result, det Am = 0. The proof is complete. �	

It is definitely interesting to determine the J (c, h1, h2) if m2−1
12 c + 2h2 = 0 for

some nonzero integer m. But this will be a problem which has nothing to do with the
characterization of L(1/2, 0) ⊗ L(1/2, 0) in this paper. We will not further go in this
direction.

3. Vertex Operator Algebras of the Moonshine Type

Motivated by the moonshine vertex operator algebra V � [FLM], we call a vertex opera-
tor algebra V = ⊕n∈ZVn the moonshine type if V1 = 0. In this section we classify the
simple vertex operator algebras V of the moonshine type such that V is generated by V2
and V2 is 2-dimensional.

Note that V0 = C1 is 1-dimensional for the moonshine type vertex operator algebra
V and Vn = 0 if n < 0 by Lemma 7.1 of [DGL]. Since V1 = 0 and V0 is 1-dimensional,
there is a unique symmetric, nondegenerate invariant bilinear form (,) on V such that
(1, 1) = 1 (see [L1]). Then for any u, v, w ∈ V ,

(Y (u, z)v,w) = (v, Y (eL(1)z(−z−2)L(0)u, z−1)w)

and

(u, v)1 = Resz z−1Y (eL(1)z(−z−2)L(0)u, z−1)v.

In particular, the restriction of the form to each homogeneous subspace Vn is nondegen-
erate and

(un+1v,w) = (v, u−n+1w)

for all u, v ∈ V2 and w ∈ V .

The V2 is a commutative and associative algebra with the product ab = a1b for
a, b ∈ V2 and the identity ω

2 (cf. [FLM]). The V2 is called the Griess algebra of V . Note
that for a, b ∈ V2 we have (a, b)1 = a3b. Moreover, the form on V2 is associative. That
is, (ab, c) = (a, bc) for a, b, c ∈ V2.

Theorem 3.1. Let V be a simple vertex operator algebra of the moonshine type with
central charge c �= 0 such that V is generated by V2 and V2 is 2-dimensional. Then V is
isomorphic to L(c1, 0) ⊗ L(c2, 0) for some nonzero complex numbers c1, c2 such that
c1 + c2 = c if V2 is semisimple, and isomorphic to L(c, 0, 0) if V2 is not semisimple.

Proof. Assume that V2 is a 2-dimensional semisimple commutative associative algebra
with the identity ω/2. Then ω/2 is a sum of two primitive idempotents ω1/2 and ω2/2.
It follows from [M1] that ω1 and ω2 are Virasoro vectors. Let

Y (ωi , z) =
∑

n∈Z

Li (n)z−n−2
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for i = 1, 2. Then

[Li (m), Li (n)] = (m − n)Li (m + n) +
m3 − m

12
δm+n,0ci

for all m, n ∈ Z, where ci ∈ C is the central charge of ωi . Since ωi

2
ω j

2 = δi, j we see
that (ω1)3ω

2 = (ω1, ω2)1 = 0 by using the invariant property of the bilinear form. This
implies that

[L1(m), L2(n)] = 0

for all m, n ∈ Z and c1+c2 = c. Then V = 〈ω1〉⊗〈ω2〉, where 〈ωi 〉 is the vertex operator
subalgebra of V generated by ωi (with a different Virasoro vector). Note that 〈ωi 〉 is a
quotient of V̄ (ci , 0). Since V is simple we immediately have that 〈ωi 〉 is isomorphic to
L(ci , 0). As a result, V is isomorphic to L(c1, 0) ⊗ L(c2, 0) in this case.

It remains to deal with the case that V2 is not semisimple. In this case the
Jacobson radical J of V2 is 1-dimensional. Assume that J = Cx . Then x2 = 0 and
(x, x) = (ω/2, x2) = 0. Using the skew symmetry Y (x, z)x = eL(−1)zY (x,−z)x we
see that

x0x = −x0x + L(−1)x1x = −x0x + L(−1)x2 = −x0x .

This implies x0x = 0. As a consequence, we see the component operators xn of Y (x, z)
commute with each other. That is, [xm, xn] = 0 for all m, n ∈ Z.

Note that (ω, ω)1 = L(2)ω = c
2 1. Since the form (,) on V2 is nondegenerate, we

may choose x so that (ω, x) = c/2. Set W (m) = xm+1 for m ∈ Z. Then we have the
following commutator formula

[L(m), W (n)] = (m − n)W (m + n) +
m3 − m

12
δm,−nc.

This exactly says that the operators L(m), W (m), c generate a copy of W (2, 2) and V is
an irreducible highest weight module for W (2, 2). Hence V is isomorphic to L(c, 0, 0),

as desired. �	
Remark 3.2. Theorem 3.1 is the main reason we introduce and study the Lie algebra
W (2, 2) and its highest weight modules. The vertex operator algebra L(c, 0, 0) will
be used in the next section when we characterize the rational vertex operator algebra
L(1/2, 0) ⊗ L(1/2, 0).

4. Characterization of L(1/2, 0) ⊗ L(1/2, 0)

In this section we give a characterization for the vertex operator algebra L(1/2, 0) ⊗
L(1/2, 0).

We first recall some basic facts about a rational vertex operator algebra following
[DLM1]. A vertex operator algebra V is called rational if any admissible module is com-
pletely reducible. It is proved in [DLM1] (also see [Z]) that if V is rational then there
are only finitely many irreducible admissible modules M1, . . . , Mk up to isomorphism
such that

Mi = ⊕n≥0 Mi
λi +n,
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where λi ∈ Q, Mi
λi

�= 0 and each Mi
λi +n is finite dimensional (see [AM] and [DLM2]).

Let λmin be the minimum of λi ’s. The effective central charge c̃ is defined as c−24λmin .

A vertex operator algebra is called C2-cofinite if C2(V ) has finite codimension, where
C2(V ) = 〈u−2v|u, v ∈ V 〉.

Let f (z) = qλ
∑

n≥0 anqn be either a formal power series in z or a complex function.
We say that the coefficients of f (z) satisfy the polynomial growth condition if there exist
positive numbers A and α such that |an| ≤ Anα for all n.

For each Mi we define the q-character of Mi by

chq Mi = q−c/24
∑

n≥0

(dim Mi
λi +n)qn+λi .

Then chq Mi converges to a holomorphic function on the upper half plane if V is
C2-cofinite [Z]. Using the modular invariance result from [Z] and results on vector
valued modular forms from [KM] we have (see [DM1])

Lemma 4.1. Let V be rational and C2-cofinite. For each i, the coefficients ofη(q)c̃chq Mi

satisfy the polynomial growth condition where

η(q) = q1/24
∏

n≥1

(1 − qn).

We also need some basic facts about the highest weight modules for the Virasoro
algebra (see [FF,FQS,GKO,FZ,W]).

Proposition 4.2. Let c be a complex number.

(1) V̄ (c, 0) is a vertex operator algebra and L(c, 0) is a simple vertex operator algebra.
(2) If c �= cs,t = 1 − 6(s − t)2/st for all coprime positive integers s, t with 1 < s < t,

then V̄ (c, 0) = L(c, 0),and L(c, 0) is not rational. In this case, the q-character of

L(c, 0) is equal to q−c/24
∏

n>1(1−qn)
and the coefficients grow faster than any polynomials.

(3) If c = cs,t for some s, t, then V̄ (c, 0) �= L(c, 0), and L(c, 0) is rational.

From now on we assume that V is a rational and C2-cofinite vertex operator algebra
of the moonshine type such that c = c̃ = 1 and dim V2 = 2. We have already mentioned
in Sect. 3 that V2 is a commutative associative algebra with identity ω

2 .

Lemma 4.3. The V2 is a semisimple associative algebra. That is, V2 is a direct sum of
two ideals isomorphic to C.

Proof. Suppose that V2 is not semisimple. Recall from the proof of Theorem 3.1 that
the Jacobson radical J = Cx is one-dimensional. We assume that (ω, x) = 1. Then the
component operator W (n) of Y (x, z) = ∑

n∈Z
W (n)z−n−2 and the component operator

of the Y (ω, z) generate a copy of the W -algebra W (2, 2) with central charge 1.

Let U be the vertex operator subalgebra of V generated by V2. Then U is a highest
weight W (2, 2)-module with highest weight vector 1 such that Wn acts as W (n) and
Ln acts as L(n) for all n ∈ Z. Since L(−1)1 = W (−1)1 = 0, we see that U is a
quotient of V̄ (c, 0, 0). From Theorem 2.1, V̄ (c, 0, 0) = L(c, 0, 0) is irreducible and U
is isomorphic to L(1, 0, 0). Furthermore,

chqU = q−1/24
∏

n>1(1 − qn)2 .
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Note that chqU ≤ chq V, that is, the coefficients of chqU are less than or equal to the
corresponding coefficients of chq V . Note that if |q| < 1, chqU and chq V are convergent.
So as functions we also have chqU ≤ chq V for q ∈ (0, 1). Then η(q)chqU ≤ η(q)chq V
as functions for q ∈ (0, 1) since η(q) is positive. By Lemma 4.1, the coefficients of
η(q)chq V satisfy the polynomial growth condition. On the other hand, the coefficients
of η(q)chqU = 1−q∏

n>1(1−qn)
grow faster than any polynomial in n. Thus η(q)chqU

should be much bigger than η(q)chq V as q goes close to 1. This is a contradiction. �	
Again from the proof of Theorem 3.1, we can write ω = ω1 + ω2 so that ω1/2 and

ω2/2 are the primitive idempotents. The ω1 and ω2 are Virasoro vectors with central
charges c1 and c2 such that c1 + c2 = 1. Let Li (n) be as in Sect. 3. Then we have two
commutative Virasoro algebras:

[Li (m), L j (n)] = δi, j

(

(m − n)Li (m + n) +
m3 − m

12
δm+n,0ci

)

for m, n ∈ Z and i, j = 1, 2. As before we denote by U the vertex operator subalgebra
of V generated by V2. Then U = 〈ω1〉 ⊗ 〈ω2〉, where 〈ωi 〉 is the vertex operator subal-
gebra of V generated by ωi (with a different Virasoro vector). Then 〈ωi 〉 is a quotient
of V̄ (ci , 0).

Lemma 4.4. If c �= 0, then the coefficients of chq L(c, 0) does not satisfy the polynomial
growth condition.

Proof. If c �= cs,t for any coprime integers 1 < s < t , then chq L(c, 0) = q−c/24
∏

n>1(1−qn)

by Proposition 4.2 and the result is clear. We now assume that c = cs,t for some s, t.
Suppose that the coefficients of

chq L(cs,t , 0) = q−c/24
∑

n≥0

anqn

satisfy the polynomial growth condition. Then there exists a positive integer A and α

such that an ≤ Anα for all n ≥ 0.

Let m be a positive integer such that m ≥ α. Then

1

(1 − q)m+1 =
∑

n≥0

(−m − 1

n

)

(−1)nqn,

where
(−m − 1

n

)

= (−m − 1)(−m − 2) · · · (−m − n)

n! =
(

m + n

m

)

(−1)n .

Thus

1

(1 − q)m+1 =
∑

n≥0

(
m + n

m

)

qn .

Since
(m+n

m

)
is greater than nm

m! we see that

qc/24chq L(cs,t , 0) ≤ m!A 1

(1 − q)m+1

as formal power series.
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We next prove that there exists a positive integer k such that kcs,t �= cs1,t1 for any
coprime integers 1 < s1 < t1. To see this we need to examine the equation

1 − 6(s1 − t1)2

s1t1
= k

(

1 − 6(s − t)2

st

)

which is equivalent to

st (13s1t1 − 6s2
1 − 6t2

1 ) = s1t1k(13st − 6s2 − 6t2).

Then both s1 and t1 are factors of 6st. So there are only finitely many s1, t1 satisfy this
equation. This implies that such k exists.

Consider a vertex operator algebra L(c, 0)⊗k which contains the vertex operator
subalgebra V̄ (kc, 0) = L(kc, 0) as kc �= cs1,t1 for any s1, t1. So

qkc/24chq L(kc, 0)≤qkc/24(chq L(c, 0)⊗k)=qkc/24(chq L(c, 0))k ≤(m!A)k 1

(1−q)(m+1)k

and the coefficients of qkc/24chq L(kc, 0) satisfy the polynomial growth condition.
On the other hand we know from Proposition 4.2 that

qkc/24chq L(kc, 0) = 1
∏

n>1(1 − qn)

whose coefficients satisfy the exponential growth condition. This is a contradiction. The
proof is complete. �	
Lemma 4.5. Let ωi and ci be as before. Then ci = csi ,ti for some coprime integers
1 < si < ti and 〈ωi 〉 is isomorphic to L(csi ,ti , 0) for i = 1, 2.

Proof. Recall that U is the vertex operator subalgebra of V generated by V2. First we
note that as formal power series, chqU ≤ chq V . Let Ui = 〈ωi 〉. Then U = U 1 ⊗ U 2

and chqU 1chqU 2 ≤ chq V . Since chqUi ≥ chq L(ci , 0) for i = 1, 2 we have

η(q)chq L(c1, 0)chq L(c2, 0) ≤ η(q)chqU 1chqU 2 ≤ η(q)chq V

as functions for q ∈ (0, 1).

Assume that chqU 1 = q−c1/24
∏

n>1(1−qn)
. Then

η(q)chqU ≥ η(q)
q−c1/24

∏
n>1(1 − qn)

chq L(c2, 0)

as functions for q ∈ (0, 1). That is,

η(q)chqU ≥ qc2/24(1 − q)chq L(c2, 0).

From the proof of Lemma 4.4 we see that if the coefficients of (1 − q)chq L(c2, 0) sat-
isfy the polynomial growth condition, so does the coefficients of chq L(c2, 0). But this is
impossible by Lemma 4.4. Thus the coefficients of (1−q)chq L(c2, 0) does not satisfy the
polynomial growth condition. On the other hand, qc2/24(1−q)chq L(c2, 0) ≤ η(q)chq V
as functions for q ∈ (0, 1) and the coefficients of η(q)chq V satisfy the polynomial
growth condition. This is a contradiction.

By Proposition 4.2 we see immediately that ci = csi ,ti for some si , ti and 〈ωi 〉 is
isomorphic to L(csi ,ti ,) for i = 1, 2. �	
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Lemma 4.6. Let ci = csi ,ti as in Lemma 4.5. Then both c1 and c2 are 1/2.

Proof. We need to solve the equation

1 − 6(s1 − t1)2

s1t1
+ 1 − 6(s2 − t2)2

s2t2
= 1

for two pairs of coprime integers 1 < si < ti . That is,

s1

t1
+

t1
s1

+
s2

t2
+

t2
s2

= 25

6
.

Let x = s1
t1

and y = s2
t2

. Then the equation becomes

x +
1

x
+ y +

1

y
= 25

6
.

The following argument using the elliptic curve is due to N. Elkies and we thank him
and A. Ryba for communicating the solution to us. The equation x + 1

x + y + 1
y = 25

6
gives an elliptic curve. Multiply the equation by 6xy to get

E : 6xy2 + 6x2 y + 6x + 6y = 25xy.

Putting one of the Weierstrass points at infinity yields the curve

Y 2 + XY = X3 − 1070X + 7812

which has rank 0 over Q. So every rational points in E is a torsion point. So E/Q has at
most 16 torsion points. Note that the curve has 8 obvious symmetries, generated by the
involutions taking (x, y) to (1/x, y), (x, 1/y), and (y, x). Here are the rational points
in E : four from ( 3

4 , 3
4 ), four from (1, 2

3 ), four from (−1, 6) and four from infinity.
Since we assume that 1 < si < ti and si , ti are coprime, we immediately see that the

only solution interesting to us is ( 3
4 , 3

4 ). This is, ci = 1
2 for i = 1, 2. �	

Here is a characterization of L(1/2, 0) ⊗ L(1/2, 0).

Theorem 4.7. If V is a simple, rational and C2-cofinite vertex operator algebra of
the moonshine type such that c = c̃ = 1 and dim V2 = 2, then V is isomorphic to
L(1/2, 0) ⊗ L(1/2, 0).

Proof. By Lemmas 4.5 and 4.6, the vertex operator subalgebra U generated by V2 of V
is isomorphic to L( 1

2 , 0) ⊗ L( 1
2 , 0) which is rational and has 9 inequivalent irreducible

modules L( 1
2 , h1) ⊗ L( 1

2 , h2) for hi ∈ {0, 1
2 , 1

16 } (see [DMZ,W]).Thus V is a direct
sum of irreducible L( 1

2 , 0) ⊗ L( 1
2 , 0)-modules. Note that h1 + h2 ∈ Z if and only if

h1 = h2 = 0 or h1 = h2 = 1
2 . So only L( 1

2 , 0) ⊗ L( 1
2 , 0) and L( 1

2 , 1
2 ) ⊗ L( 1

2 , 1
2 ) can

possibly occur in V as L( 1
2 , 0) ⊗ L( 1

2 , 0)-modules. Since dim V0 = 1 and V1 = 0, we
immediately see that V is isomorphic to L( 1

2 , 0) ⊗ L( 1
2 , 0). �	
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We certainly believe that Theorem 4.7 is false if we do not assume c = c̃. One can
construct a counter example involving the permutation orbifolds [BDM] modulo the
following rational orbifold theory conjecture: If V is a rational vertex operator algebra
and A is a finite automorphism group of V then the fixed point vertex operator sub-
algebra V A is rational. Let U = L(c3,5, 0)⊗5 and W = L(1/2, 0)⊗8. Then both U
and V are rational vertex operator algebras with central charges −3 and 4 respectively.
Let G be the cyclic group generated by the permutation (1, 2, 3, 4, 5) and H the cyclic
group generated by (1, 2, 3, 4, 5, 6, 7, 8). Then G and H act obviously on U and W as
automorphisms. The tensor product U G ⊗ W H is a counter example.

We end this paper with the following conjecture which strengthens Theorem 4.7.

Conjecture 4.8. If V is a simple, rational and C2 cofinite vertex operator algebra of the
moonshine type with c = c̃ = 1 and dim V2 > 1, then V is isomorphic to L(1/2, 0) ⊗
L(1/2, 0).

We have already mentioned that Theorem 4.7 is false without assuming c = c̃. This
implies that Conjecture 4.8 is false without assuming c = c̃. Here we give a counter
example to the conjecture without using the rational orbifold theory conjecture. Let
U = L(c3,5, 0)⊗5 and W = L(1/2, 0)⊗8 as in the counter example before the conjec-
ture. Then V = U ⊗W is a rational, C2-cofinite vertex operator algebra of the moonshine
type and with c = 1, c̃ = 7 (cf. [DM1]). It is clear that dim V2 = 13, and V is not
isomorphic to L(1/2, 0) ⊗ L(1/2, 0).

It is essentially proved in [K] that if V is a rational vertex operator algebra such
that

∑
i |χi (q)|2 is modular invariant where χi (q) are the q-character of the irreducible

V -modules, then the q-character of V is equal to the character of one of the following
vertex operator algebras VL , V +

L and V G
Zα

, where L is any positive definite even lattice
of rank 1, V +

L is the fixed points of the automorphism of V lifted from the −1 isome-
try of L , and Zα is the root lattice of type A1 such that (α, α) = 2 and G is a finite
subgroup of SO(3) isomorphic to A4, S4 or A5. It is widely believed that VL , V +

L and
V G

Zα
should give a complete list of simple and rational vertex operator algebras with

c = c̃ = 1. It is clear from the construction that if V is one of these vertex operator
algebras of the moonshine type then dim V2 = 2. This should be very strong evidence
for Conjecture 4.8. We remark that the assumption that

∑
i |χi (q)|2 is modular invariant

in [K] is still an open problem in mathematics.
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