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Abstract: For a (co)monad Tl on a category M, an object X in M, and a functor
� : M → C, there is a (co)simplex Z∗ := �Tl

∗+1 X in C. The aim of this paper is to
find criteria for para-(co)cyclicity of Z∗. Our construction is built on a distributive law
of Tl with a second (co)monad Tr on M, a natural transformation i : �Tl → �Tr , and
a morphismw : Tr X → Tl X in M. The (symmetrical) relations i andw need to satisfy
are categorical versions of Kaygun’s axioms of a transposition map. Motivation comes
from the observation that a (co)ring T over an algebra R determines a distributive law of
two (co)monads Tl = T ⊗R (−) and Tr = (−)⊗R T on the category of R-bimodules.
The functor � can be chosen such that Zn = T ̂⊗R · · · ̂⊗R T ̂⊗R X is the cyclic R-module
tensor product. A natural transformation i : T ̂⊗R(−) → (−)̂⊗R T is given by the flip
map and a morphismw : X ⊗R T → T ⊗R X is constructed whenever T is a (co)module
algebra or coring of an R-bialgebroid. The notion of a stable anti-Yetter-Drinfel’d module
over certain bialgebroids, the so-called ×R-Hopf algebras, is introduced. In the particular
example when T is a module coring of a ×R-Hopf algebra B and X is a stable anti-Yetter-
Drinfel’d B-module, the para-cyclic object Z∗ is shown to project to a cyclic structure
on T ⊗R ∗+1 ⊗B X . For a B-Galois extension S ⊆ T , a stable anti-Yetter-Drinfel’d
B-module TS is constructed, such that the cyclic objects B⊗R ∗+1 ⊗B TS and T ̂⊗S ∗+1

are isomorphic. This extends a theorem by Jara and Ştefan for Hopf Galois extensions.
As an application, we compute Hochschild and cyclic homologies of a groupoid with
coefficients in a stable anti-Yetter-Drinfel’d module, by tracing it back to the group
case. In particular, we obtain explicit expressions for (coinciding relative and ordinary)
Hochschild and cyclic homologies of a groupoid. The latter extends results of Burghelea
on cyclic homology of groups.
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Introduction

Cyclic cohomology of Hopf algebras originates from the work [CM98] of Connes and
Moscovici on the index theory of transversally elliptic operators. Their local index
formula in [CM95] gives a generalization of the Chern character to non-commutative
geometry. In order to give a geometrical interpretation of the non-commutative Chern
character in terms of non-commutative foliations, in [CM98] a cocyclic structure was
constructed on a cosimplex Z∗

C M = H⊗∗, associated to the coalgebra underlying a Hopf
algebra H over a field K. The cocyclic operator was given in terms of a so-called modular
pair in involution.

In the subsequent years the Connes-Moscovici cocyclic module was placed in a
broader and broader context. In [KR03] (see also [HKRS2]) to any (co)module algebra
T of a Hopf algebra H , and any H -(co)module X , there was associated a para-cyclic
module with components T ⊗∗+1 ⊗ X . Dually, for any (co)module coalgebra T of a Hopf
algebra H , and any H -(co)module X , there is a para-cocyclic module with components
T ⊗∗+1 ⊗ X . The Connes-Moscovici cosimplex Z∗

C M turns out to be isomorphic to a
quotient of the para-cocyclic module associated to the regular module coalgebra T := H
and an H -comodule defined on K. For bialgebras, the Connes-Moscovici construction
was generalized in [Kay05].

In the papers [HKRS1] and [JŞ], a modular pair in involution was proven to be
equivalent to a stable anti-Yetter-Drinfel’d module structure on the ground field K. In
[HKRS2], the para-cocyclic module T ⊗∗+1 ⊗ X , associated to an H -module coalgebra
T and a stable anti-Yetter-Drinfel’d H -module X , was shown to project to a cocyclic
object whose components are the H -module tensor products T ⊗∗+1 ⊗H X . The way
in which the para-cocyclic object H⊗∗+1 projects to the Connes-Moscovici cosimplex
Z∗

C M , is an example of this scenario. Dually, the para-cyclic module, associated to an
H -comodule algebra, was proven to have a cyclic submodule.

In the spirit of [JŞ], one can follow a dual approach. That is, para-cocyclic modules
can be constructed for (co)module algebras of Hopf algebras, and para-cyclic modules
for (co)module coalgebras, in both cases with coefficients in H -(co)modules. Taking
coefficients in a stable anti-Yetter-Drinfel’d module, it was shown in [JŞ] that in this
case the para-cyclic object associated to a module coalgebra possesses a cyclic quotient.
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In [KR05] an isomorphism was proven between the cyclic quotient of the para-cyclic
object in [JŞ] of H as an H -module coalgebra on one hand, and the cyclic subobject of
the para-cyclic object in [HKRS2] of H as an H -comodule algebra on the other.

Constructions in Sect. 2 of the current paper follow the root in [JŞ]. Since this fra-
mework is dual to that suggested in [HKRS2] (cf. also [Kay06]), some might like to
call it a dual Hopf (co)cyclic theory. However, we do not use this somewhat involved
terminology in the paper, but remind the reader of the difference between the two possible
dual approaches.

In [Kay06] Kaygun proposed a unifying approach to the para-(co)cyclic objects
corresponding to a (co)module (co)algebra of a Hopf algebra. Starting with a (co)algebra
T and an object X in a symmetric monoidal category S, he introduced the notion of a
transposition map. It is a morphism w : X ⊗ T → T ⊗ X in S, satisfying conditions
reminiscent to half of the axioms of a distributive law in [Be]. Any transposition map w
was shown to determine a para-(co)cyclic structure on the (co)simplex T ⊗∗+1 ⊗ X in S.
In particular, canonical transposition maps were constructed for (co)module (co)algebras
T and (co)modules X of a bialgebra.

Connes and Moscovici’s index theory of transversally elliptic operators lead beyond
cyclic homology of Hopf algebras. In dealing with the general, non-flat case, in [CM01]
certain bialgebroids (in fact ×R-Hopf algebras) arose naturally. Bialgebroids can be
thought of as a generalization of bialgebras to a non-commutative base algebra R, while
×R-Hopf algebras generalize Hopf algebras. There are a few papers in the literature,
e.g. [KR04] and [Ra], attempting to extend Hopf cyclic theory to non-commutative base
algebras. However, an understanding of the subject, comparable to that in the classical
case of a commutative base ring (or field), is missing yet. The aim of the current paper
is to give a universal construction of para-(co)cyclic (co)simplices, including examples
coming from (co)module algebras and (co)module corings for bialgebroids.

When replacing bialgebras over a commutative ring K by bialgebroids over a non-
commutative K-algebra R, the monoidal category of K-modules becomes replaced by the
monoidal category of R-bimodules. Indeed, (co)module algebras of an R-bialgebroid
are in particular algebras, and (co)module corings are coalgebras, in the category of
R-bimodules. The main difference is that the category of K-modules is symmetric. In
contrast, the category of R-bimodules is not even braided in general. Hence Kaygun’s ele-
gant theory [Kay06], formulated in a symmetric monoidal category S, is not applicable.

Our key observation is that the role the symmetry plays in Kaygun’s work is that
it defines a compatible natural transformation i between the two (co)monads T ⊗ (−)
and (−)⊗ T on the symmetric monoidal category S, induced by a (co)algebra T in S.
Note that these (co)monads on S are connected by a trivial distributive law. Guided by
this observation, in Sect. 1 we start with a distributive law of two (co)monads Tl and Tr
on any category M. In addition, we allow for the presence of a functor � : M → C
(it is the identity functor on S in [Kay06]). Then, for any object X in M, there is a
(co)simplex in C, given at degree n by �Tl

n+1 X . In Sects. 1.C and 1.E we show that it is
para-(co)cyclic provided that there exist a natural transformation i : �Tl → �Tr and a
morphism Tr X → Tl X in M, satisfying symmetrical conditions generalizing Kaygun’s
axioms of a transposition map. Examples of this situation are collected in Sect. 1.D.
Among other (classical) examples, we show that Škoda’s functorial construction in [Šk]
of a para-cyclic object in the category of endofunctors, Majid and Akrami’s para-cyclic
modules associated to a ribbon algebra in [AM], and Rangipour’s cyclic module in
[Ra] determined by a coring, fit our framework. It is discussed in Sects. 2.A and 2.B
how the general results in Sects. 1.C and 1.E cover the particular cases when the two
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(co)monads Tl = T ⊗R (−) and Tr = (−)⊗R T are induced by a (co)module algebra or
(co)module coring T of an R-bialgebroid B, the functor � is defined via the coequalizer
of the R-actions in a bimodule, and X is a B-(co)module. The components of the resulting
para-(co)cyclic module are cyclic R-module tensor products T ̂⊗R · · · ̂⊗R T ̂⊗R X . In this
way we obtain examples which extend both some para-(co)cyclic objects in [Kay06] and
[HKRS2] and their cyclic duals.

By the above procedure, we associate a para-cyclic object in particular to a module
coring C and a comodule X of an R-bialgebroid B. Following [JŞ], in Sect. 2.C we look
for situations in which it projects to the B-module tensor product

(

C ⊗R · · ·⊗R C
)⊗B X .

Restricting at this point our study to ×R-Hopf algebras B, we define stable anti-Yetter-
Drinfel’d modules for B. In parallel to the case of Hopf algebras [JŞ, Theorem 4.13],
[HKRS2, Theorem 2.1], we prove cyclicity of the simplex

(

C ⊗R · · · ⊗R C
) ⊗B X ,

whenever X is a stable anti-Yetter-Drinfel’d module.
The simplest example of a cyclic simplex is associated to an algebra extension S ⊆ T .

Its components are given by the n + 1 fold cyclic tensor product T ̂⊗S n+1; face and
degeneracy maps are determined by the algebra structure of T and the cyclic map is
given by the cyclic permutation of the tensor factors. In Sect. 2.D, for a Galois extension
S ⊆ T by a ×R-Hopf algebra B, we construct a stable anti-Yetter-Drinfel’d module
TS := T/{ s · t − t · s | s ∈ S, t ∈ T }. We prove that the cyclic simplices T ̂⊗S n+1 and
B⊗R n+1 ⊗B TS are isomorphic. This extends [JŞ, Theorem 3.7].

A most fundamental class of examples of bialgebroids (in fact ×R Hopf algebras)
is given by algebras (over fields), generated by a groupoid of finitely many objects.
As an application of our abstract theory, we compute explicitly the relative Hochschild
and cyclic homologies of such a groupoid, with coefficients in a stable anti-Yetter-
Drinfel’d module. By our results, any Galois extension by the groupoid provides us with
a stable anti-Yetter-Drinfel’d module. In particular, the groupoid algebra B is a Galois
extension of its base algebra R. Applying the isomorphism of the simplices B̂⊗R n+1 and
B⊗R n+1 ⊗B BR , we obtain the R-relative cyclic homology of B. Since R is a separable
algebra, it is equal to ordinary cyclic homology of B, hence our results extend those by
Burghelea on the cyclic homology of groups [Burg]. Similar formulae were obtained by
Crainic for cyclic homology of étale groupoids [Cra]. Observe that any groupoid (with
an arbitrary set of objects) can be obtained as a direct limit of groupoids with finite sets
of objects. Certainly, the algebra generated by a groupoid with infinitely many objects
is no longer unital. However, one can still consider its cyclic homology, as a homology
of Connes’ complex, associated to a presimplicial object. Since the homology functor
commutes with direct limits, we can extend our formula of cyclic homology to arbitrary
groupoids.

Throughout the paper K denotes a commutative and associative unital ring. The term
K-algebra means an associative and unital algebra over K.

1. The (Co)cyclic Object Associated to a Transposition Map

In this first section we establish a general categorical framework – in terms of admissible
septuples and their transposition maps – to produce para-cocyclic, and dually, para-cyclic
objects.

1.A. Notation and conventions. In the 2-category CAT we denote horizontal composi-
tion (of functors) by juxtaposition, while ◦ is used for vertical composition (of natural
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Diagrammatic representation of morphisms in a category

transformations). That is, for two functors F : C → C′, G : C′ → C′′ and an object X in
C, instead of G(F(X)) we write G F X . For two natural transformations µ : F → F ′
and ν : G → G ′ we write G ′µX ◦ν F X : G F X → G ′ F ′ X instead of G ′(µX )◦ν F(X).
In equalities of natural transformations we shall omit the object X in our formulae.

Inspired by the diagrammatic computation in a 2-category (in particular CAT),
we shall use a graphical representation of morphisms in a category. For functors
F1, . . . , Fn,G1, . . . ,Gm , which can be composed to F1 F2 · · · Fn : D1 → C and
G1G2 · · · Gm : D2 → C, and objects X in D1 and Y in D2, a morphism f : F1 F2 · · ·
Fn X → G1G2 · · · GmY will be represented vertically, with the domain up, as in
Fig. 1(a). Furthermore, for a functor T : C → C′, the morphism T f will be drawn as in
(b). Keeping the notation from the first paragraph of this section, the picture representing
µG X is shown in diagram (c). The composition g ◦ f of the morphisms f : X → Y and
g : Y → Z will be represented as in diagram (d). For the multiplication mT and the unit
uT of a monad T on C (see Definition 1.1), and an object X in C, to draw mT X and uT X
we shall use the diagrams (e) and (f), while for a distributive law t : RT → T R (see
Definition 1.3) t X will be drawn as in the picture (g). If t is invertible, the representa-
tion of t−1 X is shown in diagram (h). For simplifying diagrams containing only natural
transformations, we shall always omit the last string that corresponds to an object in the
category. That is, we work with diagrams in CAT whenever it is possible.

We shall use the following method to perform computations with such diagrams. In
view of associativity of composition, any diagram, representing a well-defined compo-
sition of morphisms, can be thought of as a tower with several layers. Any part of the
diagram, corresponding to a layer, can be substituted with any other equivalent represen-
tation of it. Usually, equivalent representations are obtained from formulas that define
the notions that we deal with, or equations that have been previously proved.

1.B. Monads and distributive laws. Monads represent the main ingredient in our
approach to cyclic (co)homology. The definition of monads traces back to Godement’s
book [Go], where they are called “standard constructions”. In the literature they are also
called “triples”, see for example [EM].

Definition 1.1. A monad on a category C is a triple (T ,mT , uT ), where T : C → C is
a functor, mT : T 2 → T and uT : I dC → T are natural transformations such that the
first two diagrams in Fig. 2, expressing associativity and unitality, are commutative. We
call mT and uT the multiplication and the unit of the monad T , respectively.

For two monads (T ,mT , uT ) and (T ′,mT ′ , uT ′ ) on C, we say that a natural trans-
formation ϕ : T → T ′ is a morphism of monads if the last two diagrams in Fig. 2 are
commutative.
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Fig. 2. Monads and morphisms of monads

Example 1.2. Let (C,⊗, a, l, r, 1) be a monoidal category with unit object 1, associa-
tivity constraint a and unit constraints l, r . For details about monoidal categories the
reader is referred to [Kass, Chap. XI]. An algebra in C is a triple (T,mT , uT ) such that
mT : T ⊗ T → T defines an associative multiplication on T with unit uT : 1 → T . To
such an algebra one can associate two monads Tl := T ⊗ (−) and Tr := (−)⊗ T on C.
The multiplication mTl and the unit uTl of Tl are given by

mTl X := (mT ⊗ X) ◦ a−1
T,T,X and uTl X := (uT ⊗ X) ◦ l−1

X ,

for every X in C. Analogously, for X in C, mTr X and uTr X are defined by

mTr X := (X ⊗ mT ) ◦ aX,T,T and uTr X := (X ⊗ uT ) ◦ r−1
X .

A homomorphismϕ : T → T ′ of algebras in C induces monad morphisms ϕl : Tl → T ′
l

and ϕr : Tr → T ′
r . For example, ϕl X := ϕ ⊗ idX , for any object X in C.

A particular case of these constructions, which is very important for our work, is
obtained when we take C to be the category R-Mod-R of bimodules over an ordinary
K-algebra R (i.e. R is an algebra in the category of K-modules, where K is a commutative
ring). The category R-Mod-R is monoidal with respect to the R-module tensor product
⊗R . The unit object is R. An algebra in R-Mod-R is called an R-ring. R-rings (T,mT , ϕ)

are in bijective correspondence with K-algebra maps ϕ : R → T . Indeed, for an algebra
(T,mT , ϕ) in R-Mod-R, composition of the canonical epimorphism T ⊗K T → T ⊗R T
with mT : T ⊗R T → T defines a K-algebra structure on T such that ϕ is a K-algebra
homomorphism. Conversely, via a K-algebra homomorphism ϕ : R → T , T becomes
an R-bimodule. Multiplication of T induces a morphism mT from T ⊗R T to T , which
makes T an associative algebra in R-Mod-R. The unit of T is ϕ. (With a slight abuse of
notation, we denote both multiplication maps T ⊗R T → T and T ⊗K T → T by the
same symbol mT .) Consequently, a K-algebra homomorphism ϕ : R → T defines two
monads T ⊗R (−) and (−)⊗R T on R-Mod-R.

Distributive laws were introduced by J. Beck [Be]. They give a way to compose two
monads in order to obtain a monad.

Definition 1.3. A distributive law between two monads (R,mR, uR) and (T ,mT , uT )
is a natural transformation t : RT → T R satisfying the four conditions in Fig. 3.

Remark 1.4. Since we are using for the first time the diagrammatic representation of
morphisms, let us write out explicitly the first and the third relations in Fig. 3. They read
as

t ◦ mRT = T mR ◦ t R ◦ Rt, t ◦ uRT = T uR.
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Fig. 3. The definition of distributive laws

Example 1.5. Let T be an algebra in a monoidal category as in Example 1.2. Keeping
the notation from Example 1.2, the natural transformation t : Tr Tl → Tl Tr , given by

t X := aT,X,T (1.1)

for any object X in C, is a distributive law. Note that the first equality in Fig. 3 fol-
lows by the Pentagon Axiom [Kass, p. 282, Diagram (2.6)], applied to the quadruple
(T, X, T, T ). Similarly, by applying the Pentagon Axiom for (T, T, X, T ) we deduce
the second equality in the definition of distributive laws. The fourth equality in Fig. 3
is a consequence of l X⊗T ◦ a1,X,T = l X ⊗ T , see [Kass, Lemma XI.2.2]. The other
relation in the above cited lemma can be used to prove that the third equality in Fig. 3
holds too.

Example 1.6. LetC be a braided monoidal category with braiding cX,Y : X⊗Y → Y ⊗X .
For the definition and properties of braided monoidal categories see [Kass, Chap. XIII].
If R and T are algebras in C then

t X := aT,R,X ◦ (cR,T ⊗ X) ◦ a−1
R,T,X

defines a distributive law t : Rl Tl → Tl Rl , where Rl and Tl are constructed as in
Example 1.2. Obviously, t−1 : Tl Rl → Rl Tl is also a distributive law.

1.C. Admissible septuples and transposition maps. The main result. In this section we
introduce admissible septuples and transposition morphisms of them. We show that to
these data one associates functorially para-cocyclic objects. Our aim is twofold. On one
hand, in this way we obtain a very general but at the same time technically very simple
framework. In particular, it can be used to associate para-cocyclic objects to (co)module
algebras of bialgebroids, cf. Sect. 2.A. On the other hand, the resulting setting will be
easily dualized to describe in Sect. 2.B the situation dual to that in Sect. 2.A, i.e. the
(para-)cyclic objects associated to (co)module corings of bialgebroids.

Definition 1.7. An admissible septuple S := (M, C, Tl , Tr ,�, t, i) is defined by the
following data:

• Two categories M and C;
• Two monads Tl and Tr on M;
• A functor � : M → C;
• A distributive law t : Tr Tl → Tl Tr ;
• A natural transformation i : �Tl → � Tr .
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These data are assumed to satisfy the relations

i ◦ � uTl = � uTr and i ◦ �mTl = �mTr ◦ i Tr ◦ �t ◦ i Tl . (1.2)

Examples of admissible septuples will be given in Sect. 1.D, where also several
applications of the main result of this section, Theorem 1.10, will be indicated.

By [We, p. 281], to every monad Tl : M → M and object X in M one can associate
a cosimplicial object of components Tl

n+1 X in M. Thus in particular an admissible
septuple S in Definition 1.7 determines a cosimplicial object in M. It can be transported
to C via the functor � : M → C in Definition 1.7. The resulting cosimplex in C
will be denoted by Z∗(S, X). By construction, Zn(S, X) = �Tl

n+1 X and, for every
k ∈ {0, . . . , n}, the coface maps dk : �Tl

n X → �Tl
n+1 X and the codegeneracy maps

sk : �Tl
n+2 X → �Tl

n+1 X are given by

dk := �Tl
k uTl Tl

n−k X, sk := �Tl
k mTl Tl

n−k X. (1.3)

Our aim is to construct a category WS such that Z∗(S,−) can be regarded as a functor
from WS to the category of para-cocyclic objects in C. Observe that, for an admissible
septuple S in Definition 1.7, the distributive law t is lifted to a natural transformation
tn : �Tr Tl

n → �Tl
n Tr ,

tn := �Tl
n−1 t ◦ �Tl

n−2 tTl ◦ · · · ◦ �Tl tTl
n−2 ◦ �tTl

n−1. (1.4)

Definition 1.8. Let S := (M, C, Tl , Tr ,�, t, i) be an admissible septuple. We say that
an arrow w : Tr X → Tl X in M is a transposition morphism with respect to S if

w ◦ uTr X = uTl X and w ◦ mTr X = mTl X ◦ Tlw ◦ t X ◦ Trw. (1.5)

The category of pairs (X, w), with w : Tr X → Tl X a transposition morphism of S,
will be denoted by WS . A morphism from (X, w) to (X ′, w′) is an arrow f : X → X ′
in M such that Tl f ◦ w = w′ ◦ Tr f .

Morphismsw : Tr X → Tl X satisfying (1.5), for a distributive law t : Tr Tl → Tl Tr ,
were termed t-algebras in [Burr]. Based on [Burr, Prop. I.1.1], transposition morphisms
can be characterized as in Proposition 1.9 below. Recall that a module of a monad
(T, mT , uT ) on a category M is a pair (Y, �), consisting of an object Y and a morphism
� : TY → Y in M, such that �◦T� = �◦mT Y and �◦uT Y = IdY (i.e. � is associative
and unital). A morphism of T -modules (Y, �) → (Y ′, �′) is a morphism f : Y → Y ′
in M, such that f ◦ � = �′ ◦ T f .

Proposition 1.9. Consider an admissible septuple S := (M, C, Tl , Tr ,�, t, i). There
is a bijective correspondence between objects (X, w) in the category WS and
Tr -modules of the form (Tl X, �), satisfying

mTl X ◦ Tl� ◦ tTl X = � ◦ Tr mTl X. (1.6)

Moreover, a morphism f : X → X ′ in M is a morphism in WS if and only if Tl f is a
Tr -module morphism.

Proof. Similarly to the proof of [Burr, Prop. I.1.1] one checks that, for an object (X, w)
in WS , an associative and unital Tr -action on Tl X satisfying (1.6) is given by �w :=
mTl X ◦ Tlw ◦ t X : Tr Tl X → Tl X . Conversely, note that for a Tr -module (Tl X, �),
(1.6) is equivalent to � = mTl X ◦ Tl� ◦ Tl Tr uTl X ◦ t X . With this identity at hand,
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the pair (X, w� := � ◦ Tr uTl X) is checked to be an object in WS . A straightforward
computation shows that the two constructions are mutual inverses. A morphism Tl f is
a morphism of Tr -modules (Tl X, �w) → (Tl X ′, �w′) if

mTl X ′ ◦ Tlw
′ ◦ Tl Tr f ◦ t X = mTl X ′ ◦ Tl Tl f ◦ Tlw ◦ t X. (1.7)

If f is a morphism in WS then (1.7) obviously holds. In order to prove the converse
implication, compose both sides of (1.7) with Tr uTl X on the right. �	
Theorem 1.10. Consider an admissible septuple S and a transposition mapw : Tr X →
Tl X in WS . The cosimplicial object Z∗(S, X) is para-cocyclic with respect to

wn := �Tl
nw ◦ tn X ◦ i Tl

n X. (1.8)

We shall denote this para-cocyclic object by Z∗(S, w). For a morphism f : (X, w) →
(X ′, w′) in WS , the morphisms �Tl

n+1 f : Zn(S, w) → Zn(S, w′) determine a
morphism of para-cocyclic objects.

Proof. In Fig. 4 we show that the morphism (1.8) is compatible with the coface maps,
that is

wn ◦ d0 = dn and wn ◦ dk = dk−1 ◦ wn−1 (1.9)

for any k ∈ {1, . . . , n}. The proof of the first equation is given in three steps in the left
picture. To simplify the diagrams, we draw the n strings representing Tl

n as a black
stripe. For the first equality we used the compatibility between i and the unit of Tl , that
is the first equation in (1.2). Next we applied n times the compatibility relation between
the distributive law t and the unit of Tr , i.e. the third equality in Fig. 3. The first relation
in (1.5) implies the third equality. The second relation in (1.9) follows in a similar way,
as it is shown in the right picture in Fig. 4. Note that the leftmost black stripe represents
Tl

k−1 and the other one represents Tl
n−k . Since uTl is a natural transformation, the box

representing it can be pushed down along the string until it meets the crossing t . By the
fourth identity in Fig. 3, one can push uTl under the string in the crossing. To conclude
the proof of this equality, we use once again that uTl is a natural transformation to move
it to the bottom of the diagram.

Fig. 4. The proof of the relations (1.9)
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Fig. 5. The proof of the relations (1.10)

Next we prove that the morphism (1.8) and the codegeneracy maps are compatible
too, that is

wn ◦ s0 = sn ◦ (wn+1)
2 and wn ◦ sk = sk−1 ◦ wn+1 (1.10)

for any k ∈ {1, . . . , n}. The proof of the first relation can be found in the left picture in
Fig. 5. As before, the black stripe represents Tl

n . The morphisms corresponding to the
first two diagrams are equal in view of the second equation in (1.2). By applying n times
the first identity in Fig. 3, it follows that the second and the third diagrams represent the
same morphism. Taking into account the second relation in (1.5) we got the penultimate
equality, while for the last one we used that i is a natural transformation.

The other relation in (1.10) immediately follows by the second identity in Fig. 3 and
the fact mTl is natural (see the second picture in Fig. 5).

Since the coface and codegeneracy morphisms (1.3) are defined in terms of natural
transformations, the morphisms �Tl

n+1 f : Zn(S, X) → Zn(S, X ′) determine a mor-
phism Z∗(S, f ) : Z∗(S, X) → Z∗(S, X ′) of cosimplicial objects, for any morphism
f : X → X ′ in M. It follows immediately from the definition of a morphism in WS
that if f : (X, w) → (X ′, w′) is a morphism in WS then Z∗(S, f ) is a morphism of
para-cocyclic objects Z∗(S, w) → Z∗(S, w′). �	

Corollary 1.11. Let S be an admissible septuple as in Definition 1.7 and letw : Tr X →
Tl X be a transposition morphism in WS . Consider the corresponding para-cocyclic
morphism wn in (1.8). If the coequalizer

Zn(S, w)
(wn)

n+1
��

IdZn (S,w)
�� Zn(S, w) ��

̂Zn(S, w)

exists inC, for every non-negative integer n, then it defines a cocyclic cosimplex ̂Z∗(S, w).

Proof. Let k ∈ {0, . . . , n}. It follows by (1.9) that dk satisfies dk ◦(wn)
n+1 = (wn+1)

n+2◦
dk . Similarly, by (1.10), the codegeneracy morphism sk satisfies sk◦(wn)

n+1 = (wn−1)
n◦

sk . Hence dk and sk determine coface morphisms ̂dkX
and codegeneracy morphisms ŝk on

̂Zn(S, X). Together with the projection ŵn of wn onto ̂Zn(S, X) they define a cocyclic
object (̂Z ∗(S, w),̂d ∗, ŝ ∗, ŵ ∗). �	
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1.D. Examples of admissible septuples and transposition maps. Applications. In this
section we shall apply Theorem 1.10 to several examples of admissible septuples. In
this way we shall show that the most known (co)cyclic objects in the literature can be
obtained as direct applications of the result obtained in Sect. 1.C.

A functorial construction of a para-cyclic object in a category of endofunctors, of a
somewhat similar flavour to that in Theorem 1.10, was proposed in [Šk]. The following
example is its dual version.

Example 1.12. Let T = (T, m, u) be a monad on a category M and t : T T → T T be
a distributive law. Assume that t satisfies the Yang-Baxter relation

tT ◦ T t ◦ tT = T t ◦ tT ◦ T t (1.11)

of natural transformations T T T → T T T , and m ◦ t ◦ t = m. As a consequence of
(1.11), also T 0 = (T, m ◦ t, u) is a monad, and t can be regarded as a distributive
law T 0T → T T 0. Furthermore, the datum S := (M,M, T, T 0, IdM, t, IdT ) (where
IdM denotes the identity functor M → M and IdT is the identity natural transformation
T → T ) is an admissible septuple. For any object X in M, the identity morphism IdT X
is a transposition morphism. The corresponding para-cocyclic morphism is tn in (1.4).

The simplest example of an admissible septuple can be obtained by starting with a
morphism ϕ : R → T of K-algebras. As in Example 1.2, we define two monads on the
category M := R-Mod-R by Tl := T ⊗R (−) and Tr := (−)⊗R T . The category C is,
by definition, the category Mod-K of K-modules. The functor � is constructed below.

Definition 1.13. On the objects X ∈ R-Mod-R, the functor � : R-Mod-R → Mod-K
is defined as a coequalizer

X ⊗K R
x⊗r 
→x ·r ��
x⊗r 
→r ·x

�� X
pX �� �X .

For a morphism f : X → Y of R-bimodules, � f is the unique K-linear map such that
pY ◦ f = � f ◦ pX. Hence p can be interpreted as a natural epimorphism from the
forgetful functor U : R-Mod-R → Mod-K to �.

Remark 1.14. An R-bimodule X can be considered as a left or right module for the
enveloping algebra Re := R ⊗K Rop of R. In terms of the functor � in Definition 1.13,
the cyclic tensor product X̂⊗R Y of two R-bimodules X and Y is defined by X̂⊗R Y :=
�(X ⊗R Y ) ∼= X ⊗Re Y . With this interpretation in mind, the K-module �X ∼= R⊗Re X
can be seen as the cyclic tensor product of R and X . For R-bimodules X1, . . . , Xn , the
n-fold cyclic module tensor product is defined as

X1̂⊗R · · · ̂⊗R Xn := �(X1 ⊗R · · · ⊗R Xn) = (X1 ⊗R · · · ⊗R Xk)

̂⊗R (Xk+1 ⊗R · · · ⊗R Xn),

for k ∈ {1, . . . , n − 1}. It is generated by the cyclic tensor monomials x1̂⊗R · · · ̂⊗R xn .
It is well known that the symmetry cX,Y : X ⊗K Y → Y ⊗K X induces a natu-
ral isomorphism i X,Y : X̂⊗R Y ∼= Y ̂⊗R X . In particular, there is a natural isomor-
phism i X1,...,Xn : X1̂⊗R · · · ̂⊗R Xn → X2̂⊗R · · · ̂⊗R Xn̂⊗R X1, that maps a generator
x1̂⊗R · · · ̂⊗R xn to x2̂⊗R · · · ̂⊗R xn̂⊗R x1.
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As we have noticed in Example 1.5, the associativity constraint of the monoidal
category R-Mod-R defines a distributive law t : Tr Tl → Tl Tr . Thus, in this particular
case that we are investigating, t X is the canonical isomorphism (T ⊗R X) ⊗R T ∼=
T ⊗R (X ⊗R T ), for any X in R-Mod-R. Let us define i X : �Tl X → �Tr X by
i X := i T,X , as in Remark 1.14. In terms of these natural transformations we can give
one of the main examples of admissible septuples.

Proposition 1.15. Let ϕ : R → T be a morphism of K-algebras. The following data:

• the categories M := R-Mod-R and C := Mod-K,
• the monads Tl := T ⊗R (−) and Tr := (−)⊗R T ,
• the functor � : M → C, �X := R ⊗Re X,
• the natural transformation t X : (T ⊗R X)⊗R T → T ⊗R (X ⊗R T ) defined by the

canonical isomorphism;
• the natural transformation i X : T ̂⊗R X → X̂⊗R T , t̂⊗R x 
→ x̂⊗R t,

define an admissible septuple ST .

Proof. Let X be an R-bimodule. By definition,

�Tl
n X = R ⊗Re (T ⊗R n ⊗R X) ∼= T ̂⊗R n

̂⊗R X and �Tr
n X ∼= X̂⊗R T ̂⊗R n .

Via these identifications, i Tl X = i T,T,X and i Tr X = i T,X,T . So the conditions (1.2)
take the form

i T,X ◦ (ϕ̂⊗R X) = X̂⊗R ϕ and i T,X ◦ (mT ̂⊗R X) = (X̂⊗R mT ) ◦ i T ⊗R T,X ,

identities which are obvious. �	
Let ST be the admissible septuple associated to an algebra morphism ϕ : R → T . A

morphism of R-bimodules w : X ⊗R T → T ⊗R X is a transposition map in WST if,
and only if, it satisfies the conditions

w ◦ (X ⊗R ϕ) = ϕ ⊗R X and w ◦ (X ⊗R mT )

= (mT ⊗R X) ◦ (T ⊗R w) ◦ (w ⊗R T ), (1.12)

where mT : T ⊗R T → T denotes the multiplication map t ⊗R t ′ 
→ t t ′. Note in passing
the similarity of conditions (1.12) to some of those defining an entwining structure over
R. (For the definition of entwining structures see [BMa, Def. 2.1], and for a reformulation
over an arbitrary base algebra R see [BB, Sect. 2.3].) By Proposition 1.9, there is a
bijective correspondence between transposition maps w : X ⊗R T → T ⊗R X on one
hand, and right T -actions on T ⊗R X , which are left T -module maps with respect to the
left T -action t ′ · (t ⊗R x) = t ′t ⊗R x , on the other hand.

Theorem 1.16. Let ST be the admissible septuple associated to an algebra morphism
ϕ : R → T . Let w : X ⊗R T → T ⊗R X be a transposition map in WST , that is, a
morphism of R-bimodules satisfying (1.12). Then there is a cocylic quotient ̂Z∗(ST , w)of
T ̂⊗R ∗+1

̂⊗R X such that its cocyclic structure is induced by the para-cocyclic morphisms
wn : T ̂⊗R n+1

̂⊗R X → T ̂⊗R n+1
̂⊗R X,

wn :=
(

T ̂⊗R n
̂⊗R w

)

◦ i T,...,T,X , (1.13)

where i T,...,T,X is the K-linear map defined in Remark 1.14.
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Proof. Apply Theorem 1.10 for S = ST . It yields a para-cocyclic object Z∗(ST , w)

whose para-cocyclic operator is given in formula (1.8). For ST , the map tn is the identity
morphism of T ̂⊗R n+1

̂⊗R X , cf. (1.4). Hence wn satisfies (1.13). We conclude the proof
by applying Corollary 1.11. �	
Corollary 1.17. Let ST be the admissible septuple associated to a K-algebra homo-
morphism ϕ : R → T as in Proposition 1.15. Then the canonical isomorphism
wT : R ⊗R T → T ⊗R R is a transposition map in WST . The corresponding cocy-
clic cosimplex Z∗(ST , wT ) has in degree n the K-module Zn(ST , wT ) = T ̂⊗Rn+1. The
coface and codegeneracy maps are

dk(t0̂⊗R t1̂⊗R · · · ̂⊗R tn−1) = t0̂⊗R t1̂⊗R · · · ̂⊗R tk−1̂⊗R 1T ̂⊗R tk̂⊗R · · · ̂⊗R tn−1,

sk(t0̂⊗R t1̂⊗R · · · ̂⊗R tn+1) = t0̂⊗R t1̂⊗R · · · ̂⊗R tk−1̂⊗R tk tk+1̂⊗R tk+2̂⊗R · · · ̂⊗R tn+1,

where k ∈ {0, . . . , n}. The cocyclic operator is given by

wn(t0̂⊗R t1̂⊗R · · · ̂⊗R tn) = t1̂⊗R t2̂⊗R · · · ̂⊗R tn̂⊗R t0.

Remark 1.18. As uT : k → T , the unit of a K-algebra T is an algebra map, we can
apply Proposition 1.15 to get an admissible septuple SuT . Corresponding transposition
maps were also considered by Kaygun in [Kay06] to construct cocyclic K-modules.
His approach should be considered, however, dual to ours (see related remarks in the
Introduction).

It follows by an observation in [Burr, p. 11] that for the admissible septuple ST ,
associated to an algebra morphism ϕ : R → T in Proposition 1.15, any R-T bimodule
Y admits a transposition morphismwY : Y ⊗R T → T ⊗R Y , y ⊗R t 
→ 1T ⊗R y · t . In
particular, for any R-bimodule X , the pair (X ⊗R T, (uT ⊗R X ⊗R T ) ◦ (X ⊗R mT ))

is an object in WST . Corresponding para-cocyclic objects are given in the following

Example 1.19. Let ST be the admissible septuple associated to a K-algebra homo-
morphism ϕ : R → T as in Proposition 1.15. For any R-T bimodule Y , there is a
para-cocyclic cosimplex Z∗(ST , wY ), given in degree n by the K-module Zn(ST , wY ) =
T ̂⊗Rn+1

̂⊗RY . The coface and codegeneracy maps are

dk(t0̂⊗R t1̂⊗R · · · ̂⊗R tn−1̂⊗R y) = t0̂⊗R t1̂⊗R · · · ̂⊗R tk−1̂⊗R 1T

̂⊗R tk̂⊗R · · · ̂⊗R tn−1̂⊗R y,

sk(t0̂⊗R t1̂⊗R · · · ̂⊗R tn+1̂⊗R y) = t0̂⊗R t1̂⊗R · · · ̂⊗R tk−1̂⊗R tk tk+1

̂⊗R tk+2̂⊗R · · · ̂⊗R tn+1̂⊗R y,

where k ∈ {0, . . . , n}. The para-cocyclic operator is given by

wn(t0̂⊗R t1̂⊗R · · · ̂⊗R tn̂⊗R y) = t1̂⊗R · · · ̂⊗R tn̂⊗R1T ̂⊗R y · t0.

Note that wn is degenerate in the sense that the cocyclic quotient of Z∗(ST , wY ) (cf.
Corollary 1.11) is given by ̂Zn(ST , wY ) = R ̂⊗R Y , in every degree n.

Next we are going to associate an admissible septuple to every ribbon algebra. Recall
that a ribbon algebra is an algebra (T,mT , uT ) in a braided monoidal category M
together with an automorphism σ : T → T in M such that

σ ◦ uT = uT and σ ◦ mT = mT ◦ (σ ⊗ σ) ◦ c2
T,T . (1.14)
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Ribbon algebras appeared in [AM], where they are used to define cyclic homology of
quasialgebras (non-associative algebras that are obtained by a cochain twist). We shall
show that the ribbon automorphism σ can be used to define a certain admissible septuple.
For, we start with an algebra (T,mT , uT ) and an automorphism σ : T → T in a braided
monoidal category. It is easy to see that T is also an associative and unital algebra with
respect to m′

T := mT ◦ cT,T and u′
T := uT . To make a distinction between T and the

new algebra, the latter one will be denoted by T ′.
Consider the monads T ′

l and Tl on M, defined as in Example 1.2. In the following,
T ′

l will play the role of Tr in the definition of an admissible septuple. We have seen in
Example 1.6 that cT,T : T ⊗ T → T ⊗ T induces a distributive law t : T ′

l Tl → Tl T ′
l ,

t X := aT,T,X ◦ (cT,T ⊗ X) ◦ a−1
T,T,X ,

where X is an arbitrary object in M. Furthermore, we take C = M and � = IdM. By
definition, the natural transformation i : Tl → T ′

l is

i X := (σ ⊗ X).

It is not difficult to prove that the relations in (1.2) hold if, and only if, the identities in
(1.14) are satisfied. Thus, we have the following

Proposition 1.20. The algebra (T,mT , uT ) in a braided monoidal category M is a
ribbon algebra with ribbon automorphism σ if and only if ST,σ := (M,M, Tl , T ′

l ,
IdM, t, i), the septuple constructed above, is admissible.

Let (T,mT , uT ) be a ribbon algebra with ribbon automorphism σ . In view of Pro-
position 1.20, we can speak about transposition morphisms with respect to ST,σ . A
morphism w : T ⊗ X → T ⊗ X in M is a transposition map in WST,σ if, and only if

w ◦ (uT ⊗ X) = uT ⊗ X, (1.15)

w◦(mT ⊗ X) ◦ (cT,T ⊗ X) = (mT ⊗ X) ◦ (T ⊗ w) ◦ (cT,T ⊗ X) ◦ (T ⊗ w). (1.16)

Note that, in the second equation, we omitted the associativity constraints, to make
the formula as short as possible. In fact, in view of the Coherence Theorem, we can
omit bracketing in any equality involving morphisms in an arbitrary monoidal cate-
gory M. (For MacLane’s Coherence Theorem consult e.g. [MacL, Theorem 1, p. 162] or
[Mj, pp. 420–421]).

Relations (1.15) and (1.16) already appeared in the definition of braided twistors,
structures that are used to construct new associative and unitary multiplications on T ⊗T .
For details the reader is referred to [LPvO].

As an application of Theorem 1.10 we get Proposition 1.21 below. Note that, for
simplifying the formulae of coface, codegeneracy and para-cocyclic morphisms, we
omitted the associativity and unit constraints.

Proposition 1.21. Let (T,mT , uT , σ ) be a ribbon algebra in a braided monoidal cate-
gory M. For every object X in M, the sequence Zn(ST,σ , X) := T ⊗n+1 ⊗ X defines a
cosimplicial object, with respect to the coface and codegeneracy morphisms

dk := T ⊗k ⊗ uT ⊗ T ⊗n−k ⊗ X and sk := T ⊗k ⊗ mT ⊗ T ⊗n−k ⊗ X,
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where k ∈ {0, . . . , n}. Moreover, if w : T ⊗ X → T ⊗ X is a transposition map in
WST,σ , then Z∗(ST,σ , X) admits a para-cocyclic structure with respect to the operator

wn := (T ⊗n ⊗ w) ◦ (T ⊗n−1 ⊗ cT,T ⊗ X) ◦ · · · ◦
×(cT,T ⊗ T ⊗n−1 ⊗ X) ◦ (σ ⊗ T ⊗n ⊗ X).

We shall denote this para-cocyclic object by Z∗(ST,σ , w).

Remarks 1.22. (i) Every ribbon algebra (T, σ ) in a braided category (M,⊗, a, l, r, c, 1)
can be seen as an algebra with ribbon element σ−1 in the opposite braided category of
M. Recall that the opposite of the braided category M is (M,⊗, a, l, r, c̃, 1), where

c̃X,Y = c−1
Y,X .

(ii) To every (para)-cocyclic object with invertible para-cocyclic morphism, there
corresponds a (para)-cyclic object, namely its cyclic dual. Roughly speaking, the cyclic
dual is obtained by interchanging the coface and codegeneracy morphisms and inverting
the para-cocyclic operator. The interested reader can find the definition of the cyclic dual
in [KR05]. The cyclic dual of Z∗(ST,σ−1 , IdT ) is, modulo a sign in the formula of wn ,
the cyclic object in [AM, Theorem 4]. Note that, via the identification T ⊗ 1 ∼= T , the
identity morphism IdT can be regarded as a transposition map in WST,σ−1 . Thus, for
an arbitrary w in WST,σ−1 , the cyclic dual of Z∗(ST,σ−1 , w) may be interpreted as a
generalization of cyclic homology introduced in [AM].

Other examples of para-cocyclic objects, obtained as applications of Theorem 1.10,
will be discussed in Theorems 2.4 and Theorem 2.7.

1.E. The dual construction. In this section we turn to studying the situation dual to that
in Sect. 1.C, i.e. application of Theorem 1.10 to the opposite categories Cop and Mop.
By Mop we mean the category with the same classes of objects and morphisms in M,
with composition opposite to that in M. Note that any diagram expressing an identity
of morphisms in M, yields a diagram in Mop, by interchanging the top and the bottom.
In particular, a comonad on M is a monad on Mop. That is, a triple (Tl ,�Tl , εTl ),
consisting of a functor Tl : M → M and natural transformations �Tl : Tl → Tl

2 and
εTl : Tl → I dM. Their compatibility axioms are obtained by reversing the arrows in
the first two diagrams in Fig. 2. For two comonads (Tl ,�Tl , εTl ) and (Tr ,�Tr , εTr ) on
a category M, a dual distributive law is a distributive law for the monads Tl and Tr on
Mop. That is, a natural transformation t : Tl Tr → Tr Tl such that the relations encoded
in the up-down mirror images of the diagrams in Fig. 3 hold.

To dualize admissible septuples we need two comonads Tl and Tr on a category M,
a dual distributive law t : Tl Tr → Tr Tl , a covariant functor � : M → C and a natural
transformation i : � Tr → �Tl that satisfy the identities

�εTl ◦ i = �εTr and ��Tl ◦ i = i Tl ◦ �t ◦ i Tr ◦ ��Tr . (1.17)

Such a dual admissible septuple S0 = (M, C, Tl , Tr ,�, t, i) determines a simplicial
object Z∗(S0, X) in C, which in degree n is given by Zn(S0, X) = �Tl

n+1 X . Its face
maps dk : �Tl

n+1 X → �Tl
n X and degeneracy maps sk : �Tl

n+1 X → �Tl
n+2 X are

dk := �Tl
kεTl Tl

n−k X, sk := �Tl
k�Tl Tl

n−k X,



254 G. Böhm, D. Ştefan

for any k ∈ {0, . . . , n}. An arrow w : Tl X → Tr X in M is a transposition morphism
with respect to the dual admissible septuple S0 if, and only if

εTr X ◦ w = εTl X and �Tr X ◦ w = Trw ◦ t X ◦ Tlw ◦ �Tl X. (1.18)

Morphisms between transpositions maps can be easily defined by duality. The category
of transposition maps with respect to S0 will be denoted by WS0 .

Note that t can be lifted to a natural transformation tn : �Tl
n Tr → �Tr Tl

n ,

t0
n := �tTl

n−1 ◦ �Tl tTl
n−2 ◦ · · · ◦ �Tl

n−2 tTl ◦ �Tl
n−1 t. (1.19)

Now we can state, for future reference, the dual of Theorem 1.10.

Theorem 1.23. Consider a dual admissible septuple S0 as above and a transposition
morphism w : Tl X → Tr X in WS0 . The simplex Z∗(S0, X) is para-cyclic with para-
cyclic morphism

wn := i Tl
n X ◦ t0

n X ◦ �Tl
nw. (1.20)

We shall denote this cyclic object by Z∗(S0, w). For a morphism f : (X, w) → (X ′, w′)
in WS0 , the morphisms �Tl

n+1 f : Zn(S0, w) → Zn(S0, w′) determine a morphism of
para-cyclic objects.

Dually to Example 1.12, we have the following

Example 1.24. Let T = (T, �, ε) be a comonad on a category M and t : T T → T T a
dual distributive law. Assume that t satisfies the Yang-Baxter relation 1.11 and t◦ t◦� =
�. Then T 0 = (T, t ◦ �, ε) is a comonad, and t can be regarded as a distributive
law T 0T → T T 0. Furthermore, the datum S := (M,M, T 0, T , IdM, t, IdT ) is a
dual admissible septuple. For any object X in M, the identity morphism IdT X is a
transposition morphism. The corresponding para-cyclic morphism is t0

n in (1.19). Note
that if in addition t is an invertible morphism in M then its properties assumed above
are equivalent to the premises in [Šk, Theorem 1].

Let R be an algebra over a commutative ring K. It was recalled in Example 1.2
that R-Mod-R, the category of R-bimodules, is monoidal with respect to the tensor
product ⊗R and unit object R. By definition, an R-coring (C,�, ε) is a coalgebra in
(R-Mod-R,⊗R, R).

Proposition 1.25. Let (C,�C , εC ) be an R-coring. The following data:

• the category C := Mod-K of K-modules and the category M := R-Mod-R of
R-bimodules,

• the comonads Tl := C ⊗R (−) and Tr := (−)⊗R C on R-Mod-R,
• the functor � : R-Mod-R → Mod-K, M 
→ R ⊗Re M in Definition 1.13,
• the trivial dual distributive law t X : C ⊗R (X ⊗R C) → (C ⊗R X)⊗R C,
• the natural morphism i X : X̂⊗RC → Ĉ⊗R X, given by the flip map x̂⊗R c 
→

ĉ⊗R x,

define a dual admissible septuple SC .
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Proof. We have to check the identities in (1.17). Recall that, for any R-bimodule X , the
cyclic tensor product �(X) := R ⊗Re X is isomorphic to the quotient of X modulo
the K-submodule [X, R] generated by all commutators [x, r ], where x ∈ X and r ∈ R.
Hence r̂ x = x̂r , where ẑ denotes the class of z in the quotient module, for any z ∈ X .
To prove the first relation in (1.17), note that

(

�εTl ◦ i
)

(x̂⊗R c) = ε̂C (c)x = x̂εC (c) = �εTr (x̂⊗R c).

For the coproduct in the coring C we use a Sweedler type notation, namely we write
�C (c) = c(1) ⊗R c(2), with implicit summation understood. A straightforward compu-
tation yields

(

��Tl ◦ i
)

(x̂⊗R c) = c(1)̂⊗Rc(2)̂⊗R x = (

i Tl ◦ �t ◦ i Tr ◦ ��Tr

)

(x̂⊗R c),

for any x ∈ X and c ∈ C . Thus the second relation in (1.17) is also proven. �	
Let SC be the dual admissible septuple associated to an R-coring (C,�C , εC ). In

this particular case, a map of R-bimodules w : C ⊗R X → X ⊗R C is a transposition
map in WSC if, and only if,

(X ⊗R εC ) ◦ w = εC ⊗R X and (X ⊗R �C ) ◦ w
= (w ⊗R C) ◦ (C ⊗R w) ◦ (�C ⊗R X). (1.21)

Theorem 1.26. Let SC be the dual admissible septuple associated to an R-coring, as
in Proposition 1.25. Let w : C ⊗R X → X ⊗R C be a transposition map in WSC ,
that is, a morphism of R-bimodules satisfying (1.21). Then there is a cyclic subobject
̂Z∗(SC , w) of Ĉ⊗R ∗+1

̂⊗R X whose cyclic structure is a restriction of the para-cyclic
morphism wn : Ĉ⊗R n+1

̂⊗R X → Ĉ⊗R n+1
̂⊗R X,

wn := i−1
C,...,C,X ◦

(

Ĉ⊗R n
̂⊗R w

)

,

where iC,...,C,X is the isomorphism constructed in Remark 1.14.

Proof. Proceed as in the proof of Theorem 1.16. �	
Dually to Corollary 1.17, the following holds.

Corollary 1.27. Let SC be the dual admissible septuple associated to an R-coring, as
in Proposition 1.25. Then the canonical isomorphism wC : C ⊗R R → R ⊗R C is a
transposition map in WSC . The corresponding cyclic object Z∗(SC , wC ) has in degree
n the K-module Zn(SC , wC ) = Ĉ⊗Rn+1. The face and degeneracy maps are

dk(c0̂⊗R c1̂⊗R · · · ̂⊗R cn) =
{

c0̂⊗R · · · ̂⊗R εC (ck)ck+1̂⊗R · · · ̂⊗R cn, for 0 ≤ k < n,
c0̂⊗R c1̂⊗R · · · ̂⊗R cn−2̂⊗R cn−1εC (cn), for k = n,

sk(c0̂⊗R c1̂⊗R · · · ̂⊗Rcn) = c0̂⊗R · · · ̂⊗R ck−1̂⊗R �C (ck)̂⊗R ck+1̂⊗R

· · · ̂⊗R cn, for 0 ≤ k ≤ n.

The cyclic operator is defined by

wn(c0 ̂⊗R · · · ̂⊗R cn) = cn ̂⊗R c0 ̂⊗R · · · ̂⊗R cn−1.

A symmetrical version of the construction in Corollary 1.27 is described in [Ra, Prop. 3.1].
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Example 1.28. Let ϕ : S → T be a homomorphism of algebras over a commutative ring
K. It determines Sweedler’s T -coring T ⊗S T , where on T ⊗S T we take the obvious
T -bimodule structure. The coproduct �T ⊗S T and the counit εT ⊗S T are respectively
defined by

�T ⊗S T : T ⊗S T → (T ⊗S T )⊗T (T ⊗S T ), �T ⊗S T (t ⊗S t ′) = t ⊗S 1T ⊗S t ′ ,
ε T ⊗S T : T ⊗S T → T, ε T ⊗S T (t ⊗S t ′) = t t ′,

where in the definition of�T ⊗R T we identified (T ⊗S T )⊗T (T ⊗S T ) and T ⊗S T ⊗S T .

For S-bimodules T and X , let v : T ⊗S X → X ⊗S T be an S-bimodule map. For
t ∈ T and x ∈ X we shall use the notation v(t ⊗S x) = xv ⊗S tv, where in the right
hand side implicit summation is understood.

Corollary 1.29. Let ϕ : S → T be a homomorphism of algebras over a commutative
ring K, X be an S -bimodule and v : T ⊗S X → X ⊗S T be an S -bimodule map
satisfying

v ◦ (ϕ ⊗S X) = X ⊗S ϕ and v ◦ (mT ⊗S X) = (X ⊗S mT ) ◦ (v ⊗S T ) ◦ (T ⊗S v).

There is a cyclic object Z∗(T/S, v), with Zn(T/S, v) = T ⊗̂S n+1⊗̂S X whose face and
degeneracy maps are

dk(t0̂⊗S t1̂⊗S · · · ̂⊗S tn̂⊗S x)

=
{

t0̂⊗S t1̂⊗S · · · ̂⊗S tk tk+1̂⊗S · · · ̂⊗S tn̂⊗S x, for 0 ≤ k < n,
(tn)vt0̂⊗S t1̂⊗S · · · ̂⊗S tn−1̂⊗S(x)v , for k = n,

sk(t0̂⊗S t1̂⊗S · · · ̂⊗Stn̂⊗S x)

= t0̂⊗S t1̂⊗S · · · ̂⊗S tk̂⊗S1T ̂⊗S · · · ̂⊗S tn̂⊗S x, for 0 ≤ k ≤ n.

The para-cyclic map is given by

vn(t0 ̂⊗S · · · ̂⊗S tn̂⊗S x) = (tn)v ̂⊗S t0 ̂⊗S · · · ̂⊗S tn−1̂⊗S(x)v.

Proof. In terms of the map v, we can equip X ⊗S T with a T -bimodule structure by

t1(x ⊗S t)t2 = v(t1 ⊗S x)t t2.

Moreover,

v ⊗S T : T ⊗S X ⊗S T ∼= (T ⊗S T )⊗T (X ⊗S T ) → (X ⊗S T )⊗T (T ⊗S T )
∼= X ⊗S T ⊗S T

is a transposition map for Sweedler’s T -coring T ⊗S T and the T -bimodule X ⊗S T , in
the sense of (1.18). Consequently, we can apply Corollary 1.27 to Sweedler’s coring in
Example 1.28. One proves that the corresponding para-cyclic object has Z∗(T/S, v) as
an underlying simplicial structure and v∗ as a para-cyclic map. �	
Remarks 1.30. (i) Let us take X = S. The canonical isomorphism v : T ⊗S S → S ⊗S T
satisfies the hypothesis of Corollary 1.29. The corresponding para-cyclic (in fact cyclic)
object was used in [JŞ] to define relative cyclic homology. Moreover, this cyclic object
and the cocyclic object Z∗(ST , wT ) in Corollary 1.17 are (cyclic) dual to each other. In
the particular case when R = k and ϕ = uT , we rediscover the cyclic object introduced
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by A. Connes in order to define the cyclic homology of an algebra, cf. [We, p. 330].
Thus Z∗(ST , wT ) is the cyclic dual of Connes’ cyclic object.

(ii) Note that the construction of Z∗(T/S, v) can be performed for any algebra T
in a symmetric monoidal category M, by replacing everywhere ̂⊗S with ⊗, the tensor
product in M. Therefore, para-cyclic objects in [Kay06] and [HKRS2] are examples of
this type.

(iii) If w : X ⊗S T → T ⊗S X is an invertible S -bimodule map satisfying (1.12),
then v = w−1 satisfies the relations in Corollary 1.29. Conversely, in the case when the
morphism v in the above construction is invertible, then its inverse is a transposition
map in the sense of (1.12). As a matter of fact, the corresponding para-cocyclic object in
Theorem 1.16 is a cyclic dual of the para-cyclic object in Corollary 1.29. This suggests
a categorical approach to cyclic duality, details of which will be studied elsewhere.

Other examples of para-cyclic objects, obtained as applications of Theorem 1.23,
will be discussed in Theorems 2.9 and Theorem 2.11.

2. Cyclic (Co)homology of Bialgebroids

In this section we apply the categorical framework, obtained in Sect. 1, to examples
provided by (co)module algebras and (co)module corings of bialgebroids, and analyze
the structure of the resulting para-(co)cyclic objects.

2.A. (Co)module algebras of bialgebroids. In this section we consider admissible sep-
tuples ST , coming from a K-algebra homomorphism ϕ : R → T as in Proposition 1.15.
As we have seen in Proposition 1.15, ST determines a cosimplex

Zn(ST , X) = T ̂⊗R n+1
̂⊗R X, (2.1)

for any R-bimodule X . Coface and codegeneracy maps are given by

̂dk = T ̂⊗R k
̂⊗R ϕ ̂⊗R T ̂⊗R n−k

̂⊗R X and ŝk = T ̂⊗R k
̂⊗R

×mT ̂⊗R T ̂⊗R n−k
̂⊗R X, (2.2)

where k = 0, . . . , n and mT denotes the multiplication map T ⊗R T → T . Further-
more, by Theorem 1.16, the cosimplex Z∗(ST , X) is para-cocyclic provided that there
is a transposition map w : X ⊗R T → T ⊗R X . Conditions (1.12) characterizing
a transposition map are reminiscent of some of the axioms of an entwining structure
(over an algebra R), cf. [BB, Sect. 2.3]. Main examples of entwining structures over
non-commutative algebras arise from Doi-Koppinen data of bialgebroids (in the sense
of [BCM]). In a similar manner, the aim of this section is to construct canonical trans-
position maps in the case when T is a (co)module algebra of an R-bialgebroid B and X
is a B-(co)module.

Bialgebroids can be thought of as a generalization of bialgebras to arbitrary, non-
commutative base algebras. The first form of the structure that is known today as a left
bialgebroid was introduced by Takeuchi in [Ta] under the name ×R-bialgebra. Another
definition and the name ‘bialgebroid’ was proposed by Lu in [Lu]. The two definitions
were proven to be equivalent in [BMi]. ‘Left’ and ‘right’ versions of bialgebroids were
defined in [KSz].
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Definition 2.1. Consider an algebra R over a commutative ring K. A left bialgebroid
B over R consists of the data (B, ξ, ζ,�, ε). Here B is a K-algebra and ξ and ζ are
K-algebra homomorphisms R → B and Rop → B, respectively, such that their ranges
are commuting subalgebras in B. In terms of the maps ξ and ζ , B can be equipped with
an R-bimodule structure as

r1 · b · r2 := ξ(r1)ζ(r2)b, for r1, r2 ∈ R and b ∈ B.

By definition, the coproduct � : B → B ⊗R B and the counit ε : B → R equip this
bimodule with an R-coring structure. Between the algebra and coring structures of B the
following compatibility axioms are required. For the coproduct we introduce the index
notation �(b) = b(1) ⊗R b(2), where implicit summation is understood:

(i) b(1)ζ(r)⊗R b(2) = b(1) ⊗R b(2)ξ(r), for r ∈ R and b ∈ B.
(ii) �(1B) = 1B ⊗R 1B and �(bb′) = b(1)b′

(1) ⊗R b(2)b′
(2), for b, b′ ∈ B.

(iii) ε(1B) = 1R and ε(bb′) = ε
(

bξ(ε(b′))
)

, for b, b′ ∈ B.

Axiom (i) in Definition 2.1 needs to be imposed in order for the second condition
in axiom (ii) to make sense. Axiom (iii) implies that also ε(bb′) = ε

(

bζ(ε(b′))
)

, for
b, b′ ∈ B. It follows by the R-module map properties, unitality and multiplicativity of
the coproduct � that

�
(

ξ(r1)ζ(r2)bξ(r3)ζ(r4)
) = ξ(r1)b(1)ξ(r3)⊗R ζ(r2)b(2)ζ(r4), (2.3)

for r1, r2, r3, r4 ∈ R and b ∈ B. Since the coproduct is coassociative, the Sweedler-
Heynemann index notation can be used. That is, for the iterated power of the coproduct
we write (�⊗R B⊗R · · ·⊗R B)◦· · ·◦(�⊗R B)◦�(b) = b(1)⊗R · · ·⊗R b(n−1)⊗R b(n),
for any positive integer n and b ∈ B.

Note that the axioms in Definition 2.1 are not invariant under changing the multipli-
cation in B to the opposite multiplication. Definition 2.1 has a symmetrical counterpart,
known as a right bialgebroid. For the details we refer to [KSz].

Definition 2.1 is motivated by the following result of Schauenburg. Consider two
algebras R and B over a commutative ring K and two K-algebra homomorphisms ξ :
R → B and ζ : Rop → B, whose ranges are commuting subalgebras of B. Clearly, in
this setting any (left or right) B module can be equipped with an R bimodule structure
using the maps ξ and ζ . For example, for a left B-module V with action  : B⊗KV → V ,
one can define an R-bimodule structure as

r1 ⊗K v ⊗K r2 
→ ξ(r1)ζ(r2)  v.
With respect to the resulting R-actions, B-module maps are R-bimodule maps. That
is, there exists a forgetful functor from the category of (left or right) B-modules to the
category of R-bimodules.

Theorem 2.2. [Sch98, Theorem 5.1] Consider two algebras R and B over a commutative
ring K and two K-algebra homomorphisms ξ : R → B and ζ : Rop → B, whose
ranges are commuting subalgebras of B. There exists a right (resp. left) bialgebroid
(B, ξ, ζ,�, ε) if and only if the forgetful functor from the category of right (resp. left)
B-modules to the category of R-bimodules is strict monoidal. That is, R is a right (resp.
left) B-module and the R-module tensor product of two right (resp. left) B-modules is a
right (resp. left) B-module.
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Similarly to the case of a bialgebra, in Theorem 2.2 for a left R-bialgebroid (B, ξ, ζ,
�, ε) the following B-actions are used on R, and on the R-module tensor product of
two left B-modules V and W , respectively.

b  r := ε
(

bξ(r)
)

and b  (v ⊗R w) := b(1)  v ⊗R b(2)  w, (2.4)

for r ∈ R, v ⊗R w ∈ V ⊗R W and b ∈ B. It was proven in [Sch98, Theorem 5.1]
that the diagonal action in the second equation in (2.4) is meaningful by axiom (i) in
Definition 2.1.

In light of Theorem 2.2, one can speak about right (resp. left) module algebras of
a right (resp. left) bialgebroid B, i.e. about algebras in the monoidal category of right
(resp. left) B-modules.

Definition 2.3. Consider an algebra R over a commutative ring K and a left
R-bialgebroid B. A left B-module algebra is a K-algebra and left B-module T , with
B-action  : B ⊗K T → T , such that the multiplication in T is R-balanced and

b  1T = ξ
(

ε(b)
)  1T and b  (t t ′) = (b(1)  t)(b(2)  t ′), (2.5)

for b ∈ B and t, t ′ ∈ T .

Note that for a left module algebra T of a left R-bialgebroid B = (B, ξ, ζ,�, ε),
there is a canonical K-algebra homomorphism R → T , r 
→ ξ(r)  1T . Hence there is
a corresponding admissible septuple as in Proposition 1.15.

A left comodule of a left R-bialgebroid B = (B, ξ, ζ,�, ε) is defined as a left
comodule of the underlying R-coring (B,�, ε). That is, a left R-module X , together
with a left R-module map X → B ⊗R X , x 
→ x[−1] ⊗R x[0] (where implicit summa-
tion is understood), satisfying coassociativity and counitality axioms. Note that a left
B-comodule X can be equipped with an R-bimodule structure by introducing a right
R-action

x · r := ε
(

x[−1]ξ(r)
) · x[0], for r ∈ R and x ∈ X. (2.6)

With respect to the resulting bimodule structure, B-comodule maps are R-bimodule
maps. In particular, the left B-coaction on X is an R-bimodule map in the sense that, for
r, r ′ ∈ R and x ∈ X ,

(r · x · r ′)[−1] ⊗R (r · x · r ′)[0] = ξ(r)x[−1]ξ(r ′)⊗R x[0]. (2.7)

Furthermore, for any x ∈ X and r ∈ R,

x[−1] ⊗R x[0] · r = x[−1]ζ(r)⊗R x[0]. (2.8)

Theorem 2.4. Let R be an algebra over a commutative ring K and let B be a left
bialgebroid over R. Consider a left B-module algebra T with B-action  and a left
B-comodule X with coaction x 
→ x[−1] ⊗R x[0] (where implicit summation is unders-
tood). Then a transposition map for the admissible septuple ST , associated via Propo-
sition 1.15 to the K-algebra map R → T , r 
→ ξ(r)  1T , is given by
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w : X ⊗R T → T ⊗R X, x ⊗R t 
→ x[−1]  t ⊗R x[0]. (2.9)

Hence the cosimplex (2.1) admits a para-cocyclic structure

wn(t0 ̂⊗R · · · ̂⊗R tn ̂⊗R x) = t1 ̂⊗R · · · ̂⊗R tn ̂⊗R x[−1]  t0 ̂⊗R x[0]. (2.10)

Proof. The map (2.9) is a well defined left R-module homomorphism by (2.7). Its right
R-module map property follows by (2.8). Conditions (1.12) follow by definition (2.5) of
a module algebra as it is shown below. Denote by ϕ the algebra homomorphism R → T ,
r 
→ ξ(r)1T = ζ(r)1T . Omitting canonical isomorphisms R ⊗R X ∼= X ∼= X ⊗R R,
we have

(

w ◦ (X ⊗R ϕ)
)

(x) = x[−1]  1T ⊗R x[0] = ζ
(

ε(x[−1])
)  1T ⊗R x[0] = 1T

⊗Rε(x[−1]) · x[0] = 1T ⊗R x = (

(ϕ ⊗R X)
)

(x),
(

(mT ⊗R X) ◦ (T ⊗R w) ◦ (w ⊗R T )
)

(x ⊗R t ⊗R t ′)
= (x[−1]  t)(x[0][−1]  t ′)⊗R x[0][0] =
(x[−1](1)  t)(x[−1](2)  t ′)⊗R x[0]
= x[−1]  t t ′ ⊗R x[0] = (

w ◦ (X ⊗R mT )
)

(x ⊗R t ⊗R t ′). �	
Analogously to (2.6), also a right comodule V of a right R-bialgebroid B = (B, ξ, ζ,

�, ε) can be equipped with an R-bimodule structure by introducing a left R-action,

r · v := v[0] · ε(ξ(r)v[1]), for r ∈ R and v ∈ V, (2.11)

where v 
→ v[0] ⊗R v
[1] denotes the right B-coaction on V , with implicit summation

understood. Hence there exists a forgetful functor from the category of rightB-comodules
to the category of R-bimodules. With this observation in mind, the next theorem follows
by a symmetrical form of [Sch98, Prop. 5.6].

Theorem 2.5. Consider an algebra R over a commutative ring K and a right
R-bialgebroid B. Then the forgetful functor from the category of right B-comodules
to the category of R-bimodules is strict monoidal. That is, R is a right B-comodule and
the R-module tensor product of two right B-comodules is a right B-comodule.

Similarly to a bialgebra, in Theorem 2.5 for a right R-bialgebroid B = (B, ξ, ζ,�, ε)
the following B-coactions on R, and on the R-module tensor product V ⊗R W of two
right B-comodules V and W , are used.

R → R ⊗R B ∼= B, r 
→ ξ(r) and V ⊗R W → V ⊗R W ⊗R B,
v ⊗R w 
→ v[0] ⊗R w

[0] ⊗R v
[1]w[1].

The coaction on V ⊗R W is well defined by the right bialgebroid versions of properties
(2.7) and (2.8), i.e. the identities

(r · v · r ′)[0] ⊗R (r · v · r ′)[1] = v[0] ⊗R ξ(r)v
[1]ξ(r ′) and

r · v[0] ⊗R v
[1] = v[0] ⊗R ζ(r)v

[1], (2.12)

for r, r ′ ∈ R and v ∈ V . Symmetrically, the forgetful functors from the category of left
comodules of a right R-bialgebroid, and from the categories of right or left comodules
of a left R-bialgebroid, to the category of R-bimodules are strict (anti-)monoidal.

In light of Theorem 2.5, one can speak about right comodule algebras of a right
bialgebroid B, i.e. about algebras in the monoidal category of right B-comodules.
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Definition 2.6. Consider an algebra R over a commutative ring K and a right
R-bialgebroid B. A right B-comodule algebra is a K-algebra and right B-comodule
T , with coaction t 
→ t [0] ⊗R t [1], such that the multiplication in T is R-balanced and,
for t, t ′ ∈ T ,

1[0]
T ⊗R 1[1]

T = 1T ⊗R 1T and (t t ′)[0] ⊗R (t t
′)[1] = t [0]t ′[0] ⊗R t [1]t ′[1]. (2.13)

For example, the constituent algebra in a right bialgebroid B is itself a (so-called
right regular) right B-comodule algebra via the coaction given by the coproduct in B.

Note that the second condition in (2.13) is meaningful since the multiplication in T
is R-balanced and the second condition in (2.12) holds. For a right comodule algebra
T of a right R-bialgebroid B, there is a canonical K-algebra homomorphism R → T ,
r 
→ r · 1T = 1T · r , in terms of which r · t = (r · 1T )t and t · r = t (r · 1T ). Hence there
is a corresponding admissible septuple as in Proposition 1.15.

Theorem 2.7. Let R be an algebra over a commutative ring K and let B be a right
bialgebroid over R. Consider a right B-comodule algebra T , with coaction t 
→ t [0] ⊗R
t [1] (where implicit summation is understood) and a right B-module X with action �.
Then a transposition map for the admissible septuple ST , associated via Proposition 1.15
to the K-algebra map R → T , r 
→ r · 1T = 1T · r , is given by

w : X ⊗R T → T ⊗R X, x ⊗R t 
→ t [0] ⊗R x � t [1].

Hence the cosimplex (2.1) admits a para-cocyclic structure

wn(t0 ̂⊗R · · · ̂⊗R tn ̂⊗R x) = t1 ̂⊗R · · · ̂⊗Rtn ̂⊗R t [0]
0

̂⊗R x � t [1]
0 .

Proof. The map w is a well defined R-bimodule homomorphism by (2.12). Conditions
(1.12) follow by definition (2.13) of a comodule algebra. �	

2.B. (Co)module corings of bialgebroids. In this section we consider comonads Tl :=
C ⊗R (−) on the category of R-bimodules as in Proposition 1.25, determined by a coring
(C,�, ε) over an algebra R. Let � be the functor in Definition 1.13. By Proposition 1.25,
for any R-bimodule X , there is an associated simplicial module Z∗(SC , X), which in
degree n is given by

Zn(SC , X) = Ĉ⊗R n+1
̂⊗R X. (2.14)

Face and degeneracy maps in degree n are

̂dk = Ĉ⊗R k
̂⊗R εC ̂⊗R Ĉ⊗R n−k

̂⊗R X and

ŝk = Ĉ⊗R k
̂⊗R �C ̂⊗R Ĉ⊗R n−k

̂⊗R X, (2.15)

for k ∈ {0, . . . , n}. As we have seen in Proposition 1.25, we can choose a second comonad
Tr := (−) ⊗R C on the category of R-bimodules, and a natural transformation i :
(−)̂⊗R C → C ̂⊗R(−), given by the flip map. Taking the trivial natural transformation
t : C ⊗R (−)⊗R C → C ⊗R (−)⊗R C , the conditions in (1.17) hold. By Theorem 1.26,
the simplex Z∗(SC , X) is para-cyclic provided that there exists a morphism w : C ⊗R
X → X ⊗R C , satisfying (1.21). Note the similarity of conditions (1.21) to some of
the axioms of an entwining structure over R. Similarly to the way Doi-Koppinen data
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determine entwining structures, in this section we construct dual transposition maps in
the case when C is a (co)module coring of a bialgebroid B and X is a B-(co)module.

In light of (a symmetrical version of) Theorem 2.5, one can speak about left comodule
corings of a left bialgebroid B, i.e. about coalgebras in the monoidal category of left
B-comodules.

Definition 2.8. Consider an algebra R over a commutative ring K and a left
R-bialgebroid B = (B, ξ, ζ,�, ε). A left B-comodule coring is an R-coring and left
B-comodule C, with one and the same underlying R-bimodule structure, such that for
c ∈ C,

ξ
(

εC (c)
) = ζ

(

εC (c[0])
)

c[−1] and c[−1] ⊗
R

c[0](1)⊗
R

c[0](2)
= c(1)[−1]c(2)[−1] ⊗

R
c(1)[0] ⊗

R
c(2)[0], (2.16)

where εC is the counit and �C : c 
→ c(1) ⊗R c(2) is the coproduct of C and
c 
→ c[−1] ⊗R c[0] is the B-coaction on C.

The second condition in (2.16) is meaningful by (2.7) and (2.8).

Theorem 2.9. Let R be an algebra over a commutative ring K and let B be a left
bialgebroid over R. Consider a left B-comodule coring C with coaction c 
→ c[−1] ⊗R
c[0], and a left B-module X with action . Then a transposition map w : C ⊗R X →
X ⊗R C for the dual admissible septuple SC , associated via Proposition 1.25 to the
R-coring C, is given byw(c⊗R x) := c[−1]  x ⊗R c[0]. Hence the simplex (2.14) admits
a para-cyclic structure

wn(c0 ̂⊗R · · · ̂⊗R cn ̂⊗R x) = cn[0] ̂⊗R c0 ̂⊗R · · · ̂⊗R cn−1 ̂⊗R cn[−1]  x .

Proof. The map w is a well defined R-bimodule homomorphism by (2.7) and (2.8).
Conditions (1.21) follow by definition (2.16) of a comodule coring. �	

In light of Theorem 2.2, one can speak about right (resp. left) module corings of a
right (resp. left) bialgebroid B, i.e. about coalgebras in the monoidal category of right
(resp. left) B-modules.

Definition 2.10. Consider an algebra R over a commutative ring K and a right
R-bialgebroid B = (B, ξ, ζ,�, ε). A right B-module coring is an R-coring and right
B-module C, with one and the same underlying R-bimodule structure, such that for
c ∈ C and b ∈ B,

εC (c � b) = ε
(

ξ(εC (c))b
)

and

(c � b)(1) ⊗R (c � b)(2) = c(1) � b(1) ⊗R c(2) � b(2), (2.17)

where εC is the counit and �C : c 
→ c(1) ⊗R c(2) is the coproduct in C, the symbol
� denotes the B-action on C and for the coproduct in B the index notation � : b 
→
b(1) ⊗R b(2) is used, with implicit summation understood.

For example, the constituent R-coring in a right R-bialgebroid B is itself a (so called
right regular) right B-module coring via the action given by the product in B.
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Theorem 2.11. Let R be an algebra over a commutative ring K and let B be a right
bialgebroid over R. Consider a right B-module coring C with action �, and a right
B-comodule X with coaction x 
→ x [0]⊗R x [1]. Then a transposition mapw : C⊗R X →
X ⊗R C, for the dual admissible septuple SC , associated via Proposition 1.25 to the
R-coring C, is given byw(c ⊗R x) := x [0] ⊗R c � x [1]. Hence the simplex (2.14) admits
a para-cyclic structure,

wn(c0 ̂⊗R · · · ̂⊗R cn ̂⊗R x) = cn � x [1]
̂⊗R c0 ̂⊗R · · · ̂⊗R cn−1 ̂⊗R x [0]. (2.18)

Proof. The map w is a well defined R-bimodule homomorphism by (2.12). Conditions
(1.21) follow by definition (2.17) of a module coring. �	

2.C. Stable anti-Yetter-Drinfel’d modules of ×R-Hopf algebras. For a right module
coring C and right comodule X of a right bialgebroid B = (B, ξ, ζ,�, ε) over a
K-algebra R, there is a K-module isomorphism

C ̂⊗Rn+1
̂⊗R X ∼= C ⊗Rn+1 ⊗Re X.

Assume that X has an additional left B-module structure. In this case, corresponding to
the K-algebra homomorphism Re → B, r ⊗K r ′ 
→ ξ(r)ζ(r ′) = ζ(r ′)ξ(r), there is a
canonical epimorphism Ĉ⊗R n+1

̂⊗R X → C⊗R n+1 ⊗B X , where C⊗R n+1 is understood
to be a right B-module via the diagonal action (c1 ⊗R · · · ⊗R cn+1) � b := c1 � b(1) ⊗R
· · · ⊗R cn+1 � b(n+1), given by the iterated coproduct in B. It is a well defined action by
(a symmetrical version of) [Sch98, Theorem 5.1].

Lemma 2.12. Let R be an algebra over a commutative ring K and let B be a right
bialgebroid over R. Consider a right B-module coring C and a left B-module right
B-comodule X. Then the simplex in Theorem 2.11 projects to a simplex C⊗R n+1 ⊗B X.

Proof. Since the coproduct �C and the counit εC of C are right B-module maps by
definition, face and degeneracy maps of the simplex in Example 1.27 are right B-module
maps with respect to the diagonal action. Hence we can take their tensor product with
the identity map on X over the algebra B, yielding a simplex as stated. �	

The task of this section is to find criteria for the cyclicity of the quotient simplex in
Lemma 2.12. In order to do so, some restriction on the involved bialgebroid is needed.

Definition 2.13. [Sch00, Theorem and Definition 3.5]. Let R be an algebra over a
commutative ring K. A right R-bialgebroid B = (B, ξ, ζ,�, ε) is said to be a right
×R-Hopf algebra provided that the map

ϑ : B ⊗Rop B → B ⊗R B, b ⊗Rop b′ 
→ bb′(1) ⊗R b′(2) (2.19)

is bijective. In the domain of the map in (2.19), Rop-module structures are given by
right and left multiplication by ζ(r), for r ∈ R. In the codomain of the map in (2.19),
R-module structures are given by right multiplication by ξ(r) and ζ(r), for r ∈ R.

The notion of a ×R-Hopf algebra extends that of a Hopf algebra. Indeed, if B is a
bialgebra over a commutative ring R, with coproduct b 
→ b(1) ⊗R b(2), then the map
(2.19) is bijective if and only if B is a Hopf algebra. In this case the inverse is given in
terms of the antipode S as ϑ−1(b ⊗R b′) := bS(b′(1))⊗R b′(2).
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For an algebra R, consider a right ×R-Hopf algebra B. Since the map ϑ in (2.19)
is a left B-module map, its inverse is determined by the restriction ϑ−1(1B ⊗R b) =:
b− ⊗Rop b+, where implicit summation is understood. Lemma 2.14, which is essentially
a symmetrical version of [Sch00, Prop. 3.7], collects properties of the map
b 
→ b− ⊗Rop b+.

Lemma 2.14. For an algebra R, consider a right ×R-Hopf algebra B = (B, ξ, ζ,�, ε).
Write �(b) =: b(1) ⊗R b(2) for the coproduct and in terms of the map (2.19) put
b− ⊗Rop b+ := ϑ−1(1B ⊗R b). The following identities hold, for b, b′ ∈ B and r ∈ R.

(i) b−b+
(1) ⊗R b+

(2) = 1B ⊗R b,
(ii) b(1)b(2)− ⊗Rop b(2)+ = 1B ⊗Rop b ,

(iii) (bb′)− ⊗Rop (bb′)+ = b′−b− ⊗Rop b+b′
+,

(iv) 1B − ⊗Rop 1B + = 1B ⊗Rop 1B,
(v) b− ⊗Rop b+

(1) ⊗R b+
(2) = b(1)− ⊗Rop b(1)+ ⊗R b(2),

(vi) b−(1) ⊗R b−(2) ⊗Rop b+ = b+− ⊗R b− ⊗Rop b++,
(vii) b = ζ

(

ε(b−)
)

b+,
(viii) b−b+ = ξ

(

ε(b)
)

,
(x) ζ(r)b− ⊗Rop b+ = b− ⊗Rop b+ζ(r).

Next Definition 2.15 extends [JŞ, Definition 4.1] or [HKRS1, Definition 2.1].

Definition 2.15. For an algebra R, consider a right ×R-Hopf algebra B = (B, ξ, ζ,
�, ε). Let X be a right B-comodule and left B-module. Denote the right B-coaction on
X by x 
→ x [0] ⊗R x [1], for x ∈ X (where implicit summation is understood) and denote
the left B-action by bx, for b ∈ B and x ∈ X. We say that X is an anti-Yetter-Drinfel’d
module provided that the following conditions hold.

(i) The R-bimodule structures of X, underlying its module and comodule structures,
coincide. That is, for x ∈ X and r ∈ R,

x · r = ζ(r)  x and r · x = ξ(r)  x, (2.20)

where x ·r denotes the right R-action on the right B-comodule X and r ·x is the canonical
left R-action (2.11) coming from the right B-coaction.

(ii) For b ∈ B and x ∈ X,

(b  x)[0] ⊗R (b  x)[1] = b(1)+  x [0] ⊗R b(2)x [1]b(1)−, (2.21)

where for the coproduct� and the inverse of the map (2.19) the respective index notations
(with implicit summation), �(b) = b(1) ⊗R b(2), and ϑ−1(1B ⊗R b) = b− ⊗Rop b+ are
used, for b ∈ B.

The anti-Yetter-Drinfel’d module X is said to be stable if in addition, for any x ∈ X,

x [1]  x [0] = x . (2.22)

We need to show that condition (ii) in Definition 2.15 is meaningful, i.e. the expression
on the right hand side of (2.21) is well defined. This follows by the following

Lemma 2.16. For an algebra R, consider a right ×R-Hopf algebra B = (B, ξ, ζ,�, ε).
Let X be a right B-comodule and left B-module. Keeping the notations in Definition 2.15,
assume that axiom (i) in Definition 2.15 holds. Then the following hold:
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(1) Considering B as a left R-module via ζ , the R-module tensor product X ⊗R B is a
left B-module via the action

b′ � (x ⊗R b) := b′
+  x ⊗R bb′−.

(2) X ⊗R B is a B-Bop bimodule, via the left B-action in part (i) and the right Bop-action

(x ⊗R b) � b′ := x ⊗R b′b.
(3) For any elements x ∈ X and r ∈ R,

ξ(r) �
(

x [0] ⊗R x [1]) = (

x [0] ⊗R x [1]) � ζ(r).

Proof. By the first condition in (2.20) and Lemma 2.14 (ix), there is a well defined map

B ⊗K (X ⊗R B) → X ⊗R B, b′ ⊗K (x ⊗R b) 
→ b′
+  x ⊗R b b′−.

It is an associative leftB-action by part (iii) of Lemma 2.14 and it is unital by part (iv). This
proves claim (1). Claim (2) is obvious. Claim (3) follows by the following computation,
for r ∈ R and x ∈ X :

ξ(r) �
(

x [0] ⊗R x [1]) = ξ(r)  x [0] ⊗R x [1] = x [0][0] · ε(ζ(r)x [0][1])⊗R x [1]

= x [0] ⊗R x [1](2)ζ
(

ε(ζ(r)x [1](1))
) = x [0] ⊗R ζ(r)x

[1]

= (

x [0] ⊗R x [1]) � ζ(r).

In the first equality we used that, by unitality and the right R-module map property of the
coproduct, the map (2.19) satisfies ϑ(1B ⊗Rop ξ(r))=1B ⊗R ξ(r). Hence ξ(r)− ⊗Rop

ξ(r)+ = 1B ⊗Rop ξ(r). The second equality follows by the second condition in (2.20).
The third equality follows by coassociativity of the B-coaction on X . The fourth equality
follows by counitality of � and the right bialgebroid version of (2.3), i.e. the identity

�
(

ξ(r1)ζ(r2)bξ(r3)ζ(r4)
) = ζ(r2)b

(1)ζ(r4)⊗R ξ(r1)b
(2)ξ(r3), (2.23)

for r1, r2, r3, r4 ∈ R and b ∈ B. �	
Using the notations in Lemma 2.16, the right-hand side of (2.21) is equal to the well

defined expression b(1) �
(

x [0] ⊗R x [1]) � b(2).

Remark 2.17. Note that a Hopf algebra H over a commutative ring K is a ×K-Hopf
algebra. The bialgebroid structure is given by the equal source and target maps K → H ,
κ 
→ κ1H , and the coproduct and counit in H . The canonical map (2.19) has an inverse
ϑ−1(h′⊗K h) = h′S(h(1))⊗K h(2), where h 
→ h(1)⊗K h(2) is the usual Sweedler index
notation for the coproduct, with implicit summation understood. That is, h− ⊗K h+ =
S(h(1))⊗K h(2). Clearly, in this case (2.20) becomes the trivial condition

xκ = (κ1H )  x = κx,

for κ ∈ K and any element x of a left H -module right H -comodule X . This condition
simply expresses the requirement that the left and right K-actions on X are equal, and
are induced by the H -module structure. The second condition (2.21) in Definition 2.15
reduces to

(b  x)[0] ⊗ (b  x)[1] = b(2)  x [0] ⊗ b(3)x [1]S(b(1)),
for b ∈ H and x ∈ X , which is the defining property of a (left-right) anti-Yetter-Drinfel’d
module X of a Hopf algebra H in [JŞ, Def. 4.1] or [HKRS1, Def. 2.1]. So we conclude
that Def. 2.15 generalizes these definitions.
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Example 2.18. For an algebra R, consider a right ×R-Hopf algebra B = (B, ξ, ζ,�, ε).
Note that left B-actions  on R, satisfying ζ(r ′)r = rr ′, are in bijective correspondence
with maps χ : B → R, obeying the following properties, for r ∈ R, b, b′ ∈ B:

χ(ζ(r)b) = χ(b)r χ(bb′) = χ
(

bζ(χ(b′))
)

, χ(1B) = 1R .

Indeed, in terms of such a map χ , one can put b  r := χ(bζ(r)). Furthermore, right
B-coactions on R, with underlying right regular R-module structure, are in bijective
correspondence with grouplike elements in B, i.e. g ∈ B such that �(g) = g ⊗R g and
ε(g) = 1R . Indeed, in terms of a grouplike element g, a right B-coaction on R is given
by r 
→ 1R ⊗R gξ(r). One checks that the left B-module determined by χ and the right
B-comodule determined by g combine into an anti-Yetter-Drinfel’d module on R if and
only if, for r ∈ R and b ∈ B,

ε
(

ξ(r)g
) = χ

(

ξ(r)
)

, and gξ
(

χ(b)
) = b(2)gb(1)−ζ

(

χ(b(1)+)
)

.

The anti-Yetter-Drinfel’d module R is stable if in addition χ
(

gξ(r)
) = r , for all

r ∈ R. The pair (χ, g) with these properties generalizes the notion of a modular pair in
involution for a Hopf algebra in [CM01] or a weak Hopf algebra in [V].

Proposition 2.19. Let B be a right ×R-Hopf algebra over an algebra R. Consider a
right B-module coring C with B-action �:

(1) For an anti-Yetter-Drinfel’d module X of B, the para-cyclic object in Theorem 2.11
projects to a para-cyclic structure on C⊗R n+1 ⊗B X.

(2) For a stable anti-Yetter-Drinfel’d module X of B, the para-cyclic object C⊗R n+1⊗B
X in part (1) is cyclic, in which case it will be denoted by Z∗(C,M).

Proof. We need to show that the composite map

Ĉ⊗R n+1
̂⊗R X

wn �� Ĉ⊗R n+1
̂⊗R X �� �� C⊗R n+1⊗B X

is B-balanced, i.e. that
(

cn � b(n+1)x [1] ⊗
R

c0 � b(1) ⊗
R

· · · ⊗
R

cn−1 � b(n)
) ⊗

B
x [0]

= (

cn � (b  x)[1] ⊗
R

c0 ⊗
R

· · · ⊗
R

cn−1
)⊗

B
(b  x)[0],

for b ∈ B, x ∈ X and c0 ⊗R · · · ⊗R cn ∈ C⊗R n+1. By counitality of the coproduct in
B, the left hand side is equal to

cn � b(n+2)x [1] ⊗R c0 � b(2)ζ
(

ε(b(1))
) ⊗R c1 � b(3) ⊗R · · · ⊗R cn−1 � b(n+1) ⊗B x [0]

= cn � b(n+2)x [1]ξ
(

ε(b(1))
) ⊗R c0 � b(2) ⊗R c1 � b(3)

⊗R · · · ⊗R cn−1 � b(n+1) ⊗B x [0]

= cn � b(n+2)x [1]b(1)−b(1)+ ⊗R c0 � b(2) ⊗R c1 � b(3) ⊗R · · ·
⊗R cn−1 � b(n+1) ⊗B x [0]

= cn � b+
(n+2)x [1]b−b+

(1) ⊗R c0 � b+
(2) ⊗R · · · ⊗R cn−1 � b+

(n+1) ⊗B x [0]

= (

cn � b+
(2)x [1]b− ⊗R c0 ⊗R · · · ⊗R cn−1

) � b+
(1) ⊗B x [0]

= (

cn � b+
(2)x [1]b− ⊗R c0 ⊗R · · · ⊗R cn−1

) ⊗B b+
(1)  x [0]

= (

cn � (b  x)[1] ⊗R c0 ⊗R · · · ⊗R cn−1
) ⊗B (b  x)[0].
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The second equality follows by part (viii) in Lemma 2.14 and the third one follows by
part (v). The last equality is a consequence of Lemma 2.14 (v) and (2.21). This proves
that the para-cyclic map wn in Theorem 2.11 factors to a map ŵn : C⊗R n+1 ⊗B X →
C⊗R n+1 ⊗B X , hence it defines a para-cyclic structure on the simplex in Lemma 2.12.
This completes the proof of part (1). Furthermore, (ŵn)

n+1 takes an element
(

c0 ⊗R

· · · ⊗R cn
) ⊗B x ∈ C⊗R n+1 ⊗B X to

(

c0 � x [1](1) ⊗
R

· · · ⊗
R

cn � x [1](n+1))⊗
B

x [0] = (

c0 ⊗
R

· · · ⊗
R

cn
) � x [1] ⊗

B
x [0]

= (

c0 ⊗
R

· · · ⊗
R

cn
)⊗

B
x [1]  x [0].

Hence if X is a stable anti-Yetter-Drinfel’d module, i.e. condition (2.22) holds, then
(ŵn)

n+1 is the identity map. Thus we have claim (2) proven. �	
Remark 2.20. Let B = (B, ξ, ζ,�, ε) be a right bialgebroid over an algebra R. Consider
B as an Rop-bimodule via right multiplications by ξ and ζ . This bimodule has an Rop-
coring structure with counit ε and coproduct �cop : b 
→ b(2) ⊗Rop b(1), co-opposite
to �. Together with the opposite algebra Bop, they constitute a left Rop-bialgebroid
Bop

cop = (Bop, ξ, ζ,�cop, ε). A right B-module algebra T determines a left Bop
cop-module

algebra T op, canonically. Furthermore, a right B-comodule X can be looked at as a
left Bop

cop-comodule. Application of Theorem 2.4 to the left Rop-bialgebroid Bop
cop, the

left Bop
cop-module algebra T op and the left Bop

cop-comodule X , yields a para-cocyclic
cosimplex that has in degree n,

(

T op) ̂⊗Rop n+1
̂⊗Rop X ∼= T ̂⊗Rn+1

̂⊗R X,

where the isomorphism is given by reversing the order of the factors, i.e.

t0 ̂⊗Rop t1̂⊗Rop · · · ̂⊗Rop tn ̂⊗Rop x 
→ tn ̂⊗R tn−1 ̂⊗R · · · ̂⊗R t0 ̂⊗R x .

The resulting coface and codegeneracy maps on T ̂⊗R · · · ̂⊗RT ̂⊗R X are the maps in
(2.2) and the para-cocyclic map comes out as

t0 ̂⊗R · · · ̂⊗R tn ̂⊗R x 
→ tn � x [1]
̂⊗R t0 ̂⊗R · · · ̂⊗R tn−1 ̂⊗R x [0]. (2.24)

By the right B-module map property of the maps ϕ : R → T , r 
→ 1T � ξ(r), and the
multiplication map mT : T ⊗R T → T , the coface and codegeneracy maps (2.2) project
to T ⊗R n+1 ⊗B X . Note moreover that the para-cocyclic map (2.24) and the para-cyclic
map (2.18) are of the same form. Hence it follows by the computation in the proof
of Proposition 2.19 that also the para-cocyclic map (2.24) projects to T ⊗R n+1 ⊗B X ,
whenever X is an anti-Yetter-Drinfel’d module of B. That is, in this case T ⊗R ∗+1⊗B X is
a para-cocyclic object, which is cocyclic if the anti-Yetter-Drinfel’d module X is stable.

2.D. Galois extensions of ×R-Hopf algebras. For a right ×R-Hopf algebra B over an
algebra R, consider a right comodule algebra T with coaction t 
→ t [0] ⊗R t [1] (where
implicit summation is understood). The subalgebra S of coinvariants in T consists of
those elements s ∈ T for which s[0] ⊗R s[1] = s ⊗R 1B. To the inclusion map S ↪→ T
one can associate a cyclic simplex

Z∗(T/S) = T ̂⊗S ∗+1 (2.25)
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as in Corollary 1.29. On the other hand, it follows by Proposition 2.19 that, regarding B
as a right B-module coring, for any stable anti-Yetter-Drinfel’d module X of B there is
a cyclic simplex

Z∗(B, X) = B⊗R ∗+1 ⊗B X, (2.26)

where B⊗R n+1 is understood to be a right B-module via the diagonal action. In this
section, under the additional assumption that T is a B-Galois extension of S, we construct
a stable anti-Yetter-Drinfel’d module X := T/{ st − ts | s ∈ S, t ∈ T } ∼= S ⊗Se T
of B, such that the cyclic simplices (2.25) and (2.26) are isomorphic. This extends [JŞ,
Theorem 3.7].

In a right comodule algebra T of a right bialgebroid B over an algebra R, we denote
the coaction by � : t 
→ t [0] ⊗R t [1], where implicit summation is understood. For the
iterated power of the coaction we write (� ⊗R B⊗Rn−1) ◦ · · · ◦ (� ⊗R B) ◦ �(t) =:
t [0] ⊗R · · · ⊗R t [n−1] ⊗R t [n].

Definition 2.21. Let B be a right bialgebroid over an algebra R. A right B-comodule
algebra T is said to be a B-Galois extension of its coinvariant subalgebra S if the
canonical map

can : T ⊗S T → T ⊗R B, t ′ ⊗S t 
→ t ′t [0] ⊗R t [1] (2.27)

is bijective.

For example, if B = (B, ξ, ζ,�, ε) is a right ×R-Hopf algebra, then the right regular
B-comodule algebra is a B-Galois extension of the coinvariant subalgebra ζ(R) ∼= Rop.

Let B be a right R-bialgebroid and T a right B-comodule algebra. It follows by the
right R-module map property of a right B-coaction and (2.13) that, for a coinvariant
s ∈ S and r ∈ R,

((1T · r)s)[0] ⊗R ((1T · r)s)[1] = s ⊗R ξ(r) = (s(1T · r))[0] ⊗R (s(1T · r))[1].

Hence, applying the counit of B to the second factor on both sides, we conclude that the
elements s ∈ S commute with 1T · r , for all r ∈ R. Hence T ⊗R B is a right S-module,
with action

(t ⊗R b) · s := ts ⊗R b.

Consider a right ×R-Hopf algebra B over an algebra R, and a B-Galois extension
S ⊆ T . As in Lemma 2.14, in terms of the maps (2.19) and (2.27), introduce the index
notations

can−1(1T ⊗R b) =: b{−} ⊗S b{+} and ϑ−1(1B ⊗R b) =: b− ⊗Rop b+,(2.28)

for b ∈ B, where in both cases implicit summation is understood. The following lemma
is a right bialgebroid version of [H, Lemma 4.1.21]. It extends Lemma 2.14 (vi).

Lemma 2.22. Consider a right ×R-Hopf algebra B = (B, ξ, ζ,�, ε) over an algebra
R, and a B-Galois extension S ⊆ T . Using the notations in (2.28), for any b ∈ B the
following pentagonal equation holds in (T ⊗R B)⊗S T :

b{−}[0] ⊗R b{−}[1] ⊗S b{+} = b+
{−} ⊗R b− ⊗S b+

{+}.
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Proof. The second condition in (2.12) implies that there is a well defined bijection

can13 : (T ⊗R B)⊗S T → T ⊗R (B ⊗Rop B),
(t ′ ⊗R b)⊗S t 
→ t ′t [0] ⊗R (b ⊗Rop t [1]),

where in the Rop-module tensor product B⊗Rop B the Rop-actions Rop ⊗KB⊗K Rop →
B, r1 ⊗K b ⊗K r2 
→ ζ(r2)bζ(r1) are used, and B ⊗Rop B is meant to be a left R-module
via the action r ·(b⊗Rop b′) = b⊗Rop b′ζ(r). A straightforward computation using (2.13)
shows that the S-bimodule map and right R-module map (2.27), and the left R-module
map (2.19) satisfy

(can ⊗R B) ◦ (T ⊗S can) = (T ⊗R ϑ) ◦ can13 ◦ (can ⊗S T ).

Hence, by bijectivity of all involved maps,

(can ⊗S T ) ◦ (T ⊗S can−1) = can−1
13 ◦ (T ⊗R ϑ

−1) ◦ (can ⊗R B).

Application of this identity to 1T ⊗S 1T ⊗R b yields the claim. �	
For an algebra extension S ⊆ T , T has a canonical S-bimodule structure. Hence

application of the functor � : S-Mod-S → Mod-K in Definition 1.13 to T yields a
K-module �T ∼= Ŝ⊗S T .

Proposition 2.23. Consider a right ×R-Hopf algebra B over an algebra R, and a
B-Galois extension S ⊆ T . Then the quotient

TS := Ŝ⊗S T (2.29)

is a stable anti-Yetter-Drinfel’d module.

Proof. Since the S-, and R-actions on T commute (cf. second paragraph following
Definition 2.21), there is a unique R-bimodule structure on TS such that the epimorphism
pT : T → TS is an R-bimodule map. Furthermore, by the S-bimodule map property of
the coaction � : t 
→ t [0]⊗R t [1] in T , the map (pT ⊗R B)◦� : T → TS ⊗R B coequalizes
the left and right S-actions on T . Hence there exists a unique right B-comodule structure
on TS such that pT : T → TS is a right B-comodule map.

The algebra map S ↪→ T equips T with an S-bimodule structure. The center
(T ⊗S T )S of the S-bimodule T ⊗S T is an algebra, with multiplication (

∑

i ui ⊗S
u′

i )(
∑

j v j ⊗S v
′
j ) = ∑

i, j v j ui ⊗S u′
iv

′
j . Recall from [JŞ, Sect. 2.2] that for any any

T -bimodule M , the quotient Ŝ⊗S M ∼= M/{ s · m − m · s | s ∈ S, m ∈ M } is a left
(T ⊗S T )S-module via the action

(T ⊗S T )S ⊗K MS → MS, (
∑

i

ui ⊗S u′
i )⊗K pM (m) 
→

∑

i

pM (u
′
i mui ),

where pM : M → Ŝ⊗S M denotes the canonical epimorphism. In particular, TS is a left
(T ⊗S T )S-module.

On the other hand, for a Galois extension S ⊆ T by a right R-bialgebroid B, using
the notation in (2.28), the map

B → (T ⊗S T )S, b 
→ b{−} ⊗S b{+} (2.30)
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is an algebra homomorphism. Indeed, by the S-bimodule map property of the coaction
on T it follows that

can(sb{−} ⊗S b{+}) = s ⊗R b = can(b{−} ⊗S b{+}s).

Hence, by bijectivity of can, b{−} ⊗S b{+} ∈ (T ⊗S T )S , for all b ∈ B. The map (2.30)
is unital and multiplicative since by (2.13) for all b, b′ ∈ B,

can(1T ⊗S 1T ) = 1T ⊗S 1B and can(b′{−}b{−} ⊗S b{+}b′{+}) = 1T ⊗R bb′,

and can is bijective. This proves that TS is a left B-module, with a so-called Miyashita-
Ulbrich type action

b  pT (t) = pT (b
{+}tb{−}). (2.31)

It remains to check the compatibility conditions in Definition 2.15 between the B-module
and B-comodule structures on TS . It follows by the R-bimodule map property of (2.27)
that

ζ(r){−} ⊗S ζ(r)
{+} = r · 1T ⊗S 1T

and ξ(r){−} ⊗S ξ(r)
{+} = 1T ⊗S 1T · r. (2.32)

Hence

ζ(r)  pT (t) = pT
(

t (r · 1T )
) = pT (t · r) = pT (t) · r and

ξ(r)  pT (t) = pT
(

(1T · r)t
) = pT (r · t) = r · pT (t).

Furthermore, for b ∈ B and t ∈ T ,

(b  pT (t))
[0] ⊗R (b  pT (t))

[1] = pT

(

b{+}[0]t [0]b{−}[0]) ⊗R b{+}[1]t [1]b{−}[1]

= pT

(

b(1){+}t [0]b(1){−}[0]) ⊗R b(2)t [1]b(1){−}[1]

= pT

(

b(1)+
{+}

t [0]b(1)+
{−}) ⊗R b(2)t [1]b(1)−

= b(1)+  pT (t)
[0] ⊗R b(2) pT (t)

[1]b(1)− .

The first equality follows by (2.31), the second condition in (2.13) and the comodule
map property of pT . The second equality is a consequence of the right B-comodule
map property of (2.27), hence of the map (2.30). The third equality results from the
application of Lemma 2.22. The last equality follows by (2.31) and the comodule map
property of pT again. Thus we proved that TS is an anti-Yetter-Drinfel’d module. Finally,
by the comodule map property of pT and the identity

t [0]t [1]{−} ⊗S t [1]{+} = can−1(can(1T ⊗S t)
) = 1T ⊗S t, for t ∈ T, (2.33)

it follows that

pT (t)
[1]  pT (t)

[0] = t [1]  pT (t)
[0] = pT

(

t [1]{+}t [0]t [1]{−}) = pT (t).

That is, the anti-Yetter-Drinfel’d module TS is stable. �	
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Lemma 2.24. For an algebra R over a commutative ring K, consider a right
R-bialgebroid B and a B-Galois extension S ⊆ T . Using the notation in (2.28), for any
non-negative integer n there exist S-bimodule isomorphisms T ⊗S n+1 ∼= T ⊗R B⊗R n,

αn(t0 ⊗
S

· · · ⊗
S

tn) = t0t [0]
1 t [0]

2 · · · t [0]
n ⊗

R
t [1]
1 t [1]

2 · · · t [1]
n ⊗

R
t [2]
2 t [2]

3 · · · t [2]
n ⊗

R

· · · ⊗
R

t [n−1]
n−1 t [n−1]

n ⊗
R

t [n]
n ,

α−1
n (t ⊗

R
b1 ⊗

R
· · · ⊗

R
bn) = t b1

{−} ⊗
S

b1
{+}b2

{−} ⊗
S

b2
{+}b3

{−} ⊗
S

· · · ⊗
S

bn−1
{+}bn

{−} ⊗
S

bn
{+}.

Projections of the above isomorphisms yield K-module isomorphisms α̂n : T ̂⊗S n+1 →
TS ⊗R B⊗R n, where TS is the R-bimodule (2.29).

Proof. It follows by the S-bimodule map property of the right B-coaction on T that αn
is a well defined S-bimodule map. The to-be-inverse α−1

n is well defined by (2.32) and
Lemma 2.14 (iii). We prove by induction that the maps αn and α−1

n are mutual inverses.
For n = 0, both α0 and α−1

0 are equal to the identity map on T , hence they are mutual
inverses. It follows by the second condition in (2.13) that, for all values of n,

αn+1 = (αn ⊗R B) ◦ (T ⊗S n ⊗S can) and α−1
n+1 = (T ⊗S n ⊗S can−1) ◦ (α−1

n ⊗R B).

Hence if α−1
n is the inverse of αn then αn+1 is also an S-bimodule isomorphism with

inverse α−1
n+1. Applying the functor in Definition 1.13, from the category of S-bimodules

to the category of K-modules, it takes αn to the required K-module isomorphism α̂n :
T ̂⊗S n+1 → TS ⊗R B⊗R n . �	
Lemma 2.25. Let B be a right ×R-Hopf algebra over an algebra R. For the inverse of
the canonical map (2.19) use the index notation in (2.28). Then, for any non-negative
integer n, there exist right B-module isomorphisms B⊗R n ⊗Rop B ∼= B⊗R n+1,

βn
(

b1 ⊗R · · · ⊗R bn ⊗Rop b′) = b1b′(1) ⊗R · · · ⊗R bnb′(n) ⊗R b′(n+1),

β−1
n

(

b1 ⊗R · · · ⊗R bn ⊗R b′) = b1b′−
(1) ⊗R · · · ⊗R bnb′−

(n) ⊗Rop b′
+.

Proof. For any right B-module N , the B-bimodule isomorphism (2.19) induces a right
B-module isomorphism N⊗Bϑ : N⊗BB⊗Rop B ∼= N⊗Rop B → N⊗BB⊗RB ∼= N⊗R
B. Consider B⊗R n as a right B-module via the diagonal action. Then βn = B⊗R n ⊗B ϑ
is a right B-module isomorphism as stated. �	
Theorem 2.26. Let B be a right ×R-Hopf algebra over an algebra R and let S ⊆ T be
a B-Galois extension. Consider the right regular B-module coring and the stable anti-
Yetter-Drinfel’d module TS in Prop. 2.23. Then the associated cyclic simplex Z∗(B, TS)

in Proposition 2.19 is isomorphic to the cyclic simplex Z∗(T/S) in Corollary 1.29.

Proof. In terms of the maps in Lemmas 2.24 and 2.25, for any non-negative integer n, one
constructs a K-module isomorphism ωn as the composition of the following morphisms

T ̂⊗S n+1
α̂n �� TS ⊗

R
B⊗R n �� B⊗R n ⊗

Rop
TS

∼= �� B⊗R n ⊗
Rop

B ⊗
B

TS
βn⊗BTS �� B⊗R n+1 ⊗

B
TS .
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Explicitly,

ωn
(

t0 ̂⊗
S

t1 ̂⊗
S

· · · ̂⊗
S

tn
) = (

t [1]
1 t [1]

2 · · · t [1]
n ⊗

R
t [2]
2 · · · t [2]

n ⊗
R

· · · ⊗
R

t [n]
n ⊗

R
1B

)

⊗
B

pT (t0t [0]
1 t [0]

2 · · · t [0]
n ), (2.34)

where pT : T → TS ∼= Ŝ⊗S T denotes the canonical epimorphism. We show that (2.34)
is a homomorphism of cyclic simplices.

Denote the counit in B by ε. By multiplicativity of the coproduct in B, for any integer
0 ≤ k < n,

(

(B⊗R k ⊗
R
ε⊗

R
B⊗R n−k)⊗

B
TS

) ◦ ωn(to ̂⊗
S

· · · ̂⊗
S

tn) =
= (t [1]

1 · · · t [1]
n ⊗

R
· · · ⊗

R
t [k]
k · · · t [k]

n ⊗
R

t [k+1]
k+2 · · · t [k+1]

n ⊗
R

· · · ⊗
R

t [n−1]
n ⊗

R
1B)⊗B pT (t0t [0]

1 · · · t [0]
n )

= ωn−1(to ̂⊗
S

· · · ̂⊗
S

tk−1̂⊗
S

tk tk+1̂⊗
S

tk+2̂⊗
S

· · · ̂⊗
S

tn).

Furthermore, using the form of the (diagonal) right B-action on B⊗R n (in the second
equality) and the form of the left B-action (2.31) on TS (in the third equality), one
computes
(

(B⊗R n ⊗
R
ε)⊗

B
TS

) ◦ ωn(to ̂⊗
S

· · · ̂⊗
S

tn)

= (

t [1]
1 · · · t [1]

n ⊗
R

t [2]
2 · · · t [2]

n ⊗
R

· · · ⊗
R

t [n]
n

) ⊗
B

pT (t0t [0]
1 · · · t [0]

n )

= (

t [1]
1 · · · t [1]

n−1 ⊗
R

t [2]
2 · · · t [2]

n−1 ⊗
R

· · · ⊗
R

t [n−1]
n−1 ⊗

R
1B

) � t [1]
n ⊗

B
pT (t0t [0]

1 · · · t [0]
n )

= (

t [1]
1 · · · t [1]

n−1 ⊗
R

t [2]
2 · · · t [2]

n−1 ⊗
R

· · · ⊗
R

t [n−1]
n−1 ⊗

R
1B

)⊗
B

pT (t
[1]{+}
n t0t [0]

1 · · · t [0]
n t [1]{−}

n )

= (

t [1]
1 · · · t [1]

n−1 ⊗
R

t [2]
2 · · · t [2]

n−1 ⊗
R

· · · ⊗
R

t [n−1]
n−1 ⊗

R
1B

)⊗
B

pT (tnt0t [0]
1 · · · t [0]

n−1)

= ωn−1(tnto ̂⊗
S

t1 ̂⊗
S

· · · ̂⊗
S

tn−1), (2.35)

where the penultimate equality follows by (2.33). This proves that the map ωn is com-
patible with the face maps.

Denote the coproduct in B by�. It follows by its multiplicativity that, for any integer
0 ≤ k < n,

(

(B⊗R k ⊗
R
�⊗

R
B⊗R n−k)⊗

B
TS

) ◦ ωn(to ̂⊗
S

· · · ̂⊗
S

tn)

= (t [1]
1 · · · t [1]

n ⊗
R

· · · ⊗
R

t [k+1]
k+1 · · · t [k+1]

n ⊗
R

t [k+2]
k+1 · · · t [k+2]

n ⊗
R

· · · ⊗
R

t [n+1]
n ⊗

R
1B)⊗B pT (t0t [0]

1 · · · t [0]
n )

= ωn+1(to ̂⊗
S

· · · ̂⊗
S

tk̂⊗
S

1T ̂⊗
S

tk+1̂⊗
S

· · · ̂⊗
S

tn).

Furthermore, by unitality of � and of the B-coaction on T ,
(

(B⊗R n ⊗
R
�)⊗

B
TS

) ◦ ωn(to ̂⊗
S

· · · ̂⊗
S

tn)

= (

t [1]
1 t [1]

2 · · · t [1]
n ⊗

R
t [2]
2 · · · t [2]

n ⊗
R

· · · ⊗
R

t [n]
n ⊗

R
1B ⊗

R
1B

)⊗
B

pT (t0t [0]
1 t [0]

2 · · · t [0]
n )

= ωn+1(to ̂⊗
S

· · · ̂⊗
S

tn̂⊗
S

1T ).
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This proves that the map ωn is compatible with the degeneracy maps.
Finally, by similar steps as in (2.35), the cyclic map ŵn in Proposition 2.19 is checked

to satisfy

ŵn ◦ ωn(to ̂⊗
S

· · · ̂⊗
S

tn)

= (

t [1]
0 t [1]

1 t [1]
2 · · · t [1]

n ⊗
R

t [2]
1 · · · t [2]

n ⊗
R

· · · ⊗
R

t [n]
n−1t [n]

n ⊗
R

t [n+1]
n

)

⊗
B

pT (t
[0]
0 t [0]

1 t [0]
2 · · · t [0]

n )

= (

t [1]
0 t [1]

1 t [1]
2 · · · t [1]

n−1 ⊗
R

t [2]
1 · · · t [2]

n−1 ⊗
R

· · · ⊗
R

t [n]
n−1 ⊗

R
1B

)

⊗
B

pT (tnt [0]
0 t [0]

1 t [0]
2 · · · t [0]

n−1)

= ωn(tn ̂⊗
S

t0 ̂⊗
S

· · · ̂⊗
S

tn−1).

Hence ωn is compatible with the cyclic maps as well, which proves the claim. �	

3. Cyclic Homology of Groupoids

Consider a groupoid G (i.e. a small category in which all morphisms are invertible) with
a finite set G0 of objects and an arbitrary set G1 of morphisms. Via the map associating
to x ∈ G0 the identity morphism x → x , we consider G0 as a subset of G1. Composition
in G is denoted by ◦ while the source and target maps G1 → G0 are denoted by s and t ,
respectively. For any field K, the K-vector space B := KG1, spanned by the elements of
G1, has a right ×R-Hopf algebra structure over the commutative base algebra R := KG0.
Structure maps are the following. Multiplication in the K-algebra B is given on basis
elements g, g′ ∈ G1 by g ◦ g′, if g and g′ are composable, i.e. s(g) = t (g′), and zero
otherwise. We denote by juxtaposition this product, linearly extended to all elements of
B. The unit element is 1B = ∑

x∈G0 x . Similarly, R is a commutative K-algebra with
minimal orthogonal idempotents { x ∈ G0 }. Both algebra maps ξ and ζ : R → B are
induced by the inclusion map G0 ↪→ G1. That is, B is an R-module (or R-bimodule,
with coinciding left and right actions) via multiplication on the right. The coproduct
is diagonal on the basis elements g ∈ G1, i.e. �(g) := g ⊗R g. The counit ε maps
g ∈ G1 to s(g) ∈ G0. The canonical map (2.19) has the explicit form on the generating
set {g ⊗R g′ | g, g′ ∈ G1},

ϑ : B ⊗R B → B ⊗R B, g ⊗R g′ 
→ gg′ ⊗R g′.

(Note that R-module structures in the domain and codomain are different, cf. Defini-
tion 2.13.) It obviously has an inverse ϑ−1(g ⊗R g′) = gg′−1 ⊗R g′.

In this final section we apply the theory developed in the earlier sections to the
groupoid bialgebroid B and its stable anti-Yetter-Drinfel’d modules. In this way, we
obtain expressions for Hochschild and cyclic homologies of a groupoid with finitely
many objects. Describing then any groupoid as a direct limit of groupoids with finitely
many objects, we extend the computation of cyclic homology to arbitrary groupoids.
Similar arguments don’t seem to apply in the case of Hochschild homology.

3.A. Anti-Yetter-Drinfel’d modules for groupoids. The subject of this section is a
complete characterization of (stable) anti-Yetter-Drinfel’d modules of a groupoid bial-
gebroid. As a first step, we study comodules.
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Proposition 3.1. Let G be a small groupoid with a finite set of objects. Let B be the
groupoid R-bialgebroid associated to G. Then any right B-comodule M has a direct
sum decomposition M ∼= ⊕g∈G1 Mg (as an R-module) such that the R-action · and the
B-coaction � satisfy the conditions

(i) m · x = δx,s(g)m and
(ii) �(m) = m ⊗R g,

for x ∈ G0, g ∈ G1 and m ∈ Mg. Conversely, on an R-module M ∼= ⊕g∈G1 Mg, which
is subject to condition (i), there is a unique right B-coaction satisfying (ii).

Proof. Recall that by definition R acts on B by right multiplication. For any g ∈ G1

there is an R-module map χg : B → R, h 
→ δg,hs(g). Introduce the map

πg := (M ⊗R χg) ◦ � : M → M.

We claim that M is isomorphic to a direct sum of the R-modules Mg := Im(πg). Since
B is a free K-module, there exist (non-unique) elements {mg | g ∈ G1} in M , in terms
of which �(m) = ∑

g∈G1 mg ⊗R g, hence πg(m) = mg · s(g). By construction, for a

given element m ∈ M there are only finitely many elements g ∈ G1 such that mg �= 0,
hence πg(m) �= 0. By coassociativity of �,

∑

g,h∈G1
(mh)g ⊗R g ⊗R h =

∑

g∈G1
mg ⊗R g ⊗R g.

Hence applying M ⊗R χg′ ⊗R χh′ , for some g′, h′ ∈ G1, we conclude that (mh′)g′ ·
s(g′)s(h′) = δg′,h′mg′ · s(g′), i.e. πg′ ◦ πh′ = δg′,h′πg′ . By counitality of �, for all
m ∈ M ,

∑

g∈G1
πg(m) =

∑

g∈G1
mg · s(g) = m.

This proves the direct sum decomposition of M as an R-module. Condition (i) follows
by the computation, for m ∈ M , g ∈ G1 and x ∈ G0,

πg(m) · x = mg · s(g)x = δs(g),x mg · s(g) = δs(g),xπg(m).

Moreover, for m ∈ M ,

�(m) =
∑

g∈G1
mg ⊗R g =

∑

g∈G1
mg ⊗R gs(g)=

∑

g∈G1
mg · s(g)⊗R g

=
∑

g∈G1
πg(m)⊗R g.

Hence, by orthogonality of the projections πg ,

�(πh(m)) =
∑

g∈G1
πg(πh(m))⊗R g = πh(m)⊗R h,

which proves condition (ii). Conversely, assume that for an R-module M ∼= ⊕g∈G1 Mg
condition (i) holds. Put �g : Mg → Mg ⊗R B, m 
→ m ⊗R g. One can check that it
makes Mg to a right B-comodule. By universality of a direct sum, this defines a unique
right B-coaction � on M , such that condition (ii) holds. �	
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Note that property (ii) in Proposition 3.1 characterizes uniquely the elements m of
a component Mg . Indeed, if for m ∈ M , �(m) = m ⊗R g, then by counitality of the
coaction � we obtain πg(m) = m · s(g) = m.

We are ready to characterize (stable) anti-Yetter-Drinfel’d modules of groupoids.

Theorem 3.2. Let G be a small groupoid with a finite set of objects. Let B be the groupoid
bialgebroid associated to G. A left B-module M ∼= ⊕g∈G1 Mg, with action , is an anti-
Yetter-Drinfel’d B-module if and only if the following conditions hold.

(i) For x ∈ G0, g ∈ G1 and m ∈ Mg, δx,s(g)m = x  m = δx,t (g)m.
(ii) For g, h ∈ G1 and m ∈ Mg, the element h  m is zero if hgh−1 = 0 in B and it

belongs to Mhgh−1 if hgh−1 �= 0 in B.

The anti-Yetter-Drinfel’d B-module M is stable if and only if in addition g  m = m, for
all g ∈ G1 and m ∈ Mg.

Proof. By Proposition 3.1 there is a unique B-coaction on M corresponding to the given
direct sum decomposition. For g ∈ G1, it takes m ∈ Mg to m ⊗R g. The R-bimodule
structure corresponding to this coaction comes out, for x, y ∈ G0, g ∈ G1 and m ∈ Mg ,
as

x · m · y = m · ε(xgy) = δs(g),y δt (g),x m · s(g) = δs(g),y δt (g),x m.

Hence axiom (2.20) of an anti-Yetter-Drinfel’d module translates to condition (i) in the
theorem. A straightforward computation shows that for a groupoid bialgebroid, axiom
(2.21) of an anti-Yetter-Drinfel’d module takes the form

�(h  m) = h  m ⊗R hgh−1, (3.1)

for h, g ∈ G1 and m ∈ Mg . If hgh−1 = 0 in B, then the right-hand side of (3.1) vanishes.
Since � is a monomorphism of R-modules (split by M ⊗R ε), this is equivalent to
h  m = 0. If hgh−1 �= 0 in B, then (3.1) is equivalent to h  m ∈ Mhgh−1 (cf.
Proposition 3.1, and discussions following it). This completes the proof. �	

As a consequence of Theorem 3.2 (condition (i)), in the direct sum decomposition of
an anti-Yetter-Drinfel’d module M of a groupoid bialgebroid, Mg is non-zero for only
those elements g ∈ G1 for which s(g) = t (g), i.e. which are loops. That is, introducing
the notation L(G) := { g ∈ G1 | s(g) = t (g) }, one can write M ∼= ⊕l∈L(G)Ml .

Our next aim is to decompose an anti-Yetter-Drinfel’d module M of a groupoid
bialgebroid B as a direct sum of anti-Yetter-Drinfel’d modules. For a loop l ∈ L(G),
denote by [l] the orbit of l in L(G) for the adjoint action, that is, the set of different
non-zero elements of the form glg−1, as g runs through G1. This gives a (G-invariant)
partition T (G) of L(G). Using Theorem 3.2 one concludes that M[l] := ⊕l ′∈[l]Ml ′ is an
anti-Yetter-Drinfel’d B-module, and

M ∼=
⊕

[l]∈T (G)
M[l], (3.2)

as anti-Yetter-Drinfel’d modules. Let us give an alternative description of the anti-Yetter-
Drinfel’d module M[l]. Introduce the following subalgebras of the groupoid algebra
B. For l ∈ L(G), let Bl be the group algebra of the centralizer G1

l of l in the group
{ l ′ ∈ L(G) | s(l ′) = s(l) }. That is,

Bl := KG1
l ≡ K{ l ′ ∈ L(G) | l ′ll ′−1 = l }. (3.3)
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The algebra Bl possesses a unit (the element s(l) = t (l)), different from the unit element
of B. For x ∈ G0, let B(x) denote the vector space spanned by the elements g ∈ G1, such
that s(g) = x . Consider the group bialgebra structure of Bl . Clearly, for any l ∈ L(G),
the component Ml in the direct sum decomposition of an anti-Yetter-Drinfel’d B-module
M is an anti-Yetter-Drinfel’d module of the group bialgebra Bl (in the sense of [JŞ], cf.
Theorem 3.2). Moreover, B(s(l)) is a B-Bl bimodule and a right Bl -module coalgebra
(with coproduct induced by the map g 
→ g ⊗K g, for g ∈ G1 such that s(g) = s(l).)

Lemma 3.3. Let G be a small groupoid with a finite set of objects. Let B be the groupoid
bialgebroid over a field K, associated to G. Keeping the notation introduced above,
B(s(l)) is free as a right Bl -module, for any l ∈ L(G).

Proof. Since any morphism in a groupoid is invertible, the right action of the group G1
l

on the set { g ∈ G1 | s(g) = s(l) } is faithful in the sense that gl ′ = g implies l ′ = s(l).
Hence the claim follows by the fact that KX is a free module for a group algebra KG
whenever G acts faithfully on the set X . Indeed, fix a K-basis { ex | x ∈ X } of KX ,
such that ex · g = ex ·g . Fix a section f of the canonical epimorphism from X to the
set of G-orbits X/G. By construction, { e f (O) | O ∈ X/G } is a generating set of the
KG-module KX . It is also linearly independent over KG, by the following reasoning.
Assume that, for some coefficients aO = ∑

g∈G αO,g g ∈ KG,

0 =
∑

O∈X/G

e f (O) · aO =
∑

O∈X/G

∑

g∈G

αO,g e f (O)·g.

Since G acts on X faithfully, in the above sum each element e f (O) appears exactly once.
Hence αO,g = 0, for all O ∈ X/G and g ∈ G. Thus we have the claim proven. �	
Proposition 3.4. Let G be a small groupoid with a finite set of objects. Let B be the
groupoid bialgebroid associated to G. Let M be an anti-Yetter-Drinfel’d B-module.
Keeping the notation introduced above, there is an isomorphism of anti-Yetter-Drinfel’d
B-modules

M[l] ∼= B(s(l))⊗Bl Ml , for all l ∈ L(G).

Proof. First we construct a left B-module isomorphism

ϕl : B(s(l))⊗Bl Ml → M[l], g ⊗Bl m 
→ g  m. (3.4)

For any g ∈ G1 such that s(g) = s(l), consider the map

ψg : Mglg−1 → B(s(l))⊗Bl Ml , g 
→ g ⊗Bl g−1  m.

In order to see that the map ψg does not depend on g, only on glg−1, choose ano-
ther element h ∈ G1, such that glg−1 = hlh−1. Note that this implies in particular
t (g) = t (h). Then, for m ∈ Mglg−1 ,

ψh(m)=h ⊗Bl h−1  m = h ⊗Bl h−1t (h)  m = h ⊗Bl h−1t (g)  m

= h ⊗Bl h−1gg−1  m

=hh−1g ⊗Bl g−1  m = t (h)g ⊗Bl g−1  m = t (g)g ⊗Bl g−1  m

= g ⊗Bl g−1  m = ψg(m),
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where in the fifth equality we used that h−1g is an element of Bl . Thus we conclude
by universality of a direct sum on the existence of a map ψ : M[l] ∼= ⊕l ′∈[l]Ml ′ →
B(s(l)) ⊗Bl Ml , mapping m ∈ Mglg−1 to ψg(m) = g ⊗Bl g−1  m. A straightforward
computation shows that ψ is the inverse of ϕl in (3.4).

Next we show that B(s(l)) ⊗Bl Ml is an anti-Yetter-Drinfel’d module with respect
to the direct sum decomposition B(s(l)) ⊗Bl Ml ∼= ⊕l ′∈[l]ψ(Ml ′), hence (3.4) is an
isomorphism of anti-Yetter-Drinfel’d modules, as stated. For m ∈ Ml , l ′ ∈ L(G), h, h′ ∈
G1 and y ∈ G0, such that hlh−1 = l ′ and s(h′) = t (h),

y  (h ⊗Bl m) = yh ⊗Bl m = δt (h),y h ⊗Bl m = δs(l ′),y h ⊗Bl m,

h′  (h ⊗Bl m) = h′h ⊗Bl m ∈ ψ(Mh′l ′h′−1).

In view of Theorem 3.2 this implies that B(s(l)) ⊗Bl Ml is an anti-Yetter-Drinfel’d
module with respect to the given decomposition, hence it completes the proof. �	

3.B. Hochschild and cyclic homology with coefficients. In view of Proposition 2.19,
there is a cyclic simplex associated to a groupoid bialgebroid B, the right regular
B-module coring and any stable anti-Yetter-Drinfel’d B-module M . At degree n, it
is given by Zn(B,M) = B⊗R n+1 ⊗B M (where B acts on B⊗R n+1 via the diagonal right
action). In this section we compute its Hochschild and cyclic homologies.

With an eye on the decomposition of M in Sect. 3.A, computations start with the
following

Lemma 3.5. Let G be a small groupoid with a finite set of objects. Let B be the groupoid
bialgebroid over a field K, associated to G. Let M be an anti-Yetter-Drinfel’d B-module.
Using notations introduced in Sect. 3.A, there is an isomorphism of right Bl -modules,

B⊗R n+1 ⊗B B(x) ∼= B(x)⊗K n+1,

for all l ∈ L(G) and x := s(l). Here B⊗R n+1 ⊗B B(x) is understood to be a right
Bl -module via the last factor and the group algebra Bl acts on B(x)⊗K n+1 via the
diagonal action.

Proof. Since R = KG0 is a separable K-algebra, B⊗R n+1 is isomorphic to the subspace
B× n+1 of B⊗K n+1, spanned by those elements g0⊗K· · ·⊗Kgn for which s(gi ) = s(gi+1),
for all i = 0 · · · n. Thus it suffices to prove B× n+1 ⊗B B(x) ∼= B(x)⊗K n+1. We claim
that the right Bl -module map

B(x)⊗K n+1 → B× n+1 ⊗B B(x), g0 ⊗K · · ·⊗K gn 
→ (g0 ⊗K · · ·⊗K gn)⊗B x (3.5)

is an isomorphism. Since the map

B× n+1 ⊗K B(x) → B(x)⊗K n+1, (g0 ⊗K · · · ⊗K gn)⊗K h 
→ g0h ⊗K · · · ⊗K gnh

factorizes through B× n+1 ⊗B B(x), it defines a unique map

B× n+1 ⊗B B(x)→ B(x)⊗K n+1, (g0 ⊗K · · ·⊗K gn)⊗B h 
→ g0h ⊗K · · ·⊗K gnh.

(3.6)

Obviously, (3.5) and (3.6) are mutual inverses. �	
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Proposition 3.6. Let G be a small groupoid with a finite set of objects. Let B be the
groupoid bialgebroid over a field K, associated to G. Let M be a stable anti-Yetter-
Drinfel’d B-module, with decomposition (3.2). For all l ∈ L(G), the cyclic simplex
Z∗(B,M[l]) = B⊗R ∗+1 ⊗B M[l] is isomorphic to Z∗(B(s(l)),Ml) = B(s(l))⊗K ∗+1 ⊗Bl

Ml , corresponding (as in [JŞ, Remark 4.16]) to the module coalgebra B(s(l)), and stable
anti-Yetter-Drinfel’d module Ml , of the group bialgebra Bl .

Proof. Combining the isomorphisms in Proposition 3.4 and Lemma 3.5, we obtain an
isomorphism of vector spaces

B(s(l))⊗K n+1 ⊗Bl Ml ∼= B⊗R n+1 ⊗B B(s(l))⊗Bl Ml ∼= B⊗R n+1 ⊗B M[l]
(g0 ⊗K · · · ⊗K gn)⊗Bl m 
−→ (g0 ⊗R · · · ⊗R gn)⊗B m,

with inverse B⊗R n+1⊗B Mhlh−1 � (g0⊗R · · ·⊗R gn)⊗B m 
→ (g0h⊗K · · ·⊗K gnh)⊗Bl

h−1  m. It is left to the reader to check that it is an isomorphism of cyclic objects. �	
Hochschild and cyclic homologies of a group, with coefficients in a stable anti-

Yetter-Drinfel’d module, were computed in [JŞ, Corollary 5.13]. Hence in what follows
we relate Hochschild and cyclic homologies of the cyclic object Z∗(B(s(l)),Ml) ∼=
Z∗(B,M[l]) in Proposition 3.6 to the known respective homology of Z∗(Bl ,Ml).

Lemma 3.7. Let (C,�, ε) be a coalgebra over a field K. Consider the corresponding
simplex C⊗K ∗+1 (with face maps ∂i induced by ε and degeneracy maps µi induced by
�). Then the associated complex ˜C∗(C) is acyclic, i.e. Hn(˜C∗(C)) = δn,0K, for any
non-negative integer n. Moreover, if (C,�, ε) is a right module coalgebra of a K-Hopf
algebra H and free as a right H-module, then ˜C∗(C) is a free resolution of K in the
category of right H-modules.

Proof. We need to show that the chain complex

· · · δn+1 �� C⊗K n+1
δn �� C⊗K n �� · · · δ1 �� C

δ0=ε ��
K

�� 0

is exact, where δn = ∑n
i=0(−1)i∂i . Indeed, the map C ⊗K ε is surjective, having a

section �. Since C is a faithfully flat module of the field K, this implies surjectivity of
ε. Take an element g ∈ C such that ε(g) = 1K. One easily checks that, for z ∈ C⊗K n+1

such that δn(z) = 0, δn+1(g ⊗K z) = z − (g ⊗K δn(z)) = z.
Assume now that (C,�, ε) is a right module coalgebra of a K-Hopf algebra H .

Then ˜C∗(C) is an acyclic complex in the category of right H-modules. It remains to
show that C⊗K n+1 is a free H -module whenever C is. Indeed, in this case C⊗K n+1

is free as a right module of H⊗K n+1 via factorwise action. By [JŞ, Lemma 2.10] (cf.
Lemma 2.25), H⊗K n+1 is free as a right H -module via the diagonal action. Hence
C⊗K n+1 ∼= C⊗K n+1 ⊗H⊗K n+1 H⊗K n+1 is a free right H -module. �	
Lemma 3.8. Let H be a Hopf algebra over a field K and let i : C → C ′ be a morphism
of right H-module coalgebras. Let M be a stable anti-Yetter-Drinfel’d H-module. If both
C and C ′ are free as right H-modules, then the induced morphism i∗ : Z∗(C,M) →
Z∗(C ′,M) of cyclic objects gives rise to isomorphisms both of Hochschild and cyclic
homologies. That is,

HH∗(C,M) ∼= HH∗(C ′,M) and HC∗(C,M) ∼= HC∗(C ′,M).
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Proof. By Lemma 3.7, both ˜C∗(C) and ˜C∗(C ′) are free resolutions of K over H . Thus
i⊗K ∗+1 : ˜C∗(C) → ˜C∗(C ′) is a quasi-isomorphism. Then so is i⊗K ∗+1 ⊗H M :
˜C∗(C)⊗H M → ˜C∗(C ′)⊗H M , yielding an isomorphism

HHn(C,M) ≡ Hn(˜C∗(C)⊗H M) ∼= Hn(˜C∗(C ′)⊗H M) ≡ HHn(C
′,M),

for all non-negative integers n. The isomorphism of Hochschild homologies implies the
isomorphism of cyclic homologies, see e.g. (a dual form of) [Lo, 2.2.3]. �	
Theorem 3.9. Let G be a small groupoid with a finite set of objects. Let B be the groupoid
bialgebroid over a field K, associated to G. Let M be a stable anti-Yetter-Drinfel’d
B-module, with decomposition (3.2). For all l ∈ L(G),

HH∗(B,M[l]) ∼= HH∗(Bl ,Ml) and HC∗(B,M[l]) ∼= HC∗(Bl ,Ml).

Proof. By Proposition 3.6, the cyclic objects Z∗(B,M[l]) and Z∗(B(s(l)),Ml) are iso-
morphic. Hence HH∗(B,M[l]) ∼= HH∗(B(s(l)),Ml). Furthermore, the right
Bl -module coalgebra B(s(l)) is a free right Bl -module by Lemma 3.3. Hence we
conclude by Lemma 3.8 that the inclusion map Bl ↪→ B(s(l)) induces an isomor-
phism HH∗(B(s(l)),Ml) ∼= HH∗(Bl ,Ml). Combination of these isomorphisms proves
the theorem. �	

Let us assume now that K is a field of characteristic zero. In view of Theorem 3.9,
one can compute also

HH∗(B,M) ∼=
⊕

[l]∈T (G)
HH∗ (Bl ,Ml) and HC∗(B,M) ∼=

⊕

[l]∈T (G)
HC∗ (Bl ,Ml) .

Since Bl is a group algebra of G1
l (cf. (3.3)), HH∗(Bl ,Ml) = H∗(G1

l ,Ml) is the group
homology of G1

l with coefficients in Ml . Applying [JŞ, Corollary 5.13], for the cyclic
homology we get

HC∗(Bl ,Ml) =
{⊕

i≥0 H∗−2i
(

G1
l /〈l〉,Ml

)

, if l has finite order
H∗

(

G1
l /〈l〉,Ml

)

, if l has infinite order.

3.C. Cyclic homology of groupoids. The results in Sect. 3.B can be specialized fur-
ther to stable anti-Yetter-Drinfel’d modules provided by groupoid Galois extensions, cf.
Proposition 2.23. This enables us, in particular, to compute ordinary (i.e. non-relative)
Hochschild and cyclic homologies of a groupoid.

Let G be a small groupoid with a finite set of objects. Let B be the groupoid bialgebroid
over a field K, associated to G. Recall from [CaDGr, Sect. 3] that a Galois extension
S ⊆ T by B has an equivalent description as follows. T is a strongly G-graded K-algebra,
that is, T ∼= ⊕g∈G1 Tg (as a vector space),

TgTg′ =
{

Tg◦g′ if s(g) = t (g′)
0 if s(g) �= t (g′),

1T = ∑

x∈G0 1Tx , and S is equal to the subalgebra ⊕x∈G0 Tx . Note that each direct
summand Tg is an R = KG0-module via v · x := v1Tx = δs(g),x v, for v ∈ Tg and
x ∈ G0.

By Proposition 2.23, TS := Ŝ⊗ST is a stable anti-Yetter-Drinfel’d module. In the
following lemma its structure is investigated.
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Lemma 3.10. Let G be a small groupoid with a finite set of objects. Let B be the groupoid
bialgebroid over a field K, associated to G. Let S ⊆ T be a Galois extension by B. Using
the notations introduced in Sect. 3.A, there is an isomorphism of anti-Yetter-Drinfel’d
modules

TS ∼=
⊕

l∈L(G)
Ŝ⊗STl .

The (Miyashita-Ulbrich) action is given, for g ∈ G1, l ∈ L(G) and v ∈ Tl , by

g  pTl (v) =
n

∑

i=1

pTl (bivai ),

where pTl : Tl → Ŝ⊗STl denotes the canonical epimorphism and the elements {a1, . . . ,

an} ⊆ Tg−1 and {b1, · · · , bn} ⊆ Tg satisfy
∑n

i=1 ai bi = 1Ts(g) .

Proof. Since T ∼= ⊕g∈G1 Tg is G-graded, each direct summand Tg is an S-bimodule.
Hence

Ŝ⊗ST ∼=
⊕

g∈G1

Ŝ⊗STg.

We claim that only those elements g ∈ G1 give a non-zero contribution to this direct
sum, for which s(g) = t (g). Recall that Ŝ⊗STg is isomorphic to the quotient of Tg
with respect to the commutator subspace [S, Tg] = {qv − vq | q ∈ S, v ∈ Tg }.
Take an element g ∈ G1 such that s(g) �= t (g) and an element v ∈ Tg . By strong
grading of T , there exist elements {a1, · · · , an} ⊆ Tg−1 and {b1, · · · , bn} ⊆ Tg such
that

∑n
i=1 ai bi = 1Ts(g) . Then

n
∑

i=1

[vai , bi ] =
n

∑

i=1

vai bi − bivai = v1Ts(g) = v,

where the penultimate equality follows by the fact that, for all values of i , bivai ∈
TgTgTg−1 is zero by the assumption that s(g) �= t (g). Since for all values of i , vai ∈
Tg−1 Tg = Ts(g) ⊆ S, we conclude that Tg ⊆ [S, Tg]. Since the converse inclusion is
obvious, we have Ŝ⊗STg ∼= Tg/[S, Tg] = 0 proven.

In order to write down the Miyashita-Ulbrich action, consider again g ∈ G1 and
elements {a1, · · · , an} ⊆ Tg−1 and {b1, . . . , bn} ⊆ Tg such that

∑n
i=1 ai bi = 1Ts(g) . The

canonical map can : T ⊗S T → T ⊗R B satisfies

can(
n

∑

i=1

ai ⊗S bi ) =
n

∑

i=1

ai bi ⊗R g = 1Ts(g) ⊗R g = 1T · s(g)⊗R g = 1T ⊗R g.

Hence the stated form of the Miyashita-Ulbrich action follows by (2.31). �	
Corollary 3.11. Let G be a small groupoid with a finite set of objects. Let B be the
groupoid bialgebroid over a field K, associated to G. Let S ⊆ T be a Galois extension
by B. Using the notations introduced in Sect. 3.A, the S-relative Hochschild and cyclic
homologies of T are given, respectively, by

HH∗(T/S) =
⊕

[l]∈T (G)
HH∗(Bl , Ŝ⊗STl) and HC∗(T/S) =

⊕

[l]∈T (G)
HC∗(Bl , Ŝ⊗STl).
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Proof. By Theorem 2.26, HH∗(T/S) ∼= HH∗(B, TS) and HC∗(T/S) ∼= HC∗(B, TS).
Hence the claim follows by Theorem 3.9 and considerations following it, together with
Lemma 3.10. �	

A particular example R ⊆ B of a Galois extension by a groupoid G is provided
by the inclusion of the base algebra R = KG0 in the groupoid algebra B = KG1.
Applying Corollary 3.11 to it, we obtain formulae for the R-relative Hochschild and
cyclic homologies of the groupoid G. Since the base algebra R = KG0 is separable over
K, relative homologies coincide with ordinary ones, cf. [Kad]. Therefore we obtain the
following corollary, extending results in [Burg] on cyclic homology of groups. Similar
expressions were derived also by Crainic in [Cra] for étale groupoids.

Corollary 3.12. Let B be the groupoid algebra of a small groupoid G with a finite set of
objects over a field K of characteristic zero. Using the notations introduced in Sect. 3.A
we have

HH∗(B) =
⊕

[l]∈T (G)
H∗(G1

l ,K),

HC∗(B) =

⎛

⎜

⎜

⎝

⊕

[l]∈T (G)
ord(l)<∞

⊕

i≥0

H∗−2i (G1
l / 〈l〉 ,K)

⎞

⎟

⎟

⎠

⊕

⎛

⎜

⎜

⎝

⊕

[l]∈T (G)
ord(l)=∞

H∗(G1
l / 〈l〉 ,K)

⎞

⎟

⎟

⎠

.

Recall that a groupoid G is connected if, for any x, y ∈ G0, there exists at least one
g ∈ G1 such that s(g) = x and t (g) = y. For a connected groupoid G we fix an object
x ∈ G0 and we denote by G the group of loops l ∈ L(G) such that s(l) = t (l) = x .
(Since G is connected by assumption, different choices of x lead to isomorphic subgroups
G of G.) Let T (G) denote the set of conjugacy classes in G and let {gσ | σ ∈ T (G)} be
a transversal of T (G).
Lemma 3.13. Let G be a connected groupoid. Keeping the above notation, there is an
one-to-one correspondence between T (G) and T (G).
Proof. We have to show that any orbit in L(G) for the adjoint action contains precisely
one element of the set {gσ | σ ∈ T (G)}. That is, any loop l in G is equivalent to a certain
gσ and that two elements gσ and gτ are equivalent if, and only if σ = τ . First, let us
take l ∈ L(G). Since G is connected, there is a morphism g such that s(g) = x and
t (g) = s(l). Let l ′ := g−1 ◦ l ◦ g. By construction, l ′ ∈ G, so there are h ∈ G and
σ ∈ T (G) such that h ◦ l ′ ◦ h−1 = gσ . Since l = (g ◦ h−1) ◦ gσ ◦ (g ◦ h−1)−1 it follows
that l and gσ are conjugated in L(G).

Let us take σ and τ in T (G) and assume that gσ and gτ define the same element
in T (G). Then there is g ∈ G1 such that gσ = g ◦ gτ ◦ g−1. Since both loops gσ and
gτ have the same source, we deduce that the source and the target of g must be x .Hence
g ∈ G and the conjugacy classes of gσ and gτ in T (G) are equal. In conclusion, σ = τ.

�	
Remark 3.14. Lemma 3.13 tells us, in particular, that {gσ | σ ∈ T (G)} is also a trans-
versal of T (G). Explicitly, a given element gσ represents the following orbit σ̃ ∈ T (G).
Recall that we defined the group G in terms of a fixed object x in G0. For every y ∈ G0 we
pick up a fixed gy ∈ HomG(x, y). It defines a group isomorphism G → HomG(y, y),
h 
→ gy ◦h ◦ g−1

y . It maps σ ∈ T (G) to the conjugacy class σy = {gy ◦h ◦ g−1
y | h ∈ σ }

in the group HomG(y, y). The orbit of gσ for the adjoint G-action is σ̃ = ⋃

y∈G0 σy .
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Corollary 3.15. Let G be a connected groupoid with finitely many objects. Let M be a
stable anti-Yetter-Drinfel’d module over B, where B is the groupoid algebra of G over
a field of characteristic zero.

(i) MG := ⊕

g∈G Mg is a stable anti-Yetter-Drinfel’d module over KG and the
inclusions KG ⊆ B and MG ⊆ M induce isomorphisms

HH∗(B,M) ∼= HH∗(KG,MG) and HC∗(B,M) ∼= HC∗(KG,MG).

(ii) The inclusion KG ⊆ B induces isomorphisms

HH∗(B) ∼= HH∗(KG) and HC∗(B) ∼= HC∗(KG).

Proof. (i) Obviously MG is a stable anti-Yetter-Drinfel’d module over KG. Consider
the following diagram.

Z∗(KG,MG)

��

��
⊕

σ∈T (G) Z∗(KG,Mσ ) ��

��

⊕

σ∈T (G) Z∗(KBgσ ,Mgσ )

��
Z∗(B,M) ��

⊕

σ∈T (G) Z∗(B,Mσ̃ ) ��
⊕

σ∈T (G) Z∗(B(x),Mgσ )

The leftmost morphism in the bottom row comes from the decomposition (3.2), while the
other one is the direct sum of the arrows that were constructed in Proposition 3.6. Note
that both maps are induced by appropriate inclusions and they are isomorphisms. The
morphisms in the top row have the same properties, as any group can be regarded as a
groupoid with one object. By definition, the vertical arrows are the canonical morphisms
induced by inclusions, so they make the squares commutative. In view of the proof of
Theorem 3.9, the rightmost vertical arrow gives isomorphisms both of Hochschild and
cyclic homologies. Then also the leftmost vertical morphism does so.

(ii) The subalgebra R := KX of B is a separable K-algebra. Hence HH∗(B) ∼=
HH∗(B, R).By Lemma 3.10 we know that M := R̂⊗R B is a stable anti-Yetter-Drinfel’d
module over B. Since for any g ∈ G, either [R,Kg] = Kg or [R,Kg] = 0, depending on
the fact that g is a loop or not, we get M := ⊕

g∈L(G) Kg.Hence MG := KG.Obviously
the action of B on KG induced from the Ulbrich-Miyashita action is the adjoint action of
KG on itself. We conclude by applying the first part of the corollary and the isomorphisms
HH∗(KG) ∼= HH∗(KG, (KG)ad) and HC∗(KG) ∼= HC∗(KG, (KG)ad), cf. [JŞ]. �	

Our final aim is to compute HC∗(B), the ordinary cyclic homology of the groupoid
algebra B of a groupoid G that may have an infinite number of objects. For such a
groupoid, its groupoid algebra B is not unital anymore. Nevertheless, to define cyclic
homology of B one can proceed as for unital algebras, cf. [Lo, Chap. 2, §2.1]. The
point is that Connes’ complex Cλ(B) still exists, although it is now associated to a
precyclic object, that is to a presimplicial structure endowed with cyclic operators. Here,
by presimplicial object we mean a sequence of objects together only with face maps. The
defining properties of face maps and cyclic operators are the same as in the definition
of cyclic objects, neglecting of course the relations that involve the degeneracy maps.
The key ingredient of our computation is a description of any groupoid as a direct limit
of groupoids with finitely many objects. Since cyclic homology is defined as homology
of Connes’ complex and the homology functor commutes with direct limits, we obtain
cyclic homology of an arbitrary groupoid as a direct limit. Note however that, for non-
unital algebras, Hochschild homology is constructed in a different way. For the definition,
see for example [Lo, Chap. 1, §1.2]. Therefore, we can not apply the same arguments to
compute Hochschild homology of an arbitrary groupoid.
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Theorem 3.16. Let G be a connected groupoid. If B is the groupoid algebra over a field
K of characteristic zero, then

HC∗(B) ∼= HC∗(KG).

Proof. Let x be a given object in G0. Let G denote the group of loops l ∈ L(G) such
that s(l) = x . We order the set

X := {X ⊂ G0 | x ∈ X and X is finite}
with respect to inclusion. Trivially X is a direct system. For X ∈ X we define GX to
be the full subgroupoid of G such that G0

X = X and we denote its groupoid algebra by
BX . Note that B = ⋃

X∈X BX , so Cλ∗ (B) = ⋃

X∈X Cλ∗ (BX ). As the direct limit in the
category of vector spaces is exact, it follows that the homology functor and direct limit
commute. Thus

HC∗(B) ∼= H∗(Cλ∗ (B)) ∼= H∗
(

lim−−→
X∈X

Cλ∗ (BX )
) ∼= lim−−→

X∈X

H∗
(

Cλ∗ (BX )
) ∼= lim−−→

X∈X

HC∗(BX ),

where the latter direct system is defined by the canonical maps HC∗(BX ) → HC∗(BY ),

with X, Y in X such that X ⊂ Y. We claim that these maps are isomorphisms. Indeed,
let us consider the following commutative diagram

Z∗(KG)

������������

������������

Z∗(BX ) �� Z∗(BY )

By the second part of Corollary 3.15, the oblique arrows induce isomorphisms in cyclic
homology. Then, passing to cyclic homology, also the horizontal map yields an iso-
morphism. We can now conclude the proof of the theorem by remarking that, for any
X ∈ X,

HC∗(BX ) ∼= lim−−→
X∈X

HC∗(BX ).

Thus, taking X = {x} we get the required isomorphism. �	
The computation performed in Theorem 3.16 can be extended to an arbitrary (discrete)

groupoid G.Let (Gi )i∈I be the connected components of G.For each i we pick up xi ∈ G0
i

and we denote the set of loops l with s(l) = xi by Gi . We have the following result.

Corollary 3.17. Let G be a discrete groupoid. If B denotes the groupoid algebra of G
over a field of characteristic zero, then

HC∗(B) ∼=
⊕

i∈I

HC∗(KGi ). (3.7)

In addition, if G0
i is a finite set for every i ∈ I , then a similar isomorphism holds in

Hochschild homology.
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Proof. For i ∈ I, let Bi be the groupoid algebra of Gi .As a vector space, B is isomorphic
to

⊕

i∈I Bi . Via this identification, the multiplication of B can be extended to the direct
sum. It is easy to see that, for two families (b′

i )i∈I and (b′′
i )i∈I in

⊕

i∈I Bi , we have

(b′
i )i∈I · (b′′

i )i∈I = (b′
i b

′′
i )i∈I .

The corollary now follows by the isomorphism HC∗(
⊕

i∈I Bi ) ∼= ⊕

i∈I HC∗(Bi ). If I
is a finite set, then this isomorphism can be found in [Lo, Exercise 2.2.1]. Since cyclic
homology and direct limits commute, the isomorphism can be extended for an arbitrary
set I.

Since for non-unital algebras Hochschild homology is constructed in a different
way (cf. [Lo, Chap. 1, §1.2]), the above arguments can not be applied to deduce an
isomorphism for Hochschild homology, analogous to (3.7). Nevertheless, in the case
when G0 is finite, B is an unital algebra. Thus HH∗(B) can be computed as the Hochschild
homology of Connes’ cyclic object. The required isomorphism now follows by [We,
Theorem 9.1.8], proceeding as for cyclic homology. �	

As an application of Corollary 3.17 we shall compute HH∗(B) and HC∗(B), where
B is the groupoid algebra of the groupoid associated to a G-set X .

Throughout the remaining part of the paper we fix an arbitrary (discrete) group G
that acts to the left on an arbitrary set X . The action of G on X maps a pair (x, g) ∈
X × G to gx ∈ X. For a G-set X as above, one constructs a groupoid G as follows. By
definition, the set of objects in G is G0 := X while, for x, y ∈ X, we set

HomG(x, y) = {

(x, g) ∈ X × G | gx = y
}

.

Note that the source of (x, g) is x and its target is gx .Thus the composition (x, g)◦(x ′, g′)
is defined if, and only if x = g′

x ′ and, in this case

(x, g) ◦ (x ′, g′) := (x ′, gg′).

The set of morphisms in G is G1 = X × G. Therefore, the groupoid algebra B of G has
X × G as a basis. To describe the multiplication on this basis let us recall some well-
known facts about twisted semigroup algebras by a 2-cocycle. Let S be a semigroup. A
function ω : S × S → K is called a 2-cocycle if, for any p1, p2, p3 in S,

ω(p1, p2)ω(p1 p2, p3) = ω(p2, p3)ω(p1, p2 p3).

The semigroup algebra of S is defined as in the group case: as a vector space it has S as
a basis and the multiplication on this basis is given by the multiplication in S. We shall
denote this algebra by KS. The cocycle ω can be used to deform the multiplication of
KS such that we get another associative algebra structure on the vector space KS. Its
multiplication is defined by

p1 · p2 = ω(p1, p2)p1 p2.

The resulting algebra will be denoted by KωS. Certainly, it is not unital in general. Still,
even if S has no neutral element, the algebra KωS may have a unit e := ∑

x∈X x , where
X is an appropriate finite subset of S. In fact, it is easy to see that e is a unit element in
the algebra Kω if, and only if ω is X -normalized, i.e. for any p, q ∈ S,

∑

{x∈X |xp=q}
ω(x, p) = δp,q =

∑

{x∈X |px=q}
ω(p, x).
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Let us turn back to the groupoid algebra of G, where X is a G-set. We define the
semigroup S := X × G with the multiplication

(x, g)(y, h) = (y, gh).

It is not difficult to see that ωX : S × S → K, given by

ωX
(

(x, g), (y, h)
) :=

{

0, if h y �= x
1, if h y = x

(3.8)

is a 2-cocycle, which is X -normalized if, and only if X is finite. Obviously, B = KωS as
non-unital algebras, in general. For a finite G-set X , this is an equality of unital algebras.

We denote the set of G-orbits in X by X. Let us remark that there is an one-to-one
correspondence between X and the set of connected components of G. This bijection
maps an orbit 0 ∈ X to the full subgroupoid Go defined uniquely such that G0

o = o. We
choose a transversal {xo ∈ X | o ∈ X} for X. Thus, any x ∈ X is in the orbit of a certain
xo and xo′ and xo′′ are in the same orbit if, and only if o′ = o′′. Moreover, the set Go of
loops l such that s(l) = xo is the stabilizer of xo,

Go := {g ∈ G | gxo = xo}.
Hence, a direct application of Corollary 3.17 yields the following.

Theorem 3.18. Let X be a G-set. If ωX denotes the 2-cocycle in (3.8) and K is a field
of characteristic zero, then

HC∗(KωX G) =
⊕

o∈X

HC∗(KGo).

If in addition X is finite, then

HH∗(KωX G)=
⊕

o∈X

HH∗(KGo).
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[Burr] Burroni, E.: Algébres non déterministiques et D-catégories. Cahiers de Topologie et Géometrie
Différentielle 14, 417–475, 480–481 (1973)

[CaDGr] Caenepeel, S., De Groot, E.: Galois theory for weak Hopf algebras. Rev. Roumaine Math. Pures
Appl. 52, 51–76 (2007)

[CM95] Connes, A., Moscovici, H.: Local index formula in noncommutative geometry. Geom. Funct.
Anal. 5, 174–243 (1995)

[CM98] Connes, A., Moscovici, H.: Hopf algebras, cyclic cohomology and the transverse index theo-
rem. Commun. Math. Phys. 198, 199–246 (1998)

[CM01] Connes, A., Moscovici, H.: Differential cyclic cohomology and Hopf algebraic structures in
transverse geometry. In: Essays on geometry and related topics. Vol. 1-2, Monogr. Enseign.
Math. 38, Geneva: Enseignement Math., 2001, pp. 217–255

[Cra] Crainic, M.: Cyclic cohomology of étale groupoids: the general case. K -Theory 17, 319–362
(1999)

[EM] Eilenberg, S., Moore, J.C.: Adjoint functors and triples. Ill. J. Math. 9, 381–398 (1965)
[Go] Godement, R.: Théorie des faisceaux. Paris: Hermann, 1957
[HKRS1] Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y.: Stable anti-Yetter-Drinfeld

modules. C. R. Math. Acad. Sci. Paris 338, 587–590 (2004)
[HKRS2] Hajac, P.M., Khalkhali, M., Rangipour, B., Sommerhäuser, Y.: Hopf-cyclic homology and coho-

mology with coefficients. C. R. Math. Acad. Sci. Paris 338, 667–672 (2004)
[H] Hobst, D.: Antipodes in the theory of noncommutative torsors. PhD thesis, Ludwig-Maximilians

Universität München, 2004, Berlin: Logos Verlag, 2004
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