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Abstract: We consider the problem of identifying sharp criteria under which radial
H1 (finite energy) solutions to the focusing 3d cubic nonlinear Schrödinger equation
(NLS) i∂t u +�u + |u|2u = 0 scatter, i.e., approach the solution to a linear Schrödinger
equation as t → ±∞. The criteria is expressed in terms of the scale-invariant quantities
‖u0‖L2‖∇u0‖L2 and M[u]E[u], where u0 denotes the initial data, and M[u] and E[u]
denote the (conserved in time) mass and energy of the corresponding solution u(t).
The focusing NLS possesses a soliton solution eit Q(x), where Q is the ground-state
solution to a nonlinear elliptic equation, and we prove that if M[u]E[u] < M[Q]E[Q]
and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then the solution u(t) is globally well-posed
and scatters. This condition is sharp in the sense that the soliton solution eit Q(x), for
which equality in these conditions is obtained, is global but does not scatter. We further
show that if M[u]E[u] < M[Q]E[Q] and ‖u0‖L2‖∇u0‖L2 > ‖Q‖L2‖∇Q‖L2 , then the
solution blows-up in finite time. The technique employed is parallel to that employed
by Kenig-Merle [17] in their study of the energy-critical NLS.

1. Introduction

Consider the cubic focusing nonlinear Schrödinger (NLS) equation on R
3:

i∂t u +�u + |u|2u = 0, (1.1)

where u = u(x, t) is complex-valued and (x, t) ∈ R
3 × R. The initial-value problem

posed with initial-data u(x, 0) = u0(x) is locally well-posed in H1 (see Ginibre-Velo
[10]; standard reference texts are Cazenave [3], Linares-Ponce [21], and Tao [30]). Such
solutions, during their lifespan [0, T ∗) (where T ∗ = +∞ or T ∗ < +∞), satisfy mass
conservation M[u](t) = M[u0], where

M[u](t) =
∫

|u(x, t)|2 dx,



436 J. Holmer, S. Roudenko

and energy conservation E[u](t) = E[u0], where

E[u](t) = 1

2

∫
|∇u(x, t)|2 dx − 1

4

∫
|u(x, t)|4 dx

(and we thus henceforth denote these quantities M[u] and E[u] respectively, with no
reference to the time t).

The equation also has several invariances, among them (in each of the following
cases, ũ is a solution to (1.1) if and only if u is a solution to (1.1)):

• Spatial translation. For a fixed x0 ∈ R
3, let ũ(x, t) = u(x + x0, t).

• Scaling. For a fixed λ ∈ (0,+∞), let ũ(x, t) = λu(λx, λ2t).
• Galilean phase shift. For a fixed ξ0 ∈ R

3, let ũ(x, t) = eixξ0 e−i tξ2
0 u(x − 2ξ0t, t).

The scale-invariant Sobolev norm is Ḣ1/2, although we find it more useful, as described
below, to focus on the scale invariant quantities ‖u(t)‖L2‖∇u(t)‖L2 and M[u]E[u].
The Galilean invariance leaves only the L2 norm invariant, while translation leaves all
Sobolev norms invariant. We note that these two symmetries do not preserve radiality,
while the scaling symmetry does.

The nonlinear elliptic equation

− Q +�Q + |Q|2 Q = 0, Q = Q(x), x ∈ R
3, (1.2)

has an infinite number of solutions in H1. Among these there is exactly one solution of
minimal mass1, called the ground-state solution, and it is positive (real-valued), radial,
smooth, and exponentially decaying (see Appendix B of Tao’s text [30] for exposition).
We henceforth denote by Q this ground-state solution. If we let u(x, t) = eit Q(x), then
u is a solution to (1.1), and is called the standard soliton. A whole family of soliton
solutions to (1.1) can be built from the standard soliton via the invariances of the NLS
equation (1.1):

u(x, t) = eit ei x ·ξ0 e−i t |ξ0|2λ u(λ(x − (x0 + 2ξ0t)), λ2t). (1.3)

The standard soliton has the property that the quantities ‖u0‖L2‖∇u0‖L2 and M[u]E[u]
are minimal among all solitons (1.3). Indeed, these quantities are independent of trans-
lation and scaling, and the introduction of a Galilean phase shift only increases their
values. Since solutions to the linear Schrödinger equation completely disperse (spread
out, and shrink in a variety of spatial norms) as t → ±∞, the soliton solutions by
their definition do not scatter (approach a solution of the linear Schrödinger equation).
Indeed, soliton solutions represent a perfect balance between the focusing forces of the
nonlinearity and the dispersive forces of the linear component.

The basic line of thought in the subject, motivated by heuristics (Soffer [25]), rigor-
ous partial results (Tao [28,29]), numerical simulation (Sulem-Sulem [27]), and analogy
with the completely integrable one-dimensional case, is that a solution of (1.1) either
completely disperses as t → ∞ (linear effects dominate), blows-up in finite time (non-
linear effects dominate) or the solution resolves into a sum of solitons propagating in

1 In view of the connection between solutions Q to (1.2) and solutions u(t) = eit Q to (1.1), and the fact
that ‖u(t)‖L2‖∇u(t)‖L2 is a scale invariant quantity for solutions u(t) to (1.1), it might be more natural to
classify the family of solutions Q to (1.2) in terms of the quantity ‖Q‖L2‖∇Q‖L2 rather than the mass.

However, any solution Q to (1.2) must satisfy the Pohozhaev identity ‖Q‖L2‖∇Q‖L2 = √
3‖Q‖2

L2 , and
thus, the two classifications are equivalent.
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different directions or at different speeds plus dispersive radiation as t → ∞ (nonlinear
effects and linear effects balance). Since the smallest value of ‖u0‖L2‖∇u0‖L2 among all
soliton solutions is ‖Q‖L2‖∇Q‖L2 , it seems reasonable to conjecture, even for nonradial
data, that if ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then the solution scatters provided we
can rule out blow-up. Ruling out blow-up in this situation is straightforward provided
M[u]E[u] < M[Q]E[Q] using the conservation of mass and energy and a result of M.
Weinstein stating that an appropriate Gagliardo-Nirenberg inequality is optimized at Q.
The main result of this paper is the resolution of this conjecture under the assumption
of radial data, which appears below as Theorem 1.1(1)(b).

Theorem 1.1. Let u0 ∈ H1 be radial and let u be the corresponding solution to (1.1)
in H1 with maximal forward time interval of existence [0, T ). Suppose M[u]E[u] <
M[Q]E[Q].
(1) If ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then

(a) T = +∞ (the solution is globally well-posed in H1), and
(b) u scatters in H1. This means that there exists φ+ ∈ H1 such that

lim
t→+∞ ‖u(t)− eit�φ+‖H1 = 0 .

(2) If ‖u0‖L2‖∇u0‖L2 > ‖Q‖L2‖∇Q‖L2 , then T < +∞ (the solution blows-up in
finite time).

It is straightforward to establish as a corollary the same result for negative times:
take the complex conjugate of the equation and replace t by −t . Since the hypotheses
in Theorem 1.1 (1),(2) apply to u0 if and only if they apply to ū0, we obtain that the
hypotheses of (1) imply that u scatters both as t → +∞ and t → −∞ and the hypotheses
of (2) imply that u blows-up both in finite positive time and in finite negative time. An
interesting open question is whether or not there exist solutions u with M[u]E[u] ≥
M[Q]E[Q] that exhibit different behavior in the positive and negative directions.2

The proof of Theorem 1.1(1)(b) is based upon ideas in Kenig-Merle [17], who proved
an analogous statement for the energy-critical NLS.

The key dynamical quantity in the proof of Theorem 1.1 is a localized variance
‖xu(t)‖L2(|x |≤R). The virial identity states that if ‖xu0‖L2 < ∞, then u satisfies

∂2
t

∫
|x |2|u(x, t)|2 dx = 24E[u] − 4‖∇u(t)‖2

L2
x
. (1.4)

We use a localized version of this identity in both the proof of Theorem 1.1(2) and the
rigidity lemma (see §6) giving Theorem 1.1(1)(b). On a heuristic level (keeping in mind
that ‖u(t)‖L2 is conserved), under the hypotheses of Theorem 1.1(1), the right side of
(1.4) is strictly positive, which pushes the variance ‖xu(t)‖L2 to +∞ as t → +∞, which
says roughly that the mass of u is being redistributed to large radii, meaning that it
“disperses”, and we expect the effect of the nonlinearity to diminish and scattering to
occur. On the other hand, under the hypotheses of Theorem 1.1(2), the right side of (1.4)
is strictly negative, which pushes the variance ‖xu(t)‖L2 to 0 in finite time, meaning
that all the mass of u concentrates at the origin and we expect blow-up. We do not use
(1.4) directly, however, for two reasons. First, it requires the additional hypothesis that
the initial data has finite variance—an assumption we would like to avoid. Secondly, in

2 Solutions with this type of behavior have recently been constructed by Duyckaerts–Roudenko [7] at the
threshold M[u]E[u] = M[Q]E[Q].
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the case of the scattering argument, we don’t see a method for proving scattering given
only the strict convexity (in time) of the variance and its divergence to +∞, although
it is heuristically consistent with scattering. The problem is that large variance can be
produced by a very small amount of mass moving to very, very large radii, while still
leaving a significant amount of mass at small radii. Therefore, to prove the scattering
claim in Theorem 1.1(1)(b), we instead use a localized virial identity, as Kenig–Merle
[17] did, involving a localized variance. If a very small amount of mass moved to very,
very large radii, it would not affect the localized variance dramatically.

For the 3d cubic defocusing NLS

i∂t u +�u − |u|2u = 0

scattering has been established for all H1 solutions (regardless of “size”) even for
nonradial data by Ginibre-Velo [11] using a Morawetz inequality. This proof was simpli-
fied by Colliander–Keel–Staffilani–Takaoka–Tao [4] using a new interaction Morawetz
inequality they discovered. These Morawetz estimates, however, are not positive def-
inite for solutions to the focusing equation (1.1), and thus, cannot be applied directly
to our problem. It remains open whether or not one could prove suitable bounds on the
nonpositive terms to recover the results of this paper.

For (1.1), Tao [28] proved a few results in the direction of the soliton resolution
conjecture, assuming the solution is radial and global (has globally bounded H1 norm).
It is shown that for large data, radial solutions asymptotically split into (i) a (smooth)
function localized near the origin (which is either zero or has a non-zero mass and energy
and obeys an asymptotic Pohozhaev identity), (ii) a radiation term evolving by the linear
Schrödinger flow, and (iii) an error term (approaching zero in the Ḣ1 norm). Further
results for mass supercritical, energy subcritical NLS equations in higher dimensions
(N ≥ 5) were established by Tao in [29].

Equation (1.1) frequently arises, often in more complex forms, as a model equation
in physics. In 2d, it appears as a model in nonlinear optics — see Fibich [8] for a review.
When coupled with a nonlinear wave equation, it arises as the Zakharov system [33] in
plasma physics. According to [19] p. 7, in the mass supercritical case “the most important
partial case p = 3, d = 3 corresponds to the subsonic collapse of Langmuir waves in
plasma”. Furthermore, (1.1) arises as a model for the Bose–Einstein condensate (BEC)
in condensed matter physics. There, it appears as the Gross–Pitaevskii (GP) equation
(in 1d, 2d, and 3d), which is (1.1) with a (real) potential V = V (x):

i∂t u +�u − V u + a|u|2u = 0 . (1.5)

It is derived by mean-field theory approximation (see Schlein [26]), and |u(x, t)|2 rep-
resents the density of the condensate at time t and position x . The coefficient a in the
nonlinearity is governed by a quantity called the s-scattering length. Some elements
used in recent experiments (7Li, 85Rb, 133Cs) possess a negative s-scattering length in
the ground state and are modeled by (1.5) with a < 0. V (x) is an external trapping
potential imposed by a system of laser beams and is typically taken to be harmonic
V (x) = β|x |2. These “unstable BECs” (where a < 0) have been investigated experi-
mentally recently (see the JILA experiments [6]) and a number of theoretical predictions
have been confirmed, including the observation of “collapse events” (corresponding to
blow-up of solutions to (1.5)). A few articles have appeared (for example [1]) in the
physics literature discussing the critical number of atoms required to initiate collapse.
The “critical number of atoms” corresponds to “threshold mass M[u]” in our terminol-
ogy, and connects well with the mathematical investigations in this paper.
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The format of this paper is as follows. In §2, we give a review of the Strichartz esti-
mates, the small data theory, and the long-time perturbation theory. We review properties
of the ground state profile Q in §3 and recall its connection to the sharp Gagliardo-
Nirenberg estimate of M. Weinstein [32]. In §4, we introduce the local virial identity
and prove Theorem 1.1 except for the scattering claim in part (1)(b). In §5–6, we prove
Theorem 1.1(1)(b). This is done in two stages, assuming that the threshold for scattering
is strictly below the one claimed. First, in §5, we construct a solution uc (a “critical ele-
ment”) that stands exactly at the boundary between scattering and nonscattering. This is
done using a profile decomposition lemma in Ḣ1/2, obtained by extending the Ḣ1 meth-
ods of Keraani [15]. We then show that time slices of uc(t), as a collection of functions
in H1, form a precompact set in H1 (and thus, uc has something in common with the
soliton eit Q(x)). This enables us to prove that uc remains localized uniformly in time. In
§6, this localization is shown to give a strict convexity (in time) of a localized variance
which leads to a contradiction with the conservation of mass at large times. In §7, we
explain how Theorem 4.2 should carry over to more general nonlinearities and general
dimensions (mass supercritical and energy subcritical cases) of NLS equations.

2. Local Theory and Strichartz Estimates

We begin by recalling the relevant Strichartz estimates (e.g., see Cazenave [3], Keel–Tao
[16]). We say that (q, r) is Ḣ s Strichartz admissible (in 3d) if

2

q
+

3

r
= 3

2
− s.

Let

‖u‖S(L2) = sup
(q,r) L2 admissible
2≤r≤6, 2≤q≤∞

‖u‖Lq
t Lr

x
.

In particular, we are interested in (q, r) equal to ( 10
3 ,

10
3 ) and (∞, 2). Define3

‖u‖S(Ḣ1/2) = sup
(q,r) Ḣ1/2 admissible
3≤r≤6−, 4+≤q≤∞

‖u‖Lq
t Lr

x
,

where 6− is an arbitrarily preselected and fixed number < 6; similarly for 4+. We will,
in particular, use (q, r) equal to (5, 5), (20, 10

3 ), and (∞, 3). Now we consider dual
Strichartz norms. Let

‖u‖S′(L2) = inf
(q,r) L2 admissible
2≤q≤∞, 2≤r≤6

‖u‖
Lq′

t Lr ′
x
,

where (q ′, r ′) is the Hölder dual to (q, r). Also define

‖u‖S′(Ḣ−1/2) = inf
(q,r) Ḣ−1/2 admissible
4
3

+≤q≤2−, 3+≤r≤6−

‖u‖
Lq′

t Lr ′
x
.

3 For some inequalities, the range of valid exponents (q, r) can be extended. The Kato inequality (2.2)
imposes the most restrictive assumptions that we incorporate into our definitions of S(Ḣ1/2) and S(Ḣ−1/2).
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The Strichartz estimates are

‖eit�φ‖S(L2) ≤ c‖φ‖L2

and ∥∥∥∥
∫ t

0
ei(t−t ′)� f (·, t ′)dt ′

∥∥∥∥
S(L2)

≤ c‖ f ‖S′(L2).

By combining Sobolev embedding with the Strichartz estimates, we obtain

‖eit�φ‖S(Ḣ1/2) ≤ c‖φ‖Ḣ1/2

and ∥∥∥∥
∫ t

0
ei(t−t ′)� f (·, t ′)dt ′

∥∥∥∥
S(Ḣ1/2)

≤ c‖D1/2 f ‖S′(L2) . (2.1)

We shall also need the Kato inhomogeneous Strichartz estimate [14] (for further exten-
sions see [9] and [31])

∥∥∥∥
∫ t

0
ei(t−t ′)� f (·, t ′) dt ′

∥∥∥∥
S(Ḣ1/2)

≤ c‖ f ‖S′(Ḣ−1/2) . (2.2)

In particular, we will use L5
t L5

x and L20
t L

10
3

x on the left side, and L10/3
t L5/4

x on the right
side.

We extend our notation S(Ḣ s), S′(Ḣ s) as follows: If a time interval is not specified
(that is, if we just write S(Ḣ s), S′(Ḣ s)), then the t-norm is evaluated over (−∞,+∞).
To indicate a restriction to a time subinterval I ⊂ (−∞,+∞), we will write S(Ḣ s; I )
or S′(Ḣ s; I ).

Proposition 2.1. (Small data) Suppose ‖u0‖Ḣ1/2 ≤ A. There is δsd = δsd(A) > 0 such
that if ‖eit�u0‖S(Ḣ1/2) ≤ δsd, then u solving (1.1) is global (in Ḣ1/2) and

‖u‖S(Ḣ1/2) ≤ 2 ‖eit�u0‖S(Ḣ1/2),

‖D1/2u‖S(L2) ≤ 2 c ‖u0‖Ḣ1/2 .

(Note that by the Strichartz estimates, the hypotheses are satisfied if ‖u0‖Ḣ1/2 ≤ cδsd.)

Proof. Define

�u0(v) = eit�u0 + i
∫ t

0
ei(t−t ′)�|v|2v(t ′)dt ′.

Applying the Strichartz estimates, we obtain

‖D1/2�u0(v)‖S(L2) ≤ c‖u0‖Ḣ1/2 + c‖D1/2(|v|2v)‖
L5/2

t L10/9
x

and

‖�u0(v)‖S(Ḣ1/2) ≤ ‖eit�u0‖S(Ḣ1/2) + c‖D1/2(|v|2v)‖
L5/2

t L10/9
x
.
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Applying the fractional Leibnitz [18] and Hölder inequalities,

‖D1/2(|v|2v)‖
L5/2

t L10/9
x

≤ ‖v‖2
L5

t L5
x
‖D1/2v‖L∞

t L2
x

≤ ‖v‖2
S(Ḣ1/2)

‖D1/2v‖S(L2).

Let

δsd ≤ min

(
1√
24c

,
1

24cA

)
.

Then �u0 : B → B, where

B =
{
v

∣∣ ‖v‖S(Ḣ1/2) ≤ 2‖eit�u0‖S(Ḣ1/2), ‖D1/2v‖S(L2) ≤ 2c‖u0‖Ḣ1/2

}
,

and �u0 is a contraction on B. �
Proposition 2.2. (H1 scattering) If u0 ∈ H1, u(t) is global with globally finite
Ḣ1/2 Strichartz norm ‖u‖S(Ḣ1/2) < +∞ and a uniformly bounded H1 norm

supt∈[0,+∞) ‖u(t)‖H1 ≤ B, then u(t) scatters in H1 as t → +∞. This means that
there exists φ+ ∈ H1 such that

lim
t→+∞ ‖u(t)− eit�φ+‖H1 = 0.

Proof. Since u(t) solves the integral equation

u(t) = eit�u0 + i
∫ t

0
ei(t−t ′)�(|u|2u)(t ′) dt ′,

we have

u(t)− eit�φ+ = −i
∫ +∞

t
ei(t−t ′)�(|u|2u)(t ′)dt ′, (2.3)

where

φ+ = u0 + i
∫ +∞

0
e−i t ′�(|u|2u)(t ′)dt ′.

Applying the Strichartz estimates to (2.3), we have

‖u(t)− eit�φ+‖H1 ≤ c‖|u|2 (1 + |∇|)u‖
L5/2

[t,+∞)
L10/9

x

≤ c‖u‖2
L5[t,+∞)

L5
x
‖u‖L∞

t H1
x

≤ cB‖u‖2
L5[t,+∞)

L5
x
.

Send t → +∞ in this inequality to obtain the claim. �
The following long-time perturbation result is similar in spirit to Lemma 3.10 in

Colliander–Keel–Staffilani–Takaoka–Tao [5], although more refined than a direct anal-
ogous version since the smallness condition (2.4) is expressed in terms of S(Ḣ1/2) rather
than D−1/2S(L2). This refinement is achieved by employing the Kato inhomogeneous
Strichartz estimates [14].
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Proposition 2.3. (Long time perturbation theory) For each A � 1, there exists
ε0 = ε0(A) � 1 and c = c(A) � 1 such that the following holds. Let u = u(x, t) ∈ H1

x
for all t and solve

i∂t u +�u + |u|2u = 0 .

Let ũ = ũ(x, t) ∈ H1
x for all t and define

e
def= i∂t ũ +�ũ + |ũ|2ũ .

If

‖ũ‖S(Ḣ1/2) ≤ A , ‖e‖S′(Ḣ−1/2) ≤ ε0 , and

‖ei(t−t0)�(u(t0)− ũ(t0))‖S(Ḣ1/2) ≤ ε0 , (2.4)

then

‖u‖S(Ḣ1/2) ≤ c = c(A) < ∞ .

Proof. Let w be defined by u = ũ + w. Then w solves the equation

i∂tw +�w + (ũ2w̄ + 2|ũ|2w) + (2 ũ |w|2 + ¯̃uw2) + |w|2w − e = 0. (2.5)

Since ‖ũ‖S(Ḣ1/2) ≤ A, we can partition [t0,+∞) into N = N (A) intervals4 I j =
[t j , t j+1] such that for each j , the quantity ‖ũ‖S(Ḣ1/2;I j )

≤ δ is suitably small (δ to be
chosen below). The integral equation version of (2.5) with initial time t j is

w(t) = ei(t−t j )�w(t j ) + i
∫ t

t j

ei(t−s)�W (·, s) ds, (2.6)

where

W = (ũ2w̄ + 2|ũ|2w) + (2 ũ |w|2 + ¯̃uw2) + |w|2w − e.

By applying the Kato Strichartz estimate (2.2) on I j , we obtain

‖w‖S(Ḣ1/2;I j )
≤ ‖ei(t−t j )�w(t j )‖S(Ḣ1/2;I j )

+ c ‖ũ2w‖
L10/3

I j
L5/4

x
(2.7)

+ c ‖ũw2‖
L10/3

I j
L5/4

x
+ c ‖w3‖

L10/3
I j

L5/4
x

+ ‖e‖S′(Ḣ−1/2;I j )
.

Observe

‖ũ2w‖
L10/3

I j
L5/4

x
≤ ‖ũ‖2

L20
I j

L10/3
x

‖w‖L5
I j

L5
x

≤ ‖ũ‖2
S(Ḣ1/2;I j )

‖w‖S(Ḣ1/2;I j )

≤ δ2‖w‖S(Ḣ1/2;I j )
.

Similarly,

‖ũw2‖
L10/3

I j
L5/4

x
≤ δ‖w‖2

S(Ḣ1/2;I j )
, and ‖w3‖

L10/3
I j

L5/4
x

≤ ‖w‖3
S(Ḣ1/2;I j )

.

4 The number of intervals depends only on A, but the intervals themselves depend upon the function ũ.
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Substituting the above estimates in (2.7),

‖w‖S(Ḣ1/2;I j )
≤ ‖ei(t−t j )�w(t j )‖S(Ḣ1/2;I j )

+ cδ2‖w‖S(Ḣ1/2;I j )

+ cδ‖w‖2
S(Ḣ1/2;I j )

+ c‖w‖3
S(Ḣ1/2;I j )

+ cε0.

(2.8)

Provided

δ ≤ min

(
1,

1

6c

)
and

(
‖ei(t−t j )�w(t j )‖S(Ḣ1/2;I j )

+ cε0

)
≤ min

(
1,

1

2
√

6c

)
,

(2.9)
we obtain

‖w‖S(Ḣ1/2;I j )
≤ 2‖ei(t−t j )�w(t j )‖S(Ḣ1/2;I j )

+ 2cε0. (2.10)

Now take t = t j+1 in (2.6), and apply ei(t−t j+1)� to both sides to obtain

ei(t−t j+1)�w(t j+1) = ei(t−t j )�w(t j ) + i
∫ t j+1

t j

ei(t−s)�W (·, s) ds. (2.11)

Since the Duhamel integral is confined to I j = [t j , t j+1], by again applying the Kato
estimate, similarly to (2.8) we obtain the estimate

‖ei(t−t j+1)�w(t j+1)‖S(Ḣ1/2) ≤ ‖ei(t−t j )�w(t j )‖S(Ḣ1/2) + cδ2‖w‖S(Ḣ1/2;I j )

+ cδ‖w‖2
S(Ḣ1/2;I j )

+ c‖w‖3
S(Ḣ1/2;I j )

+ cε0.

By (2.10) and (2.11), we bound the previous expression to obtain

‖ei(t−t j+1)�w(t j+1)‖S(Ḣ1/2) ≤ 2‖ei(t−t j )�w(t j )‖S(Ḣ1/2) + 2cε0.

Iterating beginning with j = 0, we obtain

‖ei(t−t j )�w(t j )‖S(Ḣ1/2) ≤ 2 j‖ei(t−t0)�w(t0)‖S(Ḣ1/2) + (2 j − 1)2cε0

≤ 2 j+2cε0.

To accommodate the second part of (2.9) for all intervals I j , 0 ≤ j ≤ N −1, we require
that

2N+2cε0 ≤ min

(
1,

1

2
√

6c

)
. (2.12)

We review the dependence of parameters: δ is an absolute constant selected to meet
the first part of (2.9). We were given A, which then determined N (the number of time
subintervals). The inequality (2.12) specifies how small ε0 needs to be taken in terms of
N (and thus, in terms of A). �



444 J. Holmer, S. Roudenko

3. Properties of the Ground State

Weinstein [32] proved that the sharp constant cGN in the Gagliardo–Nirenberg estimate

‖ f ‖4
L4 ≤ cGN‖ f ‖L2‖∇ f ‖3

L2 (3.1)

is attained at the function Q (the ground state described in the introduction), i.e.,
cGN = ‖Q‖4

L4/(‖Q‖L2‖∇Q‖3
L2). By multiplying (1.2) by Q, integrating, and applying

integration by parts, we obtain

−‖Q‖2
L2 − ‖∇Q‖2

L2 + ‖Q‖4
L4 = 0 .

By multiplying (1.2) by x ·∇Q, integrating, and applying integration by parts, we obtain
the Pohozhaev identity

3

2
‖Q‖2

L2 +
1

2
‖∇Q‖2

L2 − 3

4
‖Q‖4

L4 = 0 .

These two identities enable us to obtain the relations

‖∇Q‖2
L2 = 3‖Q‖2

L2 , ‖Q‖4
L4 = 4‖Q‖2

L2 , (3.2)

and thus, reexpress

cGN = 4

3‖Q‖L2‖∇Q‖L2
= 4

3
√

3‖Q‖2
L2

.5 (3.3)

We also calculate

M[Q]E[Q] = ‖Q‖2
L2

(
1

2
‖∇Q‖2

L2 − 1

4
‖Q‖4

L4

)
= 1

6
‖Q‖2

L2‖∇Q‖2
L2 = 1

2
‖Q‖4

L2 .

(3.4)
For later purposes we recall a version of the Gagliardo–Nirenberg inequality valid

only for radial functions, due to Strauss [26]. In R
3, for any R > 0, we have

‖ f ‖4
L4(|x |>R) ≤ c

R2 ‖ f ‖3
L2(|x |>R)‖∇ f ‖L2(|x |>R). (3.5)

4. Global versus Blow-up Dichotomy

In this section we show how to obtain Theorem 1.1 part (1)(a) and part (2). This was
proved in Holmer–Roudenko [13] for general mass supercritical and energy subcritical
NLS equations with H1 initial data, but for self-containment of this exposition we outline
the main ideas here.

Before giving the proof, we observe that the following quantities are scaling invariant:

‖∇u‖L2 · ‖u‖L2 and E[u] · M[u].
Next, we quote a localized version of the virial identity as in Kenig–Merle [17]. We

refer, for example, to Merle–Raphaël [22] or Ozawa–Tsutsumi [23] for a proof.

5 Numerical calculations show ‖Q‖2
L2(R3)

∼= 18.94, which gives cGN ∼= 0.0406 (in R
3).
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Lemma 4.1. (Local virial identity) Let χ ∈ C∞
0 (R

N ), radially symmetric and u solve

i∂t u +�u + |u|p−1u = 0.

Then

∂2
t

∫
χ(x) |u(x, t)|2 dx = 4

∫
χ ′′|∇u|2 −

∫
�2χ |u|2 − 4

(
1

2
− 1

p + 1

)∫
�χ |u|p+1.

(4.1)

We prove a slightly stronger version of Theorem 1.1 parts (1)(a) and (2) that is
valid for the nonradial initial condition. The generalization of this theorem to all mass
supercritical and energy critical cases of NLS can be found in §7 as well as in [13]. A
different type of condition for global existence, phrased as ‖u0‖L2 ≤ γ∗(‖∇u0‖L2) for
a certain monotonic function γ : R+ → R+, is given by Bégout [2].

Theorem 4.2. (Global versus blow-up dichotomy) Let u0 ∈ H1(R3) (possibly non-
radial), and let I = (−T∗, T ∗) be the maximal time interval of existence of u(t) solving
(1.1). Suppose that

M[u0] E[u0] < M[Q] E[Q]. (4.2)

If (4.2) holds and
‖∇u0‖L2‖u0‖L2 < ‖∇Q‖L2‖Q‖L2 , (4.3)

then I = (−∞,+∞), i.e., the solution exists globally in time, and for all time t ∈ R,

‖∇u(t)‖L2‖u0‖L2 < ‖∇Q‖L2‖Q‖L2 . (4.4)

If (4.2) holds and
‖∇u0‖L2‖u0‖L2 > ‖∇Q‖L2‖Q‖L2 , (4.5)

then for t ∈ I ,
‖∇u(t)‖L2‖u0‖L2 > ‖∇Q‖L2‖Q‖L2 . (4.6)

Furthermore, if (a) |x |u0 ∈ L2(R3), or (b) u0 is radial, then I is finite, and thus, the
solution blows up in finite time.

We recently became aware that the global existence assertion and the blow-up asser-
tion under the hypothesis |x |u0 ∈ L2(R3) in this theorem previously appeared in the
literature in Kuznetsov–Rasmussen–Rypdal–Turitsyn [20]. We have decided to keep the
proof below since it is short and for the convenience of the reader (there are significant
notational differences between our paper and theirs).

Remark 4.3. 6 Since this theorem applies to the nonradial case, we remark that one
should exploit the Galilean invariance to extend the class of solutions u to which it
applies. Since u is global [respectively, blows up in finite time] if and only if a Galilean
transformation of it is global [respectively, blows up in finite time], given u consider for
some ξ0 ∈ R

3 the transformed solution

w(x, t) = eix ·ξ0 e−i t |ξ0|2 u(x − 2ξ0t, t).

We compute

‖∇w‖2
L2 = |ξ0|2 M[u] + 2ξ0 · P[u] + ‖∇u‖2

L2 ,

6 We thank J. Colliander for supplying this comment.
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where the vector P[u] = Im
∫

ū∇u dx is the conserved momentum. Therefore,
M[w] = M[u] and

E[w] = 1

2
|ξ0|2 M[u] + ξ0 · P[u] + E[u].

To minimize E[w] and ‖∇w‖L2 , we take ξ0 = −P[u]/M[u]. Then we test the condition
(4.2), and (4.3) or (4.5) for w, rather than u. This means that for P �= 0, the hypothesis
(4.2) can be sharpened to

M[u]
(

− P[u]2

2M[u] + E[u]
)
< M[Q]E[Q],

and the hypothesis (4.3) can be sharpened to

(
− P[u]2

M[u] + ‖∇u0‖2
L2

)
‖u0‖2

L2 < ‖Q‖2
L2‖∇Q‖2

L2 ,

and similarly for (4.5).

Proof. Multiplying the definition of energy by M[u] and using (3.1), we have

M[u]E[u] = 1

2
‖∇u‖2

L2‖u0‖2
L2 − 1

4
‖u‖4

L4‖u0‖2
L2

≥ 1

2
‖∇u‖2

L2‖u0‖2
L2 − 1

4
cGN ‖∇u‖3

L2 ‖u0‖3
L2 .

Define f (x) = 1
2 x2 − cGN

4 x3. Then f ′(x) = x − 3
4 cGN x2 = x

(
1 − 3

4 cGN x
)
, and

thus, f ′(x) = 0 when x0 = 0 and x1 = 4
3

1
cGN

= ‖∇Q‖L2 ‖Q‖L2 by (3.3). Note that

f (0) = 0 and f (x1) = 1
6 ‖∇Q‖2

L2 ‖Q‖2
L2 . Thus, the graph of f has a local minimum

at x0 and a local maximum at x1. The condition (4.2) together with (3.4) imply that
M[u0]E[u0] < f (x1). Combining this with energy conservation, we have

f (‖∇u(t)‖L2‖u0‖L2) ≤ M[u0] E[u(t)] = M[u0] E[u0] < f (x1). (4.7)

If initially ‖u0‖L2 ‖∇u0‖L2 < x1, i.e., the condition (4.3) holds, then by (4.7) and
the continuity of ‖∇u(t)‖L2 in t , we have ‖u0‖L2 ‖∇u(t)‖L2 < x1 for all time t ∈ I
which gives (4.4). In particular, the Ḣ1 norm of the solution u is bounded, which proves
global existence (and thus, global wellposedness) in this case.

If initially ‖u0‖L2 ‖∇u0‖L2 > x1, i.e., the condition (4.5) holds, then by (4.7) and
the continuity of ‖∇u(t)‖L2 in t , we have ‖u0‖L2 ‖∇u(t)‖L2 > x1 for all time t ∈ I
which gives (4.6). We can refine this analysis to obtain the following: if the condition
(4.5) (together with (4.2)) holds, then there exists δ1 > 0 such that M[u0] E[u0] < (1 −
δ1)M[Q] E[Q], and thus, there exists δ2 = δ2(δ1) > 0 such that ‖u0‖2

L2 ‖∇u(t)‖2
L2 >

(1 + δ2) ‖∇Q‖2
L2 ‖Q‖2

L2 for all t ∈ I .
Now if u has a finite variance, we recall the virial identity

∂2
t

∫
|x |2 |u(x, t)|2 dx = 24E[u0] − 4‖∇u(t)‖2

L2 .
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Multiplying both sides by M[u0] and applying the refinement of inequalities (4.2) and
(4.6) mentioned above as well as (3.4), we get

M[u0] ∂2
t

∫
|x |2 |u(x, t)|2 dx = 24 M[u0] E[u0] − 4‖∇u(t)‖2

L2 ‖u0‖2
L2

< 24 · 1
6 (1 − δ1) ‖∇Q‖2

L2 ‖Q‖2
L2

− 4(1 + δ2)‖∇Q‖2
L2 ‖Q‖2

L2

= −4(δ1 + δ2)‖∇Q‖2
L2 ‖Q‖2

L2 < 0,

and thus, I must be finite, which implies that blow up occurs in finite time. If u0 is
radial, we use a localized version of the virial identity (4.1). Choose χ(r) (radial) such
that ∂2

r χ(r) ≤ 2 for all r ≥ 0, χ(r) = r2 for 0 ≤ r ≤ 1, and χ(r) is constant for r ≥ 3.
Let χm(r) = m2χ(r/m). The rest of the argument follows the proof of the main theorem
in Ogawa–Tsutsumi [23], although we include the details here for the convenience of
the reader. We bound each of the terms in the local virial identity (4.1) as follows, using
that �χm(r) = 6 for r ≤ m and �2χm(r) = 0 for r ≤ m:

4
∫
χ ′′

m |∇u|2 ≤ 8
∫

R3
|∇u|2 ,

−
∫
�2χm |u|2 ≤ c

m2

∫
m≤|x |≤3m

|u|2 ,

−
∫
�χm |u|4 ≤ −6

∫
|x |≤m

|u|4 + c
∫

m≤|x |≤3m
|u|4

≤ −6
∫

R3
|u|4 + c′

∫
|x |≥m

|u|4 .

Adding these three bounds and applying the radial Gagliardo-Nirenberg estimate (3.5),
we obtain that for any large m > 0, we have

∂2
t

∫
χm(|x |) |u(x, t)|2 dx ≤ 24E[u0] − 4

∫
|∇u|2

+
c1

m2 ‖u0‖3
L2 ‖∇u‖L2 +

c2

m2

∫
m<|x |

|u|2.

Let ε > 0 be a small constant to be chosen below. Use Young’s inequality in the third
term on the right side to separate the L2-norm and gradient term and then absorb the
gradient term into the second term with the chosen ε. Multiplying the above expression
by M[u0], we get

M[u0] ∂2
t

∫
χm(|x |) |u(x, t)|2 dx

≤ 24 E[u0]M[u0] − (4 − ε)‖∇u‖2
L2‖u0‖2

L2 +
c(ε)

m4 ‖u0‖8
L2 +

c2

m2 ‖u0‖4
L2

≤ −c3‖∇Q‖2
L2 ‖Q‖2

L2 +
c(ε)

m4 ‖u0‖8
L2 +

c2

m2 ‖u0‖4
L2 , (4.8)

where

c3 ≡ −4(1 − δ1) + (4 − ε)(1 + δ2) = +4(δ1 + δ2)− ε(1 + δ2).
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Select ε = ε(δ1, δ2) > 0 so that c3 > 0 and then take m = m(c3, ε,M[u0]) large
enough so that the right side of (4.8) is bounded by a strictly negative constant. This
implies that the maximal interval of existence I is finite. �

The next two lemmas provide some additional estimates that hold under the hypothe-
ses (4.2) and (4.3) of Theorem 4.2. These estimates will be needed for the compactness
and rigidity results in §5–6.

Lemma 4.4. (Lower bound on the convexity of the variance) Let u0 ∈ H1(R3) satisfy
(4.2) and (4.3). Furthermore, take δ > 0 such that M[u0]E[u0] < (1 − δ)M[Q]E[Q].
If u is the solution of the Cauchy problem (1.1) with initial data u0, then there exists
cδ > 0 such that for all t ∈ R,

24E[u] − 4‖∇u(t)‖2
L2 = 8‖∇u(t)‖2

L2 − 6‖u(t)‖4
L4 ≥ cδ ‖∇u(t)‖2

L2 . (4.9)

Proof. By the analysis in the proof of Theorem 4.2, there exists δ2 = δ2(δ) > 0 such
that for all t ∈ R,

‖u0‖2
L2‖∇u(t)‖2

L2 ≤ (1 − δ2)
2 ‖∇Q‖2

L2‖Q‖2
L2 . (4.10)

Let

h(t) = 1

‖Q‖2
L2‖∇Q‖2

L2

(
8‖u0‖2

L2‖∇u(t)‖2
L2 − 6‖u0‖2

L2‖u(t)‖4
L4

)
,

and set g(y) = y2 − y3. By the Gagliardo-Nirenberg estimate (3.1) with sharp constant
cGN and (3.3),

h(t) ≥ 8 g

(‖∇u(t)‖L2‖u0‖L2

‖∇Q‖L2‖Q‖L2

)
.

By (4.10), we restrict attention to 0 ≤ y ≤ 1 − δ2. By an elementary argument, there
exists c = c(δ2) such that g(y) ≥ c y2 if 0 ≤ y ≤ 1 − δ2, which completes the proof.
�
Lemma 4.5. (Comparability of gradient and energy) Let u0 ∈ H1(R3) satisfy (4.2) and
(4.3). Then

1

6
‖∇u(t)‖2

L2 ≤ E[u] ≤ 1

2
‖∇u(t)‖2

L2 .

Proof. The second inequality is immediate from the definition of energy. The first one
is obtained by observing that

1

2
‖∇u‖2

L2 − 1

4
‖u‖4

L4 ≥ 1

2
‖∇u‖2

L2

(
1 − 1

2 cGN ‖∇u‖L2‖u‖L2
) ≥ 1

6
‖∇u‖2

L2 ,

where we used (3.1), (3.3) and (4.4). �
In the proofs of Proposition 5.4 and 5.5, we will need the following result called

existence of wave operators since the map �+ : ψ+ �→ v0 is called the wave operator
(see the proposition for the meaning of ψ+ and v0).



Scattering of 3D Cubic NLS 449

Proposition 4.6. (Existence of wave operators) Suppose ψ+ ∈ H1 and

1

2
‖ψ+‖2

L2‖∇ψ+‖2
L2 < M[Q]E[Q]. (4.11)

Then there exists v0 ∈ H1 such that v solving (1.1) with initial data v0 is global in H1

with

‖∇v(t)‖L2‖v0‖L2 ≤ ‖Q‖L2‖∇Q‖L2 , M[v] = ‖ψ+‖2
L2 , E[v] = 1

2
‖∇ψ+‖2

L2 ,

and

lim
t→+∞ ‖v(t)− eit�ψ+‖H1 = 0.

Moreover, if ‖eit�ψ+‖S(Ḣ1/2) ≤ δsd, then

‖v0‖Ḣ1/2 ≤ 2 ‖ψ+‖Ḣ1/2 and ‖v‖S(Ḣ1/2) ≤ 2 ‖eit�ψ+‖S(Ḣ1/2).

Proof. We want to solve the integral equation

v(t) = eit�ψ+ − i
∫ +∞

t
ei(t−t ′)�(|v|2v)(t ′) dt ′ (4.12)

first for t ≥ T with T large. This is achieved as in the proof of the small data scattering
theory (Proposition 2.1), since there exists T � 0 such that ‖eit�ψ+‖S(Ḣ1/2;[T,+∞)) ≤
δsd. By estimating (4.12), we obtain

‖∇v‖S(L2;[T,+∞)) ≤ c‖ψ+‖Ḣ1 + c‖∇(v3)‖S′(L2)

≤ c‖ψ+‖Ḣ1 + c‖∇v‖S(L2;[T,+∞))‖v‖2
S(Ḣ1/2;[T,+∞))

,

where in the last step, we used ‖ · ‖S′(L2) ≤ ‖ · ‖
L10/7

t L10/7
x

and the Hölder partition
7

10 = 3
10 + 1

5 + 1
5 . Thus, ‖∇v‖S(L2;[T,+∞)) ≤ 2 c ‖ψ+‖Ḣ1 . Using this, we obtain similarly,

‖∇(v(t)− eit�ψ+)‖S(L2;[T,+∞)) → 0 as T → +∞.

Since v(t) − eit�ψ+ → 0 in H1 as t → +∞, eit�ψ+ → 0 in L4 as t → +∞, and
‖∇eit�ψ+‖L2 is conserved, we have

E[v] = lim
t→+∞

(
1

2
‖∇eit�ψ+‖2

L2 − 1

4
‖eit�ψ+‖4

L4

)
= 1

2
‖ψ+‖2

L2 .

Immediately, we obtain M[v] = ‖ψ+‖2
L2 . Note that we now have M[v]E[v] <

M[Q]E[Q] by (4.11). Observe that

lim
t→+∞ ‖∇v(t)‖2

L2‖v‖2
L2 = lim

t→+∞ ‖∇eit�ψ+‖2
L2‖eit�ψ+‖2

L2

= ‖∇ψ+‖2
L2‖ψ+‖2

L2

≤ 2M[Q]E[Q]
= 1

3
‖∇Q‖2

L2‖Q‖2
L2 ,

where in the last two steps we used (4.11) and (3.4). Take T sufficiently large so that
‖∇v(T )‖L2‖v‖L2 ≤ ‖∇Q‖L2‖Q‖L2 . By Theorem 4.2, we can evolve v(t) from T back
to time 0. �
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5. Compactness

Definition 5.1. Suppose u0 ∈ H1 and u is the corresponding H1 solution to (1.1) and
[0, T ∗) the maximal forward time interval of existence. We shall say that SC(u0) holds
if T ∗ = +∞ and ‖u‖S(Ḣ1/2) < ∞.

To prove Theorem 1.1(1)(b), we must show that if ‖u0‖L2‖∇u0‖L2<‖Q‖L2‖∇Q‖L2 ,
and M[u]E[u] < M[Q]E[Q], then SC(u0) holds. We already know that under these
hypotheses, we have an a priori bound on ‖∇u(t)‖L2 , and thus, the maximal forward
time of existence is T ∗ = +∞ (this is the energy subcritical case). The goal is, therefore,
to show that the global-in-time Ḣ1/2 Strichartz norm is finite.

By Lemma 4.5, if M[u]E[u] < 1
6 δ

4
sd and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 , then

‖u0‖4
Ḣ1/2 ≤ ‖u0‖2

L2‖∇u0‖2
L2 ≤ 6M[u]E[u] ≤ δ4

sd.

Thus, by the small data theory (Proposition 2.1), SC(u0) holds. Let (M E)c be the number
defined as the supremum over all δ for which the following statement holds true: “If
u0 is radial with ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 and M[u]E[u] < δ, then SC(u0)

holds.” We then clearly have 0 < 1
6 δ

4
sd ≤ (M E)c. If (M E)c ≥ M[Q]E[Q], then

Theorem 1.1(1)(b) is true. We, therefore, proceed with the proof of Theorem 1.1(1)(b)
by assuming that (M E)c < M[Q]E[Q] and ultimately deduce a contradiction (much
later, in §6). By definition of (M E)c, we have

(C.1) If u0 is radial and ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 and M[u]E[u] < (M E)c,
then SC(u0) holds.

(C.2) There exists a sequence of radial solutions un to (1.1) with corresponding initial
data un,0 such that ‖un,0‖L2‖∇un,0‖L2 < ‖Q‖L2‖∇Q‖L2 and M[un]E[un] ↘
(M E)c as n → +∞, for which SC(un,0) does not hold for any n.

The goal of this section is to use the above sequence un,0 (rescaled so that ‖un,0‖L2 =
1 for all n) to prove the existence of an H1 radial solution uc to (1.1) with initial data uc,0
such that ‖uc,0‖L2‖∇uc,0‖L2 < ‖Q‖L2‖∇Q‖L2 and M[uc]E[uc] = (M E)c for which
SC(uc,0) does not hold (Proposition 5.4). Moreover, we will show that K = { uc(t) | 0 ≤
t < +∞} is precompact in H1 (Proposition 5.5), which will enable us to show that for
each ε > 0, there is an R > 0 such that, uniformly in t , we have

∫
|x |>R

|∇uc(t, x)|2dx ≤ ε

(Lemma 5.6). This will then play into the rigidity theorem of the next section that will
ultimately lead to a contradiction.

Before stating and proving Proposition 5.4, we introduce some preliminaries in the
spirit of the results of Keraani [15], since we are not able to directly apply his results as
was possible in Kenig-Merle [17]. Note in the following lemma that φn , ψ j and W M

n
are functions of x alone, in notational contrast to the analogous lemma in Keraani ([15]
Prop. 2.6).

Lemma 5.2. (Profile expansion) Let φn(x) be a radial uniformly bounded sequence in
H1. Then for each M there exists a subsequence of φn, also denoted φn, and

(1) For each 1 ≤ j ≤ M, there exists a (fixed in n) radial profile ψ j (x) in H1.
(2) For each 1 ≤ j ≤ M, there exists a sequence (in n) of time shifts t j

n .
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(3) There exists a sequence (in n) of remainders W M
n (x) in H1,

such that

φn =
M∑

j=1

e−i t j
n�ψ j + W M

n .

The time sequences have a pairwise divergence property: For 1 ≤ i �= j ≤ M, we have

lim
n→+∞ |t i

n − t j
n | = +∞. (5.1)

The remainder sequence has the following asymptotic smallness property7:

lim
M→+∞

[
lim

n→+∞ ‖eit�W M
n ‖S(Ḣ1/2)

]
= 0. (5.2)

For fixed M and any 0 ≤ s ≤ 1, we have the asymptotic Pythagorean expansion,

‖φn‖2
Ḣ s =

M∑
j=1

‖ψ j‖2
Ḣ s + ‖W M

n ‖2
Ḣ s + on(1). (5.3)

Note that we do not claim that the remainder W M
n is small in any Sobolev norm, i.e.

for all we know it might be true that for some s, 0 ≤ s ≤ 1, we have

lim inf
M→+∞

[
lim

n→+∞ ‖W M
n ‖Ḣ s

]
> 0 .

Fortunately, the Strichartz norm smallness (5.2) will suffice in our application.

Proof. Since φn is assumed uniformly bounded in H1, let c1 be such that ‖φn‖H1 ≤ c1.
Note the interpolation inequality

‖v‖Lq
t Lr

x
≤ ‖v‖1−θ

Lq̃
t Lr̃

x

‖v‖θL∞
t L3

x
,

where (q, r) is any Ḣ1/2 Strichartz admissible pair (so 2
q + 3

r = 1 and 3 ≤ r < +∞),

θ = 3
2r−3 (so 0 < θ ≤ 1), r̃ = 2r , and q̃ = 4r

2r−3 . Observe that (q̃, r̃) is also Ḣ1/2

Strichartz admissible. By this inequality and the Strichartz estimates (for 0 < θ < 3
5 )8,

we get

‖eit�W M
n ‖Lq

t Lr
x

≤ c ‖W M
n ‖1−θ

Ḣ1/2‖eit�W M
n ‖θL∞

t L3
x
.

Since we will have ‖W M
n ‖Ḣ1/2 ≤ c1, it will suffice for us to show that

lim
M→+∞

[
lim sup
n→+∞

‖eit�W M
n ‖L∞

t L3
x

]
= 0 .

7 We can always pass to a subsequence in n with the property that ‖eit�W M
n ‖S(Ḣ1/2) converges. Therefore,

we use lim and not lim sup or lim inf. Similar remarks apply for the limits that appear in the Pythagorean
expansion.

8 This restriction is for consistency with our definition of S(Ḣ1/2) in §2.
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Let A1 ≡ lim supn→+∞ ‖eit�φn‖L∞
t L3

x
. If A1 = 0, the proof is complete with

ψ j = 0 for all 1 ≤ j ≤ M . Suppose A1 > 0. Pass to a subsequence so that
limn→+∞ ‖eit�φn‖L∞

t L3
x

= A1. We will show that there is a time sequence t1
n and a

profile ψ1 ∈ H1 such that eit1
n�φn ⇀ ψ1 and ‖ψ1‖Ḣ1/2 ≥ A5

1
210c4

1
. For r > 1 yet to be

chosen, let χ(x) be a radial Schwartz function such that χ̂ (ξ) = 1 for 1
r ≤ |ξ | ≤ r and

χ̂(ξ) is supported in 1
2r ≤ |ξ | ≤ 2r .

By Sobolev embedding,

‖eit�φn − χ ∗ eit�φn‖2
L∞

t L3
x

≤
∫

|ξ |(1 − χ̂ (ξ))2|φ̂n(ξ)|2 dξ

≤
∫

|ξ |≤ 1
r

|ξ ||φ̂n(ξ)|2 dξ +
∫

|ξ |≥r
|ξ ||φ̂n(ξ)|2 dξ

≤ 1

r
‖φn‖2

L2 +
1

r
‖φn‖2

Ḣ1

≤ c2
1

r
.

Take r = 16c2
1

A2
1

so that
c2

1
r = A2

1
16 , and then we have for n large,

‖χ ∗ eit�φn‖L∞
t L3

x
≥ 1

2
A1 .

Note that

‖χ ∗ eit�φn‖3
L∞

t L3
x

≤ ‖χ ∗ eit�φn‖2
L∞

t L2
x
‖χ ∗ eit�φn‖L∞

t L∞
x

≤ ‖φn‖2
L2‖χ ∗ eit�φn‖L∞

t L∞
x
,

and thus, we have

‖χ ∗ eit�φn‖L∞
t L∞

x
≥ A3

1

8c2
1

.

Since φn are radial functions, so are χ ∗ eit�φn , and by the radial Gagliardo–Nirenberg
inequality, we obtain

‖χ ∗ eit�φn‖L∞
t L∞{|x |≥R} ≤ 1

R
‖χ ∗ eit�φn‖1/2

L2
x

‖∇χ ∗ eit�φn‖1/2
L2

x
≤ c1

R
.

Therefore, by selecting R large enough,

‖χ ∗ eit�φn‖L∞
t L∞{|x |≤R} ≥ A3

1

16c2
1

.

Let t1
n and x1

n (with |x1
n | ≤ R) be sequences such that for each n,

|χ ∗ eit1
n�φn(x

1
n)| ≥ A3

1

32c2
1

,
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or, written out,
∣∣∣∣
∫

R3
χ(x1

n − y) eit1
n�φn(y) dy

∣∣∣∣ ≥ A3
1

32c2
1

.

Pass to a subsequence such that x1
n → x1 (possible since |x1

n | ≤ R). Then since‖χ(x1−·)
− χ(x1

n − ·)‖L3/2 → 0 as n → +∞, we have
∣∣∣∣
∫

R3
χ(x1 − y) eit1

n�φn(y) dy

∣∣∣∣ ≥ A3
1

64c2
1

.

Consider the sequence eit1
n�φn , which is uniformly bounded in H1. Pass to a subsequence

so that eit1
n�φn ⇀ ψ1, with ψ1 ∈ H1 radial and ‖ψ1‖H1 ≤ lim sup ‖φn‖H1 ≤ c1. By

the above, we have
∣∣∣∣
∫

R3
χ(x1 − y) ψ1(y) dy

∣∣∣∣ ≥ A3
1

64c2
1

.

By Plancherel and Cauchy-Schwarz applied to the left side of the above inequality, we
obtain

‖χ‖Ḣ−1/2‖ψ1‖Ḣ1/2 ≥ A3
1

64c2
1

.

By converting to radial coordinates, we can estimate ‖χ‖Ḣ−1/2 ≤ r . Thus,

‖ψ1‖Ḣ1/2 ≥ A3
1

64c2
1

· 1

r
= A5

1

210c4
1

.

Let W 1
n = φn − e−i t1

n�ψ1. Since eit1
n�φn ⇀ ψ1, we have that for any 0 ≤ s ≤ 1,

〈φn, e−i t1
n�ψ1〉Ḣ s = 〈eit1

n�φn, ψ
1〉Ḣ s → ‖ψ1‖2

Ḣ s , (5.4)

and, by expanding ‖W 1
n ‖2

Ḣ s , we obtain

lim
n→+∞ ‖W 1

n ‖2
Ḣ s = lim

n→+∞ ‖φn‖2
Ḣ s − ‖ψ1‖2

Ḣ s .

From this with s = 1 and s = 0 we deduce that ‖W 1
n ‖H1 ≤ c1.

Let A2 = lim supn→+∞ ‖eit�W 1
n ‖L∞

t L3
x
. If A2 = 0, then we are done. If A2 > 0,

then repeat the above argument, with φn replaced by W 1
n to obtain a sequence of time

shifts t2
n and a profile ψ2 ∈ H1 such that eit2

n�W 1
n ⇀ ψ2 and

‖ψ2‖Ḣ1/2 ≥ A5
2

210c4
1

.

We claim that |t2
n − t1

n | → +∞. Indeed, suppose we pass to a subsequence such that
t2
n − t1

n → t21 finite. Then

ei(t2
n −t1

n )�[eit1
n�φn − ψ1] = eit2

n�[φn − e−i t1
n�ψ1] = eit2

n�W 1
n ⇀ ψ2.
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Since t2
n − t1

n → t21 and eit1
n�φn − ψ1 ⇀ 0, the left side of the above expression

converges weakly to 0, so ψ2 = 0, a contradiction. Let W 2
n = φn − eit1

n�ψ1 − eit2
n�ψ2.

Note that

〈φn, eit2
n�ψ2〉Ḣ s = 〈e−i t2

n�φn, ψ
2〉Ḣ s

= 〈e−i t2
n�(φn − eit1

n�ψ1), ψ2〉Ḣ s + on(1)

= 〈e−i t2
n�W 1

n , ψ
2〉Ḣ s + on(1)

→ ‖ψ2‖2
Ḣ s ,

where the second line follows from the fact that |t1
n − t2

n | → ∞. Using this and (5.4),
we compute

lim
n→+∞ ‖W 2

n ‖2
Ḣ s = lim

n→+∞ ‖φn‖2
Ḣ s − ‖ψ1‖2

Ḣ s − ‖ψ2‖2
Ḣ s ,

and thus, ‖W 2
n ‖H1 ≤ c1.

We continue inductively, constructing a sequence t M
n and a profile ψM such that

eit M
n �W M−1

n ⇀ ψM and

‖ψM‖Ḣ1/2 ≥ A5
M

210c4
1

. (5.5)

Suppose 1 ≤ j < M . We shall show that |t M
n − t j

n | → +∞ inductively by assuming

that |t M
n − t j+1

n | → +∞, . . . , |t M
n − t M−1

n | → +∞. Suppose, passing to a subsequence

that t M
n − t j

n → t M j finite. Note that

ei(t M
n −t j

n )�(eit j
n�W j−1

n − ψ j )− ei(t M
n −t j+1

n )�ψ j+1 − · · · − ei(t M
n −t M−1

n )�ψM−1

= eit M
n �W M−1

n .

The left side converges weakly to 0, while the right side converges weakly toψM , which is
nonzero; contradiction. This proves (5.1). Let W M

n = φn −e−i t1
n�ψ1−· · ·−e−i t M

n �ψM .
Note that

〈φn, e−i t M
n �ψM 〉 = 〈eit M

n �φn, ψ
M 〉Ḣ s

= 〈eit M
n �(φn − eit1

n�ψ1 − · · · − eit M−1
n �ψM−1), ψM 〉Ḣ s + on(1)

= 〈eit M
n �W M−1

n , ψM 〉Ḣ s + on(1),

where the middle line follows from the pairwise divergence property (5.1). Thus,
〈φn, e−i t M

n �ψM 〉 → ‖ψM‖2
Ḣ s . The expansion (5.3) is then shown to hold by expanding

‖W M
n ‖2

Ḣ s .

By (5.5) and (5.3) with s = 1
2 , we have

+∞∑
M=1

(
A5

M

210c4
1

)2

≤ lim
n→+∞ ‖φn‖2

Ḣ1/2 ≤ c2
1,

and hence, AM → 0 as M → +∞. �
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Corollary 5.3. (Energy Pythagorean expansion) In the situation of Lemma 5.2, we have

E[φn] =
M∑

j=1

E[e−i t j
n�ψ j ] + E[W M

n ] + on(1). (5.6)

Proof. We will use the compact embedding H1
rad ↪→ L4

rad (which follows from the radial

Gagliardo–Nirenberg estimate of Strauss [26]) to address a j for which t j
n converges to

a finite number (if one exists). We will also use the decay of linear Schrödinger solutions
in the L4 norm as time → ∞.

There are two cases to consider.

Case 1. There exists some j for which t j
n converges to a finite number, which without

loss we assume is 0. In this case we will show that

lim
n→+∞ ‖W M

n ‖L4
x

= 0, for M > j,

lim
n→+∞ ‖e−i t i

n�ψ i‖L4
x

= 0, for all i �= j,

and

lim
n→+∞ ‖φn‖L4 = ‖ψ j‖L4 ,

which, combined with (5.3) for s = 1, gives (5.6).

Case 2. For all j , |t j
n | → ∞. In this case we will show that

lim
n→+∞ ‖e−i t j

n�ψ j‖L4
x

= 0, for all j

and

lim
n→+∞ ‖φn‖L4 = lim

n→+∞ ‖W M
n ‖L4 ,

which, combined with (5.3) for s = 1, gives (5.6).

Proof of Case 1. In this situation, we have, from the proof of Lemma 5.2 that W j−1
n ⇀

ψ j . By the compactness of the embedding H1
rad ↪→ L4

rad, it follows that W j−1
n → ψ j

strongly in L4. Let i �= j . Then we claim that ‖eiti
n�ψ i‖L4 → 0 as n → ∞. Indeed,

since t j
n = 0, by (5.1), we have |t i

n| → +∞. For a function ψ̃ i ∈ Ḣ3/4 ∩ L4/3, from
Sobolev embedding and the L p spacetime decay estimate of the linear flow, we obtain

‖eit j
n�ψ i‖L4 ≤ c‖ψ i − ψ̃ i‖Ḣ3/4 +

c

|t i
n|1/4

‖ψ̃ i‖L4/3 .

By approximating ψ i by ψ̃ i ∈ C∞
c in Ḣ3/4 and sending n → +∞, we obtain the claim.

Recalling that

W j−1
n = φn − e−i t1

n�ψ1 − · · · − e−i t j−1
n �ψ j−1,

we conclude that φn → ψ j strongly in L4. Recalling that

W M
n = (W j−1

n − ψ j )− e−i t j+1
n �ψ j+1 − · · · − e−i t M

n �ψM ,

we also conclude that W M
n → 0 strongly in L4 for M > j . �
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Proof of Case 2. Similar to the proof of Case 1. �
Proposition 5.4. (Existence of a critical solution) There exists a global (T ∗ = +∞)

solution uc in H1 with initial data uc,0 such that ‖uc,0‖L2 = 1,

E[uc] = (M E)c < M[Q]E[Q],
‖∇uc(t)‖L2 < ‖Q‖L2‖∇Q‖L2 for all 0 ≤ t < +∞,

and

‖uc‖S(Ḣ1/2) = +∞.

Proof. We consider the sequence un,0 described in the introduction to this section.
Rescale it so that ‖un,0‖L2 = 1; this rescaling does not affect the quantities M[un]E[un]
and ‖un,0‖L2‖∇un,0‖L2 . After this rescaling, we have ‖∇un,0‖L2 < ‖Q‖L2‖∇Q‖L2 and
E[un] ↘ (M E)c. Each un is global and non-scattering, i.e. ‖un‖S(Ḣ1/2) = +∞. Apply
the profile expansion lemma (Lemma 5.2) to un,0 (which is now uniformly bounded in
H1) to obtain

un,0 =
M∑

j=1

e−i t j
n�ψ j + W M

n , (5.7)

where M will be taken large later. By the energy Pythagorean expansion (Corollary 5.3),
we have

M∑
j=1

lim
n→+∞ E[e−i t j

n�ψ j ] + lim
n→+∞ E[W M

n ] = lim
n→+∞ E[un,0] = (M E)c,

and thus (recalling that each energy is ≥ 0 — see Lemma 4.5),

lim
n→+∞ E[e−i t j

n�ψ j ] ≤ (M E)c ∀ j. (5.8)

Also by s = 0 of (5.3), we have

M∑
j=1

M[ψ j ] + lim
n→+∞ M[W M

n ] = lim
n→+∞ M[un,0] = 1. (5.9)

Now we consider two cases; we will show that Case 1 leads to a contradiction and thus
does not occur; Case 2 will manufacture the desired critical solution uc.

Case 1. More than one ψ j �= 0. By (5.9), we necessarily have M[ψ j ] < 1 for each j ,
which by (5.8) implies that for n sufficiently large,

M[e−i t j
n�ψ j ]E[e−i t j

n�ψ j ] < (M E)c.

For a given j , there are two cases to consider: Case (a). If |t j
n | → +∞ (passing to

a subsequence we have t j
n → +∞ or t j

n → −∞), we have ‖e−i t j
n�ψ j‖L4 → 0 (as

discussed in the proof of Corollary 5.3), and thus,

1

2
‖ψ j‖2

L2‖∇ψ j‖2
L2 < (M E)c
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(we have used ‖∇e−i t j
n�ψ j‖L2 = ‖∇ψ j‖L2 ). Let NLS(t)ψ denote the solution to (1.1)

with initial dataψ . By the existence of wave operators (Proposition 4.6), there exists ψ̃ j

such that

‖NLS(−t j
n )ψ̃

j − e−i t j
n�ψ j‖H1 → 0, as n → +∞

with

‖ψ̃ j‖L2 ‖∇ NLS(t)ψ̃ j‖L2 < ‖Q‖L2‖∇Q‖L2 ,

M[ψ̃ j ] = ‖ψ j‖2
L2 , E[ψ̃ j ] = 1

2
‖∇ψ j‖2

L2 ,

and thus,

M[ψ̃ j ]E[ψ̃ j ] < (M E)c, ‖NLS(t)ψ̃ j‖S(Ḣ1/2) < +∞.

Case (b). On the other hand, if for a given j we have t j
n → t∗ finite (and there can be at

most one such j by (5.1)), we note that by continuity of the linear flow in H1,

e−i t j
n�ψ j → e−i t∗�ψ j strongly in H1,

and we let ψ̃ j = NLS(t∗)[e−i t∗�ψ j ] so that NLS(−t∗)ψ̃ j = e−i t∗�ψ j . In either case,
associated to each original profile ψ j we now have a new profile ψ̃ j such that

‖NLS(−t j
n )ψ̃

j − e−i t j
n�ψ j‖H1 → 0 as n → +∞.

It now follows that we can replace e−i t j
n�ψ j by NLS(−t j

n )ψ̃
j in (5.7) to obtain

un,0 =
M∑

j=1

NLS(−t j
n )ψ̃

j + W̃ M
n ,

where

lim
M→+∞

[
lim

n→+∞ ‖eit�W̃ M
n ‖S(Ḣ1/2)

]
= 0.

The idea of what follows is that we approximate

NLS(t)un,0 ≈
M∑

j=1

NLS(t − t j
n )ψ̃

j

via a perturbation theory argument, and since the right side has bounded S(Ḣ1/2) norm,
so must the left-side, which is a contradiction. To carry out this argument, we introduce
the notation v j (t) = NLS(t)ψ̃ j , un(t) = NLS(t)un,0, and9

ũn(t) =
M∑

j=1

v j (t − t j
n ).

9 ũn , and en also depend on M , but we have suppressed the notation.
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Then

i∂t ũn +�ũn + |ũn|2ũn = en,

where

en = |ũn|2ũn −
M∑

j=1

|v j (t − t j
n )|2v j (t − t j

n ).

We claim that there is a (large) constant A (independent of M) with the property that for
any M , there exists n0 = n0(M) such that for n > n0,

‖ũn‖S(Ḣ1/2) ≤ A.

Moreover, we claim that for each M and ε > 0 there exists n1 = n1(M, ε) such that for
n > n1,

‖en‖
L10/3

t L5/4
x

≤ ε.

Note that since ũn(0)− un(0) = W̃ M
n , there exists M1 = M1(ε) sufficiently large such

that for each M > M1 there exists n2 = n2(M) such that n > n2 implies

‖eit�(ũn(0)− un(0))‖S(Ḣ1/2) ≤ ε.

Thus, we may apply Proposition 2.3 (long-time perturbation theory) to obtain that for n
and M sufficiently large, ‖un‖S(Ḣ1/2) < ∞, a contradiction.10

Therefore, it remains to establish the above claims, and we begin with showing that
‖ũn‖S(Ḣ1/2) ≤ A for n > n0 = n0(M), where A is some large constant independent of
M . Let M0 be large enough so that

‖eit�W̃ M0
n ‖S(Ḣ1/2) ≤ δsd.

Then for each j > M0, we have ‖eit�ψ j‖S(Ḣ1/2) ≤ δsd, and by the second part of
Proposition 4.6 we obtain

‖v j‖S(Ḣ1/2) ≤ 2‖eit�ψ j‖S(Ḣ1/2) for j > M0. (5.10)

By the elementary inequality: for a j ≥ 0,∣∣∣∣∣∣∣

⎛
⎝ M∑

j=1

a j

⎞
⎠

5/2

−
M∑

j=1

a5/2
j

∣∣∣∣∣∣∣
≤ cM

∑
j �=k

|a j ||ak |3/2 ,

we have

‖ũn‖5
L5

t L5
x

=
M0∑
j=1

‖v j‖5
L5

t L5
x

+
M∑

j=M0+1

‖v j‖5
L5

t L5
x

+ cross terms

≤
M0∑
j=1

‖v j‖5
L5

t L5
x

+ 25
M∑

j=M0+1

‖eit�ψ j‖5
L5

t L5
x

+ cross terms ,

(5.11)

10 The order of logic here is: The constant A, which is independent of M , is put into Prop. 2.3, which gives
a suitable ε. We then take M1 = M1(ε) as above, and then take n = max(n0, n1, n2).
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where we used (5.10) to bound middle terms. On the other hand, by (5.7),

‖eit�un,0‖5
L5

t L5
x

=
M0∑
j=1

‖eit�ψ j‖5
L5

t L5
x

+
M∑

j=M0+1

‖eit�ψ j‖5
L5

t L5
x

+ cross terms. (5.12)

The “cross terms” are made ≤ 1 by taking n0 = n0(M) large enough and appealing
to (5.1). We observe that since ‖eit�un,0‖L5

t L5
x

≤ c‖un,0‖Ḣ1/2 ≤ c′, (5.12) shows that

the quantity
∑M

j=M0+1 ‖eit�ψ j‖5
L5

t L5
x

is bounded independently of M provided n > n0.

Then, (5.11) gives that ‖ũn‖L5
t L5

x
is bounded independently of M provided n > n0. A

similar argument establishes that ‖ũn‖L∞
t L3

x
is bounded independently of M for n > n0.

Interpolation between these exponents gives that ‖ũn‖
L20

t L10/3
x

is bounded independently

of M for n > n0. Finally, by applying the Kato estimate (2.2) to the integral equation for
i∂t ũn +�ũn + |ũn|2ũn = en and using that ‖en‖S(Ḣ−1/2) ≤ 1 (proved next), we obtain
that ‖ũn‖S(Ḣ1/2) is bounded independently of M for n > n0.

We now address the next claim, that for each M and ε > 0, there exists n1 = n1(M, ε)
such that for n > n1, ‖en‖

L10/3
t L5/4

x
≤ ε. The expansion of en consists of ∼ M3 cross

terms of the form

v j (t − t j
n )v

k(t − tk
n )v

�(t − t�n ),

where not all three of j , k, and � are the same. Assume, without loss, that j �= k, and
thus, |t j

n − tk
n | → ∞ as n → +∞. We estimate

‖v j (t − t j
n )v

k(t − tk
n )v

�(t − t�n )‖L10/3
t L5/4

x

≤ ‖v j (t − t j
n )v

k(t − tk
n )‖L10

t L5/3
x

‖v�(t − t�n )‖L5
t L5

x
.

Now observe that

‖v j (t − (t j
n − tk

n )) · vk(t)‖
L10

t L5/3
x

→ 0,

since v j and vk belong to L20
t L10/3

x and |t j
n − tk

n | → ∞.

Case 2. ψ1 �= 0, and ψ j = 0 for all j ≥ 2.

By (5.9), we have M[ψ1] ≤ 1 and by (5.8), we have limn→+∞ E[e−i t1
n�ψ1] ≤

(M E)c. If t1
n converges (to 0 without loss of generality), we take ψ̃1 = ψ1 and then we

have ‖NLS(−t1
n )ψ̃

1 −e−i t1
n�ψ1‖H1 → 0 as n → +∞. If, on the other hand, t1

n → +∞,

then since ‖eit1
n�ψ1‖L4 → 0,

1

2
‖∇ψ1‖2

L2 = lim
n→+∞ E[e−i t1

n�ψ1] ≤ (M E)c.

Thus, by the existence of wave operators (Proposition 4.6), there exists ψ̃1 such that
M[ψ̃1] = M[ψ1] ≤ 1, E[ψ̃1] = 1

2‖∇ψ1‖2
L2 ≤ (M E)c, and ‖NLS(−t1

n )ψ̃
1 −

e−i t1
n�ψ1‖H1 → 0 as n → +∞.
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In either case, let W̃ M
n = W M

n + (e−i t1
n�ψ1 − NLS(−t1

n )ψ̃
1). Then, by the Strichartz

estimates,

‖e−i t�W̃ M
n ‖S(Ḣ1/2) ≤ ‖e−i t�W M

n ‖S(Ḣ1/2) + c‖e−i t1
n�ψ1 − NLS(−t1

n )ψ̃
1‖Ḣ1/2 ,

and therefore, limn→+∞ ‖e−i t�W̃ M
n ‖S(Ḣ1/2) = limn→+∞ ‖e−i t�W M

n ‖S(Ḣ1/2). Hence,
we now have

un,0 = NLS(−t1
n )ψ̃

1 + W̃ M
n

with M[ψ̃1] ≤ 1, E[ψ̃1] ≤ (M E)c, and

lim sup
M→+∞

[
lim

n→+∞ ‖W̃ M
n ‖S(Ḣ1/2)

]
= 0 .

Let uc be the solution to (1.1) with initial data uc,0 = ψ̃1. Now we claim that
‖uc‖S(Ḣ1/2) = ∞, and thus, M[uc] = 1 and E[uc] = (M E)c, which will complete the
proof. To establish this claim, we use a perturbation argument similar to that in Case 1.
Suppose

A := ‖NLS(t − t1
n )ψ̃

1‖S(Ḣ1/2) = ‖NLS(t)ψ̃1‖S(Ḣ1/2) = ‖uc‖S(Ḣ1/2) < ∞.

Obtain ε0 = ε0(A) from the long-time perturbation theory (Proposition 2.3), and then
take M sufficiently large and n2 = n2(M) sufficiently large so that n > n2 implies
‖W̃ M

n ‖S(Ḣ1/2) ≤ ε0. We then repeat the argument in Case 1 using Proposition 2.3 to
obtain that there exists n large for which ‖un‖S(Ḣ1/2) < ∞, a contradiction. �
Proposition 5.5. (Precompactness of the flow of the critical solution) With uc as in
Proposition 5.4, let

K = { uc(t) | t ∈ [0,+∞) } ⊂ H1.

Then K is precompact in H1 (i.e. K̄ is compact in H1).

Proof. Take a sequence tn → +∞; we shall argue that uc(tn) has a subsequence con-
verging in H1.11 Take φn = uc(tn) (a uniformly bounded sequence in H1) in the profile
expansion lemma (Lemma 5.2) to obtain profiles ψ j and an error W M

n such that

uc(tn) =
M∑

j=1

e−i t j
n�ψ j + W M

n

with |t j
n −tk

n | → +∞ as n → +∞ for fixed j �= k. By the energy Pythagorean expansion
(Corollary 5.3), we have

M∑
j=1

lim
n→+∞ E[e−i t j

n�ψ j ] + lim
n→+∞ E[W M

n ] = E[uc] = (M E)c,

11 By time continuity of the solution in H1, we of course do not need to consider the case when tn is bounded
and thus has a subsequence convergent to some finite time.
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and thus (recalling that each energy is ≥ 0 – see Lemma 4.5),

lim
n→+∞ E[e−i t j

n�ψ j ] ≤ (M E)c ∀ j .

Also by s = 0 of (5.3), we have

M∑
j=1

M[ψ j ] + lim
n→+∞ M[W M

n ] = lim
n→+∞ M[un,0] = 1.

We now consider two cases, just as in the proof of Proposition 5.4; both Case 1 and Case
2 will lead to a contradiction.

Case 1. More than one ψ j �= 0. The proof that this leads to a contradiction is identical
to that in Proposition 5.4, so we omit it.

Case 2. Only ψ1 �= 0 and ψ j = 0 for all 2 ≤ j ≤ M , so that

uc(tn) = e−i t1
n�ψ1 + W M

n . (5.13)

Just as in the proof of Proposition 5.4, Case 2, we obtain that

M[ψ1] = 1, lim
n→+∞ E[e−i t1

n�ψ1] = (M E)c ,

lim
n→+∞ M[W M

n ] = 0, and lim
n→+∞ E[W M

n ] = 0 .

By the comparability lemma (Lemma 4.5),

lim
n→+∞ ‖W M

n ‖H1 = 0 . (5.14)

Next, we show that (a subsequence of) t1
n converges.12 Suppose that t1

n → −∞. Then

‖eit�uc(tn)‖S(Ḣ1/2;[0,+∞)) ≤ ‖ei(t−t1
n )�ψ1‖S(Ḣ1/2;[0,+∞)) + ‖eit�W M

n ‖S(Ḣ1/2;[0,+∞)).

Since

lim
n→+∞ ‖ei(t−t1

n )�ψ1‖S(Ḣ1/2;[0,+∞)) = lim
n→+∞ ‖eit�ψ1‖S(Ḣ1/2;[−t1

n ,+∞)) = 0

and ‖eit�W M
n ‖S(Ḣ1/2) ≤ 1

2 δsd, we obtain a contradiction to the small data scattering
theory (Proposition 2.1) by taking n sufficiently large. On the other hand, suppose that
t1
n → +∞. Then we can similarly argue that for n large,

‖eit�uc(tn)‖S(Ḣ1/2;(−∞,0]) ≤ 1

2
δsd,

and thus, the small data scattering theory (Proposition 2.1) shows that

‖uc‖S(Ḣ1/2;(−∞,tn ]) ≤ δsd.

Since tn → +∞, by sending n → +∞ in the above, we obtain ‖uc‖S(Ḣ1/2;(−∞,+∞)) ≤
δsd, a contradiction. Thus, we have shown that t1

n converges to some finite t1.

Since e−i t1
n�ψ1 → e−i t1�ψ1 in H1 and (5.14) holds, (5.13) shows that uc(tn)

converges in H1. �
12 In the rest of the argument, take care not to confuse t1

n (associated with ψ1) with tn .
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Lemma 5.6. (Precompactness of the flow implies uniform localization) Let u be a so-
lution to (1.1) such that

K = { u(t) | t ∈ [0,+∞) }
is precompact in H1. Then for each ε > 0, there exists R > 0 so that

∫
|x |>R

|∇u(x, t)|2 ≤ ε, for all 0 ≤ t < +∞.

Proof. If not, then there exists ε > 0 and a sequence of times tn such that
∫

|x |>n
|∇u(x, tn)|2 dx ≥ ε.

Since K is precompact, there exists φ ∈ H1 such that, passing to a subsequence of tn ,
we have u(tn) → φ in H1. By taking n large, we have both

∫
|x |>n

|∇φ(x)|2 ≤ 1

4
ε

and ∫
R3

|∇(u(x, tn)− φ(x))|2 dx ≤ 1

4
ε ,

which is a contradiction. �

6. Rigidity Theorem

We now prove the rigidity theorem.

Theorem 6.1. (Rigidity) Suppose u0 ∈ H1 satisfies

M[u0]E[u0] < M[Q]E[Q] (6.1)

and
‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 . (6.2)

Let u be the global H1 solution of (1.1) with initial data u0 and suppose that

K = { u(t) | t ∈ [0,+∞) } is precompact in H1.

Then u0 = 0.

Proof. Let φ ∈ C∞
0 , radial, with

φ(x) =
{ |x |2 for |x | ≤ 1

0 for |x | ≥ 2
.

For R > 0 define zR(t) = ∫
R2φ( x

R ) |u(x, t)|2 dx . Then

|z′
R(t)| ≤ 2R

∣∣∣∣
∫

ū(t)∇u(t) (∇φ)
( x

R

)
dx

∣∣∣∣ ≤ c R
∫

0<|x |<2R
|∇u(t)| |u(t)| dx . (6.3)
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Using Hölder’s inequality and Theorem 1.1(1)(a), we bound the previous expression by

c R ‖∇u(t)‖L2 ‖u‖L2 ≤ c R ‖∇Q‖L2 ‖Q‖L2 = c̃ R.

Thus, we obtain
|z′

R(t)− z′
R(0)| ≤ 2 c̃ R for t > 0. (6.4)

Next we estimate z′′
R(t) using the localized virial identity (4.1):

z′′
R(t) = 4

∫
φ′′

( |x |
R

)
|∇u|2 − 1

R2

∫
(�2φ)

( x

R

)
|u|2 −

∫
(�φ)

( x

R

)
|u|4

≥ 8
∫

|x |≤R
|∇u|2 + 4

∫
R<|x |<2R

φ′′
( |x |

R

)
|∇u|2 − c

R2

∫
R<|x |<2R

|u|2

− 6
∫

|x |≤R
|u|4 − c

∫
R<|x |<2R

|u|4

≥
(

8
∫

|x |≤R
|∇u|2 − 6

∫
|x |≤R

|u|4
)

− c1

∫
R<|x |<2R

(
|∇u|2 +

|u|2
R2 + |u|4

)
.

Since (6.1) holds, take δ > 0 such that M[u0]E[u0] ≤ (1 − δ)M[Q]E[Q]. Let
ε = c−1

1 cδ
∫ |∇u0|2, where cδ is as in (4.9).

Since {u(t)|t ∈ [0,∞)} is precompact in H1, by Lemma 5.6 there exists R1 > 0 such
that

∫
|x |>R1

|∇u(t)|2 ≤ 1
9 ε. Next, because of mass conservation, there exists R2 > 0

such that 1
R2

2

∫ |u|2 < 1
9 ε. Finally, the radial Gagliardo-Nirenberg inequality (3.5) yields

the existence of R3 > 0 such that∫
|x |>R3

|u(t)|4 ≤ c

R2
3

‖∇u(t)‖L2(|x |>R3)
‖u0‖3

L2 ≤ c

R2
3

‖∇u0‖L2 ‖u0‖3
L2 ≤ 1

9
ε,

with R2
3 > 9 c ε ‖∇u0‖L2 ‖u0‖3

L2 ; in the above chain we used the gradient-energy com-
parability (Lemma 4.5) with t = 0 on the left side. Take R = max{R1, R2, R3} to
obtain

c1

∫
|x |>R

(
|∇u|2 +

|u|2
R2 + |u|4

)
≤ 1

3
cδ

∫
|∇u0|2. (6.5)

By (4.9) and Lemma 4.5, we also have

8
∫

|∇u|2 − 6
∫

|u|4 ≥ cδ

∫
|∇u0|2. (6.6)

Splitting the integrals on the left side of the above expression into the regions {|x | > R}
and {|x | < R} and applying (6.5), we get

8
∫

|x |≤R
|∇u|2 − 6

∫
|x |≤R

|u|4 ≥ 2

3
cδ

∫
|∇u0|2.

Hence, we obtain z′′
R(t) ≥ 1

3 cδ ‖∇u0‖2
L2 , which implies by integration from 0 to t that

z′
R(t) − z′

R(0) ≥ 1
3 cδ ‖∇u0‖2

L2 t . Taking t large, we obtain a contradiction with (6.4),
which can be resolved only if ‖∇u0‖L2 = 0. �

To complete the proof of Theorem 1.1(1)(b), we just apply Theorem 6.1 to uc con-
structed in Proposition 5.4, which by Proposition 5.5, meets the hypotheses in Theorem
6.1. Thus uc,0 = 0, which contradicts the fact that ‖uc‖S(Ḣ1/2) = ∞. We have thus
obtained that if ‖u0‖L2‖∇u0‖L2 < ‖Q‖L2‖∇Q‖L2 and M[u]E[u] < M[Q]E[Q], then
SC(u0) holds, i.e. ‖u‖S(Ḣ1/2) < ∞. By Proposition 2.2, H1 scattering holds.
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7. Extensions to General Mass Supercritical, Energy Subcritical NLS Equations

Consider the focusing mass supercritical, energy subcritical nonlinear Schrödinger equa-
tion NLSp(R

N ):

{
i∂t u +�u + |u|p−1u = 0, (x, t) ∈ R

N × R,

u(x, 0) = u0(x) ∈ H1(RN ),
(7.1)

with the choice of nonlinear exponent p and the dimension N such that

0 < sc < 1, where sc = N

2
− 2

p − 1
.

The initial value problem with u0 ∈ H1(RN ) is locally well-posed, see [10]. Denote by
I = (−T∗, T ∗) the maximal interval of existence of the solution u (e.g., see [3]). This
implies that either T ∗ = +∞ or T ∗ < +∞ and ‖∇u(t)‖L2 → ∞ as t → T ∗ (similar
properties for T∗).

The solutions to this problem satisfy mass and energy conservation laws, in particular,

E[u(t)] = 1

2

∫
|∇u(x, t)|2 − 1

p + 1

∫
|u(x, t)|p+1 dx = E[u0].

The Sobolev Ḣ sc norm is invariant under the scaling u �→ uλ(x, t) = λ2/(p−1)u(λx, λ2t)
(uλ is a solution of NLSp(R

N ), if u is).
The general Gagliardo–Nirenberg inequality (see [32]) is valid for values of p and

N such that 0 ≤ sc < 113:

‖u‖p+1
L p+1(RN )

≤ cGN ‖∇u‖
N (p−1)

2
L2(RN )

‖u‖2− (N−2)(p−1)
2

L2(RN )
, (7.2)

where

cGN =
‖Q‖p+1

L p+1(RN )

‖∇Q‖
N (p−1)

2
L2(RN )

‖Q‖2− (N−2)(p−1)
2

L2(RN )

and Q is the ground state solution (positive solution of minimal L2 norm) of the equation

− (1 − sc)Q +�Q + |Q|p−1 Q = 0. (7.3)

(See [32] and references therein for discussion on the existence of positive solutions
of class H1(RN ) to this equation.)14 The corresponding soliton solution to (7.1) is
u(x, t) = ei(1−sc)t Q(x).

The generalization of Theorem 4.2 (or Theorem 1.1 without scattering) to all
0 < sc < 1 is based on using the scaling invariant quantity ‖∇u‖sc

L2(RN )
· ‖u‖1−sc

L2(RN )
.

13 It is also valid for sc = 1 becoming the Sobolev embedding, see Remark 7.3.
14 In the case p = 3, N = 3, we have sc = 1

2 , and thus, the normalization for Q chosen here is different
from that in the main part of this paper. The normalization of Q taken here was chosen since it enables us to
draw a comparison with the sc = 1 endpoint result of Kenig-Merle [17].
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Theorem 7.1. Consider NLSp(R
N ) with (possibly non-radial) u0 ∈ H1(RN ) and 0 <

sc < 1. Suppose that

E[u0]sc M[u0]1−sc < E[Q]sc M[Q]1−sc , E[u0] ≥ 0. (7.4)

If (7.4) holds and

‖∇u0‖sc
L2(RN )

‖u0‖1−sc
L2(RN )

< ‖∇Q‖sc
L2(RN )

‖Q‖1−sc
L2(RN )

, (7.5)

then for any t ∈ I ,

‖∇u(t)‖sc
L2(RN )

‖u0‖1−sc
L2(RN )

< ‖∇Q‖sc
L2(RN )

‖Q‖1−sc
L2(RN )

, (7.6)

and thus I = (−∞,+∞), i.e., the solution exists globally in time.
If (7.4) holds and

‖∇u0‖sc
L2(RN )

‖u0‖1−sc
L2(RN )

> ‖∇Q‖sc
L2(RN )

‖Q‖1−sc
L2(RN )

, (7.7)

then for t ∈ I ,

‖∇u(t)‖sc
L2(RN )

‖u0‖1−sc
L2(RN )

> ‖∇Q‖sc
L2(RN )

‖Q‖1−sc
L2(RN )

. (7.8)

Furthermore, if (a) |x |u0 ∈ L2(RN ), or (b) u0 is radial with N > 1 and 1 + 4
N <

p < min{1 + 4
N−2 , 5}, then I is finite, and thus, the solution blows up in finite time.

The finite-time blowup conclusion and (7.8) also hold if, in place of (7.4) and (7.7), we
assume E[u0] < 0.

The proof of this theorem is similar to Theorem 4.2 and can be found in [13].

Remark 7.2. A finite-time T blow-up solution to a mass-supercritical energy subcritical
NLS equation satisfies a lower bound on the blow-up rate: ‖∇u(t)‖L2 ≥ c(T − t)−α ,
where α = α(p, d). This is obtained by scaling the local-theory, and it implies that the
quantity ‖u0‖sc

L2‖∇u(t)‖1−sc
L2 → ∞, thus strengthening the conclusion (7.8). A stronger

result in this direction was recently obtained by Merle-Raphaël [22]: if u(t) blows-up
in finite time T ∗ < ∞, then limt→T ∗ ‖u(t)‖Ḣ sc = ∞ (in fact, it diverges to ∞ with a
logarithmic lower bound).

Remark 7.3. This theorem provides a link between the mass critical NLS and energy crit-
ical NLS equations: Consider sc = 1; the theorem holds true by the work of Kenig-Merle
[17, Sect. 3]. In this case there is no mass involved, the Gagliardo-Nirenberg inequality
(7.2) becomes the Sobolev inequality, the condition (7.4) is E[u0] < E[Q], where Q is
the radial positive decreasing (class Ḣ1(RN )) solution of �Q + |Q|p−1 Q = 0, and the
conditions (7.5) – (7.8) involve only the size of ‖∇u0‖L2 in relation to ‖∇Q‖L2(RN ). In
regard to the case sc = 0, (7.4) should be replaced by M[u] < M[Q] and (7.5) becomes
the same statement. Under these hypotheses, the result of M. Weinstein [32] states that

‖∇u(t)‖2
L2 ≤ 2

(
1 − ‖u0‖2

L2

‖Q‖2
L2

)−1

E[u], E[u] > 0,
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and thus, global existence holds. We do not recover this estimate as a formal limit in
(7.6),15 however, the conclusion about the global existence in this case does hold true.
Our intention here is not to reprove the sc = 0 endpoint result – only to draw a connection
to it. The hypothesis (7.7) should be replaced by its formal limit ‖u0‖L2 > ‖Q‖L2 , which
is the complement of (7.4). Thus, the only surviving claim in Theorem 7.1 regarding
blow-up in the sc = 0 limit is that it should hold under the hypothesis E[u0] < 0.
Blow-up under this hypothesis is the classical result of Glassey [12] in the case of finite
variance, and in the radial case it is the result of Ogawa-Tsutsumi [23].

We expect that the proof of scattering for NLSp(R
N ) with u0 ∈ H1(RN ) and 0 <

sc < 1 when (7.4) and (7.5) hold will carry over analogously to the N = 3, p = 3
case, provided (i) N > 1 (the radial assumption in 1D does not help to eliminate the
translation defect of compactness); (ii) the Kato estimate (as in (2.2)) or the more refined
Strichartz estimates by Foschi [9] are sufficient to complete the long term perturbation
argument16.

Acknowledgement. J.H. is partially supported by an NSF postdoctoral fellowship. S.R. would like to thank
Mary and Frosty Waitz for their great hospitality during her visits to Berkeley. We both thank Guixiang Xu
for pointing out a few misprints and the referee for helpful suggestions.

References

1. Bergé, L., Alexander, T., Kivshar, Y.: Stability criterion for attractive Bose-Einstein condensates. Phys.
Rev. A 62(2), 023607 (2000)

2. Bégout, P.: Necessary conditions and sufficient conditions for global existence in the nonlinear
Schrödinger equation. Adv. Math. Sci. Appl. 12(2), 817–827 (2002)

3. Cazenave, T.: Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. New York:
New York University, Courant Institute of Mathematical Sciences, Providence, RI: Amer. Math. Soc.
2003

4. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global existence and scattering for rough
solutions of a nonlinear Schrödinger equation on R

3. Comm. Pure Appl. Math. 57(8), 987–1014 (2004)
5. Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Global well-posedness and scattering

for the energy-critical nonlinear Schrödinger equation in R3. http://arxiv.org/PS_cache/math/pdf/0402/
0402129v7.pdf, 2006

6. Donley, E., Claussen, N., Cornish, S., Roberts, J., Cornell, E., Wieman, C.: Dynamics of collapsing and
exploding Bose-Einstein condensates. Nature 412, 295–299 (2001)

7. Duyckaerts, T., Roudenko, S.: Threshold solutions for the focusing 3d cubic Schrödinger equation,
arxiv.org (preprint). arxiv:0806.1752[math.AP]

8. Fibich, G.: Some modern aspects of self-focusing theory. In: Self-Focusing: Past and Present, R.W. Boyd,
S.G. Lukishova, Y.R. Shen, eds., to be published by Springer, in August 2008, available at http://www.
math.tau.ac.il/%7Efibich/Manuscripts/Fibich_G_SF_Springer.pdf

9. Foschi, D.: Inhomogeneous Strichartz estimates. J. Hyper. Diff. Eq. 2(1), 1–24 (2005)
10. Ginibre, J., Velo, G.: On a class of nonlinear Schrödinger equation. I. The Cauchy problems; II. Scattering

Theory, General Case. J. Funct. Anal. 32(1–32), 33–71 (1979)
11. Ginibre, J., Velo, G.: Scattering theory in the energy space for a class of nonlinear Schrödinger equations.

J. Math. Pures Appl. (9) 64(4), 363–401 (1985)
12. Glassey, R.T.: On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equation.

J. Math. Phys. 18(9), 1794–1797 (1977)
13. Holmer, J., Roudenko, S.: On blow-up solutions to the 3D cubic nonlinear Schrödinger equation. Appl.

Math. Res. Express, Vol. 2007, article ID abm004, doi:10.1093/amrx/abm004, 2007

15 It might appear as a formal limit if one were to refine the estimate (7.6) to account for the gain resulting
from the strict inequality in (7.4) (as we did in the proof of Theorem 4.2) before passing to the sc → 0 limit.

16 It may be necessary, for example, to express the estimates in terms of the norm ‖Dsc−α(· · · )‖S(Ḣα) for
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