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Abstract: Kontsevich’s work on Airy matrix integrals has led to explicit results for
the intersection numbers of the moduli space of curves. In this article we show that a
duality between k-point functions on N × N matrices and N-point functions of k × k
matrices, plus the replica method, familiar in the theory of disordered systems, allows
one to recover Kontsevich’s results on the intersection numbers, and to generalize them
to other models. This provides an alternative and simple way to compute intersection
numbers with one marked point, and leads also to some new results.

1. Introduction

After Witten’s celebrated conjectures [1,2] on the relation between intersection numbers
on moduli spaces of curves and the KdV hierarchy, and Kontsevich’s proof [3], the liter-
ature on the subject, both from the point of view of mathematics or from its string theory
relationship, has become considerable. We want to add here a new method, duality plus
replica, which allows one to recover easily some results which are difficult to obtain by
fancier methods, and provides some new results as well.

In a previous article [4] we have used explicit integral representations for the corre-
lation functions [5–7] for a Gaussian unitary ensemble (GUE) of random matrices M
in the presence of an external matrix source. The probabililty distribution for N × N
Hermitian matrices is

PA(M) = 1

Z A
e− N

2 trM2−N trM A. (1)

From this representation we have obtained the correlation functions of the ‘vertices’

V (k1, . . . , kn) = 1

N n
〈trMk1 trMk2 · · · trMkn 〉. (2)
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As is well-known from Wick’s theorem (when the source A vanishes) such correlation
functions are just the numbers of pairwise gluing of the legs of the vertex operators. The
dual cells of these vertices are polygons, whose edges are pairwise glued. This gen-
erates orientable surfaces, discretized Riemann surfaces whose genus is related to the
expansion in power of 1/N 2.

Okounkov and Pandharipande [8–10] have shown that the intersection numbers, com-
puted by Kontsevich [3], may be obtained by taking a simultaneous large N and large
ki limit. In our previous work we have used the exact integral representation valid for
finite N of those vertex correlation functions, and obtained explicitly the scaling region
for large ki and large N by a simple saddle-point. This led to a practical way to compute
intersection numbers from a pure Gaussian model, much simpler than Kontsevich’s Airy
matrix model.

In this article we want to show that duality and replica may be used also to recover
easily earlier results, to establish some new ones and give support to Witten’s conjec-
ture. In order to make this article self-contained we have added appendices in which we
rederive some of the steps leading to the representation that we are using:
(i) explicit formulae, valid for arbitrary N and arbitrary source matrix A for the average

U (s1, . . . , sk) = 〈Tres1M · · · TreskM〉 (3)

which rely on the Itzykson-Zuber formula [11,12] (Appendix A);
(ii) a duality representation for the average of characteristic determinants

〈det(λ1 − M) · · · det(λk − M)〉

in terms of another GUE integral, but in which the random matrices are k × k , whereas
the initial problem involved N × N matrices (Appendix B) [13]. (This duality seems
to be a simple reflection of the open string/closed string duality [14].) With the help of
these two kinds of results we may proceed to the replica approach based on the simple
relation

lim
n→0

1

n

∂

∂λ
[det(λ− B)]n = tr

1

λ− B
. (4)

Therefore after applying these two steps we end up looking for an n goes to zero limit on
matrix integrals whose size vanishes with n, a very different problem from the familiar
large N limit. The Feynman graph representation of this matrix integral connects as
usual with Riemann surfaces with marked points; letting the rank n go to zero selects
the graphs of maximal genus for a given number of vertices.

The article is organized as follows: In Sect. 2 we first recall the main formulae (i)
for the explicit integral representation of k-point functions in a Gaussian plus source,
N ×N , Hermitian matrix integral, (ii) for the N-k duality. The derivations are reproduced
in Appendices A and B respectively. Specializing to a constant matrix source, we are
led to Kontsevich’s cubic model in the appropriate scaling limit. In Sect. 3 we derive the
theorem (20) which gives explicitly the sourceless k-point functions in the zero-replica
limit. This allows one to recover the known results for the intersection numbers, such as
〈τ3g−2〉g = 1

(24)g g! (g = 0,1,2,…). In Sect. 4 we show that an appropriate tuning of the
matrix source may be used to generate generalizations of the Kontsevich model to
higher powers than cubic,thereby providing generalized intersection numbers 〈∏ τm, j 〉
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for moduli of curves with ‘spin’ j. For instance from the quartic generalized model we
find

〈τ 8g−5− j
3 , j 〉g = 1

(12)gg!
�(

g+1
3 )

�(
2− j

3 )
,

where j = 0 for g = 3m + 1 and j = 1 for g = 3m. (For g = 3m + 2, the intersection
numbers are zero.)

2. The Duality Plus Replica Strategy

We first consider the average of products of characteristic polynomials, defined as

Fk(λ1, . . . , λk) = 1

Z N
〈

k∏

α=1

det(λα − M)〉A,M

= 1

Z N

∫

d M
k∏

i=1

det(λi · I − M)e− N
2 trM2+NtrMA, (5)

where M is an N × N Hermitian random matrix, A a given Hermitian matrix, whose
eigenvalues are (a1, · · · , an) and Z N the normalization constant of the probability mea-
sure (for A = 0). We have shown earlier [13] that this correlation function has also a
dual expression. This duality interchanges N , the size of the random matrix, with k,
the number of points in Fk , as well as the matrix source A with the diagonal matrix
� = diag(λ1, . . . , λk). This duality reads [13]

Fk(λ1, . . . , λk) = 1

Zk

∫

d B
N∏

j=1

[det(a j − i B)]e− N
2 tr(B−i�)2 , (6)

where � = diag(λ1, . . . , λk) and B is a k × k Hermitian matrix. (The normalization is
now on GUE ensembles of Hermitian k × k matrices Zk = ∫

d Bexp(− 1
2 trB2)). The

derivation is reproduced in Appendix B.
If we specialize this formula to a source A equal to the unit matrix, a trivial shift for

the original N × N matrices M, which has the effect of making the support of Wigner’s
semi-circle law, for the asymptotic density of eigenvalues of M, to lie between 0 and 2
rather than (–1,+1), the formula (6) involves

det(1 − i B)N = exp[N trln(1 − i B)]
= exp[−i N trB +

N

2
trB2 + i

N

3
trB3 + · · ·]. (7)

The linear term in B in (7), combined with the linear term of the exponent of (6),
shifts � by one. The B2 terms in (6) cancel. In a scale in which the initials λk are close
to one, or more precisely N 2/3(λk − 1) is finite, the large N asymptotics of (6) is given
by matrices B of order N−1/3. Then the higher terms in (7) are negligible and we are
left with terms linear and cubic in the exponent, namely

Fk(λ1, . . . , λk) = e
N
2 tr�2

∫

d Bei N
3 trB3+i N trB(�−1). (8)
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So finally for this edge behavior problem, in which the matrix B is of order N−1/3, and
λ − 1 of order N−2/3 we can rescale B and λ − 1 to get rid of N . The result is nearly
identical to the matrix Airy integral, namely Kontsevich’s model [3], which gives the
intersection numbers of moduli of curves. The original Kontsevich partition function
was defined as

Z = 1

Z ′

∫

d Be−tr�B2+ i
3 trB3

, (9)

where Z ′ = ∫
d Be−trB2

. The shift B → B +i�, eliminates the B2 term and one recovers
(8) up to a trivial rescaling.

Let us apply this to a one-point function. In view of the replica limit we specialize
those formulae to

〈[det(λ− M)]n〉A,M = 〈[det(1 − i B)]N 〉�,B, (10)

where B is an n × n random Hermitian matrix. For this edge problem we have chosen
for the source matrix A, the N-dimensional unit matrix, whereas � is a multiple of the
n × n identity matrix : � = diag(λ, . . . , λ). Note that the average in the l.h.s. of (10) is
meant for the N × N GUE ensemble, whereas in the r.h.s. the average is performed on
n × n Hermitian matrices with the weight (8) or (9).

The strategy that we will use is thus to take the integral (9) for� = λ×1 and expand
it in powers of the cubic term. The formulae that will be established, being exact for
finite n, are easily continued in n and allow one to take the n → 0 limit. The method
relies on explicit exact representations of Gaussian averages [7,15] in the presence of
an external matrix source (in Appendix A the main steps of the derivation have been
recalled). As a result we will obtain formulae for quantities such as

lim
n→0

1

n
〈(trBk)l〉

computed with the (normalized) Gaussian weight Z−1exp(− 1
2 trB2) on n × n

Hermitian matrices; thereby this procedure gives the values of the intersection num-
bers of the moduli of curves for a number of cases.

3. Evolution Operators and Replica Limit

We will rely on explicit expressions for

UA(s1, . . . , sk) = 1

n
〈tres1B · · · treskB〉 (11)

for a probability measure on n × n Hermitian matrices in the presence of an Hermitian
matrix source A, whose eigenvalues are a1, . . . , an . The average is thus defined with the
normalized weight

PA(B) = 1

Z
e− 1

2 trB2+trAB. (12)

Then one has (see Appendix A) for the one-point function

UA(s) = 1

n
〈tresB〉 = e

s2
2λ

ns

∮
du

2iπ
esu/λ

n∏

1

(
u − aα + s

u − aα
) (13)
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the contour, in the complex u-plane, circling around the n poles aα . We have chosen
the normalization UA(0) = 1. This formula simplifies for a vanishing external source
(although a non-vanishing source simplifies the derivation) to

U (s) = e
s2
2λ

ns

∮
du

2iπ
esu/λ(1 +

s

u
)n . (14)

This representation leads to a simple continuation in n, and to an expansion in powers
of n. For instance it gives

lim
n→0

U (s) = e
s2
2λ

s

∮
du

2iπ
esu/λ log (1 +

s

u
). (15)

This last contour integral reduces to the integral of the discontinuity of the logarithm,
giving readily

lim
n→0

U (s) = sinh ( s2

2λ )

( s2

2λ )
, (16)

and thus

lim
n→0

1

n
〈trBk〉 = 4k!

λ2k4k(2k + 1)! . (17)

Note that in terms of Feynman diagrams with double lines, the limit n → 0 selects
the diagrams with one single internal index all along the lines of the diagrams. Those
diagrams correspond to a surface of maximum genus for a given number of vertices.

The same strategy works for higher point-functions. The k-point function is given
(for a vanishing source) by

U (s1, . . . , sk) = 1

n
〈tres1B · · · treskB〉

= (−1)k(k−1)/2e
∑k

1
s2
i

2λ

∮ k∏

1

dui

2iπ
e
∑k

1(ui si /λ)
k∏

1

(1 +
si

ui
)n det

1

ui + si − u j
. (18)

Again the continuation to non-integer n is straightforward and leads to

lim
n→0

U (s1, . . . , sk) = (−1)k(k−1)/2e
∑k

1
s2
i

2λ

×
∮ k∏

1

dui

2iπ
e
∑k

1(ui si /λ)
k∑

1

log (1 +
si

ui
) det

1

ui + si − u j
. (19)

The calculation of the contour integrals is more cumbersome, but all the integration
can be done explicitly to the end and give the following theorem, which is a remarkably
compact result (proof is given in Appendix C).

Theorem.

lim
n→0

U (s1, . . . , sk) = λ

σ 2

k∏

1

2 sinh
σ si

2λ
, (20)

with σ = s1 + · · · + sk .
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This function is of course the generating function for the n = 0 limit of 1
n 〈trBp1 . . .

trBpk 〉 by expanding in the si ’s. Selecting the coefficients of equal powers for every si ,
for instance of (s1 . . . sk)

3, we find

lim
n→0

1

n
〈(trB3)4g−2〉 = 33g−22−2g(6g − 4)!

λ6g−3

(
4g − 2

g

)

(21)

all other powers of limn→0
1
n 〈(trB3)k〉 vanishing unless k = 2 (mod4). This leads to the

intersection number of the moduli of curves with one marked point. Indeed, following
Kontsevich, these numbers are given by

1

n
log Z =

∑

l

tl〈τl〉 (22)

with

tl = (−2)−(4l+2)/6
l−1∏

0

(2m + 1)(
2

λ
)2m+1 (23)

from which the above result (21) provides

〈τ3g−2〉g = 1

(24)gg! (g = 0, 1, 2, . . .). (24)

These numbers agree with the values of the intersection numbers computed earlier by
Kontsevich, Witten and others [1,3,16,17].

Clearly the method allows one to compute more than that. For instance one can derive
as well

lim
n→0

1

n
〈(trB4)2p−1〉 = 22p−2

λ4p−2 (4p − 3)!
(

2p − 1
p

)

. (25)

These vertices appear in the higher Airy fuctions and they are related to the intersection
numbers of Witten’s top Chern class [1,3].

4. Application to Intersection Numbers of Top Chern Class (p-Spin Curves)

Up to now we have considered an external source matrix A which was a multiple of
identity. Let us now choose a source matrix in which half of the eigenvalues of A are −a
and the other half +a. Then the asymptotic density of states has for support two discon-
nected segments of the real axis (for a〉1) with a gap in-between. In the limit in which a
approaches one the gap closes, and for a〈1 the support is made of one single segment.
For the critical closing gap case a = 1 the density of state ρ(λ) vanishes as λ1/3 at the
center of the band [18,19]. We will show that the correlation functions for this critical
case correspond to a higher Airy matrix model, related to the intersection numbers of
Witten’s top Chern class (p = 3 spin curves). The formula (20) derived in the previous
section allows us to compute also those intersection numbers for one marked point. With
the help of the previous duality and replica method, we shall show that these numbers
are given by the Fourier transform of the one point function, which is given by an Airy
function [18].
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This may be extended to higher Airy cases (p〉3) for the n-point functions. The details
are left to a future publication.

The partition function for the pth generalization of Kontsevich’s Airy matrix-model
is defined as

Z = 1

Z0

∫

d Bexp[ 1

p + 1
tr(Bp+1 −�p+1)− tr(B −�)�p] (26)

normalized by the Gaussian part of the integrand (after the shift B → B + � which
cancels the linear terms in B of the exponent):

Z0 =
∫

d Bexp[
p−1∑

j=0

tr
1

2
�jB�p−j−1B]. (27)

The ‘free energy’, i.e. the logarithm of the partition function, is the generating function of
the generalized intersection numbers 〈∏ τm, j 〉 for moduli of curves with ‘spin’ j [3,20]

By taking the external source ai = ±1 in the formula of the duality (6), and by
expanding the exponent up to order B4 in the large N limit, we obtain

〈
N∏

i=1

det(ai − i B)〉 = 〈[det(1 + B2)] N
2 〉

=
∫

d Be− N
4 trB4−i N trB�, (28)

which coincides with the above partition function Z in the case p = 3 after trivial sca-
lings. For p〉3, we also obtain the partition function Z in (26) with appropriate choice
of the external source [18].

The ‘free energy’, i.e. the logarithm of the partition function, is the generating func-
tion of the generalized intersection numbers 〈∏ τm, j 〉 for moduli of curves with ‘spin’ j
[3,20]

F =
∑

dm, j

〈
∏

m, j

τ
dm, j
m, j 〉

∏

m, j

t
dm, j
m, j

dm, j ! , (29)

where [3]

tm, j = (−p)
j−p−m(p+2)

2(p+1)

m−1∏

l=0

(lp + j + 1)tr
1

�mp+j+1 . (30)

According to Witten [2] the intersection numbers is given by

〈τmn , jn · · · τmn , jn 〉g =
∫

M̄g,n

Cw( j1, · · · , jn)ψ
m1
1 · · ·ψmn

n (31)

with the condition which relates, for given p, the indices to the genus g of the surface

(p + 1)(2g − 2 + n) =
n∑

i=1

(pmi + ji + 1). (32)
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The cohomology class Cw( j1, . . . , jn) is Witten’s class (top Chern class), and ψ1 is the
first Chern class. Witten conjectured that F is the string solution of the pth Gelfand-
Dikii hierarchy [2,21]. The partition function Z of (26) is a model for the (p,1)-quantum
gravity, which is equivalent to the (p − 1)-matrix model.

By retaining only the leading term of the limit n → 0 limit, we restrict ourselves to
surfaces with one marked point. Then the expansion of (29) is simply given by

lim
n→0

1

n
F =

∑

m, j

〈τm, j 〉gtm, j . (33)

In the leading order of the limit n → 0, the matrix � is replaced by a scalar � = λ · I .
After a simple rescaling of the Gaussian weight, we obtain, for instance in the case

of p = 3,

Z = 1

Z0

∫

d Bexp[ 1

36
trB4 +

i

3
√

3
tr�B3 − 1

2
tr�2B2], (34)

Z0 =
∫

d Bexp[−1

2
tr�2B2]. (35)

In this p = 3 case, we obtain from (20),

〈τ 8g−5− j
3 , j 〉g = 1

(12)gg!
�(

g+1
3 )

�(
2− j

3 )
, (36)

where j = 0 for g = 1, 4, 7, 10, . . . and j = 1 for g = 3, 6, 9, . . .. For g = 2, 5, 8, . . .,
the intersection numbers are zero.

When the genus g is equal to three, the above formula gives 〈τ6,1〉g=3 = 1
(12)33!3

which agrees with the value obtained earlier by Shadrin [22]. In the calculation of the
intersection numbers for p = 3, in addition to 〈(trB3)p〉and 〈(trB4)q〉 given here above in
(21) and (25) , one needs to compute mixed averages of the type 〈(trB4)k(trB3)l〉. Such
averages are indeed required if one deals with the expansion of (34), but they are also
contained in the explicit formula (20) for the generating function.

For general p, from (20), we have for g = 1, 〈τ1,0〉g = 1 = p−1
24 . To derive this result, we

simply need to compute 〈trB4〉g = 1 = 1 and 〈(trB3)2〉g = 1 = 3 with t1,0 = −n/(pλp+1).
In the case p = 4, we obtain from (20) by simple calculations up to order g = 4 as

〈τ1,0〉g = 1 = 1
8 , 〈τ3,2〉g = 2 = 9

82·5! , 〈τ6,0〉g = 3 = 9
83·5! and 〈τ8,2〉g = 4 = 7·11

85·5!·10
.

Thus we find that the expression of (20) for the n → 0 limit of U (s1, · · · , sk) is a
generating function for the intersection numbers for the moduli space of one-marked
point, p spin, curves. This provides thus a simple algorithm for obtaining these numbers.

We have restricted this article to surfaces with one marked point. To go beyond one
marked point, the analysis of higher orders in n is required. For two marked points, we
need the order n2. However for genus one, we have two different kinds of intersection
numbers, 〈τ0τ2〉 and 〈τ 2

1 〉 (here p = 2). These two terms are distinguished by coupling to
different combinations of the tl parameters, namely t0t2 and t2

1 ; those combinations have
different � dependence (30). Thus we need a matrix � which is no longer a multiple
of the identity. If we go to higher orders in n with simply for � a multiple of the iden-
tity matrix, we obtain the values of the sum 〈τ0τ2〉 + 〈τ 2

1 〉 = 1
12 , instead of that of the

individual terms. We hope to be able to discuss higher marked points by extending the
present approach to such cases.
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Alternative approach. We shall now show that the duality (6) allows us to recover the
same numbers from the one-point function of the closing gap problem. This is similar
to the p = 2 case developed in previous articles [4,8].

The Fourier transform of the density of state, the one-point correlation function
UA(s), is defined as

UA(s) = 1

N

∫

dλeiλs〈trδ(λ− M)〉A, (37)

which is known for arbitrary A and reduces for the choice ai = ±1 (closing gap case)
to

UA(s) = 1

Ns
eNs2/2

∮
du

2π i
(1 − s

1 − u
)

N
2 (1 +

s

1 + u
)

N
2 eNsu . (38)

In the range in which N is large and s of order N−1/4, one can expand the integrand
and the leading range is given by u’s of order N−1/4 as well. Then

UA(s) = 1

Ns
e− N

4 s4
∫

du

2π i
e−Nsu3− 3

2 Ns2u2−Ns3u

= 1

Ns

∫
du

2π i
e−Nsu3− N

4 s3u, (39)

where we have expanded the exponent up to order u3. The last equation has been obtained
by the shift u → u − s

2 . The contour integral over u becomes an integral over the range
[−i∞,+i∞] in the large N limit. This integral is clearly related to an Airy function
Ai(x), defined by

Ai[±(3a)−
1
3 x] = (3a)1/3

π

∫ ∞

0
dtcos(at3 ± xt). (40)

We have thus

UA(s) = 1

Ns(3Ns)
1
3

Ai(z) (41)

with z = − N

4·3 1
3 N

1
3

s
8
3 . The expansion of the Airy function for small z gives the numbers

UA(s) = 1

Ns(3Ns)
1
3 3

2
3�( 2

3 )
(1 +

1

3! z3 +
1 · 4

6! z6 +
1 · 4 · 7

9! z9 + · · ·)

− 1

Ns(3Ns)
1
3 3

1
3�( 1

3 )
(z +

2

4! z4 +
2 · 5

7! z7 +
2 · 5 · 8

10! z10 + · · ·) (42)

From the expansion (42), we find the intersection numbers of (36) up to a scal-
ing factor. The first series of (42), in powers of z3k , corresponds to the spin j = 1
case : 〈τ6,1〉g=3 = 1

(12)33!·3 , 〈τ14,1〉g=6 = 1·4
(12)66!·32 , 〈τ22,1〉g=9 = 1·4·7

(12)99!·33 , . . . The

second series in (42) , in powers of z3k+1 corresponds to the spin j=0 intersection num-
bers, 〈τ1,0〉g=1 = 1

12 , 〈τ9,0〉g=4 = 2
(12)44!·3 , 〈τ17,0〉g=7 = 2·5

(12)77!·32 , and 〈τ25,0〉g=10 =
2·5·8

(12)1010!·33 .
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5. Conclusion

The present article, using both duality and replica, provides exact formulae for the inter-
section numbers of the moduli of curves on Riemann surfaces with one marked point
and p-spin. The method may be extended, at least for low genera, to a higher number of
marked points. It provides a relationship between Kontsevich’s Airy matrix model and
Okounkov’s work of the edge of Wigner’s semi-circle for the p = 2 case. For the p = 3
case, it provides a link between a higher Airy matrix model to the critical gap closing
model.

Appendix A: Gaussian Averages in the Presence of an External Matrix Source

For the sake of completeness we reproduce here the main steps of the derivation given
in [7]. The probability distribution for Hermitian n × n matrices is thus

PA(B) = 1

Z
e− λ

2 trB2+trAB. (43)

Let us first compute the one point function

UA(s) = 1

n
〈tresB〉. (44)

Using the Itzykson-Zuber formula [11,12] to integrate out the unitary degrees of freedom
one obtains:

UA(s) = 1

n

1

Z(A)

∫ n∏

1

dbi(B)e
∑n

1(− λ
2 b2

i +ai bi )
n∑

1

esbi , (45)

in which Z is a normalization constant fixed such as UA(0) = 1 and(B) is the Vander-
Monde determinant of the eigenvalues(B) = ∏

i< j (bi − b j ). We now use repeatedly
the trivial identity

∫ n∏

1

dbi(B)e
∑n

1(− λ
2 b2

i +ai bi ) = Cne
∑n

1
1

2λ a2
i (A) (46)

in which Cn is a simple constant, with ai replaced by ãi = ai + sδi,α in which α takes
the successive values 1 to n. This gives

UA(s) = 1

n
e

s2
2λ

n∑

1

esaα/λ( Ãα)

(A)

= 1

n
e

s2
2λ

∑

α

esaα/λ
∏

β �=α

aα − aβ + s

aα − aβ
(47)

which may be replaced by the contour integral around the n points (a1, . . . , an)

UA(s) = 1

ns
e

s2
2λ

∮
du

2iπ
esu/λ

n∏

1

u + s − aα
u − aα

. (48)
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Note that this is an exact formula; it simplifies of course for the pure Gaussian case
aα = 0, although the derivation does require a source matrix in the intemediate steps.

The derivation for the k-point functions follows exactly the same lines: the identity
(46) requires now an ã which carries k-indices. The result of the calculation is similar:

UA(s1, . . . , sk) = 1

n
〈tres1B · · · treskB〉

= 1

ns1 · · · sk
e
∑k

1
s2
i

2λ

∮ k∏

i=1

dui

2iπ
e
∑k

i=1 si ui /λ
∏

i< j

(ui − u j + si − s j )(ui − u j )

(ui − u j + si )(ui − u j − s j )

×
k∏

i=1

n∏

α=1

(1 +
si

ui − aα
). (49)

One can simplify the expression by noticing the Cauchy determinant identity

det
1

xi − y j
= (−1)n(n−1)/2

∏
i< j (xi − x j )(yi − y j )

∏
i, j (xi − y j )

(50)

with xi = ui + si , yi = ui , namely

det
1

ui + si − u j
= 1

s1 · · · sk

∏

i< j

(ui − u j + si − s j )(ui − u j )

(ui − u j + si )(ui − u j − s j )
. (51)

In the n = 0 limit we need to consider only the connected part of UA (the disconnected
ones vanishing with n, as is obvious from Feynman diagrams or explicit formulae) which
correspond to connected permutations in the expansion of the determinant. Taking a van-
ishing source (aα = 0) the n = 0 limit gives immediately (19).

Appendix B: Duality

Let us consider the Gaussian average, with a matrix source A, of the product of charac-
teristic determinants of the N × N Hermitian random matrices

Fk(λ1, . . . , λk) = 1

Z N
〈

k∏

α=1

det(λα − M)〉A,M

= 1

Z N

∫

d M
k∏

α=1

det(λi · I − M)e− 1
2 Tr(M−A)2 (52)

in which Z N = ∫
d Mexp(−1/2TrM2) = 2N/2(π)N

2/2. The unitary invariance of the
measure allows us to assume, without loss of generality, that A is a diagonal matrix with
eigenvalues (a1, . . . , aN ). We introduce now N × k complex Grassmannian variables
(i = 1, 2, . . . , N and α = 1, 2, . . . , k) (ψ̄αi , ψ

α
i ) (i = 1, 2, . . . , N and α = 1, 2, . . . , k)

with the normalization
∫

dψ̄dψ

(
1
ψ̄ψ

)

=
(

0
1

)

. (53)
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Then one may write

k∏

i=1

det(λi · I − M) =
∫ ∏

dψ̄αi dψαi e
∑N

i, j=1
∑k
α=1ψ̄

α
i (λα−M)i j ,ψ

α
j , (54)

and perform the Gaussian average

1

Z N

∫

d Me− 1
2 TrM2+TrMX = e

1
2 TrX2

. (55)

We deal here with a matrix X given by

X pq = apδpq −
k∑

α=1

ψ̄αq ψ
α
p (56)

and thus

TrX2 = TrA2 − 2
N∑

p=1

k∑

α=1

apψ̄
α
p ψ

α
p −

∑

α,β=1,...,k

γα,βγ β,α, (57)

where

γα,β =
N∑

i=1

ψ̄αi ψ
β
i . (58)

To make the notations more transparent let us denote by ‘Tr’ the trace on the initial space
of N × N matrices and by ‘tr’ the trace in the new space of k × k matrices; the last term
in (57) for TrX2 is thus −trγ 2, the minus sign being due to the anticommuting nature
of the psi’s. We then introduce an auxiliary Hermitian k × k matrix β so that

e− 1
2 trγ 2 = 1

Zk

∫

dβe− 1
2 trβ2+itrγβ . (59)

This leads us to the representation

Fk(λ1, . . . , λk) = 1

Zk

∫ ∏
dψ̄αi dψαi

×
∫

dβe− 1
2 trβ2+itrγ (β−i�)e−∑N

i=1
∑k
α=1 ai ψ̄

α
i ψ

α
i (60)

in which � is the k × k diagonal matrix with eigenvalues (λ1, . . . , λk). One can now
easily perform the integration over the Grassmanian variables since the exponent is
quadratic in those variables. This yields the announced dual representation

Fk(λ1, . . . , λk) = 1

Zk

∫

dβe− 1
2 trβ2

N∏

j=1

det[(λρ − a j )δρ,σ + iβρ,σ ] (61)

in which the matrices are now k × k.
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Remark. This duality takes a more symmetric form if we choose a pure imaginary diag-
onal matrix A, and if we shift the matrix β by i� in the final formula (61). Then the
duality reads

1

Z N

∫

d M
k∏

α=1

det(λi · I − M)e− 1
2 Tr(M−iA)2

= (−i)Nk 1

Zk

∫

dβ e− 1
2 tr(β+i�)2

N∏

j=1

det(a jδρ,σ − βρ,σ ). (62)

This duality may be extended to a two-matrix model when the measure is an expo-
nential of a quadratic form in the two matrices M and M ′, namely exp(aT r M2 +bT r M ′2
+ cT r M M ′).

Appendix C: Contour integrals in the n = 0 limit

We return to the contour integral (19) which gives the n = 0 limit of the k-point function.
Let us consider for simplicity the case of the two-point function. We are then dealing
with the sum of two integrals:

lim
n→0

U (s1, s2) = −e
s2
1 +s2

2
2λ

∮ 2∏

1

dui

2iπ
e
∑2

1(ui si /λ)[log (1 +
s1

u1
) + log (1 +

s2

u2
)]

× det
1

ui + si − u j
. (63)

The continuation to n = 0 requires to take contours in the u1 and u2 planes which circle
around the respective cuts [−s1, 0] and [−s2, 0]. We have to choose some well-defined
contours on the two variables before we can write the integral (63) as a sum of two
integrals. For instance we choose an integral over a large contour in the u2 plane, and
close to the cut in the u1 plane. The disconnected term 1/s1s2 of the determinant gives
a vanishing contribution. Thus

U (s1, s2) = e
s2
1 +s2

2
2λ

∮ 2∏

1

dui

2iπ
e
∑2

1(ui si /λ)[log (1 +
s1

u1
) + log (1 +

s2

u2
)]

× 1

(u1 + s1 − u2)(u2 + s2 − u1)
. (64)

The second integral, the one which involves log (1 + s2
u2
), vanishes for the choice of

contours that we have made, since we can integrate over u1 first and there are no poles
inside the contour. For the first part, that with log (1 + s1

u1
), we integrate over u2 first,

pick up the two poles and find

U (s1, s2) = e
s2
1 +s2

2
2λ

1

σ
(ε−s2

2/λ − es1s2/λ)

∮
du1

2iπ
eu1σ/λ log (1 +

s1

u1
) (65)

with σ = s1 + s2. Since
∮

du1

2iπ
eu1σ/λ log (1 +

s1

u1
) = −

∫ 0

s1

dxexσ/λ = − λ
σ
(1 − e−s1σ/λ), (66)
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we end up with

U (s1, s2) = 4
λ

σ 2 sinh
σ s1

2λ
sinh

σ s2

2λ
. (67)

This calculation may be repeated for the k-point function, although the combinatorics
becomes heavy. This yields the final result (theorem in (20)),

lim
n→0

U (s1, s2, . . . , sk) = λ

σ 2

k∏

1

2 sinh
siσ

2λ
, (68)

where σ = s1 + s2 + · · · + sk .
It is straightforward to generalize this formula to the case of a non-zero external matrix

source A with eigenvalues (a1, . . . , an). We assume that the density of eigenvalues

ρ(x) = 1

n

n∑

1

δ(x − ai ) (69)

has a finite limit ρ0(x)when n goes to zero. Up to now we have dealt with ρ0(x) = δ(x),
but we could take other examples such as n/2 eigenvalues equal to +a and n/2 equal
to −a. Then we would deal with ρ0(x) = 1

2 [δ(x − a) + δ(x + a)]. The derivation goes
through now in the same way: we write

n∏

1

(1 +
s

u − aα
) = en

∫
dxρ(x) log (1+ s

u−x ) (70)

which may be expanded when n goes to zero provided, as we have assumed, that ρ(x)
has a limit. The result is then simply

lim
n→0

UA(s1, s2, . . . , sk) = lim
n→0

U (s1, s2, . . . , sk)

∫

dxρ0(x)e
xσ/λ, (71)

in which the first factor U is given again by (68).
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