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Abstract: We consider genus one n-point functions for a vertex operator superalgebra
with a real grading. We compute all n-point functions for rank one and rank two fermion
vertex operator superalgebras. In the rank two fermion case, we obtain all orbifold n-point
functions for a twisted module associated with a continuous automorphism generated by
a Heisenberg bosonic state. The modular properties of these orbifold n-point functions
are given and we describe a generalization of Fay’s trisecant identity for elliptic functions.

1. Introduction

This paper is one of a series devoted to the study of n-point functions for vertex operator
algebras on Riemann surfaces of genus one, two and higher [T,MT1,MT2,MT3]. One
may define n -point functions at genus one following Zhu [Z], and use these functions
together with various sewing procedures to define n-point functions at successively
higher genera [T,MT2,MT3]. In this paper we consider the genus one n-point functions
for a Vertex Operator Superalgebra (VOSA) V with a real grading (i.e. a chiral fermionic
conformal field theory). In particular, we compute all n-point functions for rank one and
rank two fermion VOSAs. In the latter case, we consider n-point functions defined over an
orbifold g-twisted module for a continuous V automorphism g generated by a Heisenberg
bosonic state. We also consider the Heisenberg decomposition (or bosonization) of V
and recover classical Frobenius elliptic versions of Fay’s generalized trisecant identity
together with a new further generalization. The modular properties of the continuous
orbifold n-point functions are also described.

In his seminal paper, Zhu defined and developed a constructive theory of torus
n-point functions for a Z-graded Vertex Operator Algebra (VOA) and its modules [Z].
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In particular, he described various recursion formulae where, for example, an n-point
function is expanded in terms of n − 1-point functions and naturally occurring Weier-
strass elliptic (and quasi-elliptic) functions. Indeed, one can prove the analytic, elliptic
and modular properties of n-point functions for many VOAs from these recursion for-
mulae (op.cit.). This technique has since been extended to include orbifold VOAs with a
g-twisted module for a finite order automorphism g [DLM1], 1

2 Z-graded VOSAs [DZ1]
and Z-graded VOSAs [DZ2]. Here we consider a further generalization to obtain recur-
sion formulae for torus n-point functions for an R-graded VOSA. We consider n-point
functions defined as the supertrace over the product of various vertex operators together
with a general element of the automorphism group of the VOSA. The resulting recursion
formula is expressed in terms of natural “twisted” Weierstrass elliptic functions periodic
up to arbitrary multipliers in U (1). Such elliptic functions already appear in ref. [DLM1]
for multipliers of finite order. Here, we give a detailed description of twisted Weierstrass
elliptic functions (and associated twisted Eisenstein series) for general U (1)multipliers
generalizing many results of the classical theory of elliptic functions.

We consider two applications of the Zhu recursion formula. The first example is that
of the rank one 1

2 Z-graded fermion VOSA. In this case, all n-point functions can be
computed in terms of a single generating function. In particular, we obtain expressions
for these n-point functions in a natural Fock basis in terms of the Pfaffian of an appro-
priate block matrix. The second example is that of the rank two fermion VOSA. As
is well known, this VOSA contains a Heisenberg vector which generates a continuous
automorphism g and for which a g-twisted module can be constructed [Li]. The Hei-
senberg vector can also be employed to define a “shifted” Virasoro with real grading
[MN2,DM]. We demonstrate a general relationship between the n-point functions for
orbifold g-twisted modules and the shifted VOSA. We next apply the recursion formula
for R-graded VOSAs in order to obtain all continuous orbifold n-point functions. These
are expressible in terms of determinants of appropriate block matrices in a natural Fock
basis and can again be obtained from a single generating function. Decomposing the rank
two fermion VOSA into Heisenberg irreducible modules as a bosonic Z-lattice VOSA
(i.e. bosonization) we may employ results of ref. [MT1] to find alternative expressions
for the n-point functions. In particular the generating function is expressible in terms of
theta functions and the genus one prime form and we thus recover classical Frobenius
elliptic function versions of Fay’s generalized trisecant identity. We also prove a further
generalization of the elliptic Fay’s trisecant identity based on the n-point function for
n lattice vectors. The paper concludes with a determination of the modular transforma-
tion properties for all rank two continuous orbifold n-point functions generalizing Zhu’s
results for C2-cofinite VOAs [Z].

The study of n-point functions has a long history in the theoretical physics litera-
ture and we recover a number of well known physics results here. Thus the Pfaffian and
determinant formulas for the rank one and two fermion generating functions and the rela-
tionship between Fay’s generalized trisecant identity have previously appeared in phy-
sics [R1,R2,EO,RS,FMS,P]. However, it is important to emphasize that our approach
is constructively based on the properties of a VOSA and that a rigorous and complete
description of these n-point functions has been lacking until now. Thus, for example,
no assumption is made about the local analytic properties of n-point functions as would
normally be the case in physics. Similarly, other pure mathematical algebraic geome-
tric approaches to n -point functions are based on an assumed local analytic structure
[TUY]. Finally, apart from the intrinsic benefits of this rigorous approach, it is important
to obtain a complete description of these n-point functions as the building blocks used
in the construction of higher genus partition and n-point functions [T,MT2,MT3].
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The paper is organized as follows. We begin in Sect. 2 with a review of classical
Weierstrass elliptic functions and Eisenstein series. We introduce twisted Weierstrass
functions which are periodic up to arbitrary elements of U (1). We describe various
expansions of these twisted functions, introduce twisted Eisenstein series and determine
their modular properties. Section 3 contains one of the central results of this paper. We
begin with the defining properties of an R-graded VOSA V . We define n -point functions
as a supertrace over a V -module and describe some general properties. We then formulate
a generalization of Zhu’s recursion formula [Z] to an R-graded VOSA module making
use of the twisted Weierstrass and Eisenstein series. Sect. 4 contains a discussion of a
VOSA containing a Heisenberg vector. We prove the general relationship between the
n-point functions for a VOSA with a Heisenberg shifted Virasoro vector and g-twisted
n-point functions where g is generated by the Heisenberg vector. In Sect. 5 we apply
the results of Sect. 3 to a rank one fermion VOSA. In particular, we compute all n-point
functions in terms of a generating function given by a particular n-point function. We
also discuss n-point functions for a fermion number-twisted module. Sect. 6 contains
a description of a rank two fermion VOSA. We make use of the results of Sect. 3 and
Sect. 4 to compute all n -point functions for a g-twisted module where g is generated by
a Heisenberg vector by means of a generating function. We next discuss the Heisenberg
decomposition of this rank two theory—the bosonized theory. In particular, we derive an
expression for the rank two generating function in terms of θ -functions and prime forms
related to classical Frobenius elliptic function identities corresponding to the elliptic
version of Fay’s generalized trisecant identity. A further generalization for Fay’s trisecant
identity for elliptic functions is also discussed. Finally, we discuss the modular properties
of all n-point functions for the rank two fermion VOSA. Properties of supertraces are
recalled in the Appendix.

We collect here notation for some of the more frequently occurring functions and
symbols that will play a role in our work. Z is the set of integers, R the real numbers,
C the complex numbers, H the complex upper-half plane. We will always take τ to lie
in H, and z will lie in C unless otherwise noted. For a symbol z we set qz = exp(z), in
particular, q = q2π iτ = exp(2π iτ).

2. Some Elliptic Function Theory

2.1. Classical elliptic functions. We discuss a number of modular and elliptic-type func-
tions that we will need. We begin with some standard elliptic functions [La]. The Wei-
erstrass ℘-function periodic in z with periods 2π i and 2π iτ is

℘(z, τ ) = 1

z2 +
∑

m,n∈Z

(m,n) �=(0,0)

[
1

(z − ωm,n)2
− 1

ω2
m,n

]
(1)

= 1

z2 +
∑

n≥4,n even

(n − 1)En(τ )z
n−2, (2)

for (z, τ ) ∈ C × H with ωm,n = 2π i(mτ + n). Here, En(τ ) is equal to 0 for n odd, and
for n even is the Eisenstein series [Se]

En(τ ) = − Bn(0)

n! +
2

(n − 1)!
∑

r≥1

rn−1qr

1 − qr
, (3)
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where Bn(0) is the nth Bernoulli number (see (38) below). If n ≥ 4 then En(τ ) is a
holomorphic modular form of weight n on SL(2,Z). That is, it satisfies

En(γ.τ ) = (cτ + d)n En(τ ), (4)

for all γ =
(

a b
c d

)
∈ SL(2,Z), where we use the standard notation

γ.τ = aτ + b

cτ + d
. (5)

On the other hand, E2(τ ) is a quasimodular form [KZ] having the exceptional transfor-
mation law

E2(γ.τ ) = (cτ + d)2 E2(τ )− c(cτ + d)

2π i
. (6)

We define Pk(z, τ ) for k ≥ 1 by

Pk(z, τ ) = (−1)k−1

(k − 1)!
dk−1

dzk−1 P1(z, τ ) = 1

zk
+ (−1)k

∑

n≥k

(
n − 1

k − 1

)
En(τ )z

n−k . (7)

Then P2(z, τ ) = ℘(z, τ ) + E2(τ ) whereas P1 − zE2 is the classical Weierstrass zeta
function. Pk has periodicities

Pk(z + 2π i, τ ) = Pk(z, τ ),

Pk(z + 2π iτ, τ ) = Pk(z, τ )− δk1. (8)

We define the elliptic prime form K (z, τ ) by [Mu]

K (z, τ ) = exp(−P0(z, τ )), (9)

where

P0(z, τ ) = − log(z) +
∑

k≥2

1

k
Ek(τ )z

k, (10)

so that

P1(z, τ ) = − d

dz
P0(z, τ ) = 1

z
−
∑

k≥2

Ek(τ )z
k−1. (11)

K (z, τ ) has periodicities

K (z + 2π i, τ ) = −K (z, τ ),

K (z + 2π iτ, τ ) = −q−1
z q−1/2 K (z, τ ). (12)

We define the standard Jacobi theta function by1 e.g. [FK]

ϑ

[
a
b

]
(z, τ ) =

∑

n∈Z

exp[iπ(n + a)2τ + (n + a)(z + 2π ib)], (13)

1 Note that the z dependence of the theta function is chosen so that the periods are 2π i and 2π iτ rather
than the standard periods of 1 and τ .
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with periodicities

ϑ

[
a
b

]
(z + 2π i, τ ) = e2π iaϑ

[
a
b

]
(z, τ ), (14)

ϑ

[
a
b

]
(z + 2π iτ, τ ) = e−2π ibq−1

z q−1/2ϑ

[
a
b

]
(z, τ ). (15)

We also note the modular transformation properties under the action of the standard

generators S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
of SL(2,Z) (with relations (ST )3 =−S2 =1)

ϑ

[
a
b

]
(z, τ + 1) = e−iπa(a+1)ϑ

[
a

b + a + 1
2

]
(z, τ ), (16)

ϑ

[
a
b

](
− z

τ
,− 1

τ

)
= (−iτ)1/2e2π iabe−i z2/4πτϑ

[−b
a

]
(z, τ ). (17)

K (z, τ ) can be expressed in terms of half integral theta functions as

K (z, τ ) =
ϑ

[
1
2
1
2

]
(z, τ )

d
dzϑ

[
1
2
1
2

]
(0, τ )

= −i

η(τ)3
ϑ

[
1
2
1
2

]
(z, τ ), (18)

where the Dedekind eta-function is defined by

η(τ) = q1/24
∞∏

n=1

(1 − qn). (19)

2.2. Twisted elliptic functions. Let (θ, φ) ∈ U (1)× U (1) denote a pair of modulus one
complex parameters with φ = exp(2π iλ) for 0 ≤ λ < 1. For z ∈ C and τ ∈ H we
define “twisted” Weierstrass functions for k ≥ 1 as follows:

Pk

[
θ

φ

]
(z, τ ) = (−1)k

(k − 1)!
′∑

n∈Z+λ

nk−1qn
z

1 − θ−1qn
, (20)

for q = q2π iτ , where
′∑

means we omit n = 0 if (θ, φ) = (1, 1).

Remark 1. (i) (20) was introduced in [DLM1] for rational λ, where it was denoted by
Pk(φ, θ

−1, z, τ ). The alternative definition and notation used here is motivated by the
modular and periodicity properties shown below and by the column vector notation for
theta series.

(ii) (20) converges absolutely and uniformly on compact subsets of the domain
|q| < |qz | < 1 [DLM1].

(iii) For k ≥ 1,

Pk

[
θ

φ

]
(z, τ ) = (−1)k−1

(k − 1)!
dk−1

dzk−1 P1

[
θ

φ

]
(z, τ ). (21)
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We now develop twisted versions of the standard results for the classical Weierstrass
℘-function reviewed above. A number of similar results appear in [DLM1]. However,
the cases k = 1, 2 are treated separately there and only for rational λ, i.e. φN = 1 for
some positive integer N . The most canonical derivation of the periodic and modular
properties of (20) for general λ follows from the following theorem:

Theorem 1. For |q| < |qz | < 1 and φ �= 1,

Pk

[
θ

φ

]
(z, τ ) =

∑

m∈Z

θm

[
∑

n∈Z

φn

(
z − ωm,n

)k

]
, (22)

whereas for θ �= 1,

Pk

[
θ

φ

]
(z, τ ) =

∑

n∈Z

φn

[
∑

m∈Z

θm

(
z − ωm,n

)k

]
. (23)

Remark 2. When both θ �= 1 and φ �= 1 then the double sums (22) and (23) are equal.
For k ≥ 3, they are absolutely convergent and equal for all (θ, φ).

In order to prove Theorem 1 it is useful to define the following convergent sum

S(x, φ) =
∑

n∈Z

φn

x − 2π in
. (24)

Clearly

S(x + 2π i, φ) = φS(x, φ), (25)

S(x, φ) = −S(−x, φ−1). (26)

We then have:

Lemma 1. For φ = exp(2π iλ) with 0 ≤ λ < 1 we have

S(x, φ) = 1

2
δλ,0 +

qλx
qx − 1

. (27)

Proof. Both S(x, φ) and qλx (qx − 1)−1 have simple poles at x = 2π in with residue φn

for all n ∈ Z. Furthermore, qλx (qx −1)−1 is regular at the point at infinity for 0 ≤ λ < 1.
Thus S(x, φ) − qλx (qx − 1)−1 is constant which from (25) and (26) must be given by
1
2δλ,0. ��

We first prove Theorem 1 for the case k = 1 and φ �= 1 (i.e. 0 < λ < 1). The double
sum (22) is

∑

m∈Z

θm

[
∑

n∈Z

φn

z − ωm,n

]
=
∑

m∈Z

θm S(xm, φ) =
∑

m∈Z

θm qλxm

qxm − 1
,

using Lemma 1 for xm = z − 2π imτ with qxm = qzq−m . Since |q| < |qz | < 1 we find
for m > 0 that

∣∣qxm

∣∣ > 1 and hence

qλxm

qxm − 1
=
∑

r≤−1

qr+λ
z (q−r−λ)m .
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Since
∣∣θq−r−λ∣∣ < 1 for r ≤ −1 we obtain

∑

m>0

θm

[
∑

n∈Z

φn

z − ωm,n

]
=
∑

r≤−1

qr+λ
z

∑

m>0

(θq−r−λ)m

= −
∑

r≤−1

qr+λ
z

1 − θ−1qr+λ .

Similarly for m ≤ 0 we have
∣∣qxm

∣∣ < 1, so that

qλxm

qxm − 1
= −

∑

r≥0

qr+λ
z (q−r−λ)m .

Hence since
∣∣θqr+λ

∣∣ < 1 for r ≥ 0 we find

∑

m≤0

θm

[
∑

n∈Z

φn

z − ωm,n

]
= −

∑

r≥0

qr+λ
z

1 − θ−1qr+λ .

Altogether we obtain

∑

m∈Z

θm

[
∑

n∈Z

φn

z − ωm,n

]
= −

∑

r∈Z

qr+λ
z

1 − θ−1qr+λ = P1

[
θ

φ

]
(z, τ ),

proving (22) for k = 1. The result for k ≥ 2 follows after applying (21).
In order to prove (23) it is useful to first consider the following double sum for φ �= 1:

A

[
θ

φ

]
(z, τ ) =

∑

m∈Z

θm

[
∑

n∈Z

φn
(

1

z − ωm,n
− 2

z − ωm,n−1
+

1

z − ωm,n−2

)]
.

By (25) we find

A

[
θ

φ

]
(z, τ ) =

∑

m∈Z

θm [S(xm, φ)− 2S(xm + 2π i, φ) + S(xm + 4π i, φ)]

= (1 − φ)2 P1

[
θ

φ

]
(z, τ ). (28)

On the other hand, we have

A

[
θ

φ

]
(z, τ ) =

∑

m∈Z

θm

[
∑

n∈Z

φn −8π2

(z − ωm,n)(z − ωm,n−1)(z − ωm,n−2)

]
.

This sum is absolutely convergent since the summand is O(
∣∣ωm,n

∣∣−3
) for |m|, |n|

large. We may thus interchange the order of summation to find that, on relabelling,
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A

[
θ

φ

]
(z, τ ) becomes

∑

m∈Z

φm

[
∑

n∈Z

θ−n
(

1

z − ω−n,m
− 2

z − ω−n,m−1
+

1

z − ω−n,m−2

)]

=
(

− 1

τ

)∑

m∈Z

φm

[
∑

n∈Z

θ−n

(
1

z′ − ω′
m,n

− 2

z′ − ω′
m−1,n

+
1

z′ − ω′
m−2,n

)]

=
(

− 1

τ

)∑

m∈Z

φm
[

S(x ′
m, θ

−1)− 2S(x ′
m−1, θ

−1) + S(x ′
m−2, θ

−1)
]
, (29)

where

z′ = − z

τ
, τ ′ = − 1

τ
, ω′

m,n = 2π i(mτ ′ + n), x ′
m = z′ − 2π imτ ′. (30)

Applying Lemma 1 with θ = exp(−2π iµ) for 0 ≤ µ < 1, it follows that

S(x ′
m, θ

−1)− 2S(x ′
m−1, θ

−1) + S(x ′
m−2, θ

−1)

= (1 − 2 + 1).
1

2
δµ,0 +

qµx ′
m

qx ′
m

− 1
− 2

qµx ′
m−1

qx ′
m−1

− 1
+

qµx ′
m−2

qx ′
m−2

− 1
.

We may next repeat the arguments above leading to (28) to find that (29) becomes

A

[
θ

φ

]
(z, τ ) =

(
− 1

τ

)
(1 − φ)2 P1

[
φ

θ−1

](
− z

τ
,− 1

τ

)
.

Comparing to (28), we find that for φ �= 1,

P1

[
θ

φ

]
(z, τ ) =

(
− 1

τ

)
P1

[
φ

θ−1

](
− z

τ
,− 1

τ

)
. (31)

Considering this identity for (z′, τ ′) of (30) and using

P1

[
θ

φ

]
(z, τ ) = −P1

[
θ−1

φ−1

]
(−z, τ ), (32)

(which follows from (22)) it is clear that (31) holds for all (θ, φ) �= (1, 1).
We may use (31) to prove (23) of Theorem 1 in the case k = 1. The double sum of

(23) becomes on relabelling

∑

m∈Z

φm

[
∑

n∈Z

θ−n

z − ω−n,m

]
=
(

− 1

τ

)
P1

[
φ

θ−1

](
− z

τ
,− 1

τ

)

= P1

[
θ

φ

]
(z, τ ).

The general result for k ≥ 2 follows from (21). ��
Periodicity and modular properties now follow from Theorem 1. Thus we have
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Lemma 2. For (θ, φ) �= (1, 1), Pk

[
θ

φ

]
(z, τ ) is periodic in z with periods 2π iτ and

2π i with multipliers θ and φ respectively.

Remark 3. Note that the periodicity in 2π i is determined by the second argument φ
in contradistinction to the periodicity of the standard theta series (14). Periodicity for
(θ, φ) = (1, 1) is given by (8).

We now consider the modular properties. Define the standard left action of the modu-

lar group for γ =
(

a b
c d

)
∈ Γ = SL(2,Z) on (z, τ ) ∈ C × H with

γ.(z, τ ) = (γ.z, γ .τ ) =
(

z

cτ + d
,

aτ + b

cτ + d

)
. (33)

We also define a left action of Γ on (θ, φ),

γ.

[
θ

φ

]
=
[
θa φb

θc φd

]
. (34)

Then we obtain:

Proposition 1. For (θ, φ) �= (1, 1) we have

Pk

(
γ.

[
θ

φ

])
(γ.z, γ .τ ) = (cτ + d)k Pk

[
θ

φ

]
(z, τ ). (35)

Proof. Consider the case k = 1. It is sufficient to consider the action of the generators
S, T of Γ , where S.(z, τ ) = (− z

τ
,− 1

τ
) and T .(z, τ ) = (z, τ + 1). Then for γ = S, (35)

is given by (31) whereas for γ = T , the result follows directly from definition (7). It is
straightforward to check the relations (ST )3 = −S2 = 1 (using (32)) so that the result
follows for k = 1. The general case follows from (21). ��
Remark 4. (i) (35) is equivalent to Theorem 4.2 of [DLM1] for rational λ after noting

Remark 1 (i) and (34).
(ii) For γ = −I one finds

Pk

[
θ

φ

]
(z, τ ) = (−1)k Pk

[
θ−1

φ−1

]
(−z, τ ). (36)

We next introduce twisted Eisenstein series for n ≥ 1, defined by

En

[
θ

φ

]
(τ ) = − Bn(λ)

n! +
1

(n − 1)!
′∑

r≥0

(r + λ)n−1θ−1qr+λ

1 − θ−1qr+λ

+
(−1)n

(n − 1)!
∑

r≥1

(r − λ)n−1θqr−λ

1 − θqr−λ , (37)

where
′∑

means we omit r = 0 if (θ, φ) = (1, 1) and where Bn(λ) is the Bernoulli
polynomial defined by

qλz
qz − 1

= 1

z
+
∑

n≥1

Bn(λ)

n! zn−1. (38)

In particular, we note that B1(λ) = λ− 1
2 .
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Remark 5. (i) (37) was introduced in [DLM1] for rational λ where it was denoted by
Qn(φ, θ

−1, τ ).

(ii) En

[
1
1

]
(τ ) = En(τ ), the standard Eisenstein series for even n ≥ 2, whereas

En

[
1
1

]
(τ ) = −B1(0)δn,1 = 1

2δn,1 for n odd.

We may obtain a Laurant expansion analogous to (7).

Proposition 2. We have

Pk

[
θ

φ

]
(z, τ ) = 1

zk
+ (−1)k

∑

n≥k

(
n − 1

k − 1

)
En

[
θ

φ

]
(τ )zn−k . (39)

Proof. Consider (20) for k = 1:

P1

[
θ

φ

]
(z, τ ) = −

′∑

r≥0

qr+λ
z

1 − θ−1qr+λ −
∑

r≥1

q−r+λ
z

1 − θ−1q−r+λ

= qλz
qz − 1

−
′∑

r≥0

qr+λ
z

θ−1qr+λ

1 − θ−1qr+λ

+
∑

r≥1

q−r+λ
z

θqr−λ

1 − θqr−λ

= 1

z
−
∑

n≥1

En

[
θ

φ

]
(τ )zn−1,

from (37) and (38). The general result then follows from (21). ��

Remark 6. For (θ, φ) = (1, 1) we have Pk

[
1
1

]
(z, τ ) = 1

2δk,1 + Pk(z, τ ) for k ≥ 1.

We also find

Proposition 3. For φ �= 1 then

Ek

[
θ

φ

]
(τ ) = 1

(2π i)k
∑

m∈Z

θm

⎡

⎢⎢⎣
∑

n∈Z
(m,n) �=(0,0)

φn

(mτ + n)k

⎤

⎥⎥⎦, (40)

whereas for θ �= 1

Ek

[
θ

φ

]
(τ ) = 1

(2π i)k
∑

n∈Z

φn

⎡

⎢⎢⎣
∑

m∈Z
(m,n) �=(0,0)

θm

(mτ + n)k

⎤

⎥⎥⎦. (41)
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Proof. Expand the sum of (22) for φ �= 1 for k = 1 to find

P1

[
θ

φ

]
(z, τ ) = 1

z
− 1

2π i

∑

m∈Z

θm

⎡

⎢⎢⎣
∑

n∈Z
(m,n) �=(0,0)

∑

r≥1

(
z

2π i
)r−1 φn

(mτ + n)r

⎤

⎥⎥⎦ .

Comparing with (39) then (40) follows. Equation (41) similarly holds. ��
Remark 7. When both θ �= 1 and φ �= 1 then (40) and (41) are equal. For k ≥ 3, they
are absolutely convergent and equal for all (θ, φ). For k ≥ 3, and (θ, φ) = (1, 1) we
obtain the standard Eisenstein series (3).

From Proposition 1 it immediately follows that

Proposition 4. For (θ, φ) �= (1, 1), Ek

[
θ

φ

]
is a modular form of weight k where

Ek

(
γ.

[
θ

φ

])
(γ.τ ) = (cτ + d)k Ek

[
θ

φ

]
(τ ). (42)

Remark 8. This is equivalent to Theorem 4.6 of [DLM1] for rational λ. Equation (42)
also holds for (θ, φ) = (1, 1) for k ≥ 3, whereas E2 is quasi-modular.

It is useful to note the analytic expansions:

P1

[
θ

φ

]
(z1 − z2, τ ) = 1

z1 − z2
+
∑

k,l≥1

C

[
θ

φ

]
(k, l)zk−1

1 zl−1
2 , (43)

P1

[
θ

φ

]
(z + z1 − z2, τ ) =

∑

k,l≥1

D

[
θ

φ

]
(k, l, z)zk−1

1 zl−1
2 , (44)

where for k, l ≥ 1 we define

C

[
θ

φ

]
(k, l, τ ) = (−1)l

(
k + l − 2

k − 1

)
Ek+l−1

[
θ

φ

]
(τ ), (45)

D

[
θ

φ

]
(k, l, τ, z) = (−1)k+1

(
k + l − 2

k − 1

)
Pk+l−1

[
θ

φ

]
(τ, z). (46)

We also note that (36) implies

C

[
θ

φ

]
(k, l, τ ) = −C

[
θ−1

φ−1

]
(l, k, τ ), (47)

D

[
θ

φ

]
(k, l, τ, z) = −D

[
θ−1

φ−1

]
(l, k, τ,−z). (48)

Finally, we may also express the twisted Weierstrass functions in terms of theta series
and the prime form as follows:
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Proposition 5. For (θ, φ) �= (1, 1) with θ = exp(−2π iµ) and φ = exp(2π iλ) then

P1

[
θ

φ

]
(z, τ ) =

ϑ

[
λ + 1

2

µ + 1
2

]
(z, τ )

ϑ

[
λ + 1

2

µ + 1
2

]
(0, τ )

1

K (z, τ )
, (49)

whereas

P1

[
1
1

]
(z, τ ) =

d
dzϑ

[
1
2
1
2

]
(z, τ )

d
dzϑ

[
1
2
1
2

]
(0, τ )

1

K (z, τ )
. (50)

Proof. For (θ, φ) �= (1, 1) the result follows by comparing the periodicity and pole
structure of each expression using (14) and (15). For (θ, φ) = (1, 1) the result follows
from (11) and (18). ��

3. n-Point Functions for R-Graded Vertex Operator Superalgebras

3.1. Introduction to vertex operator superalgebras. We discuss some aspects of Vertex
Operator Superalgebra (VOSA) theory to establish context and notation. For more details
see [B,FHL,FLM,Ka,MN1]. Let V be a superspace, i.e. a complex vector space V =
V0̄ ⊕ V1̄ = ⊕αVα with index label α in Z/2Z so that each a ∈ V has a parity (fermion
number) p(a) ∈ Z/2Z.

An R-graded Vertex Operator Superalgebra (VOSA) is a quadruple (V,Y, 1, ω) as
follows: V is a superspace with a (countable) R-grading where

V = ⊕r≥r0 Vr

for some r0 and with parity decomposition Vr = V0̄,r ⊕ V1̄,r . 1 ∈ V0̄,0 is the vacuum
vector and ω ∈ V0̄,2 the conformal vector with properties described below. Y is a linear
map Y : V → (EndV )[[z, z−1]], for formal variable z, so that for any vector (state)
a ∈ V ,

Y (a, z) =
∑

n∈Z

a(n)z−n−1. (51)

The component operators (modes) a(n) ∈ EndV are such that a(n)1 = δn,−1a for
n ≥ −1 and

a(n)Vα ⊂ Vα+p(a), (52)

for a of parity p(a).
The vertex operators satisfy the locality property for all a, b ∈ V ,

(x − y)N [Y (a, x),Y (b, y)] = 0, (53)
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for N � 0, where the commutator is defined in the graded sense, i.e.

[Y (a, x),Y (b, y)] = Y (a, x)Y (b, y)− (1)p(a)p(b)Y (b, y)Y (a, x).

The vertex operator for the vacuum is Y (1, z) = I dV , whereas that for ω is

Y (ω, z) =
∑

n∈Z

L(n)z−n−2, (54)

where L(n) forms a Virasoro algebra for central charge c,

[L(m), L(n)] = (m − n)L(m + n) +
c

12
(m3 − m)δm,−n . (55)

L(−1) satisfies the translation property

Y (L(−1)a, z) = d

dz
Y (a, z). (56)

L(0) describes the R-grading with L(0)a = wt (a)a for weight wt (a) ∈ R and

Vr = {a ∈ V |wt (a) = r}. (57)

We quote the standard commutator property of VOSAs e.g. [Ka,FHL,MN1],

[a(m),Y (b, z)] =
∑

j≥0

(
m

j

)
Y (a( j)b, z)zm− j . (58)

Taking a = ω this implies for b of weight wt (b) that

[L(0), b(n)] = (wt (b)− n − 1)b(n), (59)

so that

b(n)Vr ⊂ Vr+wt (b)−n−1. (60)

In particular, we define for a of weight wt (a) the zero mode

o(a) =
{

a(wt (a)− 1), for wt (a) ∈ Z

0, otherwise, (61)

which is then extended by linearity to all a ∈ V .
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3.2. Torus n-point functions. In this section we will develop explicit formulas for the
n-point functions for R-graded VOSA modules at genus one [Z,DLM1,MT1,DZ1].
Let (V,Y, 1, ω) be an R-graded VOSA. In order to consider modular-invariance of
n-point functions at genus 1, Zhu introduced in ref. [Z] a second “square-bracket” VOA
(V,Y [, ], 1, ω̃) associated to a given VOA (V,Y (, ), 1, ω). We review some aspects of
that construction here. The new square bracket vertex operators are defined by a change
of co-ordinates, namely

Y [v, z] =
∑

n∈Z

v[n]z−n−1 = Y (q L(0)
z v, qz − 1), (62)

with qz = exp(z), while the new conformal vector is ω̃ = ω− c
24 1. For v of L(0)weight

wt (v) ∈ R and m ≥ 0,

v[m] = m!
∑

i≥m

c(wt (v), i,m)v(i), (63)

i∑

m=0

c(wt (v), i,m)xm =
(
wt (v)− 1 + x

i

)
. (64)

In particular we note that v[0] = ∑
i≥0

(
wt (v)−1

i

)
v(i).

We now define the torus n-point functions. Following (52) we let σ ∈ Aut(V ) denote
the parity (fermion number) automorphism

σa = (−1)p(a)a. (65)

Let g ∈ Aut(V ) denote any other automorphism which commutes with σ . Let M be a
V -module with vertex operators YM . We assume that M is stable under both σ and g,
i.e. σ and g act on M [DZ1]. The n-point function on M for states v1, . . . , vn ∈ V and
g ∈ Aut(V ) is defined by2

FM (g; v1, . . . vn; τ) = FM (g; (v1, z1), . . . , (vn, zn); τ)
= STrM

(
g YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)−c/24
)
, (66)

q = exp(2π iτ), qi = exp(zi ), 1 ≤ i ≤ n, for auxiliary variables z1, . . . , zn and where
STrM denotes the supertrace defined by

STrM (X) = T rM (σ X) = T rM0̄
(X)− T rM1̄

(X). (67)

In Appendix A we describe some basic properties of the supertrace. Taking g = 1 and
all vi = 1 in (66) yields the partition function which we denote by

Z M (τ ) = FM (1; τ) = STrM

(
q L(0)−c/24

)
. (68)

We also denote the orbifold partition function for general g by

Z M (g, τ ) = FM (g; τ) = STrM

(
gq L(0)−c/24

)
. (69)

2 This n-point function would be denoted by T ((v1, q1), . . . , (vn , qn), (1, g), q) in the notation of [DLM1]
and [DZ1].
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For g = 1 (66) is defined by Zhu for a Z-graded VOA [Z]. For g of finite order, it is
considered for Z -graded VOAs in ref. [DLM1], 1

2 Z-graded VOSAs in ref. [DZ1] and
Z-graded VOSAs in ref. [DZ2]. Here we generalize these results to an R-graded VOSA
for arbitrary g commuting with σ .

For n = 1 in (66) we obtain the 1-point function denoted by

Z M (g, v1, τ ) = FM (g; (v1, z1); τ) = STrM (go(v1)q
L(0)−c/24), (70)

where o(v1) is the zero mode (61) and is independent of z1. We note the following useful
result relating any n-point function to a 1-point function:

Lemma 3. For states v1, v2, . . . , vn as above we have

FM (g; (v1, z1), . . . , (vn, zn); τ)
= Z M (g,Y [v1, z1n].Y [v2, z2n] . . . Y [vn−1, zn−1n].vn, τ ) (71)

= Z M (g,Y [v1, z1].Y [v2, z2] . . . Y [vn, zn].1, τ ), (72)

where zi j = zi − z j .

Proof. The proof follows Lemma 1 of ref. [MT1]. ��
Every n-point function enjoys the following permutation and periodicity properties

[Z,MT1]:

Lemma 4. Consider the n-point function FM for states v1, v2, . . . , vn, as above, where
each vi is of weight wt (vi ), parity p(vi ) and is a g-eigenvector for eigenvalue θ−1

i .

(i) If p(v1) + . . . + p(vn) is odd then FM = 0.
(ii) Permuting adjacent vectors,

FM (g; (v1, z1), . . . , (vk, zk), (vk+1, zk+1), . . . , (vn, zn); τ)
= (−1)p(vk )p(vk+1)FM (g; (v1, z1), . . . , (vk+1, zk+1), (vk, zk), . . . , (vn, zn); τ).

(iii) FM is a function of zi j = zi − z j and is non-singular at zi j �= 0 for all i �= j .
(iv) FM is periodic in zi with period 2π i and multiplier φi = exp(2π iwt (vi )).
(v) FM is periodic in zi with period 2π iτ and multiplier θi .

Proof. (i) This follows from definition (67).
(ii) Apply locality (53).
(iii) FM is a function of zi j from (71). Suppose FM is singular at zn = y for some y �=

z j for all j = 1, . . . , n − 1. We may assume that z0 = 0 by redefining zi to be zi − z0
for all i . But from (72), Y [vn, zn].1|zn=0 = vn is non-singular at znj �= 0. Applying (ii)
the result follows for all zi j .

(iv) This follows directly from the definition (66).
(v) Using (iii) we consider periodicity of zn wlog. Under zn → zn + 2π iτ we have

FM → F̂M , where

F̂M = q−c/24STrM (gY (q L(0)
1 v1, q1) . . . Y (q

L(0)q L(0)
n vn, qqn)q

L(0))

= q−c/24STrM (gY (q L(0)
1 v1, q1) . . . q

L(0)Y (q L(0)
n vn, qn)),
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using q L(0)Y (b, z)q−L(0) = Y (q L(0)b, qz) (which follows from (59)). But

STrM (gY (q L(0)
1 v1, q1) . . . q

L(0)Y (q L(0)
n vn, qn))

= (−1)p(vn)STrM (Y (q
L(0)
n vn, qn)gY (q L(0)

1 v1, q1) . . . Y (q
L(0)
n−1 vn−1, qn−1)q

L(0))

= θn(−1)p(vn)STrM (gY (q L(0)
n vn, qn)Y (q

L(0)
1 v1, q1) . . . Y (q

L(0)
n−1 vn−1, qn−1)q

L(0))

= θnSTrM (gY (q L(0)
1 v1, q1) . . . Y (q

L(0)
n−1 vn−1, qn−1)Y (q

L(0)
n vn, qn)q

L(0)),

using g−1Y (vn, qn)g = Y (g−1vn, qn) = θnY (vn, qn) and applying (ii) repeatedly. Thus
F̂M = θn FM . ��

3.3. Zhu recursion formulas for n-point functions. We now prove a generalization
of Zhu’s n-point function recursion formula [Z] for the n-point function (66) for an
R-graded VOSA. We begin with the following lemma which follows directly from (58):

Lemma 5. Suppose that u ∈ V is homogeneous of weight wt (u) ∈ R. Then for k ∈ Z

and v ∈ V we have

[
u(k),Y (q L(0)

z v, qz)
]

= qk−wt (u)+1
z

∑

i≥0

(
k

i

)
Y (q L(0)

z u(i)v, qz). (73)

Corollary 1. Suppose that u ∈ V is homogeneous of integer weight wt (u) ∈ Z. Then
[
o(u),Y (q L(0)

z v, qz)
]

= Y (q L(0)
z u[0]v, qz). (74)

Similarly to Zhu’s Proposition 4.3.1 (op.cit.) we find

Proposition 6. Suppose that v ∈ V is homogeneous of integer weight wt (v) ∈ Z with
gv = v. Then for v1, . . . , vn ∈ V , we have

n∑

r=1

p(v, v1v2 . . . vr−1)FM (g; v1; . . . ; v[0]vr ; . . . vn; τ) = 0, (75)

with p(v, v1v2 . . . vr−1) of (147) in Appendix A.

Let v be homogeneous of weight wt (v) ∈ R and define φ ∈ U (1) by

φ = exp(2π iwt (v)). (76)

We also take v to be an eigenfunction under g with

gv = θ−1v (77)

for some θ ∈ U (1) so that

g−1v(k)g = θv(k). (78)

Then we obtain the following generalization of Zhu’s Proposition 4.3.2 [Z] for the
n-point function:
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Theorem 2. Let v, θ and φ be as as above. Then for any v1, . . . vn ∈ V we have

FM (g; v, v1, . . . vn; τ)
= δθ,1δφ,1STrM

(
go(v)YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)−c/24
)

+
n∑

r=1

∑

m≥0

p(v, v1v2 . . . vr−1)Pm+1

[
θ

φ

]
(z − zr , τ )

×FM (g; v1, . . . , v[m]vr , . . . , vn; τ). (79)

(The twisted Weierstrass function is defined in (20)).

Proof. We have

qc/24 FM (g; v, v1, . . . vn; τ)
=
∑

k∈Z

q−k−1+wt (v)
z STrM

(
g v(k)YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)
)
.

Thus we consider

STrM

(
g v(k)YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)
)

= STrM

(
g [v(k),YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)]q L(0)

)

+ p(v, v1 · · · vn)STrM

(
g YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)v(k)q

L(0)
)

=
n∑

r=1

∑

i≥0

p(v, v1 . . . vr−1)

(
k

i

)
qk+1−wt (v)

r

× STrM

(
g YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
r v(i)vr , qr ) . . . YM (q

L(0)
n vn, qn)q

L(0)
)

+ θqk+1−wt (v)STrM

(
g v(k)YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)
)
,

applying (59), (73), (78), (146) and Lemma 8 of Appendix A. Thus

STrM

(
g v(k)YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)
)

= 1

1 − θqk+1−wt (v)

n∑

r=1

∑

i≥0

p(v, v1 . . . vr−1)

(
k

i

)
qk−wt (v)+1

r

× STrM

(
gY (q L(0)

1 v1, q1) . . . Y (q
L(0)
r v(i)vr , qr ) . . . Y (q

L(0)
n vn, qn)q

L(0)
)
,

provided (θ, φ, k) �= (1, 1,−1 + wt (v)). This implies FM (g; v, v1, . . . vn) is given by

δθ,1δφ,1STrM

(
go(v)YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)−c/24
)

+
n∑

r=1

p(v, v1 . . . vr−1)

′∑

k∈Z

(
qr
qz

)k+1−wt (v)

1 − θqk+1−wt (v)
.FM (g; v1, . . .

∑

i≥0

(
k

i

)
v(i)vr , . . . , vn),
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where the prime denotes the omission of k = −1+wt (v) if (θ, φ) = (1, 1) and recalling
(61). Now from (63) and (64) we find

∑

i≥0

(
k

i

)
v(i) =

∑

m≥0

(k + 1 − wt (v))m

m! v[m].

The sum over k can then be computed in terms of a twisted Weierstrass function (20)
for λ = wt (v)(modZ) as follows:

1

m!
′∑

k∈Z

(k + 1 − wt (v))m
(

qr
qz

)k+1−wt (v)

1 − θqk+1−wt (v)

= (−1)m+1 Pm+1

[
θ−1

φ−1

]
(zr − z, τ )− 1

2
δθ,1δφ,1δm,0

= Pm+1

[
θ

φ

]
(z − zr , τ )− 1

2
δθ,1δφ,1δm,0,

using (36). Thus we find FM (g; v, v1, . . . vn, τ ) is given by

δθ,1δφ,1STrM

(
go(v)YM (q

L(0)
1 v1, q1) . . . YM (q

L(0)
n vn, qn)q

L(0)−c/24
)

+
n∑

r=1

∑

m≥0

p(v, v1v2 . . . vr−1)Pm+1

[
θ

φ

]
(z − zr , τ )FM (g; v1, . . . , v[m]vr , . . . , vn; τ)

−1

2
δθ,1δφ,1

n∑

r=1

p(v, v1 . . . vr−1)FM (g; v1, . . . , v[0]vr , . . . , vn; τ).

Finally, it follows from (75) that the last sum is zero and hence (79) obtains. ��

Remark 9. (i) Note that it is necessary for the V -grading to be real in order for Pk

[
θ

φ

]
to

converge. Thus, VOSAs with C-grading such as those discussed in [DM] have divergent
torus n-point functions.

(ii) From Lemma 2 it follows that FM is periodic in z with periods 2π iτ and 2π i
with multipliers θ and φ respectively in agreement with Lemma 4.

Other standard recursion formulas can be similarly generalized. Thus

Proposition 7. With notation as above, for any states v1, . . . vn ∈ V, and for p ≥ 1 we
have:

FM (g; v[−p].v1, . . . vn; τ)
= δθ,1δφ,1δp,1 STrM (go(v)Y (q L(0)

1 v1, q1) . . . Y (q
L(0)
n vn, qn)q

L(0)−c/24)

+
∑

m≥0

(−1)m+1
(

m + p − 1

m

)
Em+p

[
θ

φ

]
(τ )FM (g; v[m]v1, . . . vn; τ)

+
n∑

r=2

∑

m≥0

p(v, v1v2 . . . vr−1)(−1)p+1
(

m + p − 1

m

)
Pm+p

[
θ

φ

]
(z1r , τ )

×FM (g; v1, . . . v[m]vr , . . . vn; τ). (80)
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Proof. Using (72) of Lemma 3 and associativity of VOSAs (e.g. [FHL]) we have:

FM (g; (Y [v, z]v1, z1), . . . (vn, zn); τ)
= Z M (g,Y [Y [v, z]v1, z1]Y [v2, z2] . . . Y [vn, zn]1, τ )
= Z M (g,Y [v, z + z1]Y [v1, z1]Y [v2, z2] . . . Y [vn, zn]1, τ )
= FM (g; (v, z + z1), (v1, z1), . . . (vn, zn); τ). (81)

Expanding the LHS of (81) in z we find that FM (v[−p].v1, z1; . . . vn, zn; g; τ) is the
coefficient of z p−1. We can compare this to the expansion of the RHS in z from (79) of

Theorem 2. From (39) we find that for p ≥ 1, the coefficient of z p−1 in Pm+1

[
θ

φ

]
(z, τ )

is (−1)m+1
(m+p−1

m

)
Em+p

[
θ

φ

]
(τ ). Furthermore for r �= 1 the coefficient of z p−1 in

Pm+1

[
θ

φ

]
(z + z1r , τ ) is given by (−1)p+1

(m+p−1
m

)
Pm+p

[
θ

φ

]
(z1r , τ ). Lastly, for p = 1

the first term of (79) also contributes. Thus the stated result follows. ��

4. Shifted VOSAs and Heisenberg Twisted Modules

In this section we discuss the n-point functions for an orbifold g-twisted module for
a VOSA, where g is a continuous symmetry generated by a Heisenberg vector. (For
definitions and properties of twisted modules we refer the reader to refs. [Li,DLM1,
DZ1]). In particular, we show below (Proposition 9) that every such g-twisted n-point
function is related to an n-point function for the original VOSA but with a “shifted”
Virasoro vector [MN2,DM]. This generalizes a similar result for partition functions
found in [DM] and allows us to apply Theorem 2 in order to compute all such g-twisted
n-point functions. The general relationship at the operator level between these shifted
and twisted formalisms is discussed elsewhere [TZ].

A Heisenberg bosonic vector is an element h ∈ V0̄,1 such that [DM]

1. h(0) is semisimple with real eigenvalues.
2. h is a primary vector so that L(n)h = 0 for all n ≥ 1.
3. h(n)h = 0 for all n ≥ 0 except n = 1 for which h(1)h = ξh1 for some ξh ∈ C.
4. [h(m), h(n)] = ξhmδm,−n .

Remark 10. If the VOSA grading is non-negative and V0 = C1 then (2)–(4) follow auto-
matically for all h ∈ V0̄,1 from (58).

Given a Heisenberg vector h then h(0) generates a VOSA automorphism

g = exp(2π ih(0)). (82)

The order of g is finite iff the eigenvalues of h(0) are rational and otherwise is infinite.
We can define [DLM2] and construct a g-twisted module in all cases as follows. We
define [Li]

∆(h, z) = zh(0) exp

⎛

⎝−
∑

n≥1

h(n)

n
(−z)−n

⎞

⎠. (83)
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Noting ∆(h, z)−1 = ∆(−h, z) one finds

∆(h, z)Y (v, z0)∆(−h, z) = Y (∆(h, z + z0)v, z0). (84)

This leads to:

Proposition 8 ([Li]). Let (M,YM ) be a V -module. Defining

Yg(v, z) = YM (∆(−h, z)v, z), (85)

for all v ∈ V then (M,Yg) is a g-twisted V -module3.

Note for v = ω we find ∆(−h, z)ω = ω − hz−1 + ξhz−2/2 so that the (M,Yg)

grading is determined by

Lg(0) = L(0)− h(0) +
ξh

2
. (86)

We define the orbifold g-twisted n-point function for any automorphism f commuting
with g and σ by

FM (( f, g); v1, . . . , vn; τ)
= STrM

(
f Yg(q

L(0)
1 v1, q1) . . . Yg(q

L(0)
n vn, qn)q

Lg(0)−c/24
)
. (87)

We denote the orbifold g-twisted partition function by Z M (( f, g), τ ).
For each Heisenberg element h we may also construct a VOSA (V,Y, 1, ωh) with

the original vector space and vertex operators but using a “shifted” conformal vector
([MN2,DM])

ωh = ω + h(−2)1. (88)

With Y (ωh, z) = ∑
n∈Z

Lh(n)z−n−2 we find

Lh(n) = L(n)− (n + 1)h(n), (89)

and central charge

ch = c − 12ξh . (90)

In particular, Lh(−1) = L(−1) and the grading is determined by

Lh(0) = L(0)− h(0). (91)

We denote the partition function for a V -module M with a h-shifted Lh(0) by
Z M,h(τ ). Following (66) the shifted n-point function is denoted by

FM,h( f ; v1, . . . , vn; τ)=STrM

(
f Y (q Lh(0)

1 v1, q1) . . . Y (q
Lh(0)
n vn, qn)q

Lh(0)−ch/24
)
,

(92)

3 Note that we apply the definition of g-twisted module of ref. [Li] which corresponds to a g−1-twisted
module in refs. [DLM1] and [DM].



Torus n-Point Functions for R-graded Vertex Operator Superalgebras 325

where f commutes with g and σ . We denote the h-shifted partition function by Z M,h
( f, τ ). Comparing (86) and (91) we see that

Lg(0)− c

24
= Lh(0)− ch

24
,

so that ([DM])

Z M ((1, g), τ ) = Z M,h(1, τ ). (93)

This relationship can be generalized to relate all orbifold g-twisted n-point functions
to h-shifted n-point functions as follows:

Proposition 9. Let M be a module for V and let g = exp(2π ih(0)) be generated by a
Heisenberg state h. Then the n-point function for the orbifold g-twisted and the untwisted
n-point function for M with shifted Lh(0)-vertex operators are related as follows:

FM (( f, g); v1, . . . , vn; τ) = FM,h( f ; Uv1, . . . ,Uvn; τ), (94)

where U = ∆(−h, 1) = exp

(
∑
n≥1

h(n)
n (−1)n

)
and f commutes with g and σ .

Proof. First we prove

∆(−h, qz) q L(0)
z = q Lh(0)

z U. (95)

From (83) one finds using [L(0), h(n)] = −nh(n) that

∆(−h, qz)q
L(0)
z = q−h(0)

z exp

(
∑

n>0

h(n)

n
(−qz)

−n

)
q L(0)

z

= q−h(0)
z q L(0)

z exp

(
exp(ad−zL(0))

∑

n>0

h(n)

n
(−qz)

−n

)

= q Lh(0)
z exp

(
∑

n>0

h(n)

n
(−qz)

−nqn
z

)
= q Lh(0)

z U.

Therefore from (85)

Yg(q
L(0)
z v, qz) = YM (∆(−h, qz)q

L(0)
z v, qz) = YM (q

Lh(0)
z Uv, qz).

Thus the LHS of (94) is

STrM

(
f Yg(q

L(0)
1 v1, q1) . . . Yg(q

L(0)
n vn, qn)q

Lg(0)−c/24
)

= STrM

(
f YM (q

Lh(0)
1 Uv1, q1) . . . YM (q

Lh(0)
n Uvn, qn)q

Lh(0)−ch/24
)

= FM,h( f ; Uv1, . . . ,Uvn; τ).
��
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We conclude this section by showing that U maps between the square bracket vertex
operators (62) of the original and shifted VOSAs. We let

Y [v, z]h = Y (q Lh(0)
z v, qz − 1), (96)

denote a square bracket vertex operator in the h-shifted VOSA. We then have

Lemma 6. For v ∈ V we have

UY [v, z]U−1 = Y [Uv, z]h . (97)

Proof. Using associativity, (85) and (95) we obtain

Yg(q
L(0)
1 v1, q1)Yg(q

L(0)
2 v2, q2)

= Yg(Y (q
L(0)
1 v1, q1 − q2) q L(0)

2 v2, q2)

= Yg(q
L(0)
2 Y [v1, z12]v2, q2)

= Y (q Lh(0)
2 UY [v1, z12]v2, q2).

On the other hand

Yg(q
L(0)
1 v1, q1)Yg(q

L(0)
2 v2, q2)

= Y (q Lh(0)
1 Uv1, q1)Y (q

Lh(0)
2 Uv2, q2)

= Y (q Lh(0)
2 Y [Uv1, z12]h Uv2, q2).

Hence the result follows. ��

5. Rank One Fermion VOSA

We begin with the example of the rank one “Neveu-Schwarz sector” fermion VOSA
V = V (H,Z + 1

2 ) generated by one fermion [FFR,Li]. This is a 1
2 Z graded VOSA with

H = Cψ for a fermion vector ψ of parity 1 and modes obeying

[ψ(m), ψ(n)] = ψ(m)ψ(n) + ψ(n)ψ(m) = δm+n+1,0. (98)

The superspace V is spanned by Fock vectors of the form

ψ(−k1)ψ(−k2) . . . ψ(−km)1, (99)

for integers 1 ≤ k1 < k2 < · · · km with ψ(k)1 = 0 for all k ≥ 0 so that V is generated
by Y (ψ, z). The conformal vector is ω = 1

2ψ(−2)ψ(−1)1 of central charge c = 1
2

for which the Fock vector (99) has L(0) weight
∑

1≤i≤m(ki − 1
2 ) ∈ 1

2 Z. In particular,

wt (ψ) = 1
2 . The partition function is

ZV (τ ) = STrV

(
q L(0)− 1

48

)
= q− 1

48
∏

n≥0

(
1 − qn+ 1

2

)
= η

( 1
2τ
)

η(τ)
, (100)

whereas for g = σ of (65) we find

ZV (σ, τ ) = STrV

(
σq L(0)− 1

48

)
= q− 1

48
∏

n≥0

(
1 + qn+ 1

2

)
= η(τ)2

η(2τ)η
( 1

2τ
) . (101)
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Let us next introduce the n-point function (66) for V where vi = ψ for all i = 1, . . . n:

Gn(g; z1, . . . , zn; τ) = FV (g; (ψ, z1), . . . , (ψ, zn); τ), (102)

which we will refer to as the generating function. We use the recursion formula (79) of
Theorem 2 to compute Gn . Since wt (ψ) = 1

2 we have φ = −1 from (76) and θ = 1 for
g = 1 and θ = −1 for g = σ from (77 ). For n = 1, G1(g; z1; τ) = ZV (g, ψ, τ) = 0
since o(ψ) = 0. For n = 2, (79) implies

G2(g; z1, z2; τ) = 0 +
∑

m≥0

Pm+1

[
θ

−1

]
(z12, τ )FV (g;ψ[m]ψ; τ).

Passing to the square bracket formalism (62) we find the same fermion commutator
algebra as (98) obtains, namely

[ψ[m], ψ[n]] = δm+n+1,0. (103)

Thus it follows that ψ[m]ψ = δm,01 giving

G2(g; z1, z2; τ) = P1

[
θ

−1

]
(z12, τ )ZV (g, τ ). (104)

We may similarly compute Gn for all n by repeated application of (79). It is easy to see
that Gn = 0 for n odd. For n even Gn is expressed in terms of a Pfaffian which is totally
antisymmetric in zi as expected from Lemma 4 (ii). Let us first recall the definition
of the Pfaffian of an anti-symmetric matrix M = (M(i, j)) of even dimension 2m
given by

Pf(M) =
∑

Π

εi1 j1...im jm M(i1, j1)M(i2, j2) . . .M(im, jm), (105)

where the sum is taken over the set of all partitions Π of {1, 2, . . . , 2m} into pairs with
elements

{(i1, j1), (i2, j2) . . . (im, jm)},
for ik < jk and i1 < i2 < · · · im , and where εi1 j1...im jm is the Levi-Civita symbol. We
also note that

Pf(M) = √
det M.

We then obtain:

Proposition 10. For n even and g = 1 or σ we have

Gn(g; z1, . . . , zn; τ) = Pf(P)ZV (g, τ ), (106)

where P denotes the anti-symmetric n × n matrix with components

P(i, j) = P1

[
θ

−1

]
(zi j , τ ), (1 ≤ i �= j ≤ n), (107)

for zi j = zi − z j with θ = 1 for g = 1 and θ = −1 for g = σ .
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Proof. We first note that P is anti-symmetric from (36) since θ = ±1. We prove the
result by induction. For n = 2 the result is given in (104). For general n we apply (79)
to obtain

Gn(g; z1, . . . zn; τ) =
n∑

r=2

(−1)r P1

[
θ

−1

]
(z1r , τ )Gn−2(g; z2, . . . , ẑr , . . . zn; τ)

=
n∑

r=2

(−1)r P(1, r)Pf(P̂)ZV (g, τ ),

where ẑr is deleted and P̂ is the “cofactor” matrix obtained by deleting the 1st and r th

rows and columns of P. The result (107) follows from the definition (105). ��
Gn enjoys the following analytic properties following Remark 1 (ii):

Corollary 2. Gn is an analytic function in zi and converges absolutely and uniformly
on compact subsets of the domain |q| < ∣∣qzi j

∣∣ < 1 for all zi j = zi − z j with i �= j .

We now show that all n-point functions can be computed from Gn . Consider a V
basis of square bracket Fock vectors denoted by

Ψ [−k] = ψ[−k1]ψ[−k2] . . . ψ[−km]1, (108)

where k = k1, k2, . . . , km for integers 1 ≤ k1 < k2 < · · · km . We will determine
an explicit formula for all n -point functions for such Fock vectors. Thus the 1-point
function ZV (g, Ψ [−k], τ ) is the coefficient of

∏m
i=1 zki −1

i in Gn since

Gn(g; z1, . . . , zm; τ) = ZV (g,Y [ψ, z1] . . . Y [ψ, zm]1, τ )
=

∑

k1,...km∈Z

ZV (g, ψ[−k1] . . . ψ[−km]1, τ )zk1−1
1 . . . zkm−1

n .

Examining (106) we can explicitly find this coefficient from the expansion of P1

[
θ

−1

]

(zi j , τ ) given in (43). It follows that ZV (g, Ψ [−k], τ ) = 0 for m odd whereas for m
even

ZV (g, Ψ [−k], τ ) = Pf(C)ZV (g, τ ), (109)

where C denotes the antisymmetric m × m matrix with (i, j) -entry

C(i, j) = C

[
θ

−1

]
(ki , k j , τ ),

(cf. (45)). C is antisymmetric from (47) since θ = ±1.
We may similarly derive an expression for an arbitrary two-point function FV

((Ψ [−k(1)], z1), (Ψ [−k(2)], z2); g; τ) for k(1) = k(1)1 , . . . k(1)m1 and k(2) = k(2)1 , . . . k(2)m2 .
First consider the one-point function

ZV (g,Y [Y [ψ, x1] . . . Y [ψ, xm1 ]1, z1].Y [Y [ψ, y1] . . . Y [ψ, ym2 ]1, z2]1, τ ). (110)
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FV (g; (Ψ [−k(1)], z1), (Ψ [−k(2)], z2); τ) is the coefficient of
∏m1

i=1

∏m2
j=1 x

k(1)i −1
i y

k(2)j −1

j
in (110). By associativity (e.g. [FHL]) and using Y [1, z] = IdV we find (110) can be
expressed as

ZV (g,Y [ψ, x1 + z1] . . . Y [ψ, xm1 + z1].Y [ψ, y1 + z2] . . . Y [ψ, ym2 + z2]1, τ )
= Gn(g; x1 + z1, . . . , xm1 + z1, y1 + z2, . . . , ym2 + z2; τ).

The coefficient of
∏m1

i=1

∏m2
j=1 x

k(1)i −1
i y

k(2)j −1

j can then be extracted from the expansions
(43) and (44). Thus the two point function vanishes for m1 +m2 odd, whereas for m1 +m2
even,

FV (g; (Ψ [−k(1)], z1), (Ψ [−k(2)], z2); τ) = Pf(M)Z(g, τ ), (111)

where M is the antisymmetric (m1 + m2)× (m1 + m2) block matrix

M =
(

C(11) D(12)

D(21) C(22)

)
,

where for a, b ∈ {1, 2},

C(aa)(i, j) = C

[
θ

−1

]
(k(a)i , k(a)j , τ ), (1 ≤ i, j ≤ ma),

D(ab)(i, j) = D

[
θ

−1

]
(k(a)i , k(b)j , τ, za − zb), (1 ≤ i ≤ ma, 1 ≤ j ≤ mb),

(112)

(using (46)). M is antisymmetric from (47) and (48).
In a similar fashion we are lead to the general result:

Proposition 11. LetΨ [−k(a)] for a = 1 . . . n be n Fock vectors for k(a) = k(a)1 , . . . k(a)ma .
Then the n-point function vanishes for odd

∑
a ma and for

∑
a ma even is given by

FV (g; (Ψ [−k(1)], z1), . . . (Ψ [−k(n)], zn); τ) = Pf(M)Z(g, τ ), (113)

where M is the antisymmetric block matrix

M =

⎛

⎜⎜⎜⎝

C(11) D(12) . . . D(1n)

D(21) C(22)

...
. . .

D(n1) . . . C(nn)

⎞

⎟⎟⎟⎠,

with C(aa) and D(ab) of (112). Equation (113) is an analytic function in zi and converges
absolutely and uniformly on compact subsets of the domain |q| < ∣∣qzi j

∣∣ < 1 for all
zi j = zi − z j with i �= j .

We have also established

Proposition 12. Gn(g; z1, . . . , zn; τ) is a generating function for all n-point functions.
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We conclude this section by noting that we may also consider the “Ramond sector”
σ -twisted module V (H,Z) for V (H,Z + 1

2 ). This is discussed in detail in [FFR,Li,
DZ1,DZ2]. V (H,Z) decomposes into two irreducible σ -twisted modules which are
interchanged under the induced action of σ . For either irreducible σ -twisted module Mσ

the partition function is

STrMσ

(
q L(0)− 1

48

)
= 0,

STrMσ

(
σq L(0)− 1

48

)
= q

1
48
∏

n≥0

(1 + qn) = η(2τ)

η(τ )
.

We may similarly consider the generator of all σ -twisted n-point functions defined by

G Mσ ,n(g; z1, . . . , zn; τ) = FMσ (g; (ψ, z1), . . . , (ψ, zn); τ),
for g = 1 or σ . This vanishes for all n for g = 1 and for n odd for g = σ . By applying
a VOSA orbifold Zhu reduction formula of ref. [DZ1] we find as in Proposition 10 that

Proposition 13. For n even we have

G Mσ ,n(σ ; z1, . . . , zn; τ) = Pf(P1

[−1
1

]
(zi j , τ ))

η(2τ)

η(τ )
, (114)

for zi j = zi − z j .

One can similarly describe analytic properties as in Corollary 2 and determine all
σ -twisted n-point functions by expanding this generating function along the same lines
as Proposition 11, though we do not carry this out here.

6. Rank Two Fermion VOSA

6.1. h-shifted and orbifold g-twisted n-point functions. In this section we consider the
rank two fermion VOSA formed from the tensor product of two copies of the rank one
fermion VOSA and hence is generated by two free fermionsψ1 = ψ⊗1 andψ2 = 1⊗ψ .
We may therefore compute all the untwisted and σ -twisted n-point functions based on
the last section. However, as is well known, this VOSA contains a bosonic Heisenberg
state h = αψ ⊗ψ (for α ∈ C) and we will compute all h-shifted and g-twisted n-point
functions where g is generated by h as discussed in Sect. 4.

It is convenient to introduce the off-diagonal basis ψ± = 1√
2
(ψ1 ± iψ2), where

ψ±-modes obey the commutation relations

[ψ+(m), ψ−(n)] = δm,−n−1, [ψ±(m), ψ±(n)] = 0. (115)

The VOSA V is generated by Y (ψ±, z) = ∑
n∈Z

ψ±(n)z−n−1, where the vector space V

is a Fock space with basis vectors of the form

ψ+(−k1) . . . ψ
+(−ks)ψ

−(−l1) . . . ψ
−(−lt )1, (116)

for 1 ≤ k1 < k2 < · · · ks and 1 ≤ l1 < l2 < · · · lt with ψ±(k)1 = 0 for all k ≥ 0. We
define the conformal vector to be

ω = 1

2
[ψ+(−2)ψ−(−1)+ψ−(−2)ψ+(−1)]1, (117)
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whose modes generate a Virasoro algebra of central charge 1. Thenψ± has L(0)-weight
1
2 and the Fock state (116) has weight

∑
1≤i≤s(ki − 1

2 ) +
∑

1≤ j≤t (l j − 1
2 ).

The weight 1 parity zero space is V0̄,1 = Ca for (normalized) Heisenberg bosonic
vector

a = ψ+(−1)ψ−(−1)1, (118)

with modes obeying

[a(m), a(n)] = mδm,−n,

and ω of (117) is nothing but the standard Heisenberg VOA conformal vector

ω = 1

2
a(−1)21.

Following Sect. 4 we define a one parameter family of Heisenberg vectors

h = κa, κ ∈ R, (119)

for which ξh = κ2. The shifted conformal vector (88) is then ωh = ω + κa(−2)1 with
central charge ch = 1 − 12κ2 from (90). Then ψ± has Lh(0) = L(0) − κa(0) weight
wth(ψ±) = 1

2 ∓ κ and the Fock state (116) has Lh(0) weight
∑

1≤i≤s(ki − 1
2 − κ) +∑

1≤ j≤t (l j − 1
2 + κ).

Noting that σ = eπ ia(0) and following Sect. 4, we can construct a σg-twisted module
for σg = e2π ih(0) so that

g = e2π iβa(0), (120)

for real β where

β = κ − 1

2
. (121)

We also define φ ∈ U (1) by

φ = exp(2π iwth(ψ
+)) = e−2π iβ. (122)

Introduce the automorphism

f = e2π iαa(0), α ∈ R, (123)

which commutes with g, σ . Then fψ± = θ∓1ψ± for

θ = e−2π iα ∈ U (1). (124)

Finally, we denote the orbifold σg-twisted trace by

ZV

[
f
g

]
(τ ) = ZV (( f, σg), τ ).

We find using Proposition 9 that

ZV,h( f, τ ) = ZV

[
f
g

]
(τ ) = qκ

2/2−1/24
∏

l≥1

(1 − θ−1ql− 1
2 −κ)(1 − θql− 1

2 +κ). (125)

Note that ZV,h( f, τ ) = 0 for (θ, φ) = (1, 1), i.e. (α, β) ≡ (0, 0) (mod Z).
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Remark 11. The RHS of (125) is related to a theta series via the Jacobi triple product
formula as briefly reviewed below in Sect. 6.4. Hence ZV,h( f, τ ) depends on α(mod Z)

and β(mod Z) up to an overall α-dependent constant.

We next consider generalσg-twisted and h-shifted n-point functions which are related
via Proposition 9. As in the rank one case, it is sufficient to consider n-point functions
for the generating states ψ± only. To this end we define the h-shifted VOSA n-point
generating function

G2n,h( f ; x1, . . . , xn; y1, . . . , yn; τ)
= FV,h( f ; (ψ+, x1), (ψ

−, y1), . . . , (ψ
+, xn), (ψ

−, yn); τ). (126)

Remark 12. Note the choice of an alternating ordering of the operators with respect to
the ± superscript here.

We can also define a σg-twisted n-point function denoted by

FV

[
f
g

]
((v1, z1) . . . , (vn, zn); τ) = FV (( f, σg); (v1, z1) . . . , (vn, zn); τ),

with generating function

G2n

[
f
g

]
(x1, . . . , xn; y1, . . . , yn; τ)

= FV (( f, σg); (ψ+, x1), (ψ
−, y1), . . . , (ψ

+, xn), (ψ
−, yn); τ).

Then noting that U ψ± = ψ± and applying Proposition 9 we find

Lemma 7.

G2n

[
f
σg

]
(x1, . . . , xn; y1, . . . , yn; τ) = G2n,h( f ; x1, . . . , xn; y1, . . . , yn; τ).

These generating functions are totally antisymmetric in xi , y j as expected from
Lemma 4 (ii) and can be expressed in terms of a determinant computed by means
of our recursion formula (79). Due to the leading term on the RHS of (79), we consider
the cases (θ, φ) �= (1, 1) and (θ, φ) = (1, 1) separately.

6.2. n-point functions for (θ, φ) �= (1, 1).

Proposition 14. For (θ, φ) �= (1, 1) we have

G2n,h( f ; x1, . . . , xn; y1, . . . , yn; τ) = detP. ZV,h( f ; τ), (127)

where P is the n × n matrix:

P =
(

P1

[
θ

φ

]
(xi − y j , τ )

)
, (1 ≤ i, j ≤ n), (128)

with θ, φ of (124) and (122). Furthermore, G2n,h is an analytic function in xi , y j and con-
verges absolutely and uniformly on compact subsets of the domain |q| < ∣∣qxi −y j

∣∣ < 1.
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Proof. We apply Theorem 2 directly with e2π iwt (ψ+) = φ and fψ+ = e2π iβψ+ =
θ−1ψ+ of (122) and (124). The Zhu recursion formula (79) results in a determinant
similarly to the proof of Proposition 10. The region of analyticity follows as before. ��

In order to describe general n-point functions, first note that

[ψ+[m], ψ−[n]] = δm,−n−1, [ψ±[m], ψ±[n]] = 0.

Now introduce

Ψ = Ψ [−k;−l] = ψ+[−k1] . . . ψ+[−ks]ψ−[−l1] . . . ψ−[−lt ]1, (129)

Ψh = Ψ [−k;−l]h = ψ+[−k1]h . . . ψ
+[−ks]hψ

−[−l1]h . . . ψ
−[−lt ]h1, (130)

where k = k1, . . . , ks and l = l1, . . . , lt ; these denote Fock vectors (116) in the square
bracket and h-shifted square bracket formalisms respectively. From Lemma 6 and using
U ψ± = ψ± we have

Ψ [−k;−l]h = UΨ [−k;−l].
By expanding G2n,h appropriately and following the same approach that lead to

Proposition 11, we obtain a determinant formula for every n-point function as follows:

Proposition 15. Consider n Fock vectors Ψ (a) = Ψ (a)[−k(a);−l(a)] and Ψ (a)
h = Ψ (a)

[−k(a);−l(a)]h for k(a) = k(a)1 , . . . k(a)sa and l(a) = l(a)1 , . . . l(a)ta with a = 1 . . . n. Then
for (θ, φ) �= (1, 1) the corresponding n-point functions are non-vanishing provided

n∑

a=1

(sa − ta) = 0.

In this case they are given by

FV

[
f
g

]
((Ψ (1), z1), . . . , (Ψ

(n), zn); τ)

= FV,h( f ; (Ψ (1)
h , z1), . . . , (Ψ

(n)
h , zn); τ) = ε detM. ZV,h( f ; τ), (131)

where M is the block matrix

M =

⎛

⎜⎜⎜⎝

C(11) D(12) . . . D(1n)

D(21) C(22) . . . D(2n)

...
. . .

...

D(n1) . . . C(nn)

⎞

⎟⎟⎟⎠,

with

C(aa)(i, j) = C

[
θ

φ

]
(k(a)i , l(a)j , τ ), (1 ≤ i ≤ sa, 1 ≤ j ≤ ta),

for sa, ta ≥ 1 with 1 ≤ a ≤ n and

D(ab)(i, j) = D

[
θ

φ

]
(k(a)i , l(b)j , τ, zab), (1 ≤ i ≤ sa, 1 ≤ j ≤ tb),
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for sa, tb ≥ 1 with 1 ≤ a, b ≤ n and a �= b. ε is the sign of the permutation associated
with the reordering of ψ± to the alternating ordering of (126) following Remark 12.
Furthermore, the n-point function (131) is an analytic function in za and converges
absolutely and uniformly on compact subsets of the domain |q| < ∣∣qzab

∣∣ < 1. ��
Example. Consider the n-point function for n vectors Ψ = a for a = ψ+[−1]ψ−[−1]1
and (θ, φ) �= (1, 1). Then

FV

[
f
g

]
((a, z1), . . . , (a, zn); τ) = det M.ZV

[
f
g

]
(τ ),

for

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−E1

[
θ

φ

]
(τ ) P1

[
θ

φ

]
(z12, τ ) . . . P1

[
θ

φ

]
(z1n, τ )

P1

[
θ

φ

]
(z21, τ ) −E1

[
θ

φ

]
(τ ) . . . P1

[
θ

φ

]
(z2n, τ )

...
. . .

...

P1

[
θ

φ

]
(zn1, τ ) . . . −E1

[
θ

φ

]
(τ )

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

For θ, φ ∈ {±1}, it follows from (36) that the diagonal Eisenstein terms vanish and that
det M = 0 for odd n. Taking n even and recalling that Pf(M) = √

det M, we recover the
square of the rank one generating function (106) for φ = −1 and the rank one σ -twisted
generating function (114) for φ = 1.

6.3. n-point functions for (θ, φ) = (1, 1). We consider (α, β) = (0, 0) so that ( f, g) =
(1, 1) and (θ, φ) = (1, 1) with κ = 1

2 (cf. Remark 11 ). We then have wth(ψ+) = 0,
wth(ψ−) = 1 and ch = −2. For n = 1, Eq. (126) can be computed from (79) to give
the (x, y independent) result:

G2,h(1; x, y; τ) = FV,h(1; (ψ+, x), (ψ−, y); τ)
= STrV

(
oh(ψ

+)oh(ψ
−)q Lh(0)+1/12

)
+ 0,

where oh(v) = v(wth(v) − 1) from (61) and recalling ZV,h(1; τ) = 0. Furthermore,
oh(ψ

+)oh(ψ
−) = ψ+(−1)ψ−(0) acts as a projection operator on V preserving those

Fock vectors (116) containing an ψ+(−1) operator. Hence we find

G2,h(1; x, y; τ) = q1/12(−q0)
∏

k≥2

(1 − qk−1)
∏

l≥1

(1 − ql) = −η(τ)2. (132)

We may proceed much as before to compute the generator G2n,h to find:

Proposition 16. For (θ, φ) = (1, 1) we have

G2n,h(1; x1, . . . , xn; y1, . . . , yn; τ) = det Q.η(τ )2, (133)
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where Q is the (n + 1)× (n + 1) matrix:

Q =

⎛

⎜⎜⎝

P1(x1 − y1, τ ) . . . P1(x1 − yn, τ ) 1
...

. . .
...

P1(xn − y1, τ ) P1(xn − yn, τ ) 1
1 . . . 1 0

⎞

⎟⎟⎠ (134)

(P1(z, τ ) as in (11)). Furthermore, G2n,h is an analytic function in xi , y j and converges
absolutely and uniformly on compact subsets of the domain |q| < ∣∣qxi −y j

∣∣ < 1.

Proof. We prove the result by induction. For n = 1 we obtain the result from (132).
Assuming the result for n − 1, we apply the Zhu recursive formula (79) to find

G2n,h(1; x1, . . . , xn; y1, . . . , yn; τ)
= STrV

(
o(ψ+)Y (q L(0)

y1
ψ−, qy1) . . . Y (q

L(0)
xn

ψ+, qxn )Y (q
L(0)
yn

ψ−, qyn )q
L(0)+1/12

)

+
n∑

r=1

(−1)r−1Q(1, r)detQ̂.η(τ )2,

where Q̂ denotes the matrix found from Q by deleting row 1 and column r . Next note
from Lemma 4 (ii) and (115) that G2n,h vanishes for x1 = x2 so that

STrV

(
o(ψ+)Y (q L(0)

y1
ψ−, qy1) . . . Y (q

L(0)
yn

ψ−, qyn )q
L(0)+1/12

)

= −
n∑

r=2

(−1)r Q(2, r)detQ̂.η(τ )2.

Hence we find G2n,h is given by

n∑

r=1

(−1)r−1(Q(1, r)− Q(2, r))det(Q̂)η(τ )2 = det Q.η(τ )2,

on evaluating det Q after subtracting row 2 from row 1. ��
We may similarly obtain a determinant formula for all n-point functions along the

same lines as Propositions 11 and 15.

6.4. Bosonization. As is well known, the rank two fermion VOSA V can be constructed
as a rank one bosonic Z-lattice VOSA. V is decomposed in terms of the Heisenberg
subVOA M generated by the boson a of (118) and its irreducible modules M ⊗ em for
a(0) eigenvalue m ∈ Z (cf. [Ka]). In particular, the partition function ZV,h( f ; τ) and
the generating function Gn,h can be computed in this bosonic decomposition using the
results of ref. [MT1], leading to the Jacobi triple product formula and Fay’s trisecant
identity (for elliptic functions) respectively. We also describe a further new generalization
of Fay’s trisecant identity for elliptic functions.

The highest weight lattice vector for the irreducible module M ⊗ em is

1 ⊗ em =
{
ψ+(−m)ψ+(1 − m) . . . ψ+(−1).1, m > 0,
ψ−(m)ψ−(1 + m) . . . ψ−(−1).1, m < 0.
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Then the partition function is

ZV,h( f ; τ) = ZV

[
f
g

]
(τ ) =

∑

m∈Z

(−1)me2π imαTrM⊗em (q L(0)+κ2/2−κm−1/24)

= e2π i(α+1/2)(β+1/2)

η(τ )
ϑ

[−β + 1
2

α + 1
2

]
(0, τ ), (135)

in terms of the theta series (13). Comparing to (125) we obtain the standard Jacobi triple
product formula.

We can also compute the generating function Gn,h (and hence all n-point functions)
in the bosonic setting based on results of ref. [MT1]. We illustrate this with the 2-point
function generator (126). Recall from (127) and (132) that

G2,h( f ; x; y; τ) =
⎧
⎨

⎩
P1

[
θ

φ

]
(x − y, τ )ZV,h( f ; τ), (θ, φ) �= (1, 1),

−η(τ)2, (θ, φ) = (1, 1).
(136)

In the bosonic language we obtain:

G2,h( f ; x; y; τ) =
∑

m∈Z

(−1)me2π imαFM⊗em ,h(1; (1 ⊗ e+1, x), (1 ⊗ e−1, y); τ)

=
∑

m∈Z

(−1)me2π imα exp(−κ(x − y))qκ
2/2−κm

×FM⊗em (1; (1 ⊗ e+1, x), (1 ⊗ e−1, y); τ),
noting that Y (q Lh(0)

z e±1, qz) = exp(∓κz)Y (q L(0)
z e±1, qz). Using Propositions 4 and 5

of ref. [MT1] we obtain

FM⊗em (1; (1 ⊗ e+1, x), (1 ⊗ e−1, y); τ) = qm2/2

η(τ)

exp(m(x − y))

K (x − y, τ )
,

where K is the prime form (9). Altogether, it follows that

G2,h( f ; x; y; τ) = e2π i(α+1/2)(β+1/2)

η(τ )

ϑ

[−β + 1
2

α + 1
2

]
(x − y, τ )

K (x − y, τ )
.

Comparing with (136) we confirm the identities (49) for (θ, φ) �= (1, 1) and (18) for
(α, β) = (0, 0), i.e. (θ, φ) = (1, 1). In a similar fashion we can compute the general
generating function G2n,h in the bosonic setting to obtain:

Proposition 17.

G2n,h( f ; x1, . . . , xn; y1, . . . , yn; τ)= e2π i(α+1/2)(β+1/2)

η(τ )
ϑ

[−β + 1
2

α + 1
2

]( n∑

i=1

(xi − yi ), τ

)

×

∏
1≤i< j≤n

K (xi − x j , τ )K (yi − y j , τ )

∏
1≤i, j≤n

K (xi − y j , τ )
.



Torus n-Point Functions for R-graded Vertex Operator Superalgebras 337

Comparing this to Proposition 14 for (θ, φ) �= (1, 1) and Proposition 16 for (θ, φ) =
(1, 1) we obtain the classical Frobenius elliptic function version of Fay’s Generalized
Trisecant Identity [Fa]:

Corollary 3. For (θ, φ) �= (1, 1) we have

det(P)=
ϑ

[−β + 1
2

α + 1
2

] (∑n
i=1(xi − yi ), τ

)

ϑ

[−β + 1
2

α + 1
2

]
(0, τ )

∏
1≤i< j≤n

K (xi − x j , τ )K (yi − y j , τ )

∏
1≤i, j≤n

K (xi − y j , τ )
,

(137)

with P as in (128). For (θ, φ) = (1, 1),

det(Q) = −
K
(∑n

i=1(xi − yi ), τ
) ∏

1≤i< j≤n
K (xi − x j , τ )K (yi − y j , τ )

∏
1≤i, j≤n

K (xi − y j , τ )
, (138)

where Q is as in (134).

We may generalize these identities using Propositions 4 and 5 of [MT1] again to
consider the general lattice n-point function:

Proposition 18. For integers mi , n j ≥ 0 satisfying

r∑

i=1

mi =
s∑

j=1

n j ,

we have

FV ( f ; (1⊗em1 , x1), . . . (1⊗emr , xr ), (1⊗e−n1 , y1), . . . (1⊗e−ns , ys); τ)

= e2π i(α+1/2)(β+1/2)

η(τ )
ϑ

[−β + 1
2

α + 1
2

]⎛

⎝
r∑

i=1

mi xi −
s∑

j=1

n j y j , τ

⎞

⎠

×

∏
1≤i<k≤r

K (xi − xk, τ )
mi mk

∏
1≤ j<l≤s

K (y j − yl , τ )
n j nl

∏
1≤i≤r,1≤ j≤s

K (xi − y j , τ )
mi n j

.

Comparing this to Proposition 15 we obtain a new elliptic generalization of Fay’s
Trisecant Identity:

Corollary 4. For (θ, φ) �= (1, 1) we have

det(M) =
ϑ

[−β + 1
2

α + 1
2

] (∑r
i=1 mi xi −∑s

j=1 n j y j , τ
)

ϑ

[−β + 1
2

α + 1
2

]
(0, τ )

.

×

∏
1≤i<k≤r

K (xi − xk, τ )
mi mk

∏
1≤ j<l≤s

K (y j − yl , τ )
n j nl

∏
1≤i≤r,1≤ j≤s

K (xi − y j , τ )
mi n j

,
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where M is the block matrix

M =
⎛

⎜⎝
D(11) . . . D(1s)

...
. . .

...

D(r1) . . . D(rs)

⎞

⎟⎠,

with D(ab) the ma × nb matrix

D(ab)(i, j) = D

[
θ

φ

]
(i, j, τ, xa − yb), (1 ≤ i ≤ ma, 1 ≤ j ≤ nb),

for 1 ≤ a ≤ r and 1 ≤ b ≤ s.

A similar identity for (θ, φ) = (1, 1) generalizing (138) can also be described.

6.5. Modular properties of n-point functions. In this section we consider the modular
properties of all n-point functions for the rank two fermion VOSA. Despite the fact the
twisted sectors are neither rational or C2-cofinite we obtain modular properties similar
to those found in [Z,DZ1,DZ2]. It is convenient to employ the twisted n-point function
formalism to describe these modular properties. We firstly consider the partition function

ZV

[
f
g

]
(τ ) and define a group action for γ =

(
a b
c d

)
∈ SL(2,Z) as follows:

ZV

[
f
g

]∣∣∣∣ γ (τ) = ZV

(
γ.

[
f
g

])
(γ.τ ), (139)

with

γ.

[
f
g

]
=
[

f agb

f cgd

]
, (140)

and γ.τ as in (33).

Remark 13. (i) (140) is equivalent to left matrix multiplication on α, β,

γ

(
α

β

)
=
(

aα + bβ
cα + dβ

)
.

(ii) In terms of the shifted VOA formalism, (139) reads

ZV,h( f ; τ)∣∣ γ = ZV,γ .h( f agb; γ.τ ),
with γ.h = (γ.β + 1

2 )a = ((cα + dβ) + 1
2 )a, recalling (119) and (121).

For SL(2,Z) generators S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
we can use the theta function

modular transformation properties (16) and (17) and thereby find from (135) that

ZV

[
f
g

]∣∣∣∣ S(τ ) = εS

[
f
g

]
ZV

[
f
g

]
(τ ), (141)

ZV

[
f
g

]∣∣∣∣ T (τ ) = εT

[
f
g

]
ZV

[
f
g

]
(τ ), (142)
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where

εS

[
f
g

]
= exp

(
2π i

(
1

2
+ β

)(
1

2
− α

))
, (143)

εT

[
f
g

]
= exp(π i(β(β + 1) +

1

6
)). (144)

One can check that the relations (ST )3 = −S2 = 1 are satisfied so that ZV

[
f
g

]
(τ ) is

modular invariant as follows:

Proposition 19. The partition function transforms under γ ∈ SL(2,Z) with multiplier

εγ

[
f
g

]
∈ U (1), where

ZV

[
f
g

]∣∣∣∣ γ (τ) = εγ

[
f
g

]
ZV

[
f
g

]
(τ ),

with εγ

[
f
g

]
generated from εS

[
f
g

]
and εT

[
f
g

]
.

In order to discuss the modular properties of n-point functions we first define the left
SL(2,Z) action

FV

[
f
g

]
((v1, z1) . . . , (vn, zn); τ)

∣∣∣∣ γ = FV

(
γ.

[
f
g

])

×((v1, γ .z1) . . . , (vn, γ .zn); γ.τ ), (145)

and γ.z as in (33). It is sufficient to consider the generating function:

Proposition 20. The generating function G2n

[
f
g

]
transforms under γ ∈ SL(2,Z)

with weight n and multiplier εγ

[
f
g

]
, that is

G2n

[
f
g

]
(x1 . . . xn; y1 . . . yn; τ)

∣∣∣∣ γ = (cτ + d)nεγ

[
f
g

]
G2n

[
f
g

]

×(x1 . . . xn; y1 . . . yn; τ).
Proof. For (θ, φ) �= (1, 1) we have

G2n

[
f
g

]
= det(P) ZV

[
f
g

]
(τ ),

from Proposition 14. From Proposition 1 we have P1

[
θ

φ

]
(γ.z, γ .τ ) = (cτ +d)P1

[
θ

φ

]

(z, τ ). Hence using Proposition 19 the result follows.
For (θ, φ) = (1, 1) we have

G2n

[
f
g

]
= det Q.η(τ )2,
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from Proposition 16 with Q as in (134). From (4) and (6) it follows that P1(z, τ ) is
quasi-modular:

P1(γ.z, γ .τ ) = (cτ + d)P1(z, τ ) +
c

2π i
z.

However, det Q is modular of weight n − 1 as follows. Subtract row 1 from rows 2 . . . n
and then subtract col 1 from cols 2 . . . n to find det Q = det R, where for 2 ≤ i, j ≤ n,

R(i, j) = P1(xi − y j , τ ) + P1(x1 − y1, τ )− P1(xi − y1, τ )− P1(x1 − y j , τ ),

which is modular of weight 1. Hence the result follows. ��
The modular transformation properties for an arbitrary n-point function follows by

appropriately expanding the generating function as before to find n-point functions for
the Fock basis described in Proposition 15. We thus find

Proposition 21. For n vectors va of wt[va], a = 1, . . . , n, the n-point function trans-

forms under γ ∈ SL(2,Z) with weight K =∑a wt[va] and multiplier εγ

[
f
g

]
:

FV

[
f
g

]
((v1, z1), . . . , (vn, zn); τ)

∣∣∣∣ γ =

(cτ + d)K εγ

[
f
g

]
FV

[
f
g

]
((v1, z1), . . . , (vn, zn); τ).

This result is a natural generalization for continuous orbifolds of the rank two fermion
VOSA of Zhu’s Theorem 5.3.2 for C2-cofinite VOAs [Z].

7. Appendix A: Parity and Supertraces

A vertex operator Y (a, z) has parity p(a) ∈ {0, 1} if all its modes a(n) have parity p(a).
Two operators A, B on V of parity p(A), p(B) have commutator defined by

[A, B] = AB − p(A, B)B A,

p(A, B) = (−1)p(A)p(B).

The commutator clearly obeys:

[A, B] = −p(A, B)[B, A],
and for B1 . . . Bn of parity p(B1), . . . p(Bn) respectively we have

[A, B1 . . . Bn]
=

n∑

r=1

p(A, B1 . . . Br−1)B1 . . . Br−1[A, Br ]Br+1 . . . Bn, (146)

where

p(A, B1 . . . Br−1) =
{

1 for r = 1
(−1)p(A)[p(B1)+...+p(Br−1)] for r > 1

. (147)
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Let Vα = ⊕
r≥r0

Vα,r denote the decomposition of Vα into L(0) homogeneous spaces

where r0 is the lowest L(0) degree. We assume that dim Vα,r is finite for each r, α. We
define the Supertrace of an operator A by:

STr(Aq L(0)) = T r(σ Aq L(0))

= T rV0̄
(Aq L(0))− T rV1̄

(Aq L(0))

=
∑

r≥r0

qr [T rV0̄,r
(A)− T rV1̄,r

(A)].

Clearly the supertrace is zero if A has odd parity. We then note the following:

Lemma 8. Suppose that A is an operator on V of parity p(A) such that A : Vα,r →
Vα+p(A),r+s for some real s. Then for any operator B we have:

STr(ABq L(0)) = qs p(A, B) STr(B Aq L(0)).

Using (60) we find

Corollary 5. For v homogeneous of weight wt (v) then

STr(v(k) B q L(0)) = p(v, B)qwt (v)−k−1 STr(Bv(k)q L(0)). (148)

We also have

Corollary 6. If A : Vα,r → Vα+p(A),r then for any operator B we have

STr([A, B]q L(0)) = 0. (149)
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