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Abstract: We consider a quantum two-particle system on a lattice Z
d with interaction

and in presence of an IID external potential. We establish Wegner-type estimates for
such a model. The main tool used is Stollmann’s lemma.

1. Introduction. The Results

This paper considers a two-particle Anderson tight binding model on lattice Z
d with

interaction. The Hamiltonian H
(
= H (2)

U,V (ω)
)

is a lattice Schrödinger operator (LSO)

of the form H0 + U + V1 + V2 acting on functions φ ∈ �2(Z
d × Z

d):

Hφ(x) = H0φ(x) + [(U + V1 + V2) φ] (x)

= ∑
y: ‖y−x‖=1

φ(y) +
(

U (x) +
∑2

j=1 V (x j ;ω)
)

φ(x),

x = (x1, x2), y = (y1, y2) ∈ Z
d × Z

d .

(1.1)

Here, x j =
(

x (1)
j , . . . , x (d)

j

)
and y j =

(
y(1)

j , . . . , y(d)
j

)
stand for coordinate vectors of

the j th particle in Z
d , j = 1, 2, and ‖ · ‖ is the sup-norm in R

d × R
d :

‖x‖ = max
j=1,2

max
i=1,...,d

∣∣∣x (i)
j

∣∣∣ , x = (x1, x2) ∈ R
d × R

d .

The same notation, ‖·‖, is used for the sup-norm in R
d ; this should not lead to confusion.

We will use boldface notations, like x, for points in Z
d × Z

d describing positions of
the two-particle system. In Sect. 2, boldface notations are used for vectors in an auxiliary
Euclidean space R

p.
Throughout this paper, the random external potential V (x;ω), x ∈ Z

d , is assumed
to be real IID, with a common distribution function F on R. It can be quite arbitrary,
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although in many applications it is assumed at least continuous. In any case, the continuity
modulus of a given non-decreasing function F can be defined by

s(ε) (= s(F, ε)) := sup
a∈R

(F(a + ε) − F(a − 0)), ε > 0, (1.2)

where F(a −0) := limδ↑0 F(a −δ). Naturally, s(ε) ≤ 1 for any probability distribution
function F .

In physically interesting models, the interaction potential U cannot be completely
arbitrary. It is usually assumed to be symmetric (U (x1, x2) = U (x2, x1)) or even
translation invariant (U (x1, x2) = Ũ (‖x1 − x2‖)), and sufficiently rapidly decaying
as ‖x1 − x2‖ → ∞. However, in the present paper we treat only finite-volume particle
systems, and such assumptions are no longer imperative for the operator H0 +V (x1;ω)+
V (x2;ω) + U (x1, x2) to be well-defined in a finite volume. It suffices, e.g., to assume
U (x) to be locally finite, so that the operator of multiplication by the function U (x),
restricted to Hilbert space �2(Λ) with |Λ| := card Λ < ∞, is bounded. Even this
assumption can be relaxed so as to include the case of hard-core interactions, where
U (x1, x2) = +∞ for (x1, x2) with ‖x1 − x2‖ ≤ r0 < ∞, and U (x) is (at least locally)
bounded for all other x = (x1, x2). The latter case (hard-core interactions) would require
certain technical modifications of notations and arguments, while our main results given
in Theorems 1, 2 and 3 below would essentially remain valid.

We do assume, however, symmetry of the function U (x1, x2), having in mind future
applications to quantum systems under Bose-Einstein or Fermi-Dirac quantum statistics.
Again, it is worth mentioning that such an assumption is not imperative for our results to
be valid; only the general setup would need to be modified. We plan to address various
possible generalisations in a separate paper.

Therefore, below we always assume that U (x) is a fixed (non-random), symmetric,
locally bounded function on Z

d × Z
d .

The purpose of this paper is to establish the so-called Wegner-type estimates for H .
More precisely, these estimates are produced for the eigen-values of a finite-volume

approximation HΛ

(
= H (2)

Λ,U,V (ω)
)

acting in �2 (Λ):

HΛφ(x) = H0
Λφ(x) +

[
(U + V1 + V2)Λ φ

]
(x)

= ∑
y∈Λ: ‖y−x‖=1

φ(y) +
(

U (x) +
∑2

j=1 V (x j ;ω)
)

φ(x),

x = (x1, x2), y = (y1, y2) ∈ Λ.

(1.3)

Here Λ ⊂ Z
d × Z

d is a finite set of cardinality |Λ|. For definiteness, we will focus on
the case where Λ is specified as a Z

d ×Z
d lattice parallelepiped written as the Cartesian

product of two Z
d lattice cubes centred at points u1 =

(
u(1)

1 , . . . , u(d)
1

)
∈ Z

d and

u2 =
(

u(1)
2 , . . . , u(d)

2

)
∈ Z

d :

[(
d×

i=1

[
−L1 + u(i)

1 , u(i)
1 + L1

])
×

(
d×

i=1

[
−L2 + u(i)

2 , u(i)
2 + L2

])]
∩

(
Z

d × Z
d
)

.

(1.4)

Here L := (L1, L2) ∈ N
2. Notice that the above lattice subset is non-empty even for

L = 0, and its diameter equals 2‖L‖.
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A set Λ of the form (1.4) will be called a box and denoted by ΛL(u), u = (u1, u2) ∈
Z

d × Z
d , while the Z

d lattice cubes figuring in (1.4) as the Cartesian factors will be
denoted by Π1ΛL(u) and Π2ΛL(u):

Π jΛL(u) =
(

d×
i=1

[
−L j + u(i)

j , u(i)
j + L j

])
∩ Z

d , j = 1, 2. (1.5)

We will also call cubes Π1ΛL(u) and Π2ΛL(u) the projections of ΛL(u) and set

ΠΛL(u) = Π1ΛL(u) ∪ Π2ΛL(u). (1.6)

The cardinality of box ΛL(u) is denoted by |ΛL(u)| and the cardinality of cube Π jΛL(u)

by
∣∣Π jΛL(u)

∣∣. Symbol P will stand for the probability distribution generated by random
variables V (x;ω), x ∈ Z

d . Symbol B [ΠΛL(u)] is used for the sigma-algebra generated
by random variables

ω 
→ V (x;ω), x ∈ ΠΛL(u). (1.7)

Remark. Working with projections of different sizes may appear artificial. Indeed, in this
paper this only allows to make assertions of Theorems 1, 2 and 3 slightly more general.
However, having in mind future applications to quantum systems under Bose-Einstein
or Fermi-Dirac statistics, it is preferable to allow projections of boxes to be of different
sizes.

The spectrum Σ
(
HΛL(u)

)
of HΛL(u) is a random subset of R consisting of |ΛL(u)|

points (not necessarily distinct) λ
(k)
ΛL(u)(= λ

(k)
ΛL(u)(ω)), k = 1, . . . , |ΛL(u)| (random

eigen-values in volume ΛL(u), measurable with respect to B [ΠΛL(u)]). Given a value
E ∈ R, we denote

dist
[
Σ

(
HΛL(u)

)
, E

] = min
{∣∣∣E − λ

(k)
ΛL(u)

∣∣∣ : k = 1, . . . , |ΛL(u)|
}
. (1.8)

Our first result in this paper is the so-called single-volume Wegner bound given in
Theorem 1.

Theorem 1. ∀ E ∈ R, L ∈ N
2, u ∈ Z

d × Z
d and ε > 0,

P
(

dist
[
Σ

(
HΛL(u)

)
, E

] ≤ ε
) ≤ |ΛL(u)| min

j=1,2

{ ∣∣Π jΛL(u)
∣∣ } · s(2ε). (1.9)

Single-volume Wegner-type bounds were often used in the (single-particle) Ander-
son localisation theory; see, e.g., original papers by Fröhlich, Martinelli, Scoppola and
Spencer [4], and by von Dreifus and Klein [3].

In Theorem 2 below we deal with a two-volume Wegner bound. This bound assesses
the probability that the random spectra Σ

(
HΛL(u)

)
and Σ

(
HΛ

L′ (u′)
)

are close to each
other, for a pair of boxes ΛL(u) and ΛL′(u′) positioned away from each other. It is worth
mentioning that, in the conventional, single-particle localisation theory, such a bound
can be derived from its single-volume counterpart (e.g., for IID random potentials). See
[4] and [3] for details. With N > 1 particles, it requires additional arguments. Indeed,
an important feature of two-particle operators is that the potential W (u1, u2;ω) =
U (u1, u2)+V (u1;ω)+V (u2;ω) is a symmetric function of the pair (u1, u2) ∈ Z

d ×Z
d .

Namely, let S : Z
d × Z

d → Z
d × Z

d be the following map:

S : (u1, u2) 
→ (u2, u1).
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Then the potential energy operator W (x) = U (x) + V (x1) + V (x2) satisfies W (S(x)) ≡
W (x). As a consequence, the spectra of operators HΛ and HS(Λ) are identical, although
the distance dist[Λ, S(Λ)] may be arbitrarily large.

We define the distance between two spectra in a usual way:

dist
[
Σ

(
HΛL(u)

)
,Σ

(
HΛ

L′ (u′)
)]

= min
{ ∣∣∣λ(k)

ΛL(u) − λ
(k′)
Λ

L′ (u′)

∣∣∣, 1 ≤ k ≤ |ΛL(u)| , 1 ≤ k′ ≤ ∣∣ΛL′(u′)
∣∣ }.

(1.10)

Theorem 2. ∀ L = (L1, L2), L
′ = (L ′

1, L ′
2) ∈ N

2, u, u′ ∈ Z
d × Z

d with

min
{ ‖u − u′‖, ‖u − S(u′)‖} > 8 max{L1, L2, L ′

1, L ′
2

}
(1.11)

and ∀ ε > 0, the following inequality holds:

P
(

dist
[
Σ

(
HΛL(u)

)
,Σ

(
HΛ

L′ (u′)
)] ≤ ε

)
≤ |ΛL(u)| ∣∣ΛL′(u′)

∣∣ max
j=1,2

max
u′′∈{u,u′}

∣∣Π jΛL(u′′)
∣∣ s(2ε).

(1.12)

The assertions of Theorems 1 and 2 are proved in the next section of the paper, with
the help of the so-called Stollmann’s lemma. They are useful in the spectral analysis of
H and HΛL(u).

Throughout the paper, the symbol �� is used to mark the end of a proof.

2. Stollmann’s Lemma. Proof of Theorems 1 and 2

2.1. Stollmann’s lemma and its use. For the reader’s convenience, we provide here the
statement of Stollmann’s lemma; see Lemma 2.1 below, cf. [6] and [7], Lemma 2.3.1.
Let Γ be a non-empty finite set of cardinality |Γ | = p. We assume that Γ is ordered
and identify it with the set {1, 2, . . . , p}. Consider the Euclidean space R

Γ ∼= R
p with

standard basis (e1, . . . , ep), and its positive orthant

R
Γ
+ = {

q = (q1, . . . , qp) ∈ R
Γ : q j ≥ 0, j = 1, . . . , p

}
.

We believe that the use of boldface notations for vectors q ∈ R
Γ , in this section,

should not lead to confusion.
For a given probability measure µ on R, denote by µΓ the product measure µ×· · ·×µ

on R
Γ and by µΓ \{1} be the marginal product measure induced by µΓ on R

Γ \{1}. Next,
∀ ε > 0 set

s(µ, ε) = sup
a∈R

µ ([a, a + ε]). (2.1)

Definition 2.1. A function Φ : R
Γ → R is called diagonally-monotone (DM) if it

satisfies the following conditions:

(i) ∀ r ∈ R
Γ
+ and any v ∈ R

Γ ,

Φ(v + r) ≥ Φ(v); (2.2)

(ii) moreover, with vector e = e1 + . . . + ep ∈ R
Γ , ∀ v ∈ R

Γ and t > 0,

Φ(v + te) − Φ(v) ≥ t. (2.3)
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Lemma 2.1. Suppose function Φ : R
Γ → R is DM. Then ∀ ε > 0 and any open

interval I ⊂ R of length ε,

µΓ { v : Φ(v) ∈ I } ≤ |Γ | · s(µ, ε). (2.4)

The proof of this lemma can be found in the book by P. Stollmann [7], as well as in
his original paper [6].

In our situation, it is also convenient to introduce the notion of a DM operator family.
As before, Γ is a finite set, |Γ | = p < ∞, identified with {1, . . . , p}, so that R

Γ ∼= R
p.

Definition 2.2. Let H be a Hilbert space of a finite dimension m. A family of Hermitian
operators B(v) : H → H, v ∈ R

Γ , |Γ | = p < ∞, is called DM if

(i) ∀ r ∈ R
Γ
+ ∀ v ∈ R

Γ ,

B(v + r) ≥ B(v) (2.5A)

(in the sense of quadratic forms).
(ii) ∀ f ∈ H

(B(v + t · e) f, f ) − (B(v) f, f ) ≥ t · ‖ f ‖2. (2.5B)

That is, ∀ f ∈ H with ‖ f ‖ = 1, the function Φ f : R
Γ → R defined by Φ f (v) =

(B(v) f, f ) is DM.

The importance of Stollmann’s Lemma 2.1 in spectral theory of random operators is
illustrated by the following two elementary observations.

Remark 2.1. Suppose that B(v), v ∈ R
Γ , is a DM operator family in H. Let E (1)

B(v) ≤
. . . ≤ E (m)

B(v) be the eigen-values of B(v). Then, by virtue of the variational principle, ∀
k = 1, . . . , m, v 
→ E (k)

B(v) is a DM function.

Remark 2.2. If B(v), v ∈ R
Γ , is a DM operator family in H, and K : H → H is an

arbitrary Hermitian operator, then the family K + B(v) is also DM.

The arbitrariness of operator K in Remark 2.2 illustrates the power of Stollmann’s
lemma. In the context of multi-particle lattice quantum systems, it allows to consider
fairly general kinetic energy operators H0 and non-random interactions U .

For a single-particle tight binding model with non-IID random potential, similar
results are presented in [1].

2.2. Proof of Theorem 1. The proof is a straightforward application of Lemma 2.1 and
Remarks 2.1 and 2.2, cf. the proof of Theorems 2.3.2 and 2.3.3 in [2]. In our situation, the
set Γ is identified as the set of smallest cardinality among Π1ΛL(u) and Π2ΛL(u), with
p = |Γ | = min {|Π1ΛL(u)|, |Π2ΛL(u)|}. (If both projections have equal cardinality,
we can pick Γ = Π1ΛL(u), for the sake of definiteness.) Vector v is identified with a
collection {V (x;ω), x ∈ Γ } of sample values of the external potential; to stress this
fact we will write

v ∼ {V (x;ω), x ∈ Γ }. (2.6)
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Next, probability measure µ represents the distribution of a single value, say V (0; · ),
and product-measure µΓ is identified as PΠi ΛL(u), where the value i ∈ {1, 2} is chosen
so that ΠiΛL(u) has smallest cardinality. Further, the Hilbert space H in Remarks 2.1
and 2.2 is �2(ΛL(u)), of dimension m = |ΛL(u)|, in which the action of operator HΛL(u)

is considered. Given x = (x1, x2) ∈ ΛL(u), we can write

V (x1;ω) + V (x2;ω) = ∑
y∈ΠΛL(u)

c(x, y)V (y;ω)

= ∑
y∈Γ

c(x, y)V (y;ω) +
∑

y∈ΠΛL(u)\Γ
c(x, y)V (y;ω),

where c(x, y) is defined as a function of y ∈ ΠΛL(u), for every x ∈ ΛL(u), by

c(x, y) = δy,x1 + δy,x2 ,

so that, obviously, ∀ x ∈ ΛL(u)∀ y ∈ Γ ,

c(x, y) ≥ 1.

Now we can re-write the external random potential V (x1;ω) + V (x2;ω) as follows:

V (x1;ω) + V (x2;ω) = VΓ (x;ω) + Ṽ (x;ω),

where

VΓ (x;ω) =
∑
y∈Γ

c(x, y)V (y;ω)

and, respectively,

Ṽ (x;ω) =
∑

y∈ΠΛL(u)\Γ
c(x, y)V (y;ω)

so that only the term VΓ (x;ω) is measurable with respect toB [ΠiΛL(u)], while Ṽ (x;ω)

is measurable with respect to {V (y; ·), y ∈ ΠΛL(u)\Γ }, and, therefore, independent
of {V (y; ·), y ∈ ΠiΛL(u)}.

Next, we write

HΛL(u) = H0 + U + Ṽ + VΓ = K̃ + VΓ , K̃ = H0 + U + Ṽ ,

so that VΓ is B [ΠiΛL(u)]-measurable, and K̃ is B [ΠiΛL(u)]-independent. In other
words, relative to the measure µΓ , operator K̃ is non-random. So, with v ∼ {V (y;ω),

y ∈ Γ }, we identify K̃ with operator K of Remark 2.2, while the role of operator family
B(v) is played by multiplication operators VΓ (·;ω):

B(v)φ(x) = VΓ (x;ω)φ(x), x ∈ ΛL(u), φ ∈ �2(ΛL(u)). (2.7)

The above lower bound c(x, y) ≥ 1, valid for any y ∈ Γ , implies that, with identification
(2.6), Hermitian operators B(v) form a DM family.

Then we use Remark 2.2 (cf. (1.3)), and obtain that HΛL(u) = K̃ + VΓ is a DM

family. Next, owing to Remark 2.1, each eigen-value λ
(k)
ΛL(u), k = 1, . . . , |ΛL(u)|, is a
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DM function of the sample collection v ∼ {V (x;ω), x ∈ Γ }. Hence, by Lemma 2.1, ∀
k = 1, . . . , |ΛL(u)|, and owing to our choice of the projection of smallest cardinality,

P

(∣∣∣E − λ
(k)
ΛL(u)

∣∣∣ ≤ ε
)

≤ min
j=1,2

{ ∣∣Π jΛL(u)
∣∣ } s(F, 2ε). (2.8)

The final remark is that the probability in the LHS of Eq. (1.9) is ≤ the RHS of
Eq. (2.8) times |ΛL(u)|. ��

We will need the following elementary geometrical statement which we prove later.

Lemma 2.2. Consider two boxes ΛL(u) and ΛL′(u′) and suppose that

min(‖u − u′‖, ‖u − S(u′)‖) > 8 max{L1, L2, L ′
1, L ′

2}. (2.9)

Then there are two possibilities (which in general do not exclude each other):

(i) ΛL(u) and ΛL′(u′) are ‘completely separated’, when

ΠΛL(u) ∩ ΠΛL′(u′) = ∅. (2.10)

(ii) ΛL(u) and ΛL′(u′) are ‘partially separated’. In this case one (or more) of the four
possibilities can occur:

(A) Π1ΛL(u) ∩ [
Π2ΛL(u) ∪ ΠΛL′(u′)

] = ∅,

(B) Π2ΛL(u) ∩ [
Π1ΛL(u) ∪ ΠΛL′(u′)

] = ∅,

(C) Π1ΛL′(u′) ∩ [
ΠΛL(u) ∪ Π2ΛL′(u′)

] = ∅,

(D) Π2ΛL′(u′) ∩ [
ΠΛL(u) ∪ Π1ΛL′(u′)

] = ∅.

(2.11)

Pictorially, case (ii) is where one of the cubes Π jΛL(u), Π jΛL′(u′), j = 1, 2, is
disjoint from the union of the rest of the projections of ΛL(u) and ΛL′(u′).

We note that the use of the max-norm ‖ · ‖ is convenient here: it leads to the constant
8 (two times the number of projections Π jΛL(u) and Π jΛL′(u′), j = 1, 2) which does
not depend on dimension d.

2.3. Proof of Theorem 2. Owing to Lemma 2.2, boxes ΛL(u) and ΛL′(u′) satisfy either
(i) or (ii), i.e. they are either completely or partially separated. Passing to the proof of
Theorem 2 proper, consider separately cases where boxes ΛL(u) and ΛL′(u′) satisfy (i)
or (ii).
(i) ‘Complete separation’. Then we can write

P
(

dist
[
Σ

(
HΛL(u)

)
,Σ

(
HΛ

L′ (u′)
)] ≤ ε

)
= E

[
P

(
dist

[
Σ

(
HΛL(u)

)
,Σ

(
HΛ

L′ (u′)
)] ≤ ε | B [

ΠΛL′(u′)
]) ]

.
(2.12)

Note first that, under conditioning in Eq. (2.12), the eigen-values λ
(k′)
ΛL(u′), k′ = 1, . . . ,∣∣ΛL(u′)

∣∣, forming the set Σ
(
HΛ

L′ (u′)
)

are non-random. Therefore, it makes sense to
use the following inequality:

P
(

dist
[
Σ

(
HΛL(u)

)
,Σ

(
HΛ

L′ (u′)
)] ≤ ε | B [

ΠΛL′(u′)
])

≤ |ΛL′(u′)| sup
E∈R

P
(

dist
[
Σ

(
HΛL(u)

)
, E

] ≤ ε
)
, (2.13)
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since there are |ΛL′(u′)| eigen-values λ
(k′)
ΛL(u′) (counting multiplicities). Then, by virtue

of Theorem 1,

P
(

dist
[
Σ

(
HΛL(u)

)
, E

] ≤ ε
) ≤ |ΛL(u)| min

j=1,2

{ ∣∣Π jΛL(u)
∣∣ } · s(2ε), (2.14)

implying bound (1.12).
(ii) ‘Partial separation’. For example, assume case (A) where Π1ΛL(u), is disjoint from
the union of the rest of the projections of ΛL(u) and ΛL′(u′):

Π1ΛL(u) ∩ [
Π2ΛL(u) ∪ ΠΛL′(u′))

] = ∅. (2.15)

We then estimate the probability in the LHS of (2.13) with the help of the conditional
expectation

P

(∣∣∣λ(k)
ΛL(u) − λ

(k′)
ΛL(u′)

∣∣∣ ≤ ε
∣∣B [

ΠΛL′(u′)
])

= E

[
P

(∣∣∣λ(k)
ΛL(u) − λ

(k′)
ΛL(u′)

∣∣∣ ≤ ε

∣∣∣B [
Π2ΛL(u) ∪ ΠΛL′(u′)

]) ∣∣B [
ΠΛL′(u′)

]]
.

(2.16)

Here B
[
Π2ΛL(u) ∪ ΠΛL′(u′)

]
is the sigma-algebra generated by the random variables

ω 
→ V (x;ω), x ∈ Π2ΛL(u) ∪ ΠΛL′(u′);

owing to (2.15) it is independent of the sigma-algebra B [Π1ΛL(u)] generated by the
random variables

ω 
→ V (x;ω), x ∈ Π1ΛL(u).

We see that the argument used in the proof of Theorem 1 is still applicable; here, we
take the product-measure PΠ1ΛL(u) (which again is identified with the product-measure
µΓ from Lemma 2.1, with |Γ | = p = |Π1ΛL(u)|). This allows us to write

P

(∣∣∣λ(k)

ΛL(u′) − λ
(k′)
ΛL(u′)

∣∣∣ ≤ ε
∣∣B [

Π2ΛL(u) ∪ ΠΛL′(u′)
]) ≤ |Π1ΛL(u)| s(F, 2ε)

(2.17)

and deduce the required bound for the conditional probability in the LHS of (2.16).
If, instead of (2.15), we have one of the other disjointedness relations (B)-(D) in

Eq. (2.11), then the argument is conducted in a similar fashion. Specifically, in case (B)
we exchange projections Π1ΛL(u) and Π2ΛL(u) in the above argument. In cases (C)
and (D), we should exchange u and u′ as compared to arguments in cases (A) and (B).

This concludes the proof of Theorem 2. ��
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2.4. Proof of Lemma 2.2. Recall that we have two boxes, ΛL(u) and ΛL′(u′), satisfying
the condition (2.9):

min
{‖u − u′‖, ‖u − S(u′)‖} > 8 max{L1, L2, L ′

1, L ′
2}.

Notice that this can be viewed as a lower bound for the distance in the factor space
Z

d × Z
d/S, where S(u1, u2) = (u2, u1).

Since diam ΛL(u) = 2‖L‖, diam ΛL′(u′) = 2‖L
′‖, this implies that the union of

the four coordinate projections,

Π1ΛL(u),Π2ΛL(u),Π1ΛL′(u′),Π2ΛL′(u′)

cannot be connected. Therefore, it can be decomposed into two or more connected
components. Cases (A), (B), (C) and (D) in the statement of Lemma 2.2 correspond to
the situation where one of these coordinate projections is disjoint with the three remaining
projections. So, it suffices to analyse the case where each connected component of the
union

ΠΛL(u) ∪ ΠΛL′(u′) (2.18)

contains exactly two coordinate projections. Furthermore, it suffices to show that the
only possible case is (2.10). To do so, we have to exclude two remaining cases, namely,

⎧⎪⎨
⎪⎩

(
Π1ΛL(u) ∪ Π1ΛL′(u′)

) ∩ (
Π2ΛL(u) ∪ Π2ΛL′(u′)

) = ∅,

Π1ΛL(u) ∩ Π1ΛL′(u′) �= ∅,

Π2ΛL(u) ∩ Π2ΛL′(u′) �= ∅,

(2.19)

and ⎧
⎪⎨
⎪⎩

(
Π1ΛL(u) ∪ Π2ΛL′(u′)

) ∩ (
Π1ΛL′(u′) ∪ Π2ΛL(u)

) = ∅,

Π1ΛL(u) ∩ Π2ΛL′(u′) �= ∅,

Π1ΛL′(u′) ∩ Π2ΛL(u) �= ∅.

(2.20)

First, observe that (2.19) contradicts the assumption that ΛL(u) and ΛL′(u′) are disjoint.
Indeed, in such a case, there exist lattice points

v1 ∈ Π1ΛL(u) ∩ Π1ΛL′(u′), v2 ∈ Π2ΛL(u) ∩ Π2ΛL′(u′),

so that

∃ (v1, v2) ∈ [Π1ΛL(u) × Π2ΛL(u)] ∩ [
Π1ΛL′(u′) × Π2ΛL′(u′)

]
= ΛL(u) ∩ ΛL′(u′) = ∅,

which is impossible.
The case (2.20) can be reduced to (2.19), by the symmetry S. Namely, let u′′ = S(u′),

then

Π1ΛL′(u′′) = Π2ΛL′(u′), Π2ΛL′(u′′) = Π1ΛL′(u′).

Now (2.20) reads as follows in terms of boxes ΛL(u) and ΛL′(u′′):
⎧
⎪⎨
⎪⎩

(
Π1ΛL(u) ∪ Π1ΛL′(u′′)

) ∩ (
Π2ΛL′(u′′) ∪ Π2ΛL(u)

) = ∅,

Π1ΛL(u) ∩ Π1ΛL′(u′′) �= ∅,

Π2ΛL′(u′′) ∩ Π2ΛL(u) �= ∅.

(2.21)
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The same argument as above shows then that ΛL(u)∩ΛL′(u′′) �= ∅, which is impossible,
since, by virtue of (2.9),

dist(u, S(u′)) > 8 max
{

L1, L2, L ′
1, L ′

2

}
.

This completes the proof. ��

3. Concluding Remarks

Remarks made by the referees of this paper allowed us to establish a sharper version of
Eq. (1.9) and, consequently, a sharper version of Eq. 1.12 which include a factor s(ε).
The reader may compare the current assertion of Theorem 1 with its counterpart in the
preliminary version of this paper on [arXiv:0708.2056].

In an earlier manuscript [2], we proved Wegner-type bounds for two-particle lattice
systems under a much more restrictive assumption of analyticity of the distribution
function F of the random external potential V . The proofs, which were more involved
than in this paper, also required the amplitude of the potential V to be sufficiently big.
However, both approaches revealed an interesting fact. Speaking informally, having more
than one particle can only make Wegner type bounds stronger, not weaker, as one might
suppose. Assertions of Theorems 1 and 2 in [arXiv:0708.2056] make this particularly
clear.

A Wegner-type bound for multi-particle systems, with an arbitrary number of par-
ticles, close to Theorem 1 (but not Theorem 2) has been independently obtained by
W. Kirsch [5] using arguments which are closer in spirit to the original argument given
by F. Wegner [8] than to Stollmann’s method.

In fact, our Theorem 1 can be extended without difficulty to the general case of N ≥ 2
particles. Denoting as before N -particle configurations by x, y, etc., the Hamiltonian H
(= H (N )

U,V ) reads

Hφ(x) = H0φ(x) + [(U + V1 + · · · + VN ) φ] (x)

= ∑
y: ‖y−x‖=1

φ(y) +
(

U (x) +
∑N

j=1 V (x j ;ω)
)

φ(x),

x = (x1, . . . , xN ), y = (y1, . . . , yN ) ∈ Z
d × · · · × Z

d ,

(3.1)

where x j =
(

x (1)
j , . . . , x (d)

j

)
, y j =

(
y(1)

j , . . . , y(d)
j

)
∈ Z

d , j = 1, . . . , N , and

‖x‖ = max
j=1,...,N

max
i=1,...,d

∣∣∣x (i)
j

∣∣∣, x = (x1, . . . , xN ) ∈ R
d × · · · × R

d .

A similar formula defines HΛL(u); cf. (1.3). We again assume that values V (x;ω),
x ∈ Z

d , are IID with a common distribution function F . Function U (x) is assumed to
be locally bounded and symmetric on Z

d × · · · × Z
d . (As before, value +∞ can also be

incorporated.)
The statement of Theorem 1 does not change: given u = (u1, . . . , uN ), with

u j = (u(1)
j , . . . , u(d)

j ) ∈ Z
d , and L = (L1, . . . , L N ) ∈ N

N , define Π jΛL(u) as

Π jΛL(u) =
(

d×
i=1

[
−L j + u(i)

j , u(i)
j + L j

])
∩ Z

d , j = 1, . . . , N . (3.2)

Then set

ΛL(u) = Π1ΛL(u) × · · · × ΠN ΛL(u). (3.3)
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Theorem 3. ∀ E ∈ R, L ∈ N
N , u ∈ Z

d × · · · × Z
d and ε > 0,

P
(

dist
[
Σ

(
HΛL(u)

)
, E

] ≤ ε
) ≤ |ΛL(u)| min

j=1,...,N

{∣∣Π jΛL(u)
∣∣} · s(2ε). (3.4)

The proof is completely analogous to that of Theorem 1, based on the representation

N∑
j=1

V (x j ;ω) =
∑
y∈Γ

c(x, y)V (y;ω).

Here Γ is as before the set of smallest cardinality among Π1ΛL(u), . . ., ΠN ΛL(u) and
c(x, y) is given as a function of y ∈ Γ , for every x ∈ ΛL(u), by

c(x, y) =
N∑

j=1

δy,x j ≥ 1.

The statement of an analog of Theorem 2 for a general N -particle case will be a
subject of a forthcoming paper.

We want to conclude by noticing that Theorem 1 can be further extended when ΛL(u)

is replaced by a general lattice domain (in Z
d ×· · ·×Z

d ). We decided to focus on lattice
parallelepipeds because it suffices for traditional applications (Anderson localisation).
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