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Abstract: For a model of atoms and molecules made from static nuclei and non-
relativistic electrons coupled to the quantized radiation field (the standard model of
non-relativistic QED), we prove a Mourre estimate and a limiting absorption princi-
ple in a neighborhood of the ground state energy. As corollaries we derive local decay
estimates for the photon dynamics, and we prove absence of (excited) eigenvalues and
absolute continuity of the energy spectrum near the ground state energy, a region of
the spectrum not understood in previous investigations. The conjugate operator in our
Mourre estimate is the second quantized generator of dilatations on Fock space.

1. Introduction

According to Bohr’s well known picture, an atom or molecule has only a discrete set
of stationary states (bound states) at low energies and a continuum of states at energies
above the ionization threshold. Electrons can jump from a stationary state to another
such state at lower energy by emitting photons. These radiative transitions tend to render
excited states unstable, i.e., convert them into resonances. Exceptions are the ground
state and, in some cases, excited states that remain stable for reasons of symmetry (e.g.
ortho-helium). In non-relativistic QED, the instability of excited states finds its math-
ematical expression in the migration of eigenvalues to the lower complex half-plane
(second Riemannian sheet for a weighted resolvent) as the interaction between electrons
and photons is turned on. Indeed, the spectrum of the Hamiltonian becomes purely abso-
lutely continuous in a neighborhood of the unperturbed excited eigenvalues [5,7]. The
ground state, however, remains stable [4,5,16]. The methods used to analyze the spec-
trum near unperturbed excited eigenvalues have either failed [7], or not been pushed
far enough [5], to yield information on the nature of the spectrum of the interacting
Hamiltonian in a neighborhood of the ground state energy. The purpose of this paper is
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to close this gap: we establish a Mourre estimate and a corresponding limiting absorption
principle for a spectral interval at the infimum of the energy spectrum. It follows that the
spectrum is purely absolutely continuous above the ground state energy. As a corollary
we prove local decay estimates for the photon dynamics.

In non-relativistic QED (regularized in the ultraviolet), the Hamiltonian, H , of an
atom or molecule with static nuclei is a self-adjoint operator on the tensor product,
H := Hpart ⊗ F , of the electronic Hilbert space Hpart = ∧N

i=1L2(R3; C
2) and the

symmetric (bosonic) Fock space F over L2(R3,C2; dk). It is given by

H =
N∑

i=1

(−i∇xi + α3/2 A(αxi ))
2 + V + H f , (1)

where N is the number of electrons and α > 0 is the fine structure constant. The variable
xi ∈ R

3 denotes the position of the i th electron, and V is the operator of multiplication
by V (x1, . . . , xN ), the potential energy due to the interaction of the electrons and the
nuclei through their electrostatic fields. In our units, V (x1, . . . , xN ) is independent of α
and given by

V (x1, . . . , xN ) = −
N∑

i=1

M∑

l=1

Zl

|xi − Rl | +
∑

i< j

1

|xi − x j | .

The operator H f accounts for the energy of the transversal modes of the electromagnetic
field, and A(x) is the quantized vector potential in the Coulomb gauge with an ultraviolet
cutoff. In terms of creation- and annihilation operators, a∗

λ(k) and aλ(k), these operators
are

H f =
∑

λ=1,2

∫
d3k|k|a∗

λ(k)aλ(k),

and

A(x) =
∑

λ=1,2

∫
d3k

κ(k)

|k|1/2 ελ(k)
{

eik·x aλ(k) + e−ik·x a∗
λ(k)

}
, (2)

where λ ∈ {1, 2} labels the two possible photon polarizations perpendicular to k ∈ R
3.

The corresponding polarization vectors are denoted by ελ(k); they are normalized and
orthogonal to each other. Thus, for each x ∈ R

3, A(x) = (A1(x), A2(x), A3(x)) is a
triple of operators on the Fock space F . The real-valued function κ is an ultraviolet cut-
off and serves to make the components of A(x) densely defined self-adjoint operators.
We assume that κ belongs to the Schwartz space, although much less smoothness and
decay suffice. We emphasize that no infrared cutoff is used; that is, (physically relevant)
choices of κ , with

κ(0) �= 0 (3)

are allowed. The spectral analysis of H for such choices of κ is the main concern of
this paper. Under the simplifying assumption that |κ(k)| ≤ |k|β , for some β > 0, the
analysis is easier and some of our results are already known for β sufficiently large; see
the brief review at the end of this introduction.

The spectrum of H is the half-line [E,∞), with E = inf σ(H). The end point E
is an eigenvalue if N − 1 <

∑
l Z j [6,16,20], but the rest of the spectrum is expected

to be purely absolutely continuous (with possible exception as explained above). For
a large interval between E and the threshold, �, of ionization, absolute continuity has
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been proven in [6,7]; but the nature of the spectrum in small neighborhoods of E and�
has remained open. There are further results on absolute continuity of the spectrum for
simplified variants of H , and we shall comment on them below.

Our first main result concerns the spectrum of H in a neighborhood of E . Under
the assumptions that α is sufficiently small and that e1 = inf σ(Hpart) is a simple and
isolated eigenvalue of Hpart = −∑N

i=1	xi + V , we show that σ(H) is purely abso-
lutely continuous in (E, E + egap/3), where egap = e2 − e1 and e2 is the first point
in the spectrum of Hpart above e1. It follows, in particular, that H has no eigenvalues
near E other than E . Our second main result concerns the dynamics of states in the
spectral subspace of H associated with the interval (E, E + egap/3). If f ∈ C

∞
0 (R)with

supp( f ) ⊂ (E, E + egap/3), then

‖〈B〉−se−i Ht f (H)〈B〉−s‖ = O(
1

t s−1/2 ), (t → ∞), (4)

where B, is the second quantized dilatation generator on Fock space, that is,

B = d
(b), b = 1

2
(k · y + y · k). (5)

Here y = i∇k denotes the “position operator” for photons and 〈B〉 := (1 + B2)1/2.
Estimate (4) is a statement about the growth of B under the time evolution of states in
the range of f (H)〈B〉−s . Since growth of B requires that either the number of photons
or their distance to the atom grows, (4) confirms the expectation that, asymptotically as
time tends to ∞, the state of an excited atom or molecule relaxes to the ground state
by emission of photons, provided the maximal energy is below the ionization threshold
[10,14,25]. In the course of this process the atom or molecule (not including the photons
that were radiated off) will eventually wind up, energetically, in a neighborhood of the
ground state energy E . Hence the importance of understanding the spectrum of H and
the dynamics generated by H in spectral subspaces of energies near E . We remark that
the details of the form of interaction between matter and radiation as given in (1) and
(2) are essential for our results to hold, but that our methods are applicable to other
models of matter and radiation as well, and our corresponding results will be published
elsewhere.

Our approach to the spectral analysis of H is based on Conjugate Operator Theory
in its standard form with a self-adjoint conjugate operator. Our choice for the conju-
gate operator is the second quantized dilatation generator (5). The hypotheses of con-
jugate operator theory are a regularity assumption on H and a positive commutator
estimate, called Mourre estimate. Concerning the first assumption we show that s �→
e−i Bs f (H)ei Bsψ is twice continuously differentiable, for all ψ ∈ H and for all f
of class C∞

0 on the interval (−∞, �) below the ionization threshold �. Our Mourre
estimate says that, if α is small enough, then

E	(H − E)[H, i B]E	(H − E) ≥ σ

10
E	(H − E), (6)

for arbitrary σ ≤ egap/2 and 	 = [σ/3, 2σ/3]. As a result we obtain all the standard
consequences of conjugate operator theory on the interval (E, E + egap/3) [23], in par-
ticular, absence of eigenvalues (Virial Theorem), absolute continuity of the spectrum,
existence of the boundary values

〈B〉−s(H − λ± i0)−1〈B〉−s (7)
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for λ ∈ (E, E + egap/3), s ∈ (1/2, 1) (Limiting Absorption Principle), and their Hölder
continuity of degree s − 1/2 with respect to λ. This Hölder continuity implies the local
decay estimate (4).

The idea to use conjugate operator theory with (5) as the conjugate operator is not
new and has been used for instance in [7]. It is based on the property that

[H f , i B] = H f

and that H f is positive on the orthogonal complement of the vacuum sector. There is an
obvious problem, however, with the implementation of this idea that discouraged people
from using it in the analysis of the spectrum close to E : if α3/2W = H − (Hpart + H f )

denotes the interaction part of H , then

[H, i B] = H f + α3/2[W, i B], (8)

and the commutator [W, i B] has no definite sign. It can be compensated for by part of
the field energy H f so that H f + α3/2[W, i B] becomes positive, but only so on spectral
subspaces corresponding to energy intervals separated from E by a distance of order α3

[7]. For fixed α > 0 no positive commutator, and thus no information on the spectrum
is obtained near E = inf σ(H). For this reason, Hübner and Spohn and, later, Skibsted,
Dereziński and Jakšić, and Georgescu et al. chose the operator

B̂ = 1

2
d
(k̂ · y + y · k̂), k̂ = k

|k| ,

or a variant thereof, as conjugate operator; see [9,13,19,24]. It has the advantage that, for-
mally, [H f , i B̂] = N , the number operator, which is bounded below by the identity oper-
ator on the orthogonal complement of the vacuum sector. It follows that [H, i B̂] ≥ 1

2 N ,
for α > 0 small enough, and one may hope to prove absolute continuity of the energy
spectrum all the way down to inf σ(H). The drawback of B̂ is that it is only symmet-
ric, but not self-adjoint, and hence not admissible as a conjugate operator. Therefore
Skibsted, and, later, Georgescu, Gérard, and Møller developed suitable extensions of
conjugate operator theory that allow for non-selfadjoint conjugate operators [13,24].
Skibsted applied his conjugate operator theory to (1) and obtained absolute continuity
of the energy spectrum away from thresholds and eigenvalues under an infrared (IR)
regularization, but not for (3). For the spectral results of Georgescu et al. see the review
below. Given this background, the main achievement of the present paper is the discovery
of the Mourre estimate (6). We now sketch the main elements of its proof.

1. As an auxiliary operator we introduce an IR-cutoff Hamiltonian Hσ in which the
interaction of electrons with photons of energy ω ≤ σ is turned off. It follows that Hσ
is of the form

Hσ = Hσ ⊗ 1 + 1 ⊗ H f,σ ,

with respect to H = Hσ ⊗ Fσ , where Fσ is the symmetric Fock space over L2(|k| ≤
σ ; C

2) and H f,σ is d
(ω) restricted to Fσ . We show that the reduced Hamiltonian Hσ

does not have spectrum in the interval (Eσ , Eσ + σ) above the ground state energy
Eσ = inf σ(Hσ ) = inf σ(Hσ ). It follows that, for any 	 ⊂ (0, σ ),

E	(Hσ − Eσ ) = Pσ ⊗ E	(H f,σ ), (9)

where Pσ is the ground state projection of Hσ .
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2. We split B into two pieces B = Bσ + Bσ , where Bσ and Bσ are the second
quantizations of the generators associated with the vector fields η2

σ (k)k and ησ (k)2k,
respectively. Here ησ , ησ ∈ C∞(R3) is a partition of unity, η2

σ + (ησ )2 = 1, with
ησ (k) = 1 for |k| ≤ 2σ and ησ (k) = 1 for |k| ≥ 4σ . It follows that Bσ = Bσ ⊗ 1 with
respect to H = Hσ ⊗ Fσ , and that [H, Bσ ] = [Hσ , Bσ ] ⊗ 1. Thus (9) and the virial
theorem, Pσ [Hσ , Bσ ]Pσ = 0, imply that

E	(Hσ − Eσ )[H, i Bσ ]E	(Hσ − Eσ ) = 0. (10)

3. The first key estimate in our proof of (6) is the operator inequality

E	(Hσ − Eσ )[H, i Bσ ]E	(Hσ − Eσ ) ≥ σ

8
E	(Hσ − Eσ ) (11)

valid for the interval 	 = [σ/3, 2σ/3] and α � 1, with α independent of σ . This
inequality follows from

[H f , i Bσ ] = d
(η2
σω) ≥ H f,σ (12)

and from

E	(Hσ − Eσ )[α3/2 H f + α3/2W, i Bσ ]E	(Hσ − Eσ ) ≥ O(α3/2σ). (13)

Indeed, by writing H f = (1 − α3/2)H f + α3/2 H f , combining (12) and (13), and using
(9) we obtain

E	(Hσ−Eσ )[H, i Bσ ]E	(Hσ−Eσ ) ≥
(
(1 − α3/2) inf 	 + O(α3/2σ)

)
E	(Hσ−Eσ ).

(14)
For 	 = [σ/3, 2σ/3] and α small enough this proves (11).

4. The second key estimate in our proof of (6) is the norm bound

‖ f	(H − E)− f	(Hσ − Eσ )‖ = O(α3/2σ) (15)

valid for smoothed characteristic functions f	 of the interval 	 = [σ/3, 2σ/3]. The
Mourre estimate (6) follows from (10), (11), from B = Bσ + Bσ and from (15) if α � 1,
with α independent of σ .

We conclude this introduction with a review of previous work closely related to this
paper. Absolute continuity of (part of) the spectrum of Hamiltonians of the form (1), or
caricatures thereof, was previously established in [2,4,6,7,13,19,24]. Arai considers the
explicitly solvable case of a harmonically bound particle coupled to the quantized radi-
ation field in the dipole approximation. Hübner and Spohn study the spin-boson model
with massive bosons or with a photon number cutoff imposed. Their work inspired
[24] and [13], where better results were obtained: Skibsted analyzed (1) and assumed
that |κ(k)| ≤ |k|5/2, while, in [13], |κ(k)| ≤ |k|β , with β > 1/2, is sufficient for a
Nelson-type model with scalar bosons. The main achievement of [13] is that no bound
on the coupling strength is required. Papers [6] and [7] do not introduce an infrared
regularization but establish the spectral properties mentioned above only away from
O(α3)-neighborhoods of the particle ground state energy and the ionization threshold.



618 J. Fröhlich, M. Griesemer, I. M. Sigal

2. Notations and Main Results

This section describes in detail the class of Hamiltonians to which we shall apply our
analysis, and it contains all our main results. For clarity and simplicity of the presentation
of our techniques and main ideas, we shall restrict ourselves to a one-electron model
where spin is neglected. Our analysis can easily be extended to the many electron model
presented in the introduction, and spin may be included as well.

The Hilbert space of our systems is the tensor product

H = L2(R3, dx)⊗ F ,
where F denotes the symmetric Fock space over L2(R3; C

2). The Hamiltonian H :
D(H) ⊂ H → H is given by

H = �2 + V + H f , � = −i∇x + α3/2 A(αx), (16)

where V denotes multiplication with a real-valued function V ∈ L2
loc(R

3). We assume
that V is 	−bounded with relative bound zero and that e1 = inf σ(−	 + V ) is an
isolated eigenvalue with multiplicity one. The first point in σ(−	 + V ) above e1 is
denoted by e2 and egap := e2 − e1. The field energy H f and the quantized vector
potential have already been introduced, formally, in the introduction. More proper def-
initions are H f := d
(ω), the second quantization of multiplication with ω(k) = |k|,
and A j (αx) = a(Gx, j ) + a∗(Gx, j ), where

Gx (k, λ) := κ(k)√|k|ελ(k)e
−iαx ·k,

and ελ(k), λ ∈ {1, 2}, are two polarization vectors that, for each k �= 0, are perpendic-
ular to k and to one another. We assume that ελ(k) = ελ(k/|k|). The ultraviolet cutoff
κ : R

3 → C is assumed to be a Schwartz-function that depends on |k| only. It follows
that

|Gx (k, λ)− G0(k, λ)| ≤ α|k|1/2|x ||κ(k)|, (17)

|k|
∣∣∣∣
∂

∂|k|Gx (k, λ)

∣∣∣∣ ≤ α〈x〉|k|−1/2 f (k) (18)

with some Schwartz-function f that depends on κ and ∇κ . For the definitions of the
annihilation operator a(h) and the creation operator a∗(h), where h ∈ L2(R3; C

2), we
refer to [21,26].

The Hamiltonian (16) is self-adjoint on D(H) = D(−	 + H f ) and bounded from
below [18]. We use E = inf σ(H) to denote the lowest point of the spectrum of H and
� to denote the ionization threshold

� = lim
R→∞

(
inf

ϕ∈DR , ‖ϕ‖=1
〈ϕ, Hϕ〉

)
, (19)

where DR := {ϕ ∈ D(H)|χ(|x | ≤ R)ϕ = 0}.
Our conjugate operator is the second quantized dilatation generator

B = d
(b), b = 1

2
(k · y + y · k), (20)
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where y = i∇k . By Theorem 8 of Sect. 4, the Hamiltonian H is locally of class C2(B)
on (−∞, �). That is, the mapping

s �→ e−i Bs f (H)ei Bsϕ (21)

is twice continuously differentiable, for every ϕ ∈ H and every f ∈ C∞
0 (−∞, �).

This makes the conjugate operator theory in the variant of Sahbani [23] applicable, and,
in particular, it allows one to define the commutator [H, i B] as a sesquilinear form on
∪K EK (H)H, the union being taken over all compact subsets K of (−∞, �). We are
now prepared to state the main results of this paper.

Theorem 1. Suppose that α � 1. Then for any σ ≤ egap/2,

E	(H − E)[H, i B]E	(H − E) ≥ σ

10
E	(H − E),

where 	 = [σ/3, 2σ/3].
Given Theorem 1, the remark preceding it, and the fact that, by Lemma 16, � ≥

E + egap/3 for α small enough, we see that both Hypotheses of Conjugate Operator
Theory (Appendix B) are satisfied for� = (E, E + egap/3). This implies that the conse-
quences, Theorems 24 and Theorem 25, of the general theory hold for the system under
investigation, and, thus, it proves Theorem 2 and Theorem 3 below. Alternatively, the
first part of Theorem 2 can also be derived from Theorem 1 using Theorem A.1 of [7].

Theorem 2 (Limiting absorption principle). Let α � 1. Then for every s > 1/2 and
all ϕ,ψ ∈ H the limits

lim
ε→0

〈ϕ, 〈B〉−s(H − λ± iε)−1〈B〉−sψ〉 (22)

exist uniformly in λ in any compact subset of (E, E + egap/3). For s ∈ (1/2, 1) the map

λ �→ 〈B〉−s(H − λ± i0)−1〈B〉−s (23)

is (locally) Hölder continuous of degree s − 1/2 in (E, E + egap/3).

As a corollary from the finiteness of (22) one can show that 〈B〉−s f (H)(H −
z)−1 f (H)〈B〉−s is bounded on C± for all f ∈ C∞

0 (R) with support in (E, E + egap/3).
This implies H -smoothness of 〈B〉−s f (H) and local decay

∫

R

‖〈B〉−s f (H)e−i Htϕ‖2dt ≤ C‖ϕ‖2.

See [22], Theorem XIII.25 and its Corollary. From the Hölder continuity of (23) we
obtain in addition a pointwise decay in time (cf. Theorem 25).

Theorem 3. Let α � 1 and suppose s ∈ (1/2, 1) and f ∈ C∞
0 (R) with supp( f ) ⊂

(E, E + egap/3). Then

‖〈B〉−se−i Ht f (H)〈B〉−s‖ = O(
1

t s−1/2 ), (t → ∞).
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3. Proof of the Mourre Estimate

This section describes the main steps of the proof of Theorem 1. Technical auxiliaries
such as the existence of a spectral gap, soft boson bounds, and the localization of the
electron are collected in Appendix A.

The proof of Theorem 1 depends, of course, on an explicit expression for the commu-
tator [H, i B]. By Lemma 29 and Proposition 10, we know that for f ∈ C∞

0 (−∞, �),

f (H)[H, i B] f (H) = lim
s→0

f (H)

[
H,

ei Bs − 1

s

]
f (H)

= f (H)
(

d
(ω)− α3/2φ(ibGx ) ·�− α3/2� · φ(ibGx )
)

f (H),

(24)

where the limit is taken in the strong operator topology. Therefore we may identify
[H, i B], as a quadratic form, with d
(ω)−α3/2φ(ibGx ) ·�−α3/2� ·φ(ibGx ). One of
our main tools for estimating (24) from below is an infrared cutoff Hamiltonian Hσ , σ
as in Theorem 1, whose spectral subspaces for energies close to inf σ(Hσ ) are explicitly
known (see Lemma 4). A second key tool is the decomposition of B into two pieces, Bσ
and Bσ . We now define these operators along with some other auxiliary operators and
Hilbert spaces. As a general rule, we will place the index σ downstairs if only low-energy
photons are involved, and upstairs for high-energy photons. The fact that this rule does
not cover all cases should not lead to any confusion.

Let χ0, χ∞ ∈ C∞(R, [0, 1]), with χ0 = 1 on (−∞, 1], χ∞ = 1 on [2,∞), and
χ2

0 + χ2∞ ≡ 1. For a given σ > 0, we define χσ (k) = χ0(|k|/σ), χσ (k) = χ∞(|k|/σ),
χ̃σ (k) = 1 − χσ (k), and a Hamiltonian Hσ by

Hσ = (p + α3/2 Aσ (αx))2 + V + H f , (25)

where p = −i∇x and Aσ (αx) = φ(χ̃σGx ). Let Fσ and Fσ denote the symmetric Fock
spaces over L2(|k| < σ) and L2(|k| ≥ σ), respectively, and let Hσ = L2(R3) ⊗ Fσ .
Then H is isomorphic to Hσ ⊗ Fσ , and, in the sense of this isomorphism,

Hσ = Hσ ⊗ 1 + 1 ⊗ H f,σ . (26)

Here Hσ = Hσ � Hσ and H f,σ = H f � Fσ .
Next, we split the operator B into two pieces depending on σ . To this end we define

new cutoff functionsησ = χ2σ ,ησ = χ2σ and cut-off dilatation generators bσ = ησbησ ,
bσ = ησbησ . Since η2

σ + (ησ )2 ≡ 1 and [ησ , [ησ , b]] = 0 = [ησ , [ησ , b]] it follows
from the IMS-formula that b = bσ + bσ . Let Bσ = d
(bσ ) and Bσ = d
(bσ ). Then

B = Bσ + Bσ .

Theorem 8 implies that H is locally of class C2(B), C2(Bσ ) and C2(Bσ )on (−∞, �).
By Lemma 16, � − E ≥ (2/3)egap for α sufficiently small. It follows that (−∞, �) ⊃
(−∞, E + 2/3egap) and hence, arguing as in (24), that

[H, i Bσ ] = d
(η2
σω)− α3/2φ(ibσGx ) ·�− α3/2� · φ(ibσGx ), (27)

[H, i Bσ ] = d
((ησ )2ω)− α3/2φ(ibσGx ) ·�− α3/2� · φ(ibσGx ) (28)
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in the sense of quadratic forms on the range of χ(H ≤ E + egap/2), if α � 1. Also Hσ

is of class C1(Bσ ) and

[Hσ , i Bσ ] = d
((ησ )2ω)− α3/2φ(ibσ χ̃σGx ) ·�− α3/2� · φ(ibσ χ̃σGx ) (29)

on χ(Hσ ≤ E + egap/2)Hσ .
As a further piece of preparation we introduce smooth versions of the energy cutoffs

E	(H −E) and E	(Hσ−Eσ ). We choose f ∈ C∞
0 (R; [0, 1])with f = 1 on [1/3, 2/3]

and supp( f ) ⊂ [1/4, 3/4], so that f	(s) := f (s/σ) is a smoothed characteristic func-
tion of the interval 	 = [σ/3, 2σ/3]. We define

F	 = f	(H − E), F	,σ = f	(Hσ − Eσ ). (30)

Finally, to simplify notations, we set
∫

dk :=
∑

λ=1,2

∫
d3k

and we suppress the index λ in aλ(k), a∗
λ(k), and Gx (k, λ).

Lemma 4. If α � 1 and σ ≤ egap/2, then

F	,σ = Pσ ⊗ f	(H f,σ ), w.r.t. H = Hσ ⊗ Fσ ,
where Pσ denotes the ground state projection of Hσ .

Proof. By Theorem 18 of Appendix A, Hσ has the gap (Eσ , Eσ + σ) in its spectrum if
α � 1. Since the support of f	 is a subset of (0, σ ), the assertion follows. ��
Proposition 5. Let [H, i Bσ ] be defined by (28). If α � 1 and σ ≤ egap/2, then

F	,σ [H, i Bσ ]F	,σ = 0.

Proof. From bσ = bσ χ̃σ , Eqs. (28) and (29) it follows that [H, i Bσ ] = [Hσ , i Bσ ] ⊗ 1
with respect to H = Hσ ⊗Fσ . The statement now follows from Lemma 4 and the Virial
Theorem Pσ [Hσ , i Bσ ]Pσ = 0, Proposition 26. ��
Proposition 6. Let [H, i Bσ ] be defined by (27). If α � 1 and σ ≤ egap/2, then

F	,σ [H, i Bσ ]F	,σ ≥ σ

8
F2
	,σ .

Proof. On the right hand side of (27) we move the creation operators a∗(ibσGx ) to the
left of � and the annihilation operators a(ibσGx ) to the right of �. Since

3∑

j=1

([� j , a∗(ibσGx, j )] + [a(ibσGx, j ),� j ]
) = 0

we arrive at

[H, i Bσ ] = d
(η2
σω)− 2α3/2a∗(ibσGx ) ·�− 2α3/2� · a(ibσGx ). (31)
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Next, we estimate (31) from below using only the fraction 2α3/2d
(η2
σω) of d
(η2

σω)

at first. By completing the square we get, using (18),

d
(χ2
σω)− a∗(ibσGx ) ·�−� · a(ibσGx )

=
∫
ω

[
χσa∗ − ω−1� · (ibχσGx )

∗] [
χσa − ω−1(ibχσGx ) ·�

]
dk

−
3∑

n,m=1

∫
�n

(bχσGx,n)
∗(bχσGx,m)

ω
�m dk

≥ −const σ
3∑

n=1

�n〈x〉2�n . (32)

From (31) and (32) it follows that

[H, i Bσ ] ≥ (1 − 2α3/2)d
(η2
σω)− const α3/2σ

∑

n

�n〈x〉2�n . (33)

It remains to estimate F	,σd
(η2
σω)F	,σ from below and F	,σ

∑
n �n〈x〉2�n F	,σ

from above. Using that F	,σ = Pσ ⊗ f	(H f,σ ), by Lemma 4, and

d
(η2
σω) ≥ H f,σ , f	(H f,σ )H f,σ f	(H f,σ ) ≥ σ

4
f 2
	(H f,σ ),

we obtain

F	,σd
(η2
σω)F	,σ ≥ σ

4
F2
	,σ . (34)

Furthermore, by Lemma 17 and Lemma 15,

sup
σ>0

‖〈x〉�E[0,egap/2](Hσ − Eσ )‖ < ∞. (35)

Since E[0,egap/2](Hσ − Eσ )F	,σ = F	,σ the proposition follows from (33), (34), and
(35). ��
Proposition 7. Let F	, F	,σ be given by (30). There exists a constant C such that for
α � 1 and σ ≤ egap/2,

∥∥F	 − F	,σ
∥∥ ≤ Cα3/2σ.

Proof. We begin with a Pauli-Fierz transformation Uσ effecting only the photons with
|k| ≤ σ . Let

Uσ = exp(iα3/2x · Aσ (0)), Aσ (αx) := φ(χσGx ).

Then

H(σ ) := Uσ HU∗
σ

=
(

p + α3/2 A(σ )(αx)
)2

+ V + H f + α3/2x · Eσ (0) +
2

3
α3x2‖χσ κ‖2,
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where A(σ )(αx) := A(αx)− Aσ (0) and Eσ (0) := −i[H f , Aσ (0)]. We compute, drop-
ping the argument αx temporarily,

H(σ ) − Hσ = 2α3/2 p · (A(σ ) − Aσ )

+ α3(A(σ ) + Aσ ) · (A(σ ) − Aσ )

+ α3/2x · Eσ (0) +
2

3
α3x2‖χσ κ‖2,

(36)

where (A(σ ))2 − (Aσ )2 = (A(σ ) + Aσ ) · (A(σ ) − Aσ ) was used. Note that A(σ ) · Aσ =
Aσ · A(σ ). For later reference we note that

A(σ )(αx)− Aσ (αx) = Aσ (αx)− Aσ (0) = φ(χσ (Gx − G0)) (37)

x · Eσ (0) = φ(iωχσG0 · x). (38)

Step 1. Uniformly in σ ≤ egap/2,

‖(U∗
σ − 1)F	,σ ‖ = O(α3/2σ), (α → 0). (39)

Proof of Step 1. By the spectral theorem

‖(U∗
σ − 1)F	,σ ‖ ≤ ‖α3/2x · Aσ (0)F	,σ‖

= α3/2‖x · φ(χσG0)F	,σ ‖
≤ 2α3/2‖x · a(χσG0)F	,σ ‖ + α3/2‖χσG0‖ · ‖x F	,σ ‖.

The second term is of order α3/2σ as σ → 0, because, by assumption on G0, ‖χσG0‖ =
O(σ ), and because sup0<σ≤egap/2 ‖x F	,σ ‖ < ∞ by Lemma 17. The first term is of order

α3/2σ as well, by Lemma 21 and Lemma 17.

Step 2. Let F	,(σ) := f	(H(σ ) − E) = Uσ F	U∗
σ . Then, uniformly in σ ≤ egap/2,

‖F	,(σ) − F	,σ ‖ = O(α3/2σ), (α → 0). (40)

Step 1 and Step 2 complete the proof of the proposition, because

F	 − F	,σ = U∗
σ F	,(σ)Uσ − F	,σ

= (U∗
σ − 1)F	,σ + U∗

σ F	,σ (Uσ − 1) + U∗
σ

(
F	,(σ) − F	,σ

)
Uσ .

Proof of Step 2. Let j ∈ C∞
0 ([0, 1],R) with j = 1 on [1/4, 3/4] and supp( j) ⊂

[1/5, 4/5]. Let j	(s) = j (s/σ), so that f	 j	 = f	, and let J	 = j	(H − E) and
J	,σ = j	(Hσ − Eσ ). We will show that

‖F	,(σ) − F	,σ ‖ = O(α3/2σ 1/2), (41)

‖(F	,(σ) − F	,σ )J	,σ ‖ = O(α3/2σ), (42)

and it will be clear from our proofs that (41) and (42) hold likewise with F and J
interchanged. These estimates prove the proposition, because

F	,(σ) − F	,σ = F	,(σ) J	,(σ) − F	,σ J	,σ
= F	,σ (J	,(σ) − J	,σ ) + (F	,(σ) − F	,σ )J	,σ

+ (F	,(σ) − F	,σ )(J	,(σ) − J	,σ ).
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To prove (41) and (42) we use the functional calculus based on the representation

f (s) =
∫

d f̃ (z)
1

z − s
, d f̃ (z) := − 1

π

∂ f̃

∂ z̄
(z)dxdy, (43)

for an almost analytic extension f̃ of f that satisfies |∂z̄ f̃ (x + iy)| ≤ const y2 [8,17].
We begin with the proof of (42). From (30) and (43) we obtain

(F	,(σ) − F	,σ )J	,σ

= σ−1
∫

d f̃ (z)
1

z − (H(σ ) − E)/σ

(
H(σ ) − Hσ − E + Eσ

)
J	,σ

1

z − (Hσ − Eσ )/σ
.

(44)

Since, by Lemma 22, |E − Eσ | = O(α3/2σ 2), it remains to estimate the contributions
of the various terms due to H(σ ) − Hσ as given by (36). To begin with, we note that

‖(A(σ ) − Aσ )J	,σ ‖ = O(ασ 2), (45)

‖x · Eσ (0)J	,σ ‖ = O(σ 2). (46)

This follows from (37), (38), (17), and Lemma 21, as far as the annihilation operators
in (45) and (46) are concerned. For the term due to the creation operator in (45) we use

‖a∗(χσ (Gx − G0))J	,σ ‖ ≤ ‖a(χσ (Gx − G0))J	,σ ‖ +
∥∥‖χσ (Gx − G0)‖ J	,σ

∥∥

and ‖χσ (Gx − G0)‖ = O(|x |ασ 2), as well as supσ>0 ‖|x |J	,σ ‖ < ∞. The operators
p and A(σ ) + Aσ stemming from the first and second terms of (36) are combined with
the first resolvent of (44): using U∗

σ pUσ = p + α3/2 Aσ (0) and Lemma 15 we obtain

‖(z − (H(σ ) − E)/σ )−1 p‖ = ‖(z − (H − E)/σ )−1(p + α3/2 Aσ (0))‖
≤ const

√
1 + |z|
|y| ,

which is integrable with respect to d f̃ (z). This proves that the first, second and third
terms of (36) give contributions to (44) of order α5/2σ , α4σ , and α3/2σ , respectively.
Since ‖χσ κ‖2 = O(σ 3), (42) follows.

The proof of (41) is somewhat involved due to factors of x . We begin with

F	,(σ) − F	,σ = F	,(σ) J	,(σ) − F	,σ J	,σ
= (F	,(σ) − F	,σ )J	,σ + F	,(σ)(J	,(σ) − J	,σ ).

The first term is of order α3/2σ by (42). The second one can be written as

σ−1
∫

d f̃ (z)R(σ )(z)F	,(σ)
(
H(σ ) − Hσ − E + Eσ

)
Rσ (z), (47)

with obvious notations for the resolvents. We recall that, by Lemma 22, |E − Eσ | =
O(α3/2σ 2). As in the proof of (42) we need to estimate the contributions due to the four
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terms of H(σ ) − Hσ given by (36). We do this exemplarily for the second one and begin
with the estimate

‖F	,(σ)(A
(σ ) + Aσ ) · (A(σ ) − Aσ )Rσ (z)‖

≤ ‖F	,(σ)〈x〉(A(σ ) + Aσ )‖‖〈x〉−1(A(σ ) − Aσ )(H f + 1)−1/2‖‖(H f + 1)1/2 Rσ (z)‖.
(48)

For the second factor of (48) we use

‖〈x〉−1(A(σ ) − Aσ )(H f + 1)−1/2‖ = ‖〈x〉−1φ(χσ (Gx − G0))(H f + 1)−1/2‖
≤ 2 sup

x
〈x〉−1‖χσ (Gx − G0)‖ω

= O(ασ 3/2),

which is of the desired order. In the first factor of (48) we use that Uσ commutes with
〈x〉, A(σ ), and Aσ , as well as Lemma 14, Lemma 15 and Lemma 17. We obtain the
bound

‖F	,(σ)〈x〉(A(σ ) + Aσ )‖ = ‖F	〈x〉(A(σ ) + Aσ )‖
≤ ‖F	〈x〉(H f + 1)1/2‖‖(H f + 1)−1/2(A(σ ) + Aσ )‖
≤ const ‖F	(〈x〉2 + H f + 1)‖ < ∞.

Finally, for the last factor of (48), Lemma 15 implies the bound

‖(H f + 1)1/2 Rσ (z)‖ ≤ const

√
1 + |z|
|y| ,

which is integrable with respect to d f̃ (z). In a similar way the contributions of the other
terms of (36) are estimated. It follows that (47) is of order O(α3/2σ 1/2) which proves
(41). This completes the proof of Proposition 7. ��
Proof of Theorem 1. Since (ησ )2 + η2

σ = 1 and bσ + bσ = b, it follows from (27) and
(28) that C := d
(ω)− α3/2φ(ibGx ) ·�− α3/2� · φ(ibGx ) = [H, i Bσ ] + [H, i Bσ ].
Thus Propositions 5 and 6 imply that

F	,σC F	,σ ≥ σ

8
F2
	,σ .

We next replace F	,σ by F	, using Proposition 7 and noticing that C F	,σ and F	C are
bounded, uniformly in σ . Since, by (24), C = [H, i B] on the range of F	 we arrive at

F	[H, i B]F	 ≥ σ

8
F2
	 + O(α3/2σ).

After multiplying this operator inequality from both sides with E	(H − E), the theorem
follows. ��
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4. Local Regularity of H with Respect to B

The purpose of this section is to prove that H is locally of class C2(B) in (−∞, �), where
� is the ionization threshold of H , and B is any of the three operators d
(b), d
(bσ ),
d
(bσ ) defined in Sect. 2. Some background on the concept of local regularity of a
Hamiltonian with respect to a conjugate operator and basic criteria for this property to
hold are collected in Appendix B. To prove a result that covers the three aforementioned
operators we consider a class of operators B that contains all of them and is defined as
follows.

Let k �→ v(k) be a C∞-vector field on R
3 of the form v(k) = h(|k|)k, where

h ∈ C∞(R) such that sn∂nh(s) is bounded for n ∈ {0, 1, 2}. It follows

|v(k)| ≤ β|k|, for all k ∈ R
3, (49)

for some β > 0, and that partial derivatives of v times a Schwartz-function, such as κ ,
are bounded. We remark that the assumption that v is parallel to k is not needed if a
representation of H free of polarization vectors is chosen.

Let φs : R
3 → R

3 be the flow generated by v, that is,

d

ds
φs(k) = v(φs(k)), φ0(k) = k. (50)

Then φs(k) is of class C∞ with respect to s and k, and by Gronwall’s lemma and (49),

e−β|s||k| ≤ |φs(k)| ≤ eβ|s||k|, for s ∈ R. (51)

Induced by the flow φs on R
3 there is a one-parameter group of unitary transformations

on L2(R3) defined by
fs(k) = f (φs(k))

√
det Dφs(k). (52)

Since these transformations leave C∞
0 (R

3) invariant, their generator b is essentially
self-adjoint on this space. From b f = id/ds fs |s=0 we obtain

b = 1

2
(v · y + y · v), (53)

where y = i∇k . Let B = d
(b). The main result of this section is:

Theorem 8. Let H be the Hamiltonian defined by (16) and let� be its ionization thresh-
old given by (19). Under the assumptions above on the vector-field v, the operator H is
locally of class C2(B) in � = (−∞, �) for all values of α.

The proof, of course, depends on the explicit knowledge of the unitary group gener-
ated by B, and in particular on the formulas

e−i Bs H f ei Bs = d
(e−ibsωeibs) = d
(ω ◦ φs) (54)

e−i Bs A(x)ei Bs = φ(e−ibs Gx ) = φ(Gx,s) (55)

with Gx,s given by (52). Another essential ingredient is that, by [15], Theorem 1,

‖〈x〉2 f (H)‖ < ∞ (56)

for every f ∈ C∞
0 (�). We begin with four auxiliary results, Propositions 9, 10, 11,

and 12.
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Proposition 9. (a) For all s ∈ R, ei Bs D(H f ) ⊂ D(H f ) and

‖H f ei Bs(H f + 1)−1‖ ≤ eβ|s|.

(b) For all s ∈ R, ei Bs D(H) ⊂ D(H) and

‖Hei Bs(H + i)−1‖ ≤ const eβ|s|.

Proof. From e−i Bs H f ei Bs = d
(e−ibsω) = d
(ω ◦ φs) and (51) it follows that

‖H f ei Bsϕ‖ = ‖d
(ω ◦ φs)ϕ‖ ≤ eβ|s|‖H f ϕ‖
for allϕ ∈ F0(C∞

0 ), which is a core of H f . This proves, first, that ei Bs D(H f ) ⊂ D(H f ),
and next, that the estimate above extends to D(H f ), proving (a).

The Hamiltonian H is self-adjoint on the domain of H (0) = −	 + H f . Therefore
the operators H (0)(H + i)−1 and H(H (0) + i)−1 are bounded and it suffices to prove
(b) for H (0) in place of H . The subspace D(	)⊗ D(H f ) is a core of H (0). By (a) it is
invariant w.r. to ei Bs and

‖H (0)ei Bsϕ‖ ≤ ‖	ϕ‖ + ‖H f ϕ‖eβ|s| ≤ √
2eβ|s|‖H (0)ϕ‖.

As in the proof of (a), it now follows that ei Bs D(H (0)) ⊂ D(H (0)) and then the estimate
above extends to D(H (0)). ��

Let Bs := (ei Bs − 1)/ is. Then, by Proposition 9, [Bs, H ] is well defined, as a linear
operator on D(H). The main ingredients for the proof of Theorem 8 are Propositions 10
and 12 below.

Proposition 10. (a) For all ϕ ∈ D(H),

i lim
s→0

〈x〉−1[H, Bs]ϕ=〈x〉−1
(

d
(∇ω · v)−α3/2φ(ibGx ) ·�−� · φ(ibGx )α
3/2

)
ϕ.

(b)

sup
0<|s|≤1

‖〈x〉−1[Bs, H ](H + i)−1‖ < ∞.

Proof. Part (b) follows from (a) and the uniform boundedness principle. Part (a) is
equivalent to the limit

i lim
s→0

〈x〉−1 1

s

(
e−i Bs Hei Bs − H

)
ϕ

being equal to the expression on the right hand side of (a). By (54), for all ϕ ∈ D(H f ),

lim
s→0

1

s

(
e−i Bs H f ei Bs − H f

)
ϕ = lim

s→0

1

s
d
(ω ◦ φs − ω)ϕ = d
(∇ω · v)ϕ,

where the last step is easily established using Lebesgue’s dominated convergence
Theorem. The necessary dominants are obtained from |s−1(ω◦φs −ω)| ≤ |s|−1(eβ|s| −
1)ω, by (51), and from the assumption ϕ ∈ D(d
(ω)).
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It remains to consider the contribution due to Hint := 2α3/2 A(αx) · p + α3 A(αx)2.
Let 	Gx,s := Gx,s − Gx . By (55),

e−i Bs Hinte
i Bs − Hint

= 2α3/2φ(	Gx,s) · p + α3φ(	Gx,s) · φ(Gx ) + α3φ(Gx,s) · φ(	Gx,s), (57)

a sum of three operators, each of which contains 	Gx,s . By Lemma 13 at the end of
this section, for each x ∈ R

3,

1

s
	Gx,s = 1

s

(
Gx,s − Gx

) → −ibGx , (s → 0) (58)

in the norm ‖ · ‖ω of Lω(R3) (see Appendix A), and

sup
x∈R3

〈x〉−1‖bGx‖ω < ∞ (59)

by the assumptions on Gx . Since the operators p(H f + 1)1/2(H + i)−1 and H f (H + i)−1

are bounded by Lemma 15 and since, by Lemma 14, ‖φ( f )(H f + 1)−1/2‖ ≤ ‖ f ‖ω and
‖φ( f )φ(g)(H f + 1)−1‖ ≤ 8‖ f ‖ω‖g‖ω for all f, g ∈ L2(R3), it follows from (57),
(58), and (59) that

lim
s→0

〈x〉−1 1

s

(
e−i Bs Hinte

i Bs − Hint

)
ϕ

= 〈x〉−1
(

2α3/2φ(−ibGx ) · p + α3φ(−ibGx ) · φ(Gx ) + α3φ(Gx ) · φ(−ibGx )
)
ϕ

= −α3/2〈x〉−1 (φ(ibGx ) ·� +� · φ(ibGx )) ϕ

for all ϕ ∈ D(H). ��
Proposition 11. For all f ∈ C∞

0 (�),

sup
0<|s|≤1

‖[Bs, f (H)]‖ < ∞.

Remark. By Proposition 27 this proposition implies that f (H) is of class C1(B) for all
f ∈ C∞

0 (�).

Proof. Let F = f (H) and let adBs (F) = [Bs, F]. If g ∈ C∞
0 (�) is such that g ≡ 1 on

supp( f ) and G = g(H), then F = G F and hence

adBs (F) = GadBs (F) + adBs (G)F.

The norm of adBs (G)F is equal to the norm of its adjoint which is −F∗adB−s (G
∗),

where F∗ = f̄ (H) and G∗ = ḡ(H). It therefore suffices to prove that

sup
0<|s|≤1

‖GadBs (F)‖ < ∞ (60)

for all f, g ∈ C∞
0 (�). To this end we use the representation f (H) = ∫

d f̃ (z)R(z),
where R(z) = (z− H)−1 and f̃ is an almost analytic extension of f with |∂z̄ f̃ (x +iy)| ≤
const|y|2, cf. (43). It follows that

GadBs (F) =
∫

d f̃ (z)R(z)G[Bs, H ]R(z),
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which is well-defined by Proposition 9, part (b). Upon writing [Bs, H ] = 〈x〉〈x〉−1

[Bs, H ]R(i)(i − H)we can estimate the norm of the resulting expression for GadBs (F)
with 0 < |s| ≤ 1, by

‖GadBs (F)‖ ≤ sup
0<|s|≤1

‖〈x〉−1[Bs, H ]R(i)‖‖g(H)〈x〉‖
∫

|d f̃ (z)|‖R(z)‖‖(i−H)R(z)‖.

Since

‖(i − H)R(z)‖ ≤ const

(
1 +

1

| Im(z)|
)
, (61)

the integral is finite by choice of f̃ . The factors in front of the integral are finite by
Proposition 10 and by (56). ��
Proposition 12.

sup
0<|s|≤1

‖〈x〉−2[Bs[Bs, H ]](H + i)−1‖ < ∞.

Proof. By Definition of H ,

[Bs, [Bs, H ]] = [Bs, [Bs, H f ]] + α3/2[Bs, [Bs, p · φ(Gx )]]
+α3[Bs, [Bs, φ(Gx )

2]].
We estimate the contributions of these terms one by one in Steps 1–3 below. As a prep-
aration we note that

adBs = iei Bs 1

s
(W (s)− 1), (62)

ad2
Bs

= − e2i Bs 1

s2 (W (s)− 1)2 = −e2i Bs 1

s2 (W (2s)− 2W (s) + W (0)) , (63)

where W (s)maps an operator T to e−i Bs T ei Bs . In view of Eqs. (54), (55), we will need
that for every twice differentiable function f : [0, 2s] → C,

1

s2 | f (2s)− 2 f (s) + f (0)| ≤ sup
|t |≤2|s|

| f ′′(t)|. (64)

Step 1.

sup
|s|≤1

‖ad2
Bs
(H f )(H f + 1)−1‖ < ∞.

By (63) and (54)

ad2
Bs
(H f ) = −e2i Bs 1

s2 d
(ω ◦ φ2s − 2ω ◦ φs + ω). (65)

Thus in view of (64) we estimate the second derivative of s �→ ω ◦φs(k) = |φs(k)|. For
k �= 0,

∂2

∂s2 |φs(k)| = − 1

|φs(k)| 〈φs(k), v(φs(k))〉2 +
v(φs(k))

|φs(k)|
+

1

|φs(k)|
∑

i, j

φs(k)ivi, j (φs(k))φs(k) j .
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By assumption on v, vi, j ∈ L∞ and |v(φs(k))| ≤ β|φs(k)| ≤ eβ|s||k|. It follows that

1

s2
|(ω ◦ φ2s − 2ω ◦ φs + ω) (k)| ≤ const eβ|s|ω(k),

which implies
∥∥∥∥

1

s2 d
(ω ◦ φ2s − 2ω ◦ φs + ω)(H f + 1)−1
∥∥∥∥ ≤ const eβ|s|.

By (65) this establishes Step 1.

Step 2.

sup
|s|≤1

sup
x∈R3

〈x〉−2‖ad2
Bs
(φ(Gx ) · p)(H + i)−1‖ < ∞.

Since p(H f + 1)1/2(H + i)−1 is bounded, it suffices to show that

sup
|s|≤1, x

〈x〉−2‖ad2
Bs
(φ(Gx ))(H f + 1)−1/2‖ < ∞. (66)

By Eq. (55)
1

s2 (W (s)− 1)2(φ(Gx )) = 1

s2 φ(Gx,2s − 2Gx,s + Gx ), (67)

and by (64)

〈x〉−2 1

s2

∥∥∥φ(Gx,2s − 2Gx,s + Gx )(H f + 1)−1/2
∥∥∥

≤ 〈x〉−2 1

s2 ‖Gx,2s − 2Gx,s + Gx‖ω ≤ 〈x〉−2
∥∥∥∥
∂2

∂s2 Gx,s

∥∥∥∥
ω

.

For k �= 0 the function s �→ Gx,s(k) is arbitrarily often differentiable by assumption on
v and

− i
∂

∂s
Gx,s(k) = (v · ∇k Gx )s(k) +

1

2
(div(v)Gx )s(k), (68)

− ∂2

∂s2 Gx,s(k) =
(
(v · ∇k)

2Gx

)

s
(k) + (div(v)v · ∇k Gx )s (69)

+
1

2

∑

i, j

(
(vi∂i∂ jv j )Gx

)
s +

1

4

(
div(v)2Gx

)

s
. (70)

By part (a) of Lemma 13 below, it suffices to estimate the L2
ω-norm of these four contri-

butions with s = 0. By our assumptions on v, div(v) and vi∂i∂ jv j are bounded functions.
This and the bound ‖Gx‖ ≤ ‖G0‖ω < ∞ account for the contributions of (70), and
for the factor div(v) in front of the second term of (69). It remains to show that the
L2
ω-norms of

〈x〉−1(v · ∇k)Gx and 〈x〉−2(v · ∇k)
2Gx

are bounded uniformly in x . But this is easily seen by applying v · ∇k to each factor
of Gx (k, λ) = ελ(k)e−ik·xκ(k)|k|−1/2 and using that v · ∇ελ(k) = 0, v · ∇e−ik·x =
−iv · xe−ik·x and that v · ∇|k|−1/2 is again of order |k|−1/2 by assumption on v.
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Step 3.

sup
|s|≤1, x

〈x〉−2‖ad2
Bs
(φ(Gx )

2)(H f + 1)−1‖ < ∞.

By the Leibniz-rule for adBs ,

ad2
Bs
(φ(Gx )

2) = ad2
Bs
(φ(Gx )) · φ(Gx ) + φ(Gx ) · ad2

Bs
(ϕ(Gx ))

+ 2adBs (φ(Gx ))adBs (φ(Gx )). (71)

For the contribution of the first term we have

〈x〉−2‖ad2
Bs
(φ(Gx )) · φ(Gx )(H f + 1)−1‖

≤ 〈x〉−2‖ad2
Bs
(φ(Gx ))(H f + 1)−1/2‖‖φ(Gx )(H f + 1)−1/2‖

which is bounded uniformly in |s| ≤ 1 and x ∈ R
3 by (66) in the proof of Step 2. For

the second term of (71) we first note that

φ(Gx )ad2
Bs
(φ(Gx )) = φ(Gx )e

2i Bs 1

s2 (W (s)− 1)2(φ(Gx ))

= e2i Bsφ(Gx,s)
1

s2 (W (s)− 1)2(φ(Gx )),

and hence, by the estimates in Step 2, we obtain a bound similar to the one for the
first term of (71) with an additional factor of e2β|s| coming from the use of Lemma 13.
Finally, by (62) and (55),

adBs (φ(Gx ))adBs (φ(Gx )) = e2i Bsφ

(
Gx,2s − Gx,s

s

)
φ

(
Gx,s − Gx

s

)
,

which implies that

〈x〉−2‖adBs (φ(Gx ))adBs (φ(Gx ))(H f + 1)−1‖ ≤ sup
|s|≤2, x∈R3

(
〈x〉−1‖∂s Gx,s‖ω

)2
.

This is finite by (68) and the assumptions on v and Gx . ��
Proof of Theorem 8. By Propositions 11 and 28 it suffices to show that

sup
0<s≤1

‖ad2
Bs
( f (H))‖ < ∞ (72)

for all f ∈ C∞
0 (�). Let g ∈ C∞

0 (�)with g f = f and let G = g(H), F = f (H). Then
F = G F and hence

ad2
Bs
(F) = ad2

Bs
(G F) = ad2

Bs
(G)F + 2adBs (G)adBs (F) + Gad2

Bs
(F).

From Proposition 11 we know that sup0<s≤1 ‖adBs (G)‖ < ∞, and similarly with F in
place of G. Moreover

(
ad2

Bs
(G)F

)∗ = F∗ad2
B−s
(G∗).
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Thus it suffices to show that for all g, f ∈ C∞
0 (�),

sup
0<|s|≤1

‖Gad2
Bs
(F)‖ < ∞. (73)

To this end we use F = ∫
d f̃ (z)R(z) with an almost analytic extension f̃ of f such

that |∂z̄ f̃ (x + iy)| ≤ const |y|4. We obtain

Gad2
Bs
(F) = 2

∫
d f̃ (z)R(z)G[Bs, H ]R(z)[Bs, H ]R(z) (74)

+
∫

d f̃ (z)R(z)G[Bs, [Bs, H ]]R(z). (75)

Since, by (56), ‖G〈x〉2‖ < ∞ the norm of the second term is bounded uniformly in
s ∈ {0 < |s| ≤ 1} by Proposition 12. In view of Proposition 10 we rewrite (74) (times
1/2) as

∫
d f̃ (z)R(z)G〈x〉[Bs, H ]R(z)〈x〉−1[Bs, H ]R(z)

−
∫

d f̃ (z)R(z)G [〈x〉, [Bs, H ]R(z)] 〈x〉−1[Bs, H ]R(z).

For the norm of the first integral we get the bound
∫

|d f̃ (z)|‖R(z)‖‖G〈x〉2‖‖〈x〉−1[Bs, H ]R(i)‖2‖(i − H)R(z)‖2,

which is bounded uniformly in s, by Proposition 10, the exponential decay on the range
of G = g(H) and by construction of f̃ . The norm of the second term is bounded by

∫
|d f̃ (z)|‖R(z)‖ ‖g(H)〈x〉‖ ‖〈x〉−1 [〈x〉, [Bs, H ]R(z)] ‖ ‖〈x〉−1[Bs, H ]R(z)‖.

(76)
The last factor is bounded by ‖(i − H)R(z)‖, uniformly in s ∈ (0, 1], by Proposition 10.
For the term in the third norm we find, using the Jacobi identity and [Bs, 〈x〉] = 0, that

〈x〉−1 [〈x〉, [Bs, H ]R(z)]=〈x〉−1 [Bs, [〈x〉, H ]] R(z)+〈x〉−1[Bs, H ]R(z)[〈x〉, H ]R(z),
(77)

where

[〈x〉, H ] = 2i
x

〈x〉 (p + A) +
2

〈x〉 +
1

〈x〉3 . (78)

Since (78) is bounded w.r.to H , the norm of the second term of (77), by Proposition 10,
is bounded by ‖(i − H)R(z)‖2 uniformly in s. As for the first term of (77), in view of
(78), its norm is estimated like the norm of 〈x〉−1[Bs, H ]R(z) in Proposition 10, which
leads to a bound of the form const‖(i − H)R(z)‖. By (61) and by construction of f̃ it
follows that (76) is bounded uniformly in |s| ∈ (0, 1]. ��

We conclude this section with a lemma used in the proofs of Propositions 10 and 12
above. For the definition of L2

ω(R
3) and its norm see Appendix A.

Lemma 13. Let f �→ fs = e−ibs f on L2
ω(R

3) be defined by (49), (50) and (52). Then
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(a) The transformation f �→ fs maps L2
ω(R

3) into itself and, for all s ∈ R,

‖ fs‖ω ≤ eβ|s|/2‖ f ‖ω.

(b) The mapping R → L2
ω(R

3), s �→ fs is continuous.
(c) For all f ∈ L2

ω(R
3) for which |k| �→ f (|k|k̂), k̂ ∈ R

3, is continuously differentiable
on R+ and

√
ω∂|k| f, ω∂|k| f ∈ L2(R3),

L2
ω − lim

s→0

1

s
( fs − f ) = v · ∇ f +

1

2
div(v) f.

Remark. Statement (c) shows, in particular, that f ∈ D(b) and that −ib f = v · ∇ f +
(1/2)div(v) f for the class of functions f considered there.

Proof. (a) Making the substitution q = φs(k), dq = det Dφs(k)dk and using (51) we
get

‖ fs‖2 =
∫
(|k|−1 + 1)| f (φs(k))|2 det Dφs(k) dk

=
∫
(|φ−s(q)|−1 + 1)| f (q)|2 dq ≤ eβ|s|‖ f ‖2

ω.

(b) For functions f ∈ L2
ω(R

3) that are continuous and have compact support
‖ fs − f ‖ω → 0 follows from lims→0 fs(k) = f (k), for all k ∈ R

3 by an appli-
cation of Lebesgue’s dominated convergence theorem. From here, (b) follows by an
approximation argument using (a).

(c) By assumption on f ,

f̃ := v · ∇ f +
1

2
div(v) f ∈ L2

ω(R
3).

Using that

fs(k)− f (k) =
∫ s

0
( f̃ )t (k) dt, k �= 0

and Jensen’s inequality we get

‖s−1( fs − f )− f̃ ‖2
ω =

∫
dk(|k|−1 + 1)

∣∣∣∣
1

s

∫ s

0
[ f̃t (k)− f̃ (k)] dt

∣∣∣∣
2

≤
∫

dk(|k|−1 + 1)
1

s

∫ s

0

∣∣∣ f̃t (k)− f̃ (k)
∣∣∣
2

dt

= 1

s

∫ s

0
‖ f̃t − f̃ ‖2dt,

which vanishes in the limit s → 0 by (b). ��
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A. Operator and Spectral Estimates

Let L2
ω(R

3,C2) denote the linear space of measurable functions f : R
3 → C

2 with

‖ f ‖2
ω =

∑

λ=1,2

∫
| f (k, λ)|2(|k|−1 + 1)d3k < ∞.

Lemma 14. For all f, g ∈ L2
ω(R

3,C2),

‖a�( f )(H f + 1)−1/2‖ ≤ ‖ f ‖ω,
‖a�( f )a�(g)(H f + 1)−1‖ ≤ 2‖ f ‖ω‖g‖ω,

where a� may be a creation or an annihilation operator.

The first estimate of Lemma 14 is well known, see e.g., [4]. For a proof of the second
one, see [10].

Lemma 15 (Operator Estimates). Let cn(κ) = ∫ |κ(k)|2|k|n−3 d3k for n ≥ 1. Then

(i) A(x)2 ≤ 8c1(κ)H f + 4c2(κ),

(i i) −8

3
c1(κ)α

3 p2 ≤ 2p · A(αx)α3/2 + H f ,

(i i i) p2 ≤ 2�2 + 2α3 A(αx)2.

If ±V ≤ εp2 + bε for all ε > 0, and if ε ∈ (0, 1/2) is so small that 16εα3c1(κ) < 1,
then

(iv) �2 ≤ 1

1 − 2ε
(H + bε + 8εα3c2(κ)),

(v) H f ≤ 1

1 − 16εα3c1(κ)
(H + bε + 8εα3c2(κ)),

(vi) A(x)2 ≤ 8c1(κ)

1 − 16εα3c1(κ)
(H + bε + 8εα3c2(κ)) + 4c2(κ).

Proof. Estimate (i) is proved in [16]. (ii) is easily derived by completing the square in
creation and annihilation operators, and (iii) follows from 2α3 p · A(αx) ≥ −(1/2)p2 −
2α3 A(αx)2.

From the assumption on V and statements (i) and (iii) it follows that

H ≥ �2 − εp2 − bε + H f

≥ (1 − 2ε)�2 − 2εα3 A(x)3 + H f − bε

≥ (1 − 2ε)�2 + (1 − 16εα3c1(κ))H f − 8εα3c2(κ)− bε,

which proves (iv) and (v). Statement (vi) follows from (i) and (v). ��
Let Eσ = inf σ(Hσ ) and let �σ = limR→∞�σ,R be the ionization threshold for

Hσ , that is,

�σ,R = inf
ϕ∈DR , ‖ϕ‖=1

〈ϕ, Hσ ϕ〉,

where DR = {ϕ ∈ D(Hσ )|χ(|x | ≤ R)ϕ = 0}.
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Lemma 16 (Estimates for Eσ and �σ ). With the above definitions

1. For all α ≥ 0,

Eσ ≤ e1 + 4c2(κ)α
3.

2. If c1(κ)α
3 ≤ 1/8 then

�σ,R ≥ e2 − oR(1)− c1(κ)α
3C, (R → ∞),

where C and oR(1) depend on properties of Hpart only. In particular

�σ ≥ e2 − c1(κ)α
3C

uniformly in σ ≥ 0.

Proof. Let ψ1 be a normalized ground state vector of Hpart, so that Hpartψ1 = e1ψ1,
and let � ∈ F denote the vacuum. Then

Eσ ≤ 〈ψ1 ⊗�, Hσψ1 ⊗�〉
= e1 + α3〈ψ1 ⊗�, A(αx)2ψ1 ⊗�〉
≤ e1 + 4c2(κ)α

3

by Lemma 15. To prove Statement 2 we first estimate Hσ from below in terms of Hpart.
By Lemma 15,

Hσ = Hpart + 2p · A(αx)α3/2 + A(αx)2α3 + H f

≥ Hpart − 8

3
c1(κ)α

3 p2.

Since p2 ≤ 3(Hpart + D) for some constant D, it follows that

Hσ ≥ Hpart(1 − 8c1(κ)α
3)− 8c1(κ)Dα

3.

By Perrson’s theorem, 〈ϕ, (Hpart ⊗ 1)ϕ〉 ≥ e2 − oR(1), as R → ∞, for normalized
ϕ ∈ DR , with ‖ϕ‖ = 1, and by assumption 1 − 8c1(κ)α

3 ≥ 0. Hence we obtain

�R,σ ≥ (e2 − oR(1))(1 − 8c1(κ)α
3)− 8c1(κ)Dα

3

= e2 − oR(1)(1 − 8c1(κ)α
3)− 8c1(κ)α

3(e2 + D),

which proves the lemma. ��
Lemma 17 (Electron localization). For every λ < e2 there exists αλ > 0 such that for
all α ≤ αλ and all n ∈ N,

sup
σ≥0

‖|x |n Eλ(Hσ )‖ < ∞.
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Proof. From [15, Theorem 1] we know that ‖eε|x |Eλ(Hσ )‖ < ∞ if λ + ε2 < �σ .
Moreover, from the proof of that theorem we see that

sup
σ≥0

‖eε|x |Eλ(Hσ )‖ < ∞

if R > 0 and δ > 0 can be found so that

�σ,R − C̃

R2 ≥ λ + ε2 + δ (79)

holds uniformly in σ . Here C̃ is a constant that is independent of the system. Given
λ < e2, pick αλ > 0 so small that e2 − c1(κ)α

3
λC > λ with C as in Lemma 16. It then

follows from Lemma 16 that (79) holds true for some δ > 0 if R is large enough. ��
Theorem 18 (Spectral gap). If α � 1 then

σ(Hσ � Hσ ) ∩ (Eσ , Eσ + σ) = ∅
for all σ ≤ (e2 − e1)/2.

Remark. Variants of this result are already known [3,12].

Proof. From [16] we know that

inf σess(Hσ � Hσ ) ≥ min(Eσ + σ,�σ ).

On the other hand, by Lemma 16,

�σ − Eσ ≥ e2 − e1 − α3(Cc1(κ) + 4c2(κ)) ≥ σ

under our assumptions on α and σ . This proves that

inf σess(Hσ � Hσ ) ≥ Eσ + σ.

From Proposition 19, below, it follows that Hσ has no eigenvalues in (Eσ , Eσ + σ). ��
In order to complete the proof of Theorem 18, we need a further commutator estimate

and a corresponding Virial Theorem. We define B̃ = d
(b̂)+α3/2x ·φ(i b̂χ̃σG0), where
b̂ = (k̂ · y + y · k̂)/2 and k̂ = k/|k|, and begin with a formal computation of the commu-
tator [Hσ , i B̃]. To this end we set �σ = p + α3/2 Aσ (αx) so that Hσ = �2

σ + V + H f .
It follows that

[Hσ , i B̃] = �σ [�σ , i B̃] + [�σ , i B̃]�σ + [H f , i B̃],
where

[H f , i B̃] = N − α3/2x · φ(ωb̂χ̃σG0)

and

[�σ , i B̃] = [
�σ , id
(b̂)

]
+

[
�σ , iα3/2x · φ(i b̂χ̃σG0)

]

= −α3/2φ(i b̂χ̃σGx ) + α3/2φ(i b̂χ̃σG0)− 2α3 Re 〈χ̃σGx , xb̂χ̃σG0〉
= −α3/2φ(i b̂χ̃σ	Gx )− 2α3 Re 〈χ̃σGx , xb̂χ̃σG0〉. (80)
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Here 	Gx = Gx − G0. The resulting expression for [Hσ , i B̃] is our definition of this
commutator as a quadratic form on RanE(0,σ )(Hσ − Eσ ), where α � 1 and 0 < σ ≤
egap/2 are assumed. The reason for the contribution α3/2x · φ(i b̂χ̃σG0) to the operator
B̃ is that in Eq. (80) it leads to φ(i b̂χ̃σ	Gx ) rather than φ(i b̂χ̃σGx ). The more reg-
ular behavior of 	Gx (k) as k → 0 is essential to get estimates that hold uniformly in
σ ∈ (0, egap/2).

The following proposition completes the proof of Theorem 18.

Proposition 19. Let [Hσ , i B̃] be defined as above and suppose that α� 1 and
0 < σ ≤ egap/2. Then

E(0,σ )(Hσ − Eσ )[Hσ , i B̃]E(0,σ )(Hσ − Eσ ) ≥ 1

2
E(0,σ )(Hσ − Eσ ),

and moreover, if Hσ ϕ = Eϕ with E − Eσ ∈ (0, σ ), then 〈ϕ, [Hσ , i B̃]ϕ〉 = 0.

Proof. We first show that [Hσ , i B̃] − N between spectral projections E(0,σ )(Hσ − Eσ )
is O(α3/2) as α → 0. To this end we set λ = (1/4)e1 + (3/4)e2 and prove Steps 1–3
below. Note that, by Lemma 16, Eσ + σ ≤ λ for σ ≤ egap/2 and 2c2(κ)α

3 ≤ egap/4.

Step 1.

sup
σ>0

‖Eλ(Hσ )x · φ(ωb̂χ̃σG0)Eλ(Hσ )‖ < ∞.

One has the estimate

‖Eλ(Hσ )x · φ(ωb̂χ̃σG0)Eλ(Hσ )‖ ≤ ‖Eλ(Hσ )x‖‖ωb̂χ̃σG0‖ω‖(H f + 1)1/2 Eλ(Hσ )‖,
where each factor is bounded uniformly in σ > 0. For the first one this follows from
Lemma 17, for the second one from |ωb̂χ̃σG0(k)| = O(|k|−1/2) and for the third one
from supσ ‖(H f + 1)1/2(Hσ + 1)−1‖ < ∞, by Lemma 15.

Step 2.

sup
σ>0

‖Eλ(Hσ )�σ · φ(i b̂χ̃σ	Gx )Eλ(Hσ )‖ < ∞.

This time we use

‖Eλ(Hσ )�σ · φ(i b̂χ̃σ	Gx )Eλ(Hσ )‖
≤ ‖Eλ(Hσ )�σ‖

(
sup

x
〈x〉−1‖b̂χ̃σ	Gx‖ω

)
‖〈x〉(H f + 1)1/2 Eλ(Hσ )‖. (81)

Since

b̂χ̃σ	Gx (k, λ) = i
(
∂|k| + |k|−1

)
χ̃σ (e−ik·x − 1)

κ(k)√|k|ελ(k)
= O(〈x〉|k|−1/2), (k → 0),

while, as k → ∞, it decays like a Schwartz-function, it follows that

sup
x,σ

〈x〉−1‖b̂χ̃σ	Gx‖ω < ∞.
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The first factor of (81) is bounded uniformly in σ > 0 thanks to Lemma 15, and for the
last one we have

‖〈x〉(H f + 1)1/2 Eλ(Hσ )‖ ≤ ‖〈x〉2 Eλ(Hσ )‖ + ‖(H f + 1)Eλ(Hσ )‖,
which, by Lemma 17 and Lemma 15, is also bounded uniformly in σ .

Step 3.

sup
σ

‖Eλ(Hσ )�σ · Re 〈χ̃σGx , x · b̂χ̃σG0〉Eλ(Hσ )‖ < ∞.

This follows from estimates in the proof of Step 2.
From Steps 1, 2, 3 and N ≥ 1 − P� it follows that

Eλ(Hσ )[Hσ , i B̃]Eλ(Hσ ) ≥ Eλ(Hσ )(1 − P�)Eλ(Hσ ) + O(α3/2). (82)

In Steps 4, 5, and 6 below we will show that E(0,σ )(Hσ − Eσ )P�E(0,σ )(Hσ − Eσ ) =
O(α3/2) as well. Hence the proposition will follow from (82).

Let Ppart be the ground state projection of −	 + V and let P⊥
part = 1 − Ppart. Recall

that Ppart is a projection of rank one, by assumption on e1 = inf σ(−	 + V ).

Step 4.

‖(P⊥
part ⊗ P�)Eλ(Hσ )‖ = O(α3/2).

Let H (0) denote the Hamiltonian H with α = 0 and let f ∈ C∞
0 (R) with supp( f ) ⊂

(−∞, e2) and f = 1 on [infσ≤egap Eσ , λ]. Then Eλ(Hσ ) = f (Hσ )Eλ(Hσ ), (P⊥
part ⊗

P�) f (H (0)) = 0 and

f (Hσ )− f (H (0))

=
∫

d f̃ (z)
1

z − Hσ

(
2α3/2 p · Aσ (αx) + α3 Aσ (αx)2

) 1

z − H (0)
= O(α3/2).

It follows that

‖(P⊥
part ⊗ P�)Eλ(Hσ )‖ = ‖(P⊥

part ⊗ P�)
[

f (Hσ )− f (H (0))
]

Eλ(Hσ )‖
≤ ‖ f (Hσ )− f (H (0))‖ = O(α3/2).

Step 5. Let Pσ denote the ground state projection of Hσ . Then

‖Ppart ⊗ P� − Pσ‖ = O(α3/2).

Since 1 − P� ≤ N 1/2 we have

1 − Ppart ⊗ P� = 1 − P� + P⊥
part ⊗ P�

≤ N 1/2 + P⊥
part ⊗ P�

where ‖(P⊥
part⊗ P�)Pσ‖ = O(α3/2) by Step 4 and ‖N 1/2 Pσ‖ = O(α3/2) by Lemma 20.

It follows that ‖(1 − Ppart ⊗ P�)Pσ‖ = O(α3/2). Hence, for α small enough, Pσ is of
rank one and the assertion of Step 5 follows.
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Step 6.

E(0,σ )(Hσ − Eσ )(1 ⊗ P�)E(0,σ )(Hσ − Eσ ) = O(α3/2).

Since Pσ E(0,σ )(Hσ − Eσ ) = 0, it follows from Step 4 and Step 5 that

‖(1 ⊗ P�)E(0,σ )(Hσ − Eσ )‖ = ‖(1 ⊗ P� − Pσ )E(0,σ )(Hσ − Eσ )‖
≤ ‖(Ppart ⊗ P� − Pσ )E(0,σ )(Hσ − Eσ )‖ + ‖(P⊥

part ⊗ P�)E(0,σ )(Hσ − Eσ )‖
= O(α3/2).

In order to prove the Virial Theorem, 〈ϕ, [Hσ , i B̃]ϕ〉 = 0, for eigenvectors ϕ with
energy E ∈ (Eσ , Eσ + σ) we approximate B̃ with suitably regularized operators B̃ε,
ε > 0, that are defined on D(Hσ ), and converge to B̃ as ε → 0, in the sense that
[Hσ , i B̃ε] → [Hσ , i B̃] weakly as ε→ 0. The Virial Theorem for [Hσ , i B̃ε] then implies
the asserted Virial Theorem. The infrared cutoff σ is crucial for this to work. For more
details, see, e.g., [11], Appendix E. ��
Lemma 20 (Ground state photons). Suppose Hσ Pσ = Eσ Pσ , where σ ≥ 0,
Eσ = inf σ(Hσ ), and Pσ is the ground state projection of Hσ . Here Hσ=0 = H.
Let Rσ (ω) = (Hσ − Eσ + ω)−1. Then

(i) a(k)Pσ = −iα3/2
[
1 − ωRσ (ω)− 2Rσ (ω)(�σ · k) + αRσ (ω)k

2
]

x · Gx (k)
∗ Pσ

−2α3/2 Rσ (ω)k · Gαx (k)
∗ Pσ .

There are constants C, D independent of σ, α ∈ [0, 1] such that

(i i) ‖a(k)Pσ ‖ ≤ α3/2 C

|k|1/2 ,

(i i i) ‖xa(k)Pσ ‖ ≤ α3/2 D

|k|3/2 .

Proof. We suppress the subindex σ for notational simplicity. By the usual pull-through
trick

(H − E + ω(k))a(k)P = [H, a(k)]ϕ + ω(k)a(k)P

= −α3/22� · Gx (k)
∗ P.

Since 2� = i[H, x] = i[H − E, x], and (H − E)ϕ = 0, we can rewrite this as

iα−3/2a(k)ϕ = R(ω) [(H − E)x − x(H − E)] Gαx (k)
∗ P

= (1 − ωR(ω))(x · Gx (k)
∗)P − R(ω)x[H,Gαx (k)

∗]P. (83)

For the commutator we get

[H,Gx (k)
∗] = (� · k)Gx (k)

∗ + Gαx (k)
∗(� · k)

= 2(� · k)Gx (k)
∗ − αk2Gx (k)

∗,

and hence, using x(� · k) = (� · k)x + ik,

x[H,Gx (k)
∗] =

[
2(� · k)− αk2

]
x · Gαx (k)

∗ + 2ik · Gx (k)
∗. (84)
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From (83) and (84) we conclude that

iα−3/2a(k)P =
[
1 − ωR(ω)− 2R(ω)(� · k) + αR(ω)k2

]
x · Gx (k)

∗ P

−2i R(ω)k · Gx (k)
∗ P.

(ii) First of all supσ≥0 ‖x P‖ < ∞ by Lemma 17 and |Gx (k)| ≤ const|k|−1/2 by def-
inition of Gx (k). Since ‖R(ω)‖ ≤ |k|−1 and ‖R(ω)�‖ ≤ const(1 + |k|−1) we find
that

∥∥∥
[
1 − ωR(ω)− 2R(ω)(� · k) + αR(ω)k2

]∥∥∥ ≤ const for α, |k| ≤ 1.

This proves (ii). To estimate the norm of xa(k)P we use (i) and commute x with all
operators in front of P so that we can apply Lemma 17 to the operator x2 P . Since

[x, R(ω)] = −2i R(ω)�R(ω)

the resulting estimate for ‖xa(k)P‖ is worse by one power of |k| than our estimate (i)
for ‖a(k)P‖. ��

The following two lemmas are consequences of Lemma 20.

Lemma 21 (Overlap estimate). Let Pσ ⊗ f	(H f,σ ) on Hσ ⊗ Fσ and χσ be defined
as in Sect. 3. For every µ > −1 there exists a constant Cµ, such that for all α ∈ [0, 1],
for all σ ∈ [0, egap/2] and for every function hx ∈ L2(R3), depending parametrically
on the electron position x ∈ R

3, with |hx (k)| ≤ |k|µ〈x〉,
‖a(χσ hx )P

σ ⊗ f	(H f,σ )‖ ≤ Cµσ
µ+3/2‖〈x〉Pσ‖.

Here 〈x〉 = √
1 + x2.

Proof. Let ϕ ∈ Hσ ⊗ Fσ with ‖ϕ‖ = 1. By construction of χσ ,

a(χσ hx )P
σ ⊗ f	(H f,σ )ϕ =

∫

σ≤|k|≤2σ
χσ (k)hx (k)a(k)P

σ ⊗ f (H f,σ )ϕ dk

+
∫

|k|<σ
χσ (k)

hx (k)

|k|1/2 Pσ ⊗ |k|1/2a(k) f (H f,σ )ϕ dk.

Using |χσ hx (k)| ≤ |k|µ〈x〉, ‖ f	(H f,σ )‖ ≤ 1, and the Cauchy-Schwarz inequality
applied to the second integral we obtain

‖a(χσ hx )P
σ ⊗ f	(H f,σ )ϕ‖

≤
∫

σ≤|k|≤2σ
|k|µ‖〈x〉a(k)Pσ ‖ dk+

(∫

|k|≤σ
|k|2µ−1 dk

)1/2

‖〈x〉Pσ‖ ‖H1/2
f,σ f (H f,σ )ϕ‖.

The lemma now follows from Lemma 20 and ‖H1/2
f,σ f (H f,σ )‖ ≤ σ 1/2. ��

Lemma 22. There exists a constant C such that

|E − Eσ | = Cα3/2σ 2

for all σ ≥ 0 and α ∈ [0, 1].
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Proof. Let ψ and ψσ be normalized ground states of H and Hσ respectively. Then, by
Rayleigh-Ritz,

E − Eσ ≤ 〈ψσ , (H − Hσ )ψσ 〉, (85)

Eσ − E ≤ 〈ψ, (Hσ − H)ψ〉, (86)

where H − Hσ = �2 −�2
σ and

�2 −�2
σ = 2α3/2 p · (A(αx)− Aσ (αx))

+α3[A(αx) + Aσ (αx)] · [A(αx)− Aσ (αx)]. (87)

To estimate the contribution due to (87) we note that

[A(αx) + Aσ (αx)] · [A(αx)− Aσ (αx)] = [A(αx) + Aσ (αx)] · a(χσGx )

+ a∗(χσGx ) · [A(αx) + Aσ (αx)]
+ 2

∫
|Gx (k)|2χ2

σ dk. (88)

The last term in (88) is of order σ 2 and from Lemma 20 it follows that

‖a(χσGx )ψσ‖, ‖a(χσGx )ψ‖ ≤ Cα3/2
∫

|k|≤2σ
|Gx (k)| 1√|k|dk = O(α3/2σ 2). (89)

Moreover, by Lemma 15,

‖pψσ ‖, ‖[A(αx) + Aσ (αx)]ψσ ‖ ≤ const.

It follows that the contributions of (87) to (85) and (86) are of orderα3/2σ 2 andα3σ 2. ��

B. Conjugate Operator Method

In this section we describe the conjugate operator method in the version of Amrein,
Boutet de Monvel, Georgescu, and Sahbani [1,23]. In the paper of Sahbani the theory
of Amrein et al. is generalized in a way that is crucial for our paper. For simplicity, we
present a weaker form of the results of Sahbani with comparatively stronger assumptions
that are satisfied by our Hamiltonians.

The conjugate operator method to analyze the spectrum of a self-adjoint operator
H : D(H) ⊂ H → H assumes the existence of another self-adjoint operator A on H,
the conjugate operator, with certain properties. The results below yield information on
the spectrum of H in an open subset � ⊂ R, provided the following assumptions hold:

(i) H is locally of class C2(A) in �. This assumption means that the mapping

s �→ e−i As f (H)ei Asϕ

is twice continuously differentiable, for all f ∈ C∞
0 (�) and all ϕ ∈ H.

(ii) For every λ ∈ �, there exists a neighborhood	 of λ with	 ⊂ �, and a constant
a > 0 such that

E	(H)[H, i A]E	(H) ≥ aE	(H).
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Remarks. By (i), the commutator [H, i A] is well defined as a sesquilinear form on the
intersection of D(A) and ∪K EK (H)H, where the union is taken over all compact subsets
K of �. By continuity it can be extended to ∪K EK (H)H.

The following two theorems follow from Theorems 0.1 and 0.2 in [23] and assump-
tions (i) and (ii), above.

Theorem 23. For all s > 1/2 and all ϕ,ψ ∈ H, the limit

lim
ε→0+

〈ϕ, 〈A〉−s R(λ± iε)〈A〉−sψ〉
exists uniformly for λ in any compact subset of �. In particular, the spectrum of H is
purely absolutely continuous in �.

This theorem allows one to define operators 〈A〉−s R(λ ± i0)〈A〉−s in terms of the
sesquilinear forms

〈ϕ, 〈A〉−s R(λ± i0)〈A〉−sψ〉 = lim
ε→0+

〈ϕ, 〈A〉−s R(λ± iε)〈A〉−sψ〉.
By the uniform boundedness principle these operators are bounded.

Theorem 24. If 1/2 < s < 1 then

λ �→ 〈A〉−s R(λ± i0)〈A〉−s

is locally Hölder continuous of degree s − 1/2 in �.

Theorem 25. Suppose assumptions (i) and (ii) above are satisfied, s ∈ (1/2, 1), and
f ∈ C∞

0 (�). Then

‖〈A〉−se−i Ht f (H)〈A〉−s‖ = O

(
1

t s−1/2

)
, (t → ∞).

Proof. For every f ∈ C∞
0 (R) and all ϕ ∈ H,

e−i Ht f (H)ϕ = lim
ε↓0

1

π

∫
e−iλt f (λ) Im(H − λ− iε)−1ϕ dλ (90)

by the spectral theorem. Now suppose f ∈ C∞
0 (�) and set F(z) = π−1〈A〉−s Im(H −

z)−1〈A〉−s . Then (90) and Theorem 23 imply

〈A〉−se−i Ht f (H)〈A〉−sϕ =
∫

e−iλt f (λ)F(λ + i0)ϕ dλ. (91)

In this equation we replace H by H − π/t with t so large that f (· − π/t) has support
in �. Then it becomes

〈A〉−se−i Ht f (H − π/t)〈A〉−sϕ = −
∫

e−iλt f (λ)F(λ + π/t + i0)ϕ dλ. (92)

Taking the sum of (91) and (92) and using ‖ f (H) − f (H − π/t)‖ = O(t−1), which
may be derived from the almost analytic functional calculus, see (43), we get

2‖〈A〉−se−i Ht f (H)〈A〉−s‖ + O(t−1)

≤
∫

| f (λ)|‖F(λ + i0)− F(λ + π/t + i0)‖dλ = O(1/t s−1/2),

where the Hölder continuity from Theorem 24 was used in the last step. ��
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For completeness we also include the Virial Theorem (Proposition 3.2 of [23]):

Proposition 26. If λ ∈ � is an eigenvalue of H and E{λ}(H) denotes the projection
onto the corresponding eigenspace, then

E{λ}(H)[H, i A]E{λ}(H) = 0.

In the remainder of this section we introduce tools that will help us to verify assump-
tion (i). To begin with we recall, from [1,23], that a bounded operator T on H is said to
be of class Ck(A) if the mapping

s �→ e−i As T ei Asϕ

is k times continuously differentiable for every ϕ ∈ H. The following propositions
summarize results in Lemma 6.2.9 and Lemma 6.2.3 of [1].

Proposition 27. Let T be a bounded operator on H and let A = A∗ : D(A) ⊂ H → H.
Then the following are equivalent.

(i) T is of class C1(A).
(ii) There is a constant c such that for all ϕ,ψ ∈ D(A),

|〈Aϕ, Tψ〉 − 〈ϕ, T Aψ〉| ≤ c‖ϕ‖‖ψ‖.
(iii) lim infs→0+

1
s

∥∥e−i As T ei As − T
∥∥ < ∞.

Proof. If T is of class C1(A) then sups �=0 ‖s−1(e−i As T ei As − T )‖ < ∞ by the uniform
boundedness principle. Thus statement (i) implies statement (iii). To prove the remaining
assertions we use that, for all ϕ,ψ ∈ D(A),

1

s
〈ϕ, (e−i As T ei As − T )ψ〉 = −i

s

∫ s

0
dτ

[〈ei Aτ Aϕ, T ei Aτψ〉 − 〈ei Aτ ϕ, T ei Aτ Aψ〉] .
(93)

Since the integrand is a continuous function of τ , its value at τ = 0, 〈Aϕ, Tψ〉 −
〈ϕ, T Aψ〉, is the limit of (93) as s → 0. It follows that

|〈Aϕ, Tψ〉 − 〈ϕ, T Aψ〉| = lim
s→0+

s−1|〈ϕ, (e−i As T ei As − T )ψ〉|
≤ lim inf

s→0+
s−1‖e−i As T ei As − T ‖‖ϕ‖‖ψ‖. (94)

Therefore (iii) implies (ii).
Next we assume (ii). Then T D(A) ⊂ D(A) and [A, T ] : D(A) ⊂ H → H has a

unique extension to a bounded operator adA(T ) on H. The mapping

τ �→ e−i Aτ adA(T )e
i Aτψ

is continuous, and hence (93) implies that

e−i As T ei Asψ − Tψ = −i
∫ s

0
e−i Aτ adA(T )e

i Aτψ dτ (95)

for each ψ ∈ H. Since the r.h.s is continuously differentiable in s, so is the l.h.s, and
thus T ∈ C1(A). ��
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Let As = (ei As − 1)/ is, which is a bounded approximation of A. Then

1

s

(
e−i As T ei As − T

)
= −ie−i AsadAs (T ). (96)

Hence, by Proposition 27, a bounded operator T is of class C1(A) if and only if
lim infs→0+ ‖adAs (T )‖ < ∞. The following proposition gives an analogous charac-
terization of the class C2(A).

Proposition 28. Let A = A∗ : D(A) ⊂ H → H and let T be a bounded operator of
class C1(A). Then T is of class C2(A) if and only if

lim inf
s→0+

‖ad2
As
(T )‖ < ∞. (97)

Remark. This is a special case of [1, Lemma 6.2.3] on the class Ck(A). We include the
proof for the convenience of the reader.

Proof. Since T is of class C1(A) the commutator [A, T ] extends to a bounded operator
adA(T ) on H and

i
d

ds
e−i As T ei Asϕ = e−i AsadA(T )e

i Asϕ (98)

for all ϕ ∈ H. By Proposition 27 the right-hand side is continuously differentiable if
and only if

|〈Aϕ, adA(T )ψ〉 − 〈ϕ, adA(T )Aψ〉| ≤ c‖ϕ‖‖ψ‖, for ϕ,ψ ∈ D(A) (99)

with some finite constant c. To prove that (99) is equivalent to (97), it is useful to intro-
duce the homomorphism W (s) : T �→ e−i As T ei As on the algebra of bounded operators.
By (95)

(W (s)− 1)T = −i
∫ s

0
dτ1W (τ1)adA(T ),

and therefore

1

s2 (W (s)− 1)2T = −i

s2

∫ s

0
dτ1(W (s)− 1)W (τ1)adA(T )

= −1

s2

∫ s

0
dτ1

∫ s

0
dτ2W (τ1 + τ2)[A, adA(T )] (100)

in the sense of quadratic forms on D(A), that is,

〈ϕ,W (τ1 + τ2)[A, adA(T )]ψ〉
:= 〈Aϕ,W (τ1 + τ2)adA(T )ψ〉 − 〈ϕ,W (τ1 + τ2)adA(T )Aψ〉

for ϕ,ψ ∈ D(A). Since the right-hand side is continuous as a function of τ1 + τ2, it
follows from (100), as in the proof of Proposition 27, that

|〈Aϕ, adA(T )ψ〉 − 〈ϕ, adA(T )Aψ〉| = lim
s→0+

1

s2 |〈ϕ, (W (s)− 1)2Tψ〉|

≤ lim inf
s→0+

1

s2 ‖(W (s)− 1)2T ‖‖ϕ‖‖ψ‖.
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Since, by (96),

1

s2 (W (s)− 1)2T = −e−2i Asad2
As
(T ),

condition (97) implies (99). Conversely, by (100) condition (99) implies that s−2‖(W (s)−
1)2T ‖ ≤ c for all s > 0, which proves (97). ��
Lemma 29. Suppose that H is locally of class C1(A) in � ⊂ R and that ei As D(H) ⊂
D(H) for all s ∈ R. Then, for all f ∈ C∞

0 (�) and all ϕ ∈ H,

f (H)[H, i A] f (H)ϕ = lim
s→0

f (H)

[
H,

ei As − 1

s

]
f (H)ϕ.

Proof. By Eq. 2.2 of [23],

f (H)[H, i A] f (H) = [H f 2(H), i A] − H f (H)[ f (H), i A] − [ f (H), i A]H f (H),
(101)

where, by assumption, f (H) and H f 2(H) are of class C1(A). Since, by (96)

[T, i A]ϕ = −i lim
s→0

adAs (T )ϕ

for every bounded operator T of class C1(A), it follows from (101), the Leibniz-rule for
adAs and the domain assumption As D(H) ⊂ D(H), that

f (H)[H, i A] f (H)ϕ

= −i lim
s→0

(
adAs (H f 2(H))− H f (H)adAs ( f (H))− adAs ( f (H))H f (H)

)
ϕ

= −i lim
s→0

f (H)adAs (H) f (H)ϕ.

��
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