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Abstract: We investigate the Doi model for suspensions of rod–like molecules in the
dilute regime. For certain parameter values, the velocity gradient vs. stress relation
defined by the stationary and homogeneous flow is not rank–one monotone. We then
consider the evolution of possibly large perturbations of stationary flows. We prove that,
even in the absence of a microscopic cut–off, discontinuities in the velocity gradient can-
not occur in finite time. The proof relies on a novel type of estimate for the Smoluchowski
equation.

1. Introduction

1.1. Summary. We consider the Doi model for suspensions of rod–like molecules in
the dilute regime. This kinetic model couples a microscopic to a macroscopic equa-
tion. The macroscopic one is the Stokes equation for the fluid velocity, the microscopic
equation is a Fokker–Planck (Smoluchowski) equation for the probability distribution of
rod orientations in every point of physical space. Velocity gradients distort the isotropic
equilibrium concentration; these deviations from isotropy in turn generate an additional
macroscopic stress, which is elastic in nature and entropic in origin.

The model is characterized by two non–dimensional parameters: The Deborah num-
ber which relates the externally imposed time scale to the intrinsic relaxation time, and
a non-dimensional measure of concentration which quantifies the relative importance
of elastic vs. viscous stress. For sufficiently large values of these parameters, the strain
rate vs. stress relation defined by the stationary and homogeneous flow is not rank–one
monotone. This non–monotonicity has been related to the occurrence of transition lay-
ers in velocity gradients. We consider the evolution of flows that are (possibly large)
perturbations of stationary homogeneous flows. We prove that even in the absence of a
microscopic cut–off these discontinuities in the velocity gradients cannot occur in finite
time. This is a confirmation of Doi model. The proof relies on a novel type of estimate
for the Smoluchowski equation.
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Fig. 1. Rod–like molecule

1.2. The Doi model. As a first approximation, we think of the identical liquid crystal
molecules as inflexible rods of a thickness b which is much smaller than their length L ,
as illustrated in Fig. 1. Let ν denote their constant number density. Following [5], we
distinguish three regimes for the solution:

• Dilute regime. The rods are well separated, as expressed by ν � L−3.
• Concentrated regime. In this regime, the excluded volume effects reduce the entropy

substantially. The theory by Onsager shows that this happens for ν � b−1 L−2.
For a critical value of the dimensionless number ν b L2, this leads to the isotropic
nematic–phase transition [3, Sect. 2.2], [5, Sect. 10.2].

• Semi–dilute regime. On one hand, there is the kinetic effect that rods hinder them-
selves in their rotational movement. On the other hand, there is not yet an entropic
effect: L−3 � ν � b−1 L−2.

We will focus on the dilute regime. We are interested in creeping flows, where the inertia
of solvent (and rods) can be neglected.

Doi [4] introduced the model we will consider, see also [5, Chap. 8]. The system is
described by a local probability distribution f (x, t, n) dn. It gives the time–dependent
probability that a rod with center of mass at x has an axis n in the area element dn. The
evolution of f is given by the Smoluchowski equation:

∂t f = − u · ∇x f − ∇n · (Pn⊥∇x u n f ) (1)

+ D�x f + Dr �n f. (2)

The two terms in (1) describe advection of the centers of mass by the velocity u respec-
tively the rotation of the axes due to velocity gradients ∇x u. Here and in the sequel ∇n ,
∇n · and �n denote the gradient, divergence and Laplacian on S2. Finally, Pn⊥∇x u n =
∇x u n − (n · ∇x u n) n denotes the projection of the vector ∇x u n on the tangent space
in n.

The two terms in (2) describe the Brownian effects: translational diffusion, respec-
tively rotational diffusion. The Kirkwood theory [5, App. 8.1] derives asymptotic expres-
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sions for the diffusivities D and Dr from a microscopic theory. They scale as

D ∼ kB T

ηs L
and Dr ∼ kB T

ηs L3 (3)

(up to a logarithmic correction in L
b ), where ηs denotes the viscosity of the solvent. The

Kirkwood theory [5, Sect. 8.3, App. 8.1] predicts that the longitudinal and transversal
translational diffusion differ by an O(1)–factor. This difference is neglected here and
the longitudinal and transversal diffusivities are taken equal; it will then turn out that the
effect of translational diffusion is negligible. In the semi–dilute regime, the rotational
diffusion would be hindered by the neighboring rods. This effect can be modeled by
a mean–field ansatz on the level of the one–point statistics f (t, x, n) dn; it leads to a
substantially reduced diffusivity Dr (t, x, n). We also neglect this effect.

Diffusion can be seen as a gradient flow of the entropy functional

E[ f ] := ν kB T
∫

system

∫
S2

f ln f dn dx . (4)

In the concentrated regime, the excluded volume effect would become important. Within
a mean–field ansatz, this can be done on the level of the one–point statistics f (t, x, n) dn;
it leads to the Onsager Potential. As we focus on the dilute regime, we neglect this term.
As can be seen from (1), a velocity gradient ∇x u distorts an isotropic distribution f which
leads to an increase in entropy. Thermodynamic consistency [5, Sect. 8.6] requires that
this is balanced by a stress tensor σ(t, x) given by

σ(t, x) := ν kB T
∫

S2
(3 n ⊗ n − id) f (t, x, n) dn.

Notice that E plays the role of a stored energy functional and σ that of an elastic stress.
The presence of the rod–like molecules gives also rise to a viscous stress which modifies
the solvent viscosity. In the dilute and semi-dilute regimes, this additional viscous stress
can be neglected. Hence the averaged continuity and momentum equations are given by

∇x · u = 0 and ∇x · (ηs (∇x + ∇ t
x ) u − p id + σ

) = 0. (5)

Notice the coupling of the Smoluchowski equation (1) & (2) and the macroscopic equa-
tion (5) via the drift terms and the stress tensor σ . Together, they define an evolution for
f .

We want to mimic a simple flow situation. The Doi model admits a special class of
solutions that correspond to stationary flows driven by an externally imposed velocity
gradient ∇uext , and we consider perturbations of such flows. For such flows there is a
characteristic externally imposed time scale 1

|∇x uext | , and a macroscopic length scale Lext

related to the size of the perturbation. This evolution is a gradient flow of the entropy
(4) and this will play a role in the analysis.

1.3. Non–dimensionalization. The problem has three characteristic time scales:

• The time scale related to rotational diffusion: 1
Dr

.
• A visco–elastic time scale ηs

kB T ν .

• An externally imposed time scale: 1
|∇x uext | .
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We non–dimensionalize based on the visco–elastic time scale

t = ηs

kB T ν
t̂ .

Since the translational diffusion has units of length2

time , this gives rise to three length scales.
In addition, there is the external length scale, which we use for non–dimensionalization:

x = Lext x̂ .

This imposes the following non–dimensionalization of velocity, strain and stresses:

u = Lext
kB T ν

ηs
û, ∇x u = kB T ν

ηs
∇x̂ û,

σ = kB T ν σ̂ , p = kB T ν p̂.

We are left with three non–dimensional parameters:

D̂r = Dr
ηs

kB T ν

(3)∼ (L3 ν)−1,

D̂ = D
ηs

kB T ν
L−2

ext
(3)∼ (L L2

ext ν)
−1,

̂∇x uext = ηs

kB T ν
∇x uext .

Sometimes, it is more convenient to think in terms of the Deborah number ̂∇x uext/D̂r =
∇x uext/Dr , which relates the externally imposed time scale to the rotational relaxation
time.

We collect the nondimensionalized equations (dropping the hats):

∂t f + ∇x f · u + ∇n · (Pn⊥∇x u n f )− Dr�n f − D�x f = 0, (6)∫
S2
(3 n ⊗ n − id) f dn = σ, (7)

∇x · ((∇x u + ∇ t
x u)− p id + σ

) = 0, (8)

∇x · u = 0 . (9)

These form a system consisting of the transport equation (6) coupled with the Stokes
system (8)–(9). The coupling is effected via (7) that determines the viscoelastic stresses
as moments of the probability distribution f . The function f (t, x, n) is a probability
density on S2,

f ≥ 0 ,
∫

S2
f (t, x, n) dn = 1 . (10)

This requirement is consistent with the evolution (6). Our system is supplemented with
initial conditions

f (0, x, n) = f0(x, n) (11)

and one checks that property (10) is propagated from the initial data to solutions of (6).
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The model (6)–(9) admits a special class of stationary steady states: Let ∇x uext be a
given traceless tensor, tr∇x uext = 0, then

uext (x) = (∇x uext ) x (12)

gives rise to an incompressible vector field. Define feq(n) to be the unique solution of
the stationary Fokker-Planck equation

∇n · (Pn⊥∇x uext n f − Dr∇n f
) = 0 (13)

satisfying feq(n) ≥ 0 and
∫

S2 feq(n)dn = 1. Notice that ( feq(n), uext (x)) is a station-
ary, steady solution of (6)–(9) associated to a constant pressure and with

σeq =
∫

S2
(3n ⊗ n − id) feqdn .

This class plays an important role in our analysis. It will be used as a building block
for constructing non-monotone spatially varying steady states, and we will study the
evolution of (large) perturbations of ( feq(n), uext (x)).

1.4. Non-monotonicity of steady states. Let ( feq(n), uext (x)) be as defined in (12) &
(13) and σeq be the associated moment in (7). By varying parametrically the imposed
velocity gradient κ = ∇x uext we define a mapping

End(R3) � κ 	→ σκ ∈ Sym(R3), (14)

taking strain-rates to elastic stresses and defined by (7). A necessary condition for struc-
tural stability of the homogeneous flow κx is that the mapping from deformation–rates
to total stresses

End(R3) � κ 	→ (κ + κ t ) + σκ ∈ Sym(R3) (15)

be rank–one monotone at the κ under consideration. After appropriate rescaling with
Dr , (14) is universal (see Definition 1). We will argue in Sect. 3.2 that it fails to be
monotone along the shear direction (Lemmas 4 and 5). This implies that (15) fails to be
monotone along the shear direction for sufficiently small Dr .

One effect of this non–monotonicity in the shear direction is that there exist spatially
discontinuous solutions ( f (x, n), u(x)) for vanishing translational diffusivity (D = 0),
i. e. solutions of

∇x · ( f u) + ∇n · (Pn⊥∇x u n f )− Dr�n f = 0, (16)∫
S2
(3 n ⊗ n − id) f dn = σ, (17)

∇x · ((∇x u + ∇ t
x u)− p id + σ

) = 0, (18)

∇x · u = 0. (19)

More precisely, we will show:

Theorem 1. There exist Dr > 0 such that (16)–(19) admits a solution (in the distribu-
tional sense) with discontinuous ∇x u.
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This failure of ellipticity for (16)–(19) has been frequently seen as a deficiency of the
Doi model. On the contrary, other schools have advocated the failure of ellipticity of
steady states as the cause of the onset of instabilities in viscoelastic flows, and in par-
ticular as an explanation of the phenomenon of spurt. Spurt refers to a sudden increase
of the volumetric flow rate at a critical stress which has been observed experimentally,
see for instance [18]. Spurt has been connected in [11] to the non–monotonicity of the
map (15), which allows for jumps in the steady strain rate when the driving pressure
gradient exceeds a critical value. Such jumps can account for the sudden increase in
the flow rate observed in experiments. This explanation of spurt motivated analytical
results regarding existence of discontinuous steady states and their stability properties,
accomplished for macroscopic models in the absence of translational diffusion D and
for a 1–d geometry. The macroscopic model (Oldroyd B or Johnson–Segalman) can be
seen as an exact closure of a kinetic model with Hookean springs instead of rigid rods.
It has been shown that discontinuities in the strain rate ∇x u form in infinite time, see
[13,12].

1.5. Continuity of velocity gradients. The main goal of this paper is to investigate on
which time scale these near–discontinuities occur. We want to study a forced problem,
and to this end we consider a solution that is a perturbation of the stationary steady
state ( feq(n), uext (x)) in (12)–(13). Our analysis is valid even for large perturbations
and we find that the time scale can be bounded by below independently of the transla-
tional diffusion D, just in terms of the non–dimensional parameter Dr , and ∇x uext , see
Theorem 2.

We now outline our strategy. Qualitatively speaking, we want to

control the modulus of continuity of ∇x u.

By Sobolev’s embedding, this is a consequence of

control of
∫

R3
|∇2

x u|pdx

for some fixed 3 < p < ∞. In view of (8)&(9) and standard L p–regularity theory for
the Stokes system, this is a consequence of

control of
∫

R3
|∇xσ |pdx,

see Lemma 2. In view of (7), which yields

∂xiσ =
∫

S2
(3 n ⊗ n − id) ∂xi f dn, (20)

this requires control of ∇x f . This control has to be the L p–norm with respect to x but
can be a weak norm with respect to n, for instance an H−1(S2)–norm. Recall that the
H−1(S2)–norm of ∇x f can be defined as

‖∇x f ‖H−1(S2) :=
(∫

S2
|∇nφ|2dn

)1/2

,
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where the potential φ = (φ1, φ2, φ3) is the solution of the Poisson problem for the
Laplace operator

∂xi f − �nφi = 0.

For reasons intrinsic to the Fokker–Planck–like equation (16) (see the proof of Proposi-
tion 1), our choice is an f –dependent version of an H−1(S2)–norm of ∇x f :

‖∇x f ‖H−1
f (S2)

:=
(∫

S2
|∇nφ|2 f dn

)1/2

,

where the potential φ = (φ1, φ2, φ3) is the solution of the following elliptic problem on
S2:

∂xi f − ∇n · ( f ∇nφi ) = 0. (21)

(Note that, for any tensor g, |g|2 denotes the sum of the squares of the entries with
respect to orthonormal bases.) This norm comes from a natural Riemannian structure of
the space of probability densities f which was introduced in [14], see also [15, Sect. 3].

Accordingly, we define the quantities

w(t, x) =
∫

S2
|∇nφ|2 f dn (22)

and

W (t) :=
∫

R3
w p/2 dx =

∫
R3

(∫
S2

|∇nφ|2 f dn

)p/2

dx , (23)

and seek to establish control of W (t).
A second ingredient is an identity for the relative entropy density

e(t, x) :=
∫

S2

(
ln

f

feq

)
f dn, (24)

see Lemma 1 and [10], that yields differential control for the relative entropy

E(t) :=
∫

R3
e(t, x) dx =

∫
R3

∫
S2

(
ln

f

feq

)
f dndx . (25)

We prove:

Theorem 2. Let ( f, u, p) be a solution of (6)–(9) (with D = 0 allowed), let ( feq , uext )

be as in (12)–(13) and assume that the data f0 satisfy

E(0) =
∫

R3

∫
S2

(
ln

f0

feq

)
f0 dn dx < +∞ .

There exists a constant C only depending on p ∈ (3,∞) and a constant K only depend-
ing on |∇x uext |/Dr such that

d E

dt
≤ K E, (26)

1

p

dW

dt
≤ −Dr W + C (1 + |∇x uext | + ln E(t) + ln W ) W. (27)
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Remark 1. Integrating the differential inequalities we obtain the bounds

E(t) ≤ E(0)eK t , (28)

W (t) ≤ exp
{
(ln W (0) + K ) eK t

}
. (29)

Moreover, the following estimate:∫
R3

|∇x (u − uext )|2 dx ≤
∫

R3
|σ − σeq |2 dx

≤ C
∫

R3

(∫
S2

| f − feq |dn

)2

dx < E(0) eK t (30)

is derived in Proposition 3 as a byproduct of the proof.

Let us comment only on the most pertinent mathematical literature: In [8], a purely
macroscopic viscoelastic model is considered (Oldroyd–B). It can be interpreted as an
exact closure of a kinetic model for Hookean springs instead of rigid rods. The existence
of weak solutions is established by “propagation of compactness”. This approach can
be extended to our kinetic model [9]. Theorem 2 might be seen as a quantification of the
more qualitative approach in [8].

In [6], a kinetic model for nonlinear springs is investigated (FENE). Among other
things, sufficient conditions on the asymptotic stability of the homogeneous flow ∇x u ≡
∇x uext are given. A more careful analysis, to appear in [10], reveals that

d E

dt
≤
(

C

( |∇x uext |
Dr

)2

− C−1 Dr exp

(
−C

|∇x uext |
Dr

))
E .

Hence also Theorem 2, in this extended version, yields a stability result in the regime
of sufficiently small concentration Dr � 1 and sufficiently small Deborah number
|∇x uext | � Dr (provided the initial perturbation W (0) is sufficiently small). Finally,
we refer to [2] for a recent global existence result, which is also valid in the concen-
trated regime, for flows that are asymptotically at rest at infinity driven by a body force.
For comparison purposes, the present flow lies in the dilute regime but approaches any
constant gradient flow at infinity.

2. Proof of Theorem 2

Theorem 2 is based on the following ingredients: an identity for the transport of the rel-
ative entropy density e(t, x) defined in (24), a transport inequality for the norm w(t, x)
defined in (22), an L∞ estimation for the Stokes system, and the derivation of differential
inequalities for the quantities E(t) and W (t) in (25) and (23) respectively.

2.1. A relative entropy identity. Let (uext , feq(n)) be a stationary steady state as in (12)–
(13) and let ( f, u, p) be a solution of (6)–(9) which approaches at infinity (uext , feq(n)).
The relative entropy density

e(t, x) :=
∫

S2

(
ln

f

feq

)
f dn, (31)

serves as a measure of the distance between feq and f and satisfies the following identity.
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Lemma 1. Let ( f, u, p) satisfy (6)–(9), then

(∂t + u · ∇x − D�x ) e

+ D
∫

S2
|∇x

(
ln

f

feq

)
|2 f dn + Dr

∫
S2

|∇n

(
ln

f

feq

)
|2 f dn

= ∇x (u − uext ) :
(
(σ − σeq)−

∫
S2

(∇n ln feq ⊗ n
)
( f − feq)

)
dn .

Proof of Lemma 1. Using the property that feq is independent of x and t , we derive
from the Smoluchowski equation (6) the formula

(∂t + u · ∇x − D�x )

(
f ln

f

feq

)
+ D f

∣∣∣∣∇x ln
f

feq

∣∣∣∣
2

=
(

1 + ln
f

feq

) (−∇n · (Pn⊥∇x u n f ) + Dr�n f
)

= −
(

1 + ln
f

feq

)
∇n · (Pn⊥∇x u n f − Dr ∇n f

)
,

which after an integration over S2 gives by integration by parts

(∂t + u · ∇x − D�x ) e + D
∫

S2

∣∣∣∣∇x ln
f

feq

∣∣∣∣
2

f dn

=
∫

S2
∇n ln

f

feq
· Pn⊥ (∇x u − ∇x uext ) n f dn

∫
S2

∇n ln
f

feq
· (Pn⊥∇x uext n f − Dr∇n f

)
dn

=: J1 + J2. (32)

We first treat J2, by a classical formula for drift–diffusion equations. We write

Pn⊥∇x uext n f − Dr∇n f

= −Dr feq ∇n
f

feq
+

f

feq

(
Pn⊥∇x uext n feq − Dr∇n feq

)

= −Dr f ∇n ln
f

feq
+

f

feq

(
Pn⊥∇x uext n feq − Dr∇n feq

)
,

so that

J2 =
∫

S2
∇n

(
ln

f

feq

)
· (Pn⊥∇x uext n f − Dr∇n f

)
dn

= −Dr

∫
S2

|∇n

(
ln

f

feq

)
|2 f dn

+
∫

S2

f

feq
∇n

(
ln

f

feq

)
· (Pn⊥∇x uext n feq − Dr∇n feq

)
dn. (33)
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The last term in (33) vanishes by definition (13) of feq :
∫

S2

f

feq
∇n

(
ln

f

feq

)
· (Pn⊥∇x uext n feq − Dr∇n feq

)
dn

=
∫

S2
∇n

(
f

feq

)
· (Pn⊥∇x uext n feq − Dr∇n feq

)
dn

= −
∫

S2

f

feq
∇n · (Pn⊥∇x uext n feq − Dr∇n feq

)
dn = 0.

Hence we have

J2 = −Dr

∫
S2

|∇n

(
ln

f

feq

)
|2 f dn (34)

We now turn to J1:

J1 =
∫

S2
∇n ln

f

feq
· ∇x (u − uext ) n f dn

= ∇x (u − uext ) :
∫

S2
∇n ln

f

feq
⊗ n f dn

= ∇x (u − uext ) :
(∫

S2
∇n f ⊗ n dn −

∫
S2

∇n feq ⊗ n dn

−
∫

S2
(∇n ln feq ⊗ n) ( f − feq) dn

)
. (35)

According to formula (95) in Appendix II and the definition (7) of σ we have
∫

S2
∇n f ⊗ n dn −

∫
S2

∇n feq ⊗ n dn

=
∫

S2
(3 n ⊗ n − id) f dn −

∫
S2
(3 n ⊗ n − id) feq dn

= σ − σeq .

Hence J1 can be rewritten as

J1 = ∇x (u − uext ) :
(
(σ − σeq)−

∫
S2
(∇n ln feq ⊗ n)( f − feq) dn

)
. (36)

Lemma 1 follows from a combining of (32) with (34) and (36). ��

2.2. Transport inequality for the H−1
f -norm. We introduce the H−1

f -norm as defined
by (22) and (21) and proceed to derive a differential inequality for w.

Proposition 1. For any solution of (6) we have the partial differential inequality:

∂t (
1
2w) + ∇x (

1
2w) · u − D �x (

1
2w)

≤ −Dr w + |∇x u + ∇ t
x u|w + |∇2

x u|w1/2. (37)
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Proof of Proposition 1. We start by differentiating the defining Eq. (21) with respect
to t :

∂xi ∂t f − ∇n · ( f ∇n∂tφi )− ∇n · (∂t f ∇nφi ) = 0. (38)

Thus we have
d

dt

∫
S2

1
2 |∇nφi |2 f dn

=
∫

S2

(
∂t f 1

2 |∇nφi |2 + f ∇nφi · ∇n∂tφi

)
dn

=
∫

S2

(
∂t f 1

2 |∇nφi |2 − ∇n · ( f ∇n∂tφi ) φi

)
dn

(38)=
∫

S2

(
∂t f 1

2 |∇nφi |2 + ∇n · (∂t f ∇nφi ) φi − ∂xi ∂t f φi

)
dn

=
∫

S2

(
−∂t f 1

2 |∇nφi |2 − ∂xi ∂t f φi

)
dn. (39)

The contributions of the terms ∂t f and ∂xi ∂t f in (39) are calculated by invoking (6).
We start with the contribution of the rotational diffusion term. It is given by∫

S2

(
−�n f 1

2 |∇nφi |2 − ∂xi �n f φi

)
dn

=
∫

S2

(
−�n f 1

2 |∇nφi |2 − ∂xi f �nφi

)
dn

(21)=
∫

S2

(
−�n f 1

2 |∇nφi |2 − ∇n · ( f ∇nφi )�nφi

)
dn

=
∫

S2

(
−�n(

1
2 |∇nφi |2) + ∇nφi · ∇n�nφi

)
f dn.

We now appeal to Bochner’s formula

�n(
1
2 |∇nφi |2) = ∇nφi · ∇n�nφi + tr(Hessnφi Hesst

nφi ) + ∇nφi · Ric ∇nφi ,

where Hessnφi denotes the Hessian (a covariant notion) and Ric the Ricci curvature
tensor. We refer for instance to [16, Prop. 3.3, p. 175]. On S2, Ric is just the metric
tensor. Hence we obtain

−�n(
1
2 |∇nφi |2) + ∇nφi · ∇n�nφi ≤ −|∇nφi |2 ,

and the contribution of rotational diffusion is∑
i

∫
S2

(
−�n f 1

2 |∇nφi |2 − �n∂xi f φi

)
dn ≤ −

∫
S2

|∇nφ|2 f dn.

We now treat the term coming from the translational diffusion. In view of (39), it is
given by ∫

S2

(
−�x f 1

2 |∇nφi |2 − ∂xi �x f φi

)
dn

(21)=
∫

S2

(
−�x f 1

2 |∇nφi |2 − �x∇n · ( f ∇nφi ) φi

)
dn

=
∫

S2

(
−�x f 1

2 |∇nφi |2 + �x ( f ∇nφi ) · ∇nφi

)
dn.
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The identities

−�x f 1
2 |∇nφi |2 + �x ( f ∇nφi ) · ∇nφi

= �x f 1
2 |∇nφi |2 + 2

∑
j

∂x j f ∂x j ∇nφi · ∇nφi + f �x (∇nφi ) · ∇nφi

= �x f 1
2 |∇nφi |2 + 2

∑
j

∂x j f ∂x j
1
2 |∇nφi |2

+
∑

j

(
f ∂x j

(
∂x j (∇nφi ) · ∇nφi

)− f ∂x j ∇nφi · ∂x j ∇nφi
)

= �x

(
f 1

2 |∇nφi |2
)

− f
∑

j

∂x j ∇nφi · ∂x j ∇nφi

= �x

(
f 1

2 |∇nφi |2
)

− f |∇2
x,nφi |2

show that the contribution is given by

�x

(∫
S2

1
2 |∇nφ|2 f dn

)
−
∫

S2
|∇2

x,nφ|2 f dn.

For the inequality (37), we drop the non positive second term.
We now treat the contribution from the advection term in x . It splits into two parts

∫
S2

(
∇x f · u 1

2 |∇nφi |2 + ∂xi (∇x f · u) φi

)
dn

=
∫

S2

(
∇x f · u 1

2 |∇nφi |2 + (∇x∂xi f · u + ∇x f · ∂xi u) φi

)
dn

=
∑

j

∫
S2

(
∂x j f 1

2 |∇nφi |2 + ∂x j ∂xi f φi

)
dn u j

+
∑

j

∂xi u j

∫
S2
∂x j f φi dn .

For the first term we observe
∫

S2

(
∂x j f 1

2 |∇nφi |2 + ∂x j ∂xi f φi

)
dn

(21)=
∫

S2

(
∂x j f 1

2 |∇nφi |2 + ∂x j ∇n · ( f ∇nφi ) φi

)
dn

=
∫

S2

(
∂x j f 1

2 |∇nφi |2 − ∂x j ( f ∇nφi ) · ∇nφi

)
dn

= −
∫

S2
∂x j ( f 1

2 |∇nφi |2) dn

= −∂x j

(∫
S2

1
2 |∇nφi |2 f dn

)
.
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For the second term we notice

∑
j

∂xi u j

∫
S2
∂x j f φi dn

(21)=
∑

j

∂xi u j

∫
S2

∇n · ( f ∇nφ j ) φi dn

= −
∑

j

∂xi u j

∫
S2

∇nφ j · ∇nφi f dn.

Hence the contribution from advection in x is

∑
i

∫
S2

(
∇x f · u 1

2 |∇nφi |2 + ∂xi (∇x f · u) φi

)
dn

= −
∑
i, j

∂x j

(∫
S2

1
2 |∇nφi |2 f dn

)
u j −

∑
i, j

∫
S2

∇nφ j · ∇nφi f dn ∂xi u j

= −∇x

(∫
S2

1
2 |∇nφ|2 f dn

)
· u

− 1
2

∑
i, j

∫
S2

∇nφ j · ∇nφi f dn (∂xi u j + ∂x j ui )

≤ −∇x

(∫
S2

1
2 |∇nφ|2 f dn

)
· u + 1

2

∫
S2

|∇nφ|2 f dn |∇x u + ∇ t
x u|.

We finally come to the contribution from the drift term in n. We introduce the notation
b = Pn⊥∇x u n for the drift term:

∫
S2

(
∇n · (b f ) 1

2 |∇φi |2 + ∂xi ∇n · (b f ) φi

)
dn

=
∫

S2

(
∇n · (b f ) 1

2 |∇φi |2 + ∇n · (b ∂xi f + ∂xi b f ) φi

)
dn

(21)=
∫

S2

(
∇n · (b f ) 1

2 |∇φi |2 + ∇n · (b ∇n · ( f ∇nφi ) + ∂xi b f
)
φi

)
dn

=
∫

S2

(
−b · ∇n(

1
2 |∇nφi |2) + ∇n(b · ∇nφi ) · ∇nφi − ∂xi b · ∇nφi

)
f dn. (40)

We now use the formula

−b · ∇n(
1
2 |∇nφi |2) + ∇nφi · ∇n(b · ∇nφi )

= −∇nφi · Hessnφi b + (b · Hessnφi ∇nφi + ∇nφi · Dnb ∇nφi )

= ∇nφi · Dnb ∇nφi , (41)

where Dnb denotes the covariant derivative of b on S2. Since

b = Pn⊥∇x u n = ∇x u n − (n · ∇x u n) n ,

we obtain for the component-wise derivative in a tangential direction τ ∈ n⊥,

∇nb τ = ∇x u τ − (τ · ∇x u n) n − (n · ∇x u τ) n − (n · ∇x u n) τ,
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and thus for the covariant derivative

Dnb τ = Pn⊥∇nb τ = (
Pn⊥ ∇x u − (n · ∇x u n) id

)
τ. (42)

Furthermore we have

∂xi b = Pn⊥ ∂xi ∇x u n. (43)

Inserting (43), (42) into (41) and (40), and since ∇nφi is on the tangent space of the
sphere, we obtain ∫

S2

(
∇n · (b f ) 1

2 |∇φi |2 + ∂xi ∇n · (b f ) φi

)
dn

=
∫

S2
∇nφi · (∇x u − (n · ∇x u n) id) ∇nφi f dn

−
∫

S2
∇nφi · ∂xi ∇x u n f dn.

Thus the contribution from the drift term in n is
∑

i

∫
S2

(
∇n · (b f ) 1

2 |∇φi |2 + ∂xi ∇n · (b f ) φi

)
dn

= 1
2

∑
i

∫
S2

∇nφi · ((∇x u + ∇ t
x u)− (n · (∇x u + ∇ t

x u) n) id
) ∇nφi f dn

−
∫

S2
∇nφi · ∂xi ∇x u n f dn

≤ 1
2

∫
S2

|∇nφ|2 f dn |∇x u + ∇ t
x u| +

(∫
S2

|∇nφ|2 f dn

)1/2

|∇2
x u|.

2.3. Bounds on the Stokes system. Consider the Stokes system (8)&(9),

∇x · ((∇x u + ∇ t
x u)− p id + σ

) = 0, (44)

∇x · u = 0, (45)

in R

3. We need a standard and a not so standard regularity result.

Lemma 2. There exists a constant C depending only on p ∈ (1,∞) with∫
R3

|∇2
x u|pdx ≤ C

∫
R3

|∇xσ |p dx .

Proposition 2. There exists a constant C only depending on p ∈ (3,∞) such that

sup
x

|∇x u| ≤ C

⎡
⎣1 + ln

⎛
⎝1 +

(∫
R3 |σ |2dx

) 1
3 (1− 3

p )
(∫

R3 |∇xσ |pdx
)1/p

(
supx |σ |) 2

3 (1− 3
p )+1

⎞
⎠
⎤
⎦ sup

x
|σ |.

Lemma 2 follows from standard regularity theory for the Stokes system; see [17, ChI,
Prop 2.2]. Results of the type of Proposition 2 go back to Weigant & Kazhikov [19], see
also [7, App. F]. We present a proof in Appendix I which is not based on a fundamental
solution but on a dyadic decomposition in Fourier space.
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2.4. Bound of the relative entropy. Given a stationary steady state (uext , feq(n)) and a
solution ( f, u, p) of (6)–(9) which is a (possibly large) perturbation of (uext , feq(n)),
the relative entropy is defined by

E(t) :=
∫

R3

∫
S2

(
ln

f

feq

)
f dndx . (46)

Proposition 3. Let (uext , feq) be as in (12)–(13) and ( f, u, p) be a solution of (6)–(9)
with data satisfying

E0 =
∫

R3

∫
S2

(
ln

f0

feq

)
f0 dn dx < +∞ . (47)

There exists a constant K = K (|∇x uext |/Dr ) such that for t ∈ (0,∞),

d E

dt
≤ K E(t) (48)

and ∫
R3

|∇x (u − uext )|2 dx ≤
∫

R3
|σ − σeq |2 dx ≤ C E0 eK t , (49)

where C denotes a universal constant.

A far more detailed estimation along the lines of Proposition 3 is derived in [10] and
is used to study the stability of equilibria.

Proof. The functions u − uext and σ − σeq satisfy

�x (u − uext )− ∇x p + ∇x · (σ − σeq) = 0,

∇x · (u − uext ) = 0 .

Therefore, we multiply by (u − uext ) and integrate by parts to obtain

−
∫

R3
∇x (u − uext ) : (σ − σeq) dx =

∫
R3

|∇x (u − uext )|2dx . (50)

Combine next Lemma 1 with (25), (9) and (50) to obtain

d

dt

∫
R3

e dx +
∫

R3
|∇x (u − uext )|2dx

= −
∫

R3
∇x (u − uext ) :

∫
S2
(∇n ln feq ⊗ n)( f − feq) dn dx

≤ K1

∫
R3

|∇x (u − uext )|
∫

S2
| f − feq | dn dx, (51)

where K1 = supn |∇n ln feq ⊗ n| is a constant that depends only on the quotient
|∇x uext |/Dr .

Next, we use the Kullback–Csiszar inequality, i. e.

(∫
S2

| f − feq | dn

)2

≤ 8
∫

S2

(
ln

f

feq

)
f dn (52)
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together with Young’s inequality to obtain

d E

dt
≤ K E,

and thus

E(t) =
∫

R3
e(x, t) dx ≤ E0 eK t .

Observe next that (7) and (52) imply

∫
R3

|σ − σeq |2 dx =
∫

R3

∣∣∣∣
∫

S2
(3n ⊗ n − id)( f − feq)dn

∣∣∣∣
2

dx

≤ C
∫

R3

∣∣∣∣
∫

S2
| f − feq | dn

∣∣∣∣
2

dx

≤ C
∫

R3
e(t, x) dx ,

hence, (49) follows from (50) and (48). ��

2.5. Derivation of the differential inequality. Let w be defined in (22)–(21) and W be
as in (23). We derive a differential inequality for W .

Proposition 4. Let W be defined as in (23). There exists a constant C only depending
on p ∈ (3,∞) such that

∫
R3

|∇2
x u|p dx ≤ C W, (53)

sup
x

|∇x u − ∇x uext | ≤ C (1 + ln E(t) + ln W ) , (54)

and W satisfies the differential inequality:

1

p

dW

dt
≤ −Dr W + C

(
1 + sup

x
|∇x uext | + ln E(t) + ln W

)
W . (55)

Proof. We evoke Proposition 1. With (37) as a starting point, we obtain for p ≥ 2 the
differential inequality

∂t (w
p/2) + ∇x · (uw p/2)− D �x (w

p/2)

≤ −p Drw
p/2 + p|∇x u + ∇ t

x u|w p/2 + p|∇2
x u|w p−1

2 . (56)

Let us address the three terms on the right side of (56). The first term gives rise to

−Dr

∫
R3
w p/2 dx = −Dr W.

For the second term we notice∫
R3
w p/2 |∇x u + ∇ t

x u| dx ≤ sup
R3

|∇x u + ∇ t
x u| W.
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Finally, the last term is estimated with help of Hölder’s inequality

∫
R3
w

p−1
2 |∇2

x u| dx ≤
(∫

R3
|∇2

x u|p dx

)1/p

W 1−1/p.

Combining these together gives

1

p

dW

dt
≤
(

−Dr + sup
x

|∇x u + ∇ t
x u|
)

W +

(∫
R3

|∇2
x u|p dx

)1/p

W 1−1/p.

We next observe that there exists a universal constant C such that
∫

R3
|∇xσ |p dx ≤ C

∫
R3

(∫
S2

|∇nφ|2 f dn

)p/2

dx = C W. (57)

Indeed, the starting point for deriving (57) is (20), written component-wise:

∂xiσkl =
∫

S2
(3 nk nl − δkl) ∂xi f dn.

According to definition (21), we obtain

∂xiσkl = −3
∫

S2
∇n(nk nl) · ∇nφi f dn,

and thus

|∂xiσkl |2 ≤ 9 sup
n

|∇n(nk nl)|2
∫

S2
|∇nφi |2 f dn.

It remains to sum over all i, k, l, raise to power p/2 and integrate over R

3. This establishes
(57). Estimate (53) now follows from Lemma 2 and, in turn, provides the differential
inequality

1

p

dW

dt
≤ −Dr W + 2 sup

x
|∇x u| W + C W . (58)

Next, we observe that σ is uniformly bounded:

|σ |2 ≤ 9
∫

S2
|n ⊗ n − 1

3
id|2 f dn ≤ 6

∫
S2

f dn = 6. (59)

We also recall that (u −uext , σ −σeq) satisfies the Stokes system (44) &(45), and evoke
Proposition 2. This implies

sup
x

|∇x u − ∇x uext | ≤ C

(
1 + ln

∫
R3

|∇xσ |p dx + ln
∫

R3
|σ − σeq |2 dx

)

(57),(49)≤ C

(
1 + ln W + ln

∫
R3

e(t, x) dx

)

≤ C (1 + ln W + ln E(t)) ,

which with (58) gives (55) and completes the proof. ��
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3. General Properties of the Doi Model

We list here certain properties of the Doi model: the invariance under rotations of
Eqs. (6)–(9), and the non-monotonicity of steady states for steady shear flows (16)–
(19).

3.1. Invariances of the Doi model. We consider the model (6)–(9) and will show that
the system is invariant under rotations.

Proposition 5. Let ( f, u, p), with f = f (t, x, n), u = u(t, x) and p = p(t, x), satisfy
(6)–(9). Then ( f̂ , û, p̂), defined by

f̂ (t, x, n) = f (t, Qx, Qn)

û(t, x) = Qt u(t, Qx),

p̂(t, x) = p(t, Qx)

Q ∈ O(3), (60)

satisfies (6)–(9). Moreover,

σ̂ (t, x) = Qtσ(t, Qx)Q.

The proof is based on invariance properties of the transport equation

∂t f + ∇x f · u + ∇n · (Pn⊥∇x u n f )− Dr�n f − D�x f = 0 (61)

in conjunction with well known invariances of the Stokes system. We use the notation

fu,∇x u = fu(t,x),∇x u(t,x)(t, x, n)

for the solution of (61) generated by the fields u = u(t, x) and ∇x u = ∇x u(t.x).

Lemma 3. Let fu,∇x u satisfy the transport equation (61). Then,

f̃u,Qt ∇x uQ(t, x, n) := fu,∇x u(t, x, Qn) , Q ∈ O(3), (62)

f̄ Rt u(Rx),(∇x u)(Rx)(t, x, n) := fu,∇x u(t, Rx, n) , R ∈ O(3), (63)

f̂ Rt u(Rx),Qt ∇x u(Rx)Q(t, x, n) := fu,∇x u(t, Rx, Qn) , Q, R ∈ O(3), (64)

satisfy transport equations (61) with velocity and velocity-gradient fields as stated in
(62), (63), (64).

.

Proof of Lemma 3. This is a symmetry consideration. Let f = fu,∇x u satisfy (61) with
fields u and ∇x u, Q ∈ O(3), and define f̃ (n) := f (Q n). We then have ∇ f̃ =
Qt∇ f (Qn) and

∇n f̃ (n) = Pn⊥∇ f̃ = ∇ f̃ − (n · ∇ f̃ )n

= Qt (∇ f (Qn)− (Qn · ∇ f (Qn)) Qn)

= Qt∇n f (Qn)
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and

Pn⊥ (Qt ∇x u Q) n = (Qt ∇x u Q) n − (n · (Qt ∇x u Q) n
)

n

= Qt (∇x u (Q n)− (Q n) · ∇x u (Q n) (Q n))

= Qt (Pn⊥ ∇x u n
)
(Q n),

so that
(
−∇n f̃ + Pn⊥ (Qt ∇x u Q) n f̃

)
(n) = Qt (−∇n f + Pn⊥ ∇x u n f

)
(Q n).

We infer
(
−�n f̃ + ∇n ·

(
Pn⊥ (Qt ∇x u Q) n f̃

))
(n)

= ∇n ·
(
−∇n f̃ + Pn⊥ (Qt ∇x u Q) n f̃

)
(n)

= ∇n · (−∇n f + Pn⊥ ∇x u n f
)
(Q n)

= (−�n f + ∇n · (Pn⊥ ∇x u n f
))
(Q n),

and thus

∂t f̃ + u · ∇x f̃ + ∇n ·
(

Pn⊥ (Qt ∇x u Q) n f̃
)

− Dr�n f̃ − D�x f̃

= (
∂t f + u · ∇x f + ∇n · (Pn⊥ ∇x u n f

)− Dr�n f − D�x f
)
(t, x, Qn)

= 0 .

Next, again with f = fu,∇x u and R ∈ O(3), set f̄ = f (Rx). Observe that
∇x f̄ = Rt (∇x f )(Rx) and that �x f̄ = (�x f )(Rx). We infer

∂t f̄ + Rt u(Rx) · ∇x f̄ + ∇n · (Pn⊥ (∇x u)(Rx) n f̄
)− Dr�n f̄ − D�x f̄

= (
∂t f + u · ∇x f + ∇n · (Pn⊥ ∇x u n f

)− Dr�n f − D�x f
)
(t, Rx, n)

= 0 .

The last statement follows by combining the first two.

Proof of Proposition 5. Consider the function ( f̂ , û, p̂) defined by (60), and let
Q ∈ O(3). We then have û = Qt u(t, Qx),

∇x û = Qt (∇x u)(t, Qx) Q ,

and, according to Lemma 3,

∂t f̂ + û · ∇x f̂ + ∇n ·
(

Pn⊥ ∇x û n f̂
)

− Dr�n f̂ − D�x f̂

= (
∂t f + u · ∇x f + ∇n · (Pn⊥ ∇x u n f

)− Dr�n f − D�x f
)
(t, Qx, Qn)

= 0 .



748 F. Otto, A. E. Tzavaras

The transformation of viscoelastic stresses can be seen from (7). We have

σ̂ (t, x) =
∫

S2
(3 n ⊗ n − id) f̂ dn

=
∫

S2
(3 n ⊗ n − id) f (t, Qx, Qn) dn

=
∫

S2
(3 Qt n ⊗ Qt n − id) f (t, Qx, n) dn

= Qtσ(t, Qx)Q .

Moreover,

∇x · û = (∇x · u)(t, Qx) = 0

and

∇x · ((∇x û + ∇ t
x û)− p̂ id + σ̂

)
= Qt [∇x · ((∇x u + ∇ t

x u)− p id + σ
)]
(t, Qx) = 0,

that is ( f̂ , û, p̂) satisfy (6)–(9).

3.2. Non–monotonicity and discontinuous solutions. In this section we prove Theo-
rem 1. The proof is based on the properties of the normalized strain–rate to elastic stress
mapping 
 which we now define.

Definition 1. The map


 : End(R3) � κ 	→ σ ∈ Sym(R3)

is defined via

σ =
∫

S2
(3 n ⊗ n − id) fκ dn,

where fκ is the unique solution of

∇n · (Pn⊥κ n f )− �n f = 0 (65)

with f ≥ 0 and
∫

S2 f dn = 1.

We denote by κs the gradient of a normalized shear flow, i. e.

κs =
⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ .

Hence x1 is the flow direction, x2 the shear direction and x3 the vorticity direction. We
will need the following three properties for 
(γ̇ κs):

Lemma 4.

d

dγ̇ |γ̇=0

12(γ̇ κs) > 0.
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Lemma 5.

lim
γ̇→∞
12(γ̇ κs) = 0.

Lemma 6.


23(γ̇ κs) = 0.

Proof of Lemma 4. We start with remarking that the components of 3n ⊗ n − id, i. e.

3 ni n j − δi j ,

are surface spherical harmonics of order 2. This means that they are harmonic polyno-
mials on R

3 of order 2, restricted to S2. It is well known that surface spherical harmonics
are eigenfunctions of the Laplacian on S2. Their eigenvalue is −�(� + 1), where � is the
order [1, App. E]. Hence

�n(3 ni n j − δi j ) = −6 (3 ni n j − δi j ). (66)

This observation yields an alternative representation of the map 
:


(κ) =
∫

S2
(3n ⊗ n − id) fκ dn

(66)= −1

6

∫
S2

�n

(
3

n

|n| ⊗ n

|n| − id

)
fκ dn

= −1

2

∫
S2

n ⊗ n �n fκ dn

(65)= −1

2

∫
S2

n ⊗ n ∇n · (Pn⊥κn fκ) dn. (67)

According to (67), we have in particular


12(γ̇ κs) = − γ̇
2

∫
S2

n1 n2 ∇n · (Pn⊥κsn fγ̇ κs ) dn.

Hence we obtain

d

dγ̇ |γ̇=0

12(γ̇ κs) = −1

2

∫
S2

n1 n2 ∇n · (Pn⊥κsn f0) dn

= − 1

8π

∫
S2

n1 n2 ∇n · (Pn⊥κsn) dn

= 1

8π

∫
S2

∇n(n1 n2) · Pn⊥κsn dn

= 1

8π

∫
S2

Pn⊥

⎛
⎝ n2

n1
0

⎞
⎠ · Pn⊥

⎛
⎝n2

0
0

⎞
⎠ dn

= 1

8π

∫
S2

Pn⊥

⎛
⎝n2

n1
0

⎞
⎠ ·
⎛
⎝n2

0
0

⎞
⎠ dn

= 1

8π

∫
S2
(1 − 2 n2

1) n2
2 dn.
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By symmetry we have∫
S2
(1 − 2 n2

1)n
2
2 dn =

∫
S2
(1 − n2

1 − n2
3) n2

2 dn =
∫

S2
n4

2 dn,

so that the above turns into

d

dγ̇ |γ̇=0

12(γ̇ κs) = 1

8π

∫
S2

n4
2 dn > 0.

Proof of Lemma 5. According to the definition of 
, we have to show

lim
γ̇↑∞

∫
S2

n1 n2 fγ̇ κs dn = 0.

Because of Jensen ∣∣∣∣
∫

S2
n1 n2 fγ̇ κs dn

∣∣∣∣
3

≤
∫

S2
|n1 n2|3 fγ̇ κs dn

and the inequality

|n1 n2|3 ≤ |n2|3 ≤ (n2
2 + n2

3) |n2| = (1 − n2
1) |n2|,

it suffices to show

lim
γ̇↑∞

∫
S2
(1 − n2

1) |n2| fγ̇ κs dn = 0. (68)

We now argue in favor of (68). According to (65), we have for any test function ζ ,∫
S2

(
∇nζ · Pn⊥κs n + γ̇−1�nζ

)
fγ̇ κs dn = 0. (69)

We now make a special ansatz for ζ . We fix a smooth function ϕ(n̂2) with

ϕ(n̂2) = 1 for n̂2 ≥ 1 and ϕ(n̂2) = −1 for n̂2 ≤ −1.

For given λ > 0 to be optimized later, we consider

ζλ(n) = n1 ϕ
(n2

λ

)
,

which we think of as an approximation of n1 sign(n2) for λ � 1. On one hand we have

|�nζλ| ≤ C
1

λ2 (70)

with a universal generic constant C < ∞. On the other hand, we have

∇nζλ · Pn⊥κs n = Pn⊥

⎛
⎝ ϕ

( n2
λ

)
n1
λ
ϕ′ ( n2

λ

)
0

⎞
⎠ · Pn⊥

⎛
⎝n2

0
0

⎞
⎠

=
⎛
⎝ ϕ

( n2
λ

)
n1
λ
ϕ′ ( n2

λ

)
0

⎞
⎠ ·
⎛
⎝ n2 − n2

1 n2
−n1 n2

2−n1 n2 n3

⎞
⎠

= (1 − n2
1) n2 ϕ

(n2

λ

)
− n2

1
n2

2

λ
ϕ′ (n2

λ

)
. (71)
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Since∣∣(1 − n2
1) n2 ϕ

( n2
λ

)− (1 − n2
1) |n2|

∣∣ ≤ λ | n2
λ

| |ϕ ( n2
λ

)− sign
( n2
λ

) | ≤ C λ,∣∣∣∣n2
1

n2
2
λ
ϕ′ ( n2

λ

)∣∣∣∣ ≤ λ

∣∣∣( n2
λ

)2
ϕ′ ( n2

λ

)∣∣∣ ≤ C λ,

(71) yields ∣∣∣∇nζλ · Pn⊥κsn − (1 − n2
1) |n2|

∣∣∣ ≤ C λ. (72)

From (70) and (72) we obtain∣∣∣∇nζλ · Pn⊥κsn + γ̇−1�nζλ − (1 − n2
1) |n2|

∣∣∣ ≤ C

(
λ +

1

γ̇ λ2

)
.

With the choice of λ = γ̇−1/3 this turns into∣∣∣∇nζλ · Pn⊥κsn + γ̇−1�nζλ − (1 − n2
1) |n2|

∣∣∣ ≤ C γ̇−1/3.

In view of (69) this yields∣∣∣∣
∫

S2
(1 − n2

1) |n2| fγ̇ κs dn

∣∣∣∣ ≤ C γ̇−1/3,

which is a quantitative version of (68).

Proof of Lemma 6. This is an outcome of symmetry considerations. We notice that for
any Q ∈ O(3),

fQtκ Q(n) = fκ(Q n). (73)

Indeed, consider the transformation f̃ (n) := f (Q n). Proceeding as in the proof of
Lemma 3 we obtain (

−�n f̃ + ∇n ·
(

Pn⊥ (Qt κ Q) n f̃
))
(n)

= (−�n f + ∇n · (Pn⊥ κ n f
))
(Q n).

This identity implies (73) by uniqueness of (65).
We now notice that

Q :=
⎛
⎝ 1 0 0

0 1 0
0 0 −1

⎞
⎠ ∈ O(3) and Qt (γ̇ ks) Q = γ̇ ks .

Hence by (73) we have

fγ̇ κs (n1, n2,−n3) = fγ̇ κs (n1, n2, n3),

which in turn yields


23(γ̇ κs) =
∫

S2
n2 n3 fγ̇ κs (n1, n2, n3) dn

=
∫

S2
n2 n3 fγ̇ κs (n1, n2,−n3) dn

= −
∫

S2
n2 n3 fγ̇ κs (n1, n2, n3) dn

= −
23(γ̇ κs).
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Proof of Theorem 1. According to Lemmas 4 and 5,

R � γ̇ 	→ 
12(γ̇ κs) is not monotone.

Hence for sufficiently small Dr , also

R � γ̇ 	→ γ̇ +
12

(
γ̇ κs

Dr

)
is not monotone.

We fix such a Dr and select γ̇± with

γ̇+ �= γ̇− and γ̇+ +
12

(
γ̇+κs

Dr

)
= γ̇− +
12

(
γ̇−κs

Dr

)
. (74)

We introduce

f (x, n) :=
{

fγ̇+κs (n) for x2 > 0
fγ̇−κs (n) for x2 < 0

}
,

u(x) :=
{
γ̇+(x2, 0, 0) for x2 > 0
γ̇−(x2, 0, 0) for x2 < 0

}
,

p(x) :=
⎧⎨
⎩

22

(
γ̇+κs
Dr

)
for x2 > 0


22

(
γ̇−κs

Dr

)
for x2 < 0

⎫⎬
⎭ . (75)

We notice that u is continuous with weak gradient

∇x u(x) =
{
γ̇+ κs for x2 > 0
γ̇− κs for x2 < 0

}
, (76)

that ∇x u is discontinuous and (19) is satisfied (in the weak sense).
We now argue that (18), which in view of (19) can be rewritten as

∇x · (∇x u − p id + σ) = 0, (77)

holds in the weak sense. Indeed, because of (76), (75) and Definition 1 we have

∇x u − p id + σ =
⎧⎨
⎩
γ̇+ κs −
22

(
γ̇+κs
Dr

)
id +


(
γ̇+κs
Dr

)
for x2 > 0

γ̇− κs −
22

(
γ̇−κs

Dr

)
id +


(
γ̇−κs

Dr

)
for x2 < 0

⎫⎬
⎭ .

Since this tensor is piecewise constant, it remains to show that

ui,2 − p δi2 + σi2 is continuous across {x2 = 0} for i = 1, 2, 3 (78)

in order to conclude (77). For the flow direction i = 1 we have

u1,2 − p δ12 + σ12 =
⎧⎨
⎩
γ̇+ +
12

(
γ̇+κs
Dr

)
for x2 > 0

γ̇− +
12

(
γ̇−κs

Dr

)
for x2 < 0

⎫⎬
⎭ ,

so that (78) follows from (74). For the shear direction i = 2 we notice that

u2,2 − p δ22 + σ22 = 0
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due to the definition (75) of the pressure. For the vorticity direction i = 3 we remark

u3,2 − p δ32 + σ32 =
⎧⎨
⎩

23

(
γ̇+κs
Dr

)
for x2 > 0


23

(
γ̇−κs

Dr

)
for x2 < 0

⎫⎬
⎭ ,

which vanishes according to Lemma 6. Hence (78) is established.
The Smoluchowski equation (16) itself is satisfied by definition (65) of fγ̇± κs and

because of

∇x · ( f u) = 0 distributionally,

since u has only a u1–component and f u depends on x only through x2.

4. Appendix I.

Proof of Proposition 2. We select a ϕ in S(R3), the Schwartz space, such that its Fourier
transform satisfies

ϕ̂(k) = 1

(2π)3/2
for |k| ≤ 1. (79)

The constant is chosen such that ∫
R3
ϕ dx = 1. (80)

We recall that u is periodic and that the Fourier symbol which relates σ to ∇x u via the
Stokes system (44) & (45) is given by

ûi, j (k) = k j

|k|
(

ki

|k|
k�
|k| − δi�

)
km

|k| σ̂�m(k), (81)

where we sum over repeated indices. Thanks to (79),

ψ̂i j�m(k) =
(
ϕ̂

(
k

2

)
− ϕ̂(k)

)
k j

|k|
(

ki

|k|
k�
|k| − δi�

)
km

|k|
defines aψi j�m ∈ S(R3). We introduce the dyadically rescaled version of these Schwartz
functions:

ϕ(ν)(x) = (2ν)3 ϕ(2νx), ψ
(ν)
i j�m(x) = (2ν)3 ψi j�m(2

νx)

for ν ∈ {0, 1, · · · }, and recall that̂ϕ(ν)(k) = ϕ̂
( k

2ν
)
.

We now fix an N ∈ N which we will choose at the end. The decomposition of the
right-hand side σ into

σ�m = σ�m − ϕ(N ) ∗ σ�m
+(ϕ(N ) − ϕ(N−1)) ∗ σ�m + · · · + (ϕ(1) − ϕ(0)) ∗ σ�m
+ϕ(0) ∗ σ�m
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translates by definition of ψi j�m into

ui, j = ui, j − ϕ(N ) ∗ ui, j (82)

+ψ(N−1)
i j�m ∗ σ�m + · · · + ψ(0)i j�m ∗ σ�m (83)

+ϕ(0) ∗ ui, j . (84)

Each of the terms in line (83) is easily estimated as follows

sup
x∈R3

|ψ(ν)i j�m ∗ σ�m | ≤
∫

R3
|ψ(ν)i j�m | dz sup

x∈R3
|σ�m |

=
∫

R3
|ψi j�m | dẑ sup

x∈R3
|σ�m |

≤ C sup
x

|σ |, (85)

where C denotes a generic constant only depending on p.
For the term in line (84) we obtain

|ϕ(0) ∗ ui, j (x)|2 ≤
(∫

R3
|ϕ(0)(x − y)|2dy

) (∫
R3

|ui, j |2 dy

)

≤ C

(∫
R3

|σ |2 dy

)
. (86)

We now address the term in line (82). We recall the Sobolev embedding theorem for
functions in W 1,p(R3),

|ui, j (x)− ui, j (y)| ≤ C |x − y|1−3/p
(∫

R3
|∇ui, j |p dx

)1/p

, (87)

and Lemma 2 with the L p(R3)–estimate for the Stokes operator:

(∫
R3

|∇2u|p dx

)1/p

≤ C

(∫
R3

|∇σ |p dx

)1/p

. (88)

This allows to tackle the term in line (82):

|(ui, j − ϕ(N ) ∗ ui, j )(x)|
(80)=

∣∣∣∣
∫

R3
ϕ(N )(x − y) (ui, j (x)− ui, j (y)) dy

∣∣∣∣
(87,88)≤ C

∫
R3

|ϕ(N )(z)| |z|1−3/p dz

(∫
R3

|∇ui, j |p dx

)1/p

= C (2−N )1−3/p
∫

R3
|ϕ(ẑ)| |ẑ|1−3/p dẑ

(∫
R3

|∇σ |p dx

)1/p

= C 2−N (1−3/p)
(∫

R3
|∇σ |p dx

)1/p

. (89)
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Combining (85), (86) & (89), we gather

sup
x∈R3

|∇u| ≤ C

(
2−N (1−3/p)

(∫
R3

|∇σ |p dx

)1/p

+N sup
x∈R3

|σ | +

(∫
R3

|σ |2dx

)1/2
)
. (90)

The Stokes system (44)–(45) in R

3 is invariant under the rescaling

u�(x) = 1

�2 u(�x) , σ�(x) = 1

�
σ(�x) , p�(x) = 1

�
p(�x).

We apply (90) to the rescaled functions u�, σ� and use the identities

‖σ�‖L2(R3) = �−
5
2 ‖σ‖L2(R3) , ‖∇xσ�‖L p(R3) = �

− 3
p ‖∇xσ‖L p(R3) ,

to obtain

sup
x∈R3

|∇u| ≤ C

(
2−N (1−3/p)�

1− 3
p ‖∇xσ‖L p(R3)

+N sup
x∈R3

|σ | + �−
3
2 ‖σ‖L2(R3)

)
. (91)

The interpolation estimate (91) depends on two parameters N and �. We proceed to
optimize their selection.

First choose N ∈ N such that

2(N−1)(1−3/p) ≤ 1 +
�1−3/p ‖∇xσ‖L p(R3)

supx |σ | ≤ 2N (1−3/p),

so that

N ≤ C

[
1 + ln

(
1 +

�1−3/p ‖∇xσ‖L p(R3)

supx |σ |

)]
.

Then (91) turns into

sup
x∈R3

|∇u| ≤ C

[[
1 + ln

(
1 +

�1−3/p ‖∇xσ‖L p(R3)

supx |σ |

)]
sup

x
|σ | + �−3/2‖σ‖L2(R3)

]
.

(92)

Next we select

� =
(‖σ‖L2(R3)

supx |σ |
)2/3

in (92) and complete the proof of Proposition 2.
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5. Appendix II.

The operator ∇n satisfies certain elementary properties that are extensively used in this
article: Let F be a vector-valued function and f , g be scalar-valued functions, then

∫
S2
(∇n · F) f dn = −

∫
S2

F · (∇n f − 2n f )dn, (93)
∫

S2
(∇n · ∇n f )gdn =

∫
S2
(∇n · ∇ng) f dn, (94)

∫
S2

n ⊗ ∇n f dn =
∫

S2
∇n f ⊗ n dn =

∫
S2
(3n ⊗ n − id) f dn. (95)

A convenient way to prove such formulas is by expressing them to spherical coordi-
nates, see [1, App. A.6 and E.6]. The change of variables for a point P with Cartesian
coordinates (nx , ny, nz) to spherical coordinates is

nx = r sin θ cosϕ , ny = r sin θ sin ϕ , nz = r cos θ,

where 0 < θ < π , 0 ≤ ϕ < 2π . Let er , eθ , eϕ be the orthonormal coordinate system
associated to spherical coordinates and attached at P . It satisfies the derivative formulas

∂er

∂r
= 0,

∂er

∂θ
= eθ ,

∂er

∂ϕ
= eϕ sin θ,

∂eθ
∂r

= 0,
∂eθ
∂θ

= −er ,
∂eθ
∂ϕ

= eϕ cos θ,

∂eϕ
∂r

= 0,
∂eϕ
∂θ

= 0,
∂eϕ
∂ϕ

= −er sin θ − eθ cos θ.

(96)

We visualize the sphere S2 as embedded in the Euclidean space. The operator ∇n is
related to the gradient operator ∇ through

∇n = r(id − n ⊗ n) · ∇ = eθ
∂

∂θ
+ eϕ

1

sin θ

∂

∂ϕ
.

For a scalar-valued function f ,

∇n f = eθ
∂ f

∂θ
+ eϕ

1

sin θ

∂ f

∂ϕ
,

�n f = ∇n · ∇n f = 1

sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+

1

sin2 θ

∂2 f

∂ϕ2 .

For a vector-valued function F , expressed in spherical coordinates in the form F =
Fr er + Fθeθ + Fϕeϕ , we compute

∇n · F =
(

eθ
∂

∂θ
+ eϕ

1

sin θ

∂

∂ϕ

)
· (Fr er + Fθeθ + Fϕeϕ

)

(96)= 1

sin θ

∂

∂θ
(sin θFθ ) +

1

sin θ

∂Fϕ
∂ϕ

+ 2Fr .
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Observe next that∫
S2
(∇n · F) f dn =

∫∫ (
1

sin θ

∂

∂θ
(sin θFθ ) +

1

sin θ

∂Fϕ
∂ϕ

+ 2Fr

)
f sin θ dθdϕ

= −
∫∫ (

−2Fr f + Fθ
∂ f

∂θ
+

1

sin θ
Fϕ
∂ f

∂ϕ

)
sin θ dθdϕ

= −
∫

S2
F · (∇n f − 2n f )dn

gives (93). Formula (94) follows by applying (93) twice:
∫

S2
(∇n · ∇n f )gdn = −

∫
S2

∇n f · (∇ng − 2ng) dn

= −
∫

S2
∇n f · ∇ng dn

=
∫

S2
f (∇n · ∇ng)dn .

Finally, using integration by parts, we have the chain of identities
∫

S2
n ⊗ ∇n f dn

=
∫∫

er ⊗
(

eθ
∂ f

∂θ
+ eϕ

1

sin θ

∂ f

∂ϕ

)
sin θdθdϕ

= −
∫∫ [

∂

∂θ
(er ⊗ eθ ) +

cos θ

sin θ
er ⊗ eθ +

1

sin θ

∂

∂ϕ
(er ⊗ eϕ)

]
f sin θdθdϕ

(96)= −
∫∫ [

eθ ⊗ eθ + eϕ ⊗ eϕ − 2er ⊗ er
]

f sin θdθdϕ

=
∫

S2
(3n ⊗ n − id) f dn. (97)

Since (a ⊗ b)t = b ⊗ a and the final equation in (97) is a symmetric tensor, we deduce
(95).
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