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Abstract: Aided by mirror symmetry, we determine the number of holomorphic disks
ending on the real Lagrangian in the quintic threefold. We hypothesize that the tension of
the domainwall between the two vacua on the brane, which is the generating function for
the open Gromov-Witten invariants, satisfies a certain extension of the Picard-Fuchs dif-
ferential equation governing periods of the mirror quintic. We verify consistency of the
monodromies under analytic continuation of the superpotential over the entire moduli
space. We further check the conjecture by reproducing the first few instanton numbers by
a localization computation directly in the A-model, and verifying Ooguri-Vafa integral-
ity. This is the first exact result on open string mirror symmetry for a compact Calabi-Yau
manifold.

1. Introduction and Summary

It has long been suspected that the enumerative results about holomorphic curves obtained
by mirror symmetry [1] could be extended to open Riemann surfaces, provided appro-
priate boundary conditions are imposed. In the A-model, and at lowest order in the string
coupling expansion, the counting of holomorphic disks ending on Lagrangian subman-
ifolds is the central ingredient in the definition of Floer homology and the Fukaya
category [2], which appears on one side of the homological mirror symmetry conjecture
[3]. From the physics perspective, the chief interest is to determine the superpotential
on the worldvolume of D-branes wrapping the Lagrangian, with many applications in
studies of N = 1 compactifications of string theory.

Until now, the program of extending mirror symmetry to the open string sector has
been successfully implemented only in a rather limited set of examples with special,
toric, symmetries [4,5]. While certain general structures could be extracted from the
results obtained [6–8], and of course much is known in lower-dimensional situations
[9,10], it has remained unclear whether and how these ideas could be implemented for
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Table 1. The number (integral invariants) of holomorphic disks in X ending on L , of degree d (only odd d
are shown, for reasons explained in the text), and, for comparison, the number of holomorphic spheres in X ,
according to [1]

d number of disks nd number of spheres

1 30 2875
3 1530 317206375
5 1088250 229305888887625
7 975996780 295091050570845659250
9 1073087762700 503840510416985243645106250
11 1329027103924410 1017913203569692432490203659468875
13 1781966623841748930 229948856813626664832516010477226554. . .
15 2528247216911976589500 562465682466848327417948393837157975. . .
17 3742056692258356444651980 146020747145890338745688881159596996. . .
19 5723452081398475208950800270 397016669854518762338361058844977288. . .

more general, in particular compact, Calabi-Yau threefolds. This is precisely what we
do in this paper.

The Calabi-Yau manifold X we will consider is the most popular quintic in CP
4, and

our Lagrangian L will be the most canonical real locus inside of it. This Calabi-Yau-
Lagrangian pair has been contemplated many times in the literature, starting with [11].
First exact results were obtained in [12], where D-branes wrapping L were identified
with certain RS boundary states at the Gepner point [13] (see also [14] for a comple-
mentary derivation of this result). In [15,16], the continuation of these boundary states
over the moduli space was analyzed using matrix factorizations [17,18] in the mirror
B-model Landau-Ginzburg description. In particular, it was explained in [16] that the
singularity in the D-brane moduli space at the Gepner point could be interpreted as a
degeneration of the Morse-Witten-Floer complex that computes Floer homology. Living
in the A-model, the Floer differential differs from the classical Morse differential by
corrections from holomorphic disks ending on L [19,2], which suggested that one should
be able to turn these results into a computation of the number of holomorphic disks as
coefficients in the appropriate large-volume expansion. We will fulfill this promise in
the present work, although following a slightly different route.

The central technical hypothesis in this work is that the spacetime superpotential on
the brane worldvolume, which is the generating function capturing the open string inst-
anton information [20–22], satisfies a differential equation which is a simple extension
of the standard Picard-Fuchs differential equation whose solutions are the periods of
the holomorphic three-form on the mirror of the quintic. The possible origin of such
differential equations is discussed in special circumstances in [7,8] (see also [23,24]).
But for a general brane configuration, or when the ambient Calabi-Yau is compact, the
existence of this differential equation is, to the very least, surprising. Perhaps the most
novel aspect of the equation that we introduce in this paper is that large complex structure
is not a singular point of maximal unipotent monodromy. However, this has excellent
reasons for being so, as we will explain below.

Assuming the existence of the differential equation, the symmetries and monodro-
mies of the superpotential at large volume are sufficient to fix the extended Picard-Fuchs
operator. It is then straightforward to extract the open string instanton numbers, and we
can check the integrality property conjectured in [21]. We do all this in Sect. 2, and
display, for amusement, the results in Table 1.
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It is then also of interest to study the analytic properties of the brane superpotential
over the entire Calabi-Yau moduli space, and not just around large volume. Referring
to Sect. 3 for details, we would like to point out two salient features here. Firstly, the
domainwall tension is invariant under monodromy around the conifold singularity in
the moduli space. To appreciate the consistency of this result, one has to remember that
the cycle that shrinks to zero volume at the conifold singularity in Kähler moduli space
is a holomorphic cycle which can be wrapped by a B-brane, and it would be somewhat
non-obvious why an A-brane would feel this singularity.

The second interesting feature is that the domainwall tension is not invariant under
monodromy around the small-volume Gepner point. This is more surprising because,
based on the worldsheet results of [16], one would have naively expected the domainwall
tension to vanish at that point where the two vacua on the brane become degenerate.
Instead, what happens is that the tension of the domainwall, when analytically continued
from large volume, becomes asymptotically equal to a particular closed string period,
which measures flux superpotentials. In other words, this domainwall only mediates a
transition between different flux sectors, and this is still consistent with the degeneracy
of the open string vacua. What it tells us, however, is that it could be much more delicate
to understand our results from the worldsheet perspective, which is purportedly insensi-
tive to the flux. It also indicates that it might be appropriate to include some of the flux
data into the definition of Floer homology and the Fukaya category.

While this derivation of the superpotential and the instanton series can perfectly well
stand alone, the confidence in the enumerative results of Table 1 of course increases
dramatically if at least some of those numbers can be verified mathematically directly
in the A-model. We will do this in Sect. 4.

The mathematical definition of open Gromov-Witten invariants in general still appears
lacking [2], although several special cases have been treated in the literature. Studies of
the local toric situation include [25–28]. Recently, Solomon [29,30] has performed a rig-
orous study of open Gromov-Witten invariants in the situation in which the Lagrangian
providing the boundary conditions arises as the fixed point set of an anti-holomorphic
involution. This covers the situation of our interest, so we can be confident that the
numbers we are claiming are well-defined.

To go ahead with the direct computation of those open Gromov-Witten invariants,
one can exploit the fact that, at least in our situation, any holomorphic mapping from
the disk into X with boundary on L factors through a holomorphic sphere in X meeting
L in a circle. In other words, we can relate the enumeration of holomorphic disks to the
enumeration of holomorphic spheres which are invariant under the anti-holomorphic
involution. For this problem, we have at our disposal the powerful graph combinatorial
method introduced in [31]. This technique computes the Euler characteristic of a par-
ticular bundle on the moduli space M(CP

4) of holomorphic curves in CP
4 by using

Atiyah-Bott localization with respect to the action of the torus (S1)5 ⊂ U (5) inside the
symmetry group of CP

4. The anti-holomorphic involution then acts in a natural way on
this moduli space and the bundle over it, and one can identify the open Gromov-Witten
invariant as the Euler characteristic of the resulting real bundle over the real locus in
M(CP

4) [32].
There are then two key points to appreciate in order to proceed. The first one is that

while the anti-holomorphic involution breaks some of the symmetries of the ambient
space, it still leaves an (S1)2 ⊂ O(5) unbroken. In particular, the fixed points on the
real slice with respect to this torus coincide with the real fixed points of the torus in the
complex case. The second point is that the Euler class of a real bundle is the squareroot
of the Euler class of its complexification, where the sign is determined by the choice
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of orientation. With these two ingredients, it is straightforward to adapt the methods of
[31] to develop a graphical calculus which computes the open Gromov-Witten invari-
ants of our interest. We have checked that up to degree 7, these numbers coincide with
those obtained using mirror symmetry. The number (30) of holomorphic disks of degree
1 was first computed (without using localization) by Solomon [32,30]. We have also
checked the number (1530) of holomorphic disks in degree 3 by taking a real slice of the
localization computation of [33] on the space of curves (instead of the space of maps).

Besides the many possible applications and extensions of these results that spring
to mind, we would like to mention that the numbers we get in this paper can also be
viewed as providing lower bounds in real enumerative geometry in the sense of, see,
e.g., [34,35].

2. The Problem and its Solution

We consider in CP
4 the Calabi-Yau hypersurface given as the vanishing locus of a

polynomial of degree 5 in the homogeneous coordinates of CP
4:

X = {P(z1, . . . , z5) = 0} ⊂ CP
4. (2.1)

The choice of P determines the complex structure of X , and to define a σ -model with
target space X , we need to pick a choice of complexified Kähler form B + i J = tω,
where we denote by ω the integral generator of H2(X,Z) = Z, and t is the Kähler
parameter.

2.1. On the real quintic. We want to identify in X a particular Lagrangian submanifold
as the fixed-point locus of an anti-holomorphic involution which acts on the ambient
CP

4 as complex conjugation on the homogeneous coordinates

[z1 : z2 : · · · : z5] �→ [z̄1 : z̄2 : · · · : z̄5]. (2.2)

The complex structure on X will be (anti-)invariant under this involution if the defining
polynomial P is real, in the sense that all its coefficients are real (up to a common phase).
The fixed point locus, L , where zi = xi is real is then given by the corresponding real
equation P(x1, . . . , x5) = 0 inside of RP

4 ⊂ CP
4. Straightforwardly, L is a Lagrangian

submanifold of X . In fact, L is even special Lagrangian with respect to the holomorphic
three-form on X .

Now while the topology of X is well-known and independent of the complex struc-
ture, the real locus L can have various topologies and singularities, with interesting
transitions between them as P is varied. We will not attempt to discuss all the possibil-
ities here, but wish to comment on the consequences. To fix ideas, let us consider the
Fermat quintic

P = z5
1 + z5

2 + z5
3 + z5

4 + z5
5. (2.3)

Over the reals, zi = xi , we can solve for x5 uniquely in terms of x1, . . . x4, not all
of which can be zero, lest x5 will be zero too. This identifies L with a copy of RP

3.
However, this identification depends on the fact that z5

5 = a for real a has only one real
root, which will not be useful for a generic P .
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There are at least two things that can happen to the real locus as we vary the complex
structure. The first one is familiar from studies of stability conditions on Lagrangian sub-
manifolds, and happens along a real codimension one locus in complex structure moduli
space. When crossing such a wall of marginal stability, the special Lagrangian L devel-
ops a singularity and reconnects on the other side, changing its topological type (but not
its homology class). The second effect is a remnant of the standard conifold singularity
in the complex structure moduli space. (It might seem that since the discriminant locus
is complex codimension one, it would generically be missed by the half-dimensional
real subspace. But this is untrue.) It was shown in [36] using a local model that when
crossing such a conifold singularity, the homology class of the real locus always changes
by the homology class of the vanishing cycle.

The second phenomenon is known to happen on the quintic [37], for example when
crossing the standard conifold locus ψ = 1 along the one parameter family P →
P −5ψz1z2z3z4z5. Since the Lagrangian is connected atψ = 0, it implies that we must
also be crossing a line of marginal stability somewhere between ψ = 0 and ψ = ∞.

In this paper, we are studying L in the A-model, and those aspects should be inde-
pendent of the complex structure of X , and only depend on the Hamiltonian deformation
class of L . Namely, we would expect to only depend on L being Lagrangian, and not
the special Lagrangian property. On the other hand, the available definitions of Floer
homology for Lagrangians clearly depend on the underlying topology. (For instance,
they depend on b1(L).) It is therefore not a priori clear why there should be a well-
defined and invariant notion of Floer homology or of the “number of disks” ending on
“the real locus L” which is independent of the complex structure of X . One might worry
slightly less about this in regard to the first phenomenon (marginal stability) because
at least the homology class is preserved. In this paper, in any case, we will ignore this
complication, and just pretend that L ∼= RP

3. The number of disks we will quote can
then be understood as referring to “the generic quintic in a neighborhood of the Fermat
point”.

For the rest of the paper, we will be concerned with the dependence on the Kähler
parameter, t , or its exponentiated version q = e2π it . We begin in the large volume limit
q → 0.

2.2. Vacuum structure at large volume. Recall that to wrap an A-brane on L , we also
need to specify a U (1) bundle with a flat connection. Since H1(L; Z) = π1(L) = Z2
we have two possible choices which are distinguished by a “discrete Wilson line”,
W = ε = ±1. In fact, these two choices correspond to topologically distinct bundles
on RP

3, as measured by the first Chern class c1 ∈ H2(L; Z). The latter is equal to
H1(L; Z) by Poincaré duality. On the other hand, the K-theory of the quintic does not
contain any torsion elements, and the two choices of flat connection can therefore not
be distinguished by any topological charge [12].

As a consequence, when wrapping a D6-brane of type IIA string theory on L , the
brane worldvolume will support an N = 1 gauge theory with two vacua corresponding
to the two possible discrete Wilson lines, which are not distinguished by any conserved
charge. We can then ask about the existence of a BPS domainwall that communicates
between these two vacua.

To represent this domainwall in string theory, it is helpful to understand why the
two bundles are topologically equivalent after inclusion in the quintic. Let us consider
the situation with “non-trivial” Wilson line ε = − (we will see in a moment that this
isn’t really an invariant notion). The non-trivial first Chern class of the bundle on L



676 J. Walcher

can be viewed as resulting from dissolving into the D6-brane a D4-brane wrapping the
non-trivial one-cycle in H1(L; Z). But since the quintic does not contain any non-trivial
one-cycles, we can also contract it away to nothing.

Clearly, then, the BPS domainwall that mediates between the two choices of Wilson
line on the D6-brane wrapping on L is a D4-brane wrapping a holomorphic disk D in X
with boundary on the non-trivial one-cycle in L and extended along a (2+1)-dimensional
subspace of Minkowski space. This D4-brane is a magnetic source on the D6-brane and
hence changes the (discrete) magnetic flux on L . The topological classification of D
is as a non-trivial relative cohomology class in H2(X, L; Z) with non-trivial image in
H1(L; Z).

It is not difficult to get a first approximation to the tension, T , of this domainwall
in the large volume limit (here and throughout the paper, we will refer to the tension as
the holomorphic quantity whose absolute value gives the physical tension). Since L is
defined as the fixed point locus of an anti-holomorphic involution of X , any holomorphic
disk ending on L can be complex conjugated to a second holomorphic disk, and thereby
completed to a holomorphic sphere. From the exact sequence

H2(X; Z) → H2(X, L; Z) → H1(L; Z) (2.4)

we see that in fact also a brane wrapped on twice the generator of H2(X, L; Z) will not
change the vacuum on the brane, and hence be equivalent to a holomorphic sphere. The
tension of that sphere being t (the Kähler parameter), we infer 2T ∼ t .

To see that this argument was in fact quite incomplete, we need another fact about the
relation between the cohomology of X and that of L . Namely, when intersecting a hyper-
plane in CP

4 with the Lagrangian L (the hyperplane has to be represented by a complex
linear equation in order to intersect L transversely), we can see that the intersection locus
is a non-trivial one-cycle in L . The Poincaré dual statement is that the integral generator
of H2(X; Z) restricts on L to the non-trivial element of H2(L; Z). Since the gauge
invariant gauge field on the brane is B − F , this means that changing the flat B-field on
X by one unit is equivalent to exchanging the two flat gauge fields on the brane.

A more elementary way to see this is to note that the path-integral contribution of
a disk worldsheet wrapped on D has a contribution e2π it/2 = q1/2 from its area and
a contribution ε = ±1 from its boundary, so changing B → B + 1 is equivalent to
changing ε → −ε. Taking B → B + 2 does nothing on the brane. In this sense, we can
specify the Wilson line on the brane only after fixing the sign of q1/2.

Now claiming that T ∼ t/2 raises a puzzle because it is not invariant under t → t +2.
To resolve this, we have to note that the D4-brane wrapped on D is a magnetic source
not only for the gauge field on L , but also for the Ramond-Ramond 3-form field (we
actually used this above to derive 2T ∼ t). The change of T under t → t + 2 is then
explained by the non-invariance of RR flux under B-field monodromies.

So to make the formula for T more precise, and work out the spectrum of domain-
walls, we have to include the RR flux quantum numbers in our labeling of the vacua.
For the time being, 4-form flux, N4, and 6-form flux, N6, (around the unique four and
6-cycle of X ) will suffice, so our vacua are labeled as (N4, N6, ε).

We then require that a domainwall represented by a D4 wrapping an elementary disk
D connects ε −ε, and that by juxtaposing two such disks we obtain a sphere across
which the only change is N4 → N4 +1, that the B-field monodromy B → B +1 changes
N6 → N6 + N4, and also ε → −ε, but is otherwise a symmetry of the spectrum. We also
wish to keep 4- and 6-form flux integrally quantized to avoid concluding with fractional
D0-branes.
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It then turns out that, up to parity, there is only one consistent solution to these con-
straints. The change in 4-form flux across a D4-brane wrapped on D is zero when ε = −
on the left of the domainwall and it is equal to +1 when ε = + on the left, and, we have
to let the B-field monodromy change the 4-form flux, in a way depending on ε:

B → B + 1 : (N4, N6,−) → (N4, N6 + N4,+)
(N4, N6,+) → (N4 + 1, N6 + N4,−) . (2.5)

Let us denote the tension of a domainwall between vacuum (N4, N6, ε) on the left
and vacuum (N ′

4, N ′
6, ε

′) on the right by T(N4,N6,ε)|(N ′
4,N

′
6,ε

′). The above constraints are
enough to determine all T ’s as a function of t .

For example, let us consider the most basic T− ≡ T(0,0,−)|(0,0,+) and
T+ ≡ T(0,0,+)|(1,0,−). Since T−(t + 1) = T+(t) and T+ + T− = t , we conclude

T− = t

2
− 1

4
T+ = t

2
+

1

4
. (2.6)

Finally, we can write down the spacetime superpotential, which follows from (2.6)
together with

T(N4,N6,ε)|(N ′
4,N

′
6,ε

′)(t) = WN ′
4,N

′
6,ε

′(t)− WN4,N6,ε(t). (2.7)

We find

WN4,N6,+(t) = t2

4
+ N4t + N6 WN4,N6,−(t) = t2

4
− t

2
+

1

4
+ N4t + N6. (2.8)

Of course, in this section, the discussion has been entirely classical and restricted to
the large volume limit t → i∞. We now proceed to study the corrections Wquant. from
worldsheet instantons.

2.3. Worldsheet instanton corrections. According to general considerations [22,21,20,
4,38], the spacetime superpotential on the worldvolume of a particular supersymmetric
brane wrapping a cycle in a Calabi-Yau manifold, X , when expressed in the A-model,
and expanded in the appropriate variables, becomes the generating function counting
worldsheet instanton corrections from holomorphic disks ending on the Lagrangian, L .
Such a statement is in line with the role that holomorphic disks play in the definition
of Fukaya’s A∞ category [2], and the relationship between A∞ algebras and D-brane
superpotentials [39,40].

More precisely, the spacetime superpotential can be identified with the topological
disk partition function and is conjectured to admit an expansion of the general form

W(t, u) = Fdisk(t, u) =
∑

d,e

ñd,eqd ye =
∑

d,e

∑

k≥1

nd,e

k2 qkd yke. (2.9)

Here, the sum is over relative cohomology classes in H2(X, L), q = e2π it is the (col-
lection of) closed string Kähler parameters of X and y = e2π iu is the (collection of)
exponentiated classical open string deformation parameters. The latter come from non-
Hamiltonian deformations of the Lagrangian. They are b1(L) in number and are com-
plexified by the Wilson line of the gauge field around the corresponding one-cycles of L .
The final transformation in (2.9) is a resummation of multi-cover contributions and the
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central part of the conjecture is that the resulting expansion coefficients nd,e are integers
[21] (whereas the ñd,e are in general rational numbers). These integers have a spacetime
interpretation as counting the “degeneracy of BPS domainwalls” in the class (d, e).

The existence and integrality of such an expansion has been checked in many exam-
ples involving local toric Calabi-Yau manifolds. Our goal in this paper is to make sense
of and evaluate the formula (2.9) for the Calabi-Yau-Lagrangian pair (X, L) = (quintic,
real locus). At first sight, the fact that we only have a discrete open string modulus at
our disposal is a deficiency because (2.9) makes explicit only rational cohomology. On
second thought, however, it’s a blessing.

For example, as we have discussed above, domainwalls arising from D4-branes wrap-
ping holomorphic disks are sources for both the Ramond-Ramond field and the gauge
field on the brane. But if the disk ends in a rational cycle of L , the gauge flux is non-zero
as a differential form. This raises a puzzle because according to the standard worldsheet
analysis, gauge fields on Lagrangian A-branes should be flat. From the spacetime per-
spective, this might well be repaired by a careful analysis of the couplings of the brane
to the Ramond-Ramond fields. But it is clearly not obvious to see that from the TFT on
the worldsheet. In the cases discussed in the literature (see [4,5] and follow-up work),
this problem is avoided because the Lagrangians considered there are non-compact and
hence the flux can disperse to infinity.

A second advantage of having H1(L ,Z) = Z2 being torsion has to do with certain
puzzlements [32] about the multi-cover formula as well as the integral “framing” ambi-
guity of open string amplitudes discovered in [5]. We do not understand either of those
issues sufficiently well enough to usefully discuss here, but the consistency of our results
indicates that both problems are absent for H1(L) = Z2.

Finally, because our Lagrangian is compact, we can also discuss the classical contri-
butions to the superpotential, as we have done in the previous subsection. The structure
of these classical terms (which are absent from (2.9)) will help us to normalize the com-
putation by imposing consistency of the monodromies around the various singular loci
in the Kähler moduli space (see Sect. 3).

So what is the possible structure of worldsheet instanton corrections to our formulas
(2.6) for the domainwall tensions?

Clearly, the first non-trivial term will arise from worldsheet disks wrapped in the class
D generating H2(X, L; Z) = Z, and will contribute at order q1/2. Then there will be
higher order terms. Let us call disks contributing at order qd/2 “of degree d”. It is easy
to see that the conditions T−(t + 1) = T+, T+ + T− = t that we have used to derive (2.6)
hold also after inclusion of non-perturbative worldsheet corrections. This is because t is
essentially defined to be the parameter measuring the tension of the domainwall wrapped
on a degree 1 rational curve. The only form of the instanton expansion that is consistent
with those constraints is that there are no contributions from even degree disks. This
is in fact not unexpected, because disks of even degree have trivial boundary on the
Lagrangian, and even though we can contemplate holomorphic disks of even degree
ending on L , the triviality of their boundary makes it difficult to keep them there as we
vary the complex structure of the quintic. In other words, we do not expect any invariant
to exist for even degree.

So we expect a result of the form

T± = t

2
± 1

4
± const.

∑

d odd

ñdqd/2, (2.10)
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where the ñd are certain rational numbers such that rewriting them as in (2.9),

ñd =
∑

k|d

nd/k

k2 , (2.11)

the nd turn out integer.

2.4. Mirror symmetry and open Picard-Fuchs equation. The easiest way to get an expan-
sion of the form (2.10) is to make use of mirror symmetry. What this means concretely
is that we should first identify an object in the D-brane category which appears on
the B-model side of the homological mirror symmetry conjecture, and which, via the
equivalence of categories and up to auto-equivalences, corresponds to the object of the
(derived) Fukaya category that is defined by L . We should then compute the appropriate
superpotential/domainwall tension quantity as a function of the mirror parameter ψ and
reexpress it in terms of the flat coordinate t .

The Calabi-Yau mirror, Y , to the quintic is of course well-known. It is the resolution
of a (Z5)

3 quotient of the one-parameter family of quintics
∑

z5
i −5ψ

∏
zi = 0 in CP

4.
Equivalently, we can consider a Landau-Ginzburg orbifold model with superpotential
W = ∑

z5
i − 5ψ

∏
zi and orbifold group (Z5)

4. The corresponding B-model category
which is conjectured [41] to be equivalent to the derived category of Y is the category
of (Z5)

4 equivariant matrix factorizations of the superpotential W . (The corresponding
equivalence was proven for the quintic itself by Orlov [42].)

And in fact, as we have mentioned in the introduction, the matrix factorization which
is mirror to the Lagrangian L is known explicitly (see [15,16] for details). Given this
identification of the matrix factorization and the equivalence with the derived category,
it should be possible in principle to also describe explicitly a coherent sheaf on Y cor-
responding to L . This would in fact be very interesting, because it would allow making
use of some of the well-known machinery of holomorphic vector bundles that applies
to problems of this type. In particular, there is an explicit formula for the superpotential,
namely, the holomorphic Chern-Simons functional [11]

W B = ShCS(A, A0) =
∫
� ∧ Tr

[
A ∧ ∂̄A0 A +

2

3
A ∧ A ∧ A

]
. (2.12)

No such expression is known in the matrix factorization formulation, and although there
are formulas for TFT correlators [43,44], they do not appear sufficient to determine the
full superpotential. (See, however [45] for recent progress in making the A∞ constraints
of [46] useful for this type of question.)

Leaving these explicit B-models for future investigations, we will instead obtain suf-
ficient guidance from the non-compact examples of open mirror symmetry introduced
in [4], and studied in depth in [5,6,23,24,7,8].

The main simplification that occurs in these examples is that the B-model contains
only D5-branes wrapped on curves in the Calabi-Yau. For such a brane configuration,
the holomorphic Chern-Simons action (2.12) reduces to a “partial period” integral of
the type

W(C,C∗) =
∫

γ

�, (2.13)

where γ is a three-chain in X with boundary ∂γ = C −C∗ equal to the difference of two
possible positions of the D5-branes. (If C and C∗ are holomorphic, (2.13) is literally the
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tension of the domainwall between the two vacua.) In the toric case, one can then further
reduce the integral (2.13) to take place on a Riemann surface, so one has essentially a
one-dimensional problem.

This structure was exploited in [7,8] to show that the differential equations obtained
in [6,24] could be viewed as resulting from a certain variation of mixed Hodge structure
on a certain relative cohomology. Explicitly, one retains the boundary terms arising in the
derivation of the GKZ differential system and converts them into appropriate boundary
variations. The upshot is that the open string mirror computations in the local toric case
can be cast in a form very similar to the standard, closed string computations, involving
Picard-Fuchs differential equations, maximal unipotent monodromy, mirror map, etc..
This is called N = 1 special geometry.

We do not know at present whether such considerations make sense for the general
B-model situation. The case at hand, however, is sufficiently well constrained by our
results so far that assuming the existence of a differential equation with properties as
in [7,8], there is essentially a unique candidate. This moreover turns out to produce
excellent results.

The central idea of N = 1 special geometry is to extend the standard period vector
by certain “partial periods” encoding information about the open string sector. We recall
that in standard (N = 2) special geometry, we have two periods for every closed string
modulus, plus one or two extra ones related to the holomorphic three-form. In N = 1
special geometry, we gain one “partial period” for every classical open string modulus,
plus one for every brane vacuum included in the background. Schematically,

	(tclosed, uopen) = (1, tclosed, ∂tFclosed, uopen,Wbrane, . . .)
T , (2.14)

where Fclosed is the standard prepotential and the uopen are the flat coordinates of the
open string sector. The important point is that the period vector (2.14) satisfies a certain
extension of the Picard-Fuchs differential equations. This differential system has all of
the closed periods as solutions, plus extra ones related to uopen and Wbrane. The latter
gives the open string instanton expansion according to (2.9).

In the case that we have discussed in the previous subsections, we are not adding any
classical open string modulus because b1(RP

3) = 0, so the only modulus is the Kähler
parameter t of X , or equivalently, the mirror variable, z = z(t). Moreover, accord-
ing to (2.10), we need exactly one non-trivial domainwall tension as a function of t
to encode the desired open string expansion. Let us call τ ∼ q1/2 + · · · the quantum
part of the expansion (2.10). Since to leading order z = q = e2π it , we will also have
τ(z) ∼ z1/2 + · · · when expressed as a function of z.

Thus, we are simply seeking an ordinary linear differential equation in z, which,
in addition to the four known periods of the mirror quintic, has exactly one additional
linearly independent solution, τ , with a squareroot behavior at z = 0. The Picard-Fuchs
equation governing periods of the mirror quintic being

L� =
[
θ4 − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4)

]
� = 0, (2.15)

where θ = z∂z , and z = (5ψ)−5, virtually the only possible extension that satisfies our
constraints is the differential operator

(2θ − 1)L = (2θ − 1)θ4 − 5z(2θ + 1)(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4). (2.16)

We will now analyze this differential equation and show that it satisfies all the other
desirable properties as well.
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2.5. The instanton sum. We follow conventions of [1]. The differential equation
L� = 0 has one distinguished solution, called the fundamental period, which has a
power series expansion around the large complex structure point z = 0,

− w2(z) ≡ �0(z) =
∞∑

m=0

(5m)!
(m!)5 zm . (2.17)

All other solutions contain logarithms as z → 0, large complex structure being a point
of maximal unipotent monodromy. The period with a single logarithm, w1(z), has the
information about the mirror map via t = w1/w2, q ≡ e2π it ,

− 2π iw1(z) = �0(z) log z + 5
∞∑

m=1

(5m)!
(m!)5 zm [(1 + 5m)−(1 + m)] . (2.18)

Under large complex structure monodromy, z → e2π iz, w1 → w1 +w2 and t → t + 1.
There are then two further solutions of (2.15), both of which contain the closed string

instanton information, in slightly different forms. Specifically, the solution of (2.15)
called F1 in [1] is characterized by the boundary conditions

(2π i)2F1 = −5·(2π i)w1(z) log z +
5

2
w2(z)(log z)2 − 21

2
·(2π i)2w1(z)+O(z). (2.19)

It transform under large complex structure monodromy as F1 → F1 − 5w1 − 8w2.
Finally, the solution called F2 in [1] is characterized by F2 → F2 − F1 − 3w1 + 5w2

as t → t + 1.
These periods (F1,F2, w

1, w2) can be interpreted as the quantum corrected masses
of D4, D6, D2 and D0-brane on the quintic, respectively [12]. They therefore also give
the tension of domainwalls mediating between various flux sectors, including the
corrections from worldsheet instantons. For example, in the proper Kähler normalization
w2 = 1, one obtains after inverting (2.18) and expanding in q = e2π it ,

F1

w2 = −5

2
t2 − 21

2
t +

1

4π2

[
2875q +

4876875

4
q2 + · · ·

]
. (2.20)

The polynomial in t is the classical tension from the geometric volume of the cycles and
the power series in q gives the quantum corrections. The rational coefficient Ñd of qd

in this expansion gives the contribution from holomorphic spheres of degree d. They
satisfy the property that when reexpressed in terms of Nd via

Ñd =
∑

k|d

d Nd/k

k3 , (2.21)

the Nd are integers. Note that we have here slightly unconventionally expanded the first
derivative of the prepotential instead of the prepotential itself or the Yukawa coupling
as in [1]. Since periods and brane superpotentials are on equal footing in N = 1 spe-
cial geometry, this will make the comparison with the open string version (2.25) more
natural.



682 J. Walcher

Turning now to Eq. (2.16), it has, by construction, exactly one additional solution,
which we normalize to τ(z) = z1/2 + · · · . We find

τ(z) = �(3/2)5

�(7/2)

∞∑

m=0

�(5m + 7/2)

�(m + 3/2)5
zm+1/2. (2.22)

In the next section, we will determine from monodromy calculations on the Kähler
moduli space that τ enters the domainwall tension in the normalization

T±(t) = w1

2
± w2

4
± 15

π2 τ(z). (2.23)

This then has exactly the expected form (2.10). Consulting (2.6) and its relation with
(2.8), we then conclude that the contribution of worldsheet disk instantons to the space-
time superpotential is

Wquant. = 30

4π2 τ(z). (2.24)

Dividing by w2 to go to the canonical normalization of the holomorphic three-form,
multiplying by 4π2 as in (2.20), inverting the mirror map, and doing the expansion, we
obtain the open string instanton sum

τ̂ (q) = 30
τ(z(q))

�0(z(q))
= 30q1/2 +

4600

3
q3/2 +

5441256

5
q5/2 + · · · . (2.25)

We can then plug into τ̂ (q) the Ooguri-Vafa multi-cover formula (2.9),

τ̂ (q) =
∑

d odd
k odd

nd

k2 qdk/2 =
∑

d odd

nd
qd/2

4
�(qd , 2, 1/2), (2.26)

where� is the Lerch Transcendent. For reasons explained in a previous subsection, we
only consider disks of odd degree and their odd multi-covers. The first few nd are indeed
integer and displayed in Table 1 in the introduction.

It should be stressed that we have strictly speaking not shown that the constant nor-
malization factor in (2.10) is equal to 1

2π2 as claimed. It is, however, the most natural

choice and consistent with everything else we know. It would be interesting to derive
this value more directly.

3. Analytic Continuation of the Superpotential

The purpose of this section is to analytically continue our result for the superpoten-
tial/domainwall tension over the entire quantum Kähler moduli space of the quintic,
much as was done for the closed string periods in [1]. This will not only help us to
fix the normalization factor anticipated in (2.23), but is interesting in its own right as
it can shed light on intrinsically stringy aspects of D-brane physics that have hitherto
been inaccessible. We will indeed find that the analytic properties of the T± are rather
interesting.

Recall that the Kähler moduli space of the quintic has three special points: large vol-
ume point z → 0 that we have already discussed in depth, the conifold singularity z =
5−5 at which the period F2 vanishes, and the so-called Gepner or Landau-Ginzburg point,
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z → ∞, which is not a singularity of the CFT, but exhibits a Z5 orbifold monodromy.
We wish to understand the analytic behavior of W , or equivalently T , around each of
these points. We shall work with the ansatz

T±(z) = w1(z)

2
± w2(z)

4
± aτ(z) (3.1)

and determine the coefficient a from consistency requirements.
The standard tool to do the analytic continuation of solutions of a hypergeometric

differential equation of the type (2.16) is the Barnes integral representation. For τ , this
representation takes the form

τ(z) = π2

60

1

2π i

∫

C

�(−s + 1/2)�(5s + 1)�(s + 1/2)

�(s + 1)5
eiπ(s−1/2)zs, (3.2)

where the integration contour is straight up the imaginary axis. For |z| < 5−5, we close
the contour on the positive real axis and recover (2.22). For |z| > 5−5, we instead close
the contour on the negative real axis, and obtain the expansion

τ(z) = τ1(z) + τ2(z) = π2

60

[ ∞∑

m=0

−�(−5m − 3/2)

�(−m + 1/2)5
z−m−1/2

+
∞∑

m=1

−�(m/5)e4π im/5

5�(m)�(1 − m/5)4
z−m/5 e−iπ/2 sin πm/5

cosπm/5

]
.

(3.3)

The first term, τ1(z), is simply the unique solution of (2.16) with a squareroot behavior
around z = ∞, and changes sign as we circle around z1/5 → e−2π i/5z1/5. The second
sum in (3.3) is easily verified to be a solution of the ordinary Picard-Fuchs equation,
and hence a closed string period. To determine which one, we can compare it with
the canonical Z5 symmetric basis of solutions of (2.15) around the Gepner point [1],
( j = 0, . . . , 4),

� j (z) =
∞∑

m=1

−�(m/5)e4π im/5

5�(n)�(1 − m/5)4
z−m/5 e2π i jm/5. (3.4)

Indeed, the identity

sin πm/5

cosπm/5
= 2 sin 2πm/5 − 2 sin 4πm/5 (3.5)

shows that

τ2(z) = π2

60
[�0 + 2�4 + 2�2] . (3.6)

According to the results of [1], the small volume period vector� = (�2,�1,�0,�4)
T

is related to the large volume basis � = (F1,F2, w
1, w2)T via � = M� with

M =

⎛

⎜⎜⎝

3
5

1
5 − 21

5 − 8
5

0 −1 1 0
− 1

5 − 2
5

2
5

1
5

0 0 −1 0

⎞

⎟⎟⎠ . (3.7)
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This allows us to express τ2(z) in the integral basis,

τ2(z) = π2

60

[
−4F1 + 8F2 − 22w1 + 15w2

]
. (3.8)

Moreover, by using the known monodromy matrices around the Gepner point, we find
that as z−1/5 → e2π i/5z−1/5,

w1 → −F2 + w1 − w2 , w2 → F2 + w2 , τ → −τ +
π2

60
F2. (3.9)

Thus we see that were it not for the quantum corrections of the domainwall tension in
(3.1), the Gepner monodromy would take w1

2 + w2

4 to w1

2 − w2

4 − F2
4 , and would not

induce a symmetry of the domainwall spectrum as it should. Moreover, we see that the
lucky number that makes the Gepner monodromy integral is indeed a = 15

π2 . (Strictly
speaking, this is only the minimal possibility, a natural choice.) With this value, the
Gepner monodromy acts as

A : T+ → T− , T− → T+ − w2 − F2 (3.10)

on the open string periods. Since as discussed in Sect. 2, the large volume monodromy
acts by T∞ : T− → T+, T+ → T− +w2, we find by combining the two that the conifold
monodromy about z = 5−5, T = T −1∞ ◦ A−1 acts trivially on both T+ and T−.

Let us verify this last assertion explicitly, in order to check that everything is consistent.
A straightforward way to compute this monodromy is to compare the divergence of the
large volume expansions (2.17) and (2.22) as z approaches the singularity z → z∗ = 5−5.
We know from [1] that at the conifold, F2 vanishes as F2 ∼ α1(z−z∗)+α2(z−z∗)2 +· · ·
and �0 behaves as �0 ∼ 1

2π i F2 log(z − z∗) + regular. To determine the coefficient b

in τ ∼ b
2π i F2 log(z − z∗) + regular, we compare the second derivatives of �0 and τ as

z → z∗. Using Stirling’s formula, we find

� ′′
0 ∼

∑

m

(55z)m
[

510
√

5

4π2 − 7 · 59
√

5

4π2

1

m
+ · · ·

]
(3.11)

which determines α1, α2. Doing the same for τ delivers

τ ′′ ∼
∑

m

(55z)m+1/2

[
510

√
5

4π2 − 7 · 59
√

5

4π2

1

m
+ · · ·

]
. (3.12)

This implies b = 1.
Thus, we find that the conifold monodromy takes τ → τ + π2

60 F2, and since w2 →
w2 − F2, T± are invariant when we set a = 15

π2 .

It is also worth pointing out that for a = 15
π2 , the leading behavior of T± as z → ∞

is the same as that of an integral closed string period. This follows from (3.3) in
conjunction with (3.8). As was mentioned in the introduction, this is a further con-
sistency check on our results. It was shown in [15,16] that the two open string vacua
associated with the choice of discrete Wilson line (see subsect. 2.2) could be identified
with certain matrix factorization in the Landau-Ginzburg B-model. At the Gepner point,
z → ∞, the open string spectrum on the brane develops an extra massless state with a
cubic superpotential. (This coalescence of open string vacua was first proposed in [12].)
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There should therefore be a domainwall between the two vacua that becomes tensionless
as z → ∞. Our result is then that while such a domainwall can indeed exist, it is not
the most naive one obtained by wrapping a D4-brane on the primitive disk, but has to
be combined with the appropriate integral period from (3.8).

To conclude this section, we summarize the results for the action of the monodromies
around the Gepner point, conifold point, and large volume point on the extended period
vector (we now use T− = −T+ + w1),

�� =
(
T+,F1,F2, w

1, w2
)T
. (3.13)

We have:
A T T∞⎛

⎜⎜⎜⎝

−1 0 0 1 0
0 1 3 5 3
0 1 −4 8 −5
0 0 −1 1 −1
0 0 1 0 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 −1 0 1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

−1 0 0 1 1
0 1 0 −5 −8
0 −1 1 −3 5
0 0 0 1 1
0 0 0 0 1

⎞

⎟⎟⎟⎠
. (3.14)

These matrices satisfy A · T · T∞ = 1 and A10 = 1, but A5 �= 1. Thus we find that the
combined open-closed moduli space is a double cover of the quantum Kähler moduli
space of the quintic, branched at z = 0 and z = ∞.

4. Localization in the A-Model

In this section we shall show how to check the enumerative predictions that we have
obtained using mirror symmetry. We have outlined the main strategy in the introduction,
so we will attempt to be brief. Details can be filled in from [31] and [19], Chap. 27.

Consider the moduli space Md ≡ M0,0(CP
4, d) of genus zero stable maps to CP

4

in degree d. For each point f : � → CP
4 in M, we can pullback from CP

4 the bundle
O(5) of quintic polynomials. The global sections of that bundle O(5d) over � then fit
together to a vector bundle Ed as we vary f over Md . Any particular quintic polyno-
mial P(z1, . . . , z5) in the homogeneous coordinates of CP

4 gives a section of O(5).
The resulting section of Ed vanishes at precisely those genus zero maps into CP

4 which
happen to be contained in the quintic given by P . This identifies the number of genus
zero, degree d maps to the quintic as the Euler class of Ed :

Ñd =
∫

Md

c5d+1(Ed). (4.1)

It was shown in [31] that this Euler class can be very efficiently computed using Atiyah-
Bott localization. The entire structure described above carries an (S1)5 action inherited
from the standard U (5) action on CP

4. On the homogeneous coordinates, this torus acts
as

T
5 = (S1)5 � (ρ1, . . . , ρ5) : [z1 : · · · : z5]. �→ [ρ1z1 : · · · : ρ5z5]. (4.2)

(This action can be complexified, of course, but we really only need the real torus.) On
CP

4, there are exactly five fixed points, pi , of this torus action, defined by z j = 0, j �= i .
The fixed point loci on Md can be associated combinatorially with certain decorated
tree graphs, �. The vertices of these graphs (which can have arbitrary valence, val(v))
correspond to (genus 0) contracted components of the source�. They are labeled by one
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of the fixed points pi which tells where the component maps. The edges of the graph
correspond to non-contracted rational components of � mapping onto the coordinate
line joining pi to p j . They are labeled by a positive integer d describing the degree of
that map. The constraints on this decoration are that pv �= pv′ for adjacent vertices v, v′
and that the sum of degrees on the edges be equal to the total degree under consideration.

In general, the fixed loci are not isolated points, but consist of certain moduli spaces
M� arising from the contracted components at the vertices (of valence ≥ 3). One can
then compute the (T5-equivariant) Euler class of the normal bundle of M� inside of
Md , as well as the Euler class of Ed at the fixed points. The integrals over the M� can
be done, and what results is a very explicit formula for Ñd given by a sum over graphs
and labellings, divided by the appropriate symmetry factor.

We wish to accomplish something similar for the holomorphic maps of disks to the
quintic with boundary on the real locus.

As we have indicated before, any disk with boundary on the real locus can be com-
pleted to a sphere, and the two halves of that sphere contribute in the same relative
homology class. Conversely, any sphere of odd degree is cut in two by the real locus
in a non-trivial one-cycle.1 Therefore, the number of disks of odd degree d is equal to
twice the number of spheres of degree d which are invariant under complex conjugation
of source and target. On the real locus MR

d ⊂ Md , complex conjugation defines a real
structure on the bundle of quintics Ed (and, of course, on the tangent bundle). Since
we are interested in maps into a real quintic, we can identify the open Gromov-Witten
invariant as [32]

ñd = 2
∫

MR

d

e(ER

d ). (4.3)

In trying to apply localization to this problem, one is naively troubled by the fact that
the torus action (4.2) does not commute with the standard complex conjugation (2.2).
However, it is easy to realize that there is another real subtorus of U (5) which does.
This torus is two-dimensional and is the Cartan torus of O(5) ⊂ U (5). It is the natural
four-dimensional analogue of the S1 action used in [25]. An equivalent way to describe
this is to choose the alternative complex conjugation

σ : [z1 : z2 : z3 : z4 : z5] �→ [z̄2 : z̄1 : z̄4 : z̄3 : z̄5] (4.4)

which commutes with the subtorus T
2 of (4.2) defined by ρ2 = ρ−1

1 , ρ4 = ρ−1
3 , ρ5 = 1.

The nifty thing about this torus is that its fixed points on CP
4 are identical to those of

(4.2). Moreover, it is not hard to see that the fixed points of T
2 acting on MR

d are simply
those fixed points of T

5 acting on Md which are invariant under σ .
From this discussion, we see that our task is to take a real section of Kontsevich’s

calculation [31] with respect to the complex conjugation σ . A moment’s thought shows
why this is feasible: Any σ -invariant decorated graph of odd total degree contains the
real locus of � at the middle of an edge. In other words, the contracted components of
� are away from the real locus. The upshot is that the integrals over the fixed loci are
identical to those before.

To understand the Euler class of the normal bundle and of the bundle of real quintics,
we are helped by the following elementary fact: If V is any real vector bundle, then the

1 This is not true for even degrees: There can be real spheres of even degree without real points. In the
real problem, they give rise to maps from the crosscap to the quintic. In other words, they will play a role in
orientifolds. I am grateful to Jake Solomon for extensive discussions on these issues.



Opening Mirror Symmetry on the Quintic 687

square of its Euler class is the Euler class of its complexification,

e(V ) = √
e(V ⊗ C). (4.5)

For bundles of high enough rank, this formula of course only makes sense for the
universal bundle, or in equivariant cohomology. The sign of the squareroot in (4.5) is
determined by the choice of orientation on V (which does not affect the canonical orien-
tation of V ⊗ C). In our situation, ER

d ⊗ C = Ed |MR

d
, and since we already know e(Ed),

we are done.
Our graphical calculus is then very much as in [31]. A moduli space of T

2-invariant
disks corresponds to a tree graph � with vertices mapping to fixed points pµ(v) (with
µ(v) ∈ {1, . . . , 5}) and edges mapping to coordinate lines joining pi to p j . There is one
special vertex, call it the first one, on which ends an extra half-edge with odd degree,
call it d0. This restriction is to ensure that the total degree

d = d0 + 2
∑

edges

d(e) (4.6)

can be odd. Another condition is that the special vertex cannot map to p5. This arises
from the fact that when we reconstruct a σ -invariant sphere by reflecting our graph on
the half-edge, the first vertex will be adjacent to its image, and σ(p5) = p5.

In taking a squareroot of the formulas in [31], we have to fix the signs. In principle,
this could be done by a careful analysis such as advertised in [29,30]. In practice, the
condition that the answer be independent of the torus weights is enough to determine
the sign. Explicitly, we have

∫

M�

e(ER
d )

e(NR
� )

=
∏

edges

5d∏

a=0

aλi + (5d − a)λ j

d

(−1)d
(d!)2
d2d

(λi − λ j )
2d

d∏

k �=i, j
a=0

(
a

d
λi +

d − a

d
λ j − λk

)

·
∏

vertices

1

(5λv)val(v)−1

∏

j �=v
(λv − λ j )

val(v)−1 ·
⎛

⎝
∏

flags

d

λv − λ j

⎞

⎠

⎛

⎝
∑

flags

d

λv − λ j

⎞

⎠
val(v)−3

·

(5d0−1)/2∏

a=0

aλµ(1) + (5d0 − a)λσ(µ(1))
d0

(−1)(d0−1)/2 d0!
dd0

0

(λµ(1) − λσ(µ(1)))
d0

(d0−1)/2∏

k �=µ(1),σ (µ(1))
a=0

(
a

d 0
λµ(1) +

d0 − a

d0
λσ(µ(1)) − λk

) .

(4.7)

Here, it is understood that the torus weights satisfy λ2 = −λ1, λ4 = −λ3, λ5 = 0.
It should be emphasized that setting λ5 to zero introduces zero weight components

in the above formula. These always exactly cancel between numerator and denominator,
leaving a finite result. In similar situations in other contexts, one would then seek a more
generic choice of weights to resolve the ambiguity. This is not possible in the present
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situation, since our choice of weights is already the most general one consistent with
the anti-holomorphic involution. The best evidence that our treatment is nevertheless
correct is the agreement with the results from the extended Picard-Fuchs equation. But,
it is also conceivable that one could exploit the fact that the maximal abelian subgroup
of U (5) which commutes with the anti-holomorphic involution is U (1)2 × Z2. Only the
continuous part of this group is seen by the localization formula, resulting in zero weight
ambiguities. It turns out that these unfixed directions are odd under the Z2 subgroup, so
the fixed point loci under the larger group are in fact isolated. But it would require a more
careful analysis to show rigorously that this observation completely fixes the ambiguity.

In formula (4.7), it is also understood that in counting the valence of the vertex called
1, the half edge counts full.

Our final formula is

ñd = 2
∑

�, labellings

1

| Aut �|
∫

M�

e(ER

d )

e(NR

M)
. (4.8)

As in [31], | Aut �| is the product of the order of the automorphism group of � as a
decorated graph times the product of the degrees on the edges (including d0). For the
first few degrees, one reproduces the results from Eq. (2.25) in Sect. 2.
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