
Digital Object Identifier (DOI) 10.1007/s00220-007-0352-x
Commun. Math. Phys. 276, 727–772 (2007) Communications in

Mathematical
Physics

A Complete Renormalization Group Trajectory
Between Two Fixed Points

Abdelmalek Abdesselam

Université Paris 13, LAGA, Institut Galilée, CNRS UMR 7539, 99 Avenue J.B. Clément, F93430 Villetaneuse,
France. E-mail: abdessel@math.univ-paris13.fr

Received: 19 October 2006 / Accepted: 5 April 2007
Published online: 16 October 2007 – © Springer-Verlag 2007

Abstract: We give a rigorous nonperturbative construction of a massless discrete tra-
jectory for Wilson’s exact renormalization group. The model is a three dimensional
Euclidean field theory with a modified free propagator. The trajectory realizes the mean
field to critical crossover from the ultraviolet Gaussian fixed point to an analog recently
constructed by Brydges, Mitter and Scoppola of the Wilson-Fisher nontrivial fixed point.

1. Introduction

In recent years, the mathematical community has shown an increasing interest for the
important but difficult topic of quantum field theory [24]. The most comprehensive and
insightful, albeit largely conjectural, mathematical framework to address this subject
is Wilson’s renormalization group: a grand dynamical system in the space of all imag-
inable observation scale dependent effective field theories [76, 77]. As emphasized by
Wilson himself [77], his approach can be construed as a mathematical theory of scaling
symmetry which has yet to be fully unveiled. It generalizes in a very deep way ordinary
calculus which matured in the hands of 19th century mathematicians and gave the first
rigorous meaning to the notion of ‘continuum’. Formulating precise conjectures about
the phase portrait of the RG dynamical system and proving them, an endeavor one could
perhaps call the ‘Wilson Program’ [57], is one of the greatest challenges in mathematical
analysis and probability theory, and will likely remain so for years to come.

When studying a phase portrait, the first features to examine are fixed points, which
here mean scale invariant theories. If D is the dimension of space, one expects that
for D ≥ 4 there are only two fixed points: the high temperature one and the massless
Gaussian one. As one lowers the dimension to the range 3 ≤ D < 4, only one new
fixed point should appear: the Wilson-Fisher fixed point [75]. Its existence as well as
the construction of its local stable manifold, in the hierarchical approximation, was first
rigorously established in [9]; see also [20, 21, 36]. The uniqueness, in the local potential
approximation, was shown in [54]. As one continues lowering the dimension to the range
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2 < D < 3, past every threshold Dn = 2 + 2
n−1 , n = 3, 4, . . ., a new fixed point appears

corresponding to an n-well potential, as was proved in the local potential approximation
by Felder [31]. For D = 2, the situation becomes extremely complicated: even a con-
jectural classification of fixed points corresponding to conformal field theories is not yet
complete. Nevertheless, there have been tremendous advances in this area; see e.g. [26]
and Gawȩdzki’s lectures in [24] for an introduction.

The next stage in the investigation concerns the various local invariant manifolds
around these fixed points and the associated critical exponents. The first such rigorous
result, for the Gaussian fixed point, is the work of Bleher and Sinai [8]. For further
developments, with emphasis on these dynamical systems aspects, see for instance [20,
36, 37, 49, 62, 74, 44].

Then, in the third stage, one would like to know more global features like how all
these local invariant manifolds meet to form separatrices between domains exhibiting
qualitatively different behaviours. This question pertains to the active field of the renor-
malization group theory of crossover phenomena (see e.g. [60, 55] for recent reviews).
Our work falls within this third class of problems. The control of a massless RG trajectory
between fixed points announced in [1] and for which details are provided here is our con-
tribution to the grand scheme of the Wilson Program. Note that there is extensive physics
literature, following the seminal work of Zamolodchikov [78, 79], on such massless RG
flows in particular in two dimensions, see e.g. [80, 23, 28, 29] and references therein.
However, nonperturbative results substantiated by rigorous mathematical estimates are
scarce. To borrow the terminology of the French school of constructive field theory, this
is the ‘problème de la soudure’ or the welding problem. One has to control the junction
between the ultraviolet and the infrared regimes. For instance, for the two dimensional
Gross-Neveu model, the UV regime has been given a rigorous mathematical treatment a
long time ago [38, 32]. Likewise, the IR regime with spontaneous mass generation for a
UV-cutoff theory is also under control [52]; see also [51] for a similar result on the sigma
model. However, the junction, although probably not out of reach of present methods,
has proved to be more technically demanding than expected [53]. Note that the model
we consider here is simpler in that regard. It does not involve a drastic change of scenery,
for instance, from a purely Fermionic theory at the ultraviolet end, to a Bosonic one at
the infrared end.

Given a small positive bifurcation parameter ε, we consider a three dimensional φ4

theory with a modified propagator: the (Φ4)3,ε model of [15], which was also studied
in the hierarchical approximation in [36]. Namely, we consider functional integrals of
the form ∫

dµC̃ (φ) . . . e
−V (φ), (1)

where dµC̃ is the Gaussian measure with covariance C̃
def= (−∆)−

(
3+ε

4

)
and Wick

ordered interaction potential

V (φ)
def=
∫

R3
d3x

{
g : φ(x)4 :C̃ +µ : φ(x)2 :C̃

}
. (2)

Over the last two decades, Brydges and his collaborators have devised a general mathe-
matical framework, going beyond the hierarchical and local potential approximations, in
order to give a rigorous nonperturbative meaning to the renormalization group dynamical
system [17, 11, 12, 15]. The approach, actually involving no approximation whatsoever,
is in the spirit of Wilson’s exact renormalization group scheme [56]. Our article which
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can be viewed as a direct continuation of [15] takes place in this setting. In very rough
terms, the renormalization group map, rather than flow, represents the evolution of the
integrand I (φ) of functional integrals such as (1) under convolution and rescaling. The
convolution is with respect to the Gaussian measure corresponding to Fourier modes
p of the field φ which are restricted to a range of the form Ln ≤ |p| ≤ Ln+1, where
the integer L ≥ 2 is the scale ratio for one RG step. By rescaling, one can keep the
integer n constant, and make the RG transformation autonomous. The latter acts on the
integrand I (φ) and produces a new one I ′(φ). However, the problem with expressing
the renormalization group in terms of its action on I (φ) is that I (φ) does not exist in
the infinite volume limit. It is essential to express I (φ) in terms of coordinates that (i)
are well defined in the infinite volume limit and (ii) carry the exact action of the ren-
ormalization group in a tractable form. The key feature that these coordinates have to
express is that I (φ) is approximately a product of local functionals of the field and the
action of the renormalization group is also approximately local. The first step towards
these coordinates is to write I (φ) via the polymer representation:

I (φ) =
∑
{Xi }

e−V (Λ\X,φ)
∏

i

K (Xi , φ), (3)

where Λ is the volume cut-off needed to perform the thermodynamic limit, and {Xi }
is a collection of disjoint polymers Xi in Λ. By polymer we mean a connected finite
union of cubes cut by a fixed Z

3 lattice inside R
3. The union of the Xi has been denoted

by X , and the functional V (Λ\X, φ) is given by (2) except that the integration domain
is the complement Λ\X instead of R

3. Therefore, the functionals V are determined
by the two variables or couplings g and µ. Now the K ’s are local functionals of the
field, which means that K (Y, φ) only depends on the restriction of φ to the set Y . The
knowledge of the integrand I (φ) amounts to that of the couplings g, µ together with the
collection K of all the functionals K (Y, φ) corresponding to all possible polymers Y .
One also needs a splitting K = Qe−V + R of these functionals where the Qe−V part
is given explicitly in terms of g, µ only. In sum, the integrand is encoded by a triple
(g, µ, R). The renormalization group map in [15] is implemented as a mathematically
precise transformation (g, µ, R) �→ (g′, µ′, R′). The evolution for the : φ4 : coupling
g has the form

g′ = Lεg − L2εa(L , ε)g2 + ξg(g, µ, R) . (4)

The evolution of the mass term or : φ2 : coupling µ has the form

µ′ = L
3+ε

2 µ + ξµ(g, µ, R) . (5)

Finally the collection R of ‘irrelevant terms’, living in a suitable infinite dimensional
space, evolves according to

R′ = L(g,µ)(R) + ξR(g, µ, R), (6)

where L(g,µ) is a (g, µ)-dependent contractive linear map in the R direction. The ξ
remainder terms are higher order small nonlinearities. An important feature of this for-
malism is that the polymer representation (3) is not unique. As a result, one has enough
freedom when defining the RG map, in order to secure the contractive property of the
L(g,µ). This is the so-called ‘extraction step’ which encapsulates the renormalization
subtractions familiar in quantum field theory. The transformation in [15] also carried
an extra dynamical variable w with very simple evolution which is independent of the
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Fig. 1. The RG dynamical system

other variables, and converging exponentially fast to a fixed point w∗. This was intro-
duced in order to make the RG map autonomous. Throughout this article however, we
take w = w∗ and incorporate w in the very definition of the RG map. In [15], it was
shown that for small ε > 0 there exists an infrared fixed point (g∗, µ∗, R∗) which is an
analog of the Wilson-Fisher fixed point [75], and which is nontrivial, i.e., distinct from
the Gaussian ultraviolet fixed point (g, µ, R) = (0, 0, 0). The local stable manifold of
the infrared fixed point was also constructed. Note that if one neglects the ξ remainders,
one gets an approximate fixed point (ḡ∗, 0, 0), where

ḡ∗
def= Lε − 1

L2εa(L , ε)
= O(ε) . (7)

A schematic rendition of the phase portrait of the RG map considered in [15] is provided
by Fig. 1. The precise statements of our main results, Theorem 2 and Corollary 1 below,
require a substantial amount of machinery to be provided in the next sections. We can
nevertheless already give an informal statement.
Main Result. In the regime where ε > 0 is small enough, for any ω0 ∈]0, 1

2 [, there
exists a complete trajectory (gn, µn, Rn)n∈Z for the RG map given by Eqs. (4), (5),
and (6), such that lim

n→−∞(gn, µn, Rn) = (0, 0, 0) the Gaussian ultraviolet fixed point,

and lim
n→+∞(gn, µn, Rn) = (g∗, µ∗, R∗) the BMS nontrivial infrared fixed point, and

determined by the ‘initial condition’ at unit scale

g0 = ω0 ḡ∗ . (8)

See Fig. 2 for a sketch of such discrete RG orbits Pn = (gn, µn, Rn), n ∈ Z, which
are parametrized by the projection of P0 on the g axis. To the best of our knowledge, the
only previous similar result is the construction of the massless connecting heteroclinic
orbit going from a UV nontrivial fixed point to the Gaussian IR fixed point for a modi-
fied Gross-Neveu model in [39] (see also [22, 30] for related work in the massive case).
Our work which essentially amounts to the construction of a nontrivial massless three
dimensional Euclidean field theory in the continuum, is probably the first such result
in the Bosonic case. This field theory is superrenormalizable in the ultraviolet sector
but only barely. Namely, one needs to renormalize divergent Feynman diagrams only
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Fig. 2. The discrete trajectories

up to a finite order in perturbation theory; however this order goes to infinity when the
parameter ε goes to zero. As shown in [15, Sect. 1.1], a proof for the difficult axiom
of Osterwalder-Schrader positivity seems feasible on this model, which makes it inter-
esting from the point of view of traditional constructive field theory [43]. Due to the
lack of a nonperturbative definition of dimensional regularization, this model is the best
available for the mathematically rigorous study of the Wilson-Fisher fixed point [75]
which is believed to govern the infrared behavior of the tridimensional Ising model
(when ε = 1). On the technical side, as far as the construction of a global RG trajectory
is concerned, one should note that the situation in [39] is facilitated by the availability
of a convergent series representation in a whole neighborhood of the Gaussian fixed
point which is only possible for a Fermionic theory. In the present situation, the ‘trivial’
fixed point around which the analysis takes place is not so trivial and in fact is highly
singular from the point of view of the estimates we use. This is a manifestation of the
so-called ‘large field problem’ and the need for the ‘domination procedure’ (see e.g.
[64]). The norms needed for the control of R which implement a measurement of the

typical size of the field φ ∼ g− 1
4 through a parameter h appearing in the definition of

these norms, create one of the main difficulties we had to overcome: the ‘fibered norm
problem’. Namely, the norm for R involves the dynamical variable g. The approach we
used is to construct the trajectory s = (gn, µn, Rn)n∈Z via its deviation δs with respect
to an approximate trajectory (ḡn, 0, 0)n∈Z which solves the RG recursion when the ξ
terms are thrown out. This is done thanks to a contraction mapping argument in a big
Banach space of sequences δs. This approach, in the spirit of Irwin’s proof of the stable
manifold theorem [47, 67], was suggested to us by D. C. Brydges. We then realized that
one can resolve the vicious circle entailed by the ‘fibered norm problem’ by using the
approximate values ḡn in the definition of the norms.

In principle, Wilson’s RG picture reduces deep questions in quantum field theory and
statistical mechanics to a chapter in the theory of bifurcations and dynamical systems.
In practice, it has proved hard to get away with the application of a ready-made theo-
rem from the corresponding literature, as emphasized in [20, p. 70] from the beginning
of the subject and even for the simpler hierarchical models. Most of the works on the
rigorous renormalization group use an ad hoc method developed in [9]. An innovation
was introduced in [12], by the construction of the stable manifold of the nontrivial fixed
point using an iteration in a space of sequences, along the lines of Irwin’s proof. The
latter method seems more robust and easier to adapt to our present setting than the more
standard Hadamard graph transform method [46, 67]. Formally, the RG map given by
(4), (5), and (6), with bifurcation parameter ε corresponds to a transcritical bifurcation,
according to the classification given e.g. in [19, p. 177]. The moving nontrivial fixed point
goes through the Gaussian one as one increases the ε parameter. The negative ε region is
forbidden however, since it would put the nontrivial fixed point in the undefined g < 0



732 A. Abdesselam

region. Most pertinent to the construction of a connecting heteroclinic orbit between RG
fixed points, in the dynamical systems literature, is the article [50], which is based on
Kelley’s center manifold theorem [48, 18, 68]. However, we have so far been unable to
apply these methods in the present situation.

In the same way [39] is based on the hard analysis estimates of [38], our proof is
based on Theorem 1 below which summarizes a slight adaptation of the estimates in
[15, Sect. 5] built on the techniques of [17, 11]. With the exception of the proof of this
theorem which needs a working knowledge of [15, Sect. 5], our article can be read with
only modest prerequisites in functional analysis as covered e.g. in [3, 7, 25], and in
the theory of Gaussian probability measures in Hilbert spaces [10, 70]. We provided
a completely self-contained definition of the renormalization group map (g, µ, R) �→
(g′, µ′, R′) in Sects. 2, 3, and 4. Apart from making the so-called extraction step explicit,
this gives us the opportunity to correct some minor sign and numerical factor errors, but
also one serious error, namely that in [15] the Banach fixed point theorem was used for
a normed space that is not complete. Fortunately, we obtained, through discussions with
D. C. Brydges and P. K. Mitter, an amendment which is provided in Sect. 3. It has the
advantage that all the estimates in [15, Sect. 5] hold in this new setting without the need
for a touch up. For more efficiency, in the sections defining the RG map, we adopted a
rather terse style of presentation. We refer the newcomer seeking a proper motivation
for this formalism to [56] and the introductory sections of [17, 11, 15]. Note that these
definitions are quite involved and by no means the first that would come to one’s mind.
Nevertheless, they are about the simplest which give a rigorous nonperturbative mean-
ing to Wilson’s exact renormalization group, and at the same time navigate around the
pitfalls of more naïve approaches. These pitfalls have been mapped by the pioneering
work of Balaban, Federbush, Feldman, Gallavotti, Gawȩdzki, Glimm, Jaffe, Kupiainen,
Magnen, Rivasseau, Seiler, Sénéor, Spencer, and many others we apologize for not cit-
ing [43, 34]. For more ample introduction to the rigorous renormalization group than we
provide here, the reader from other areas of mathematics may most profitably read [71,
66, 35, 5] and Gawȩdzki’s lecture in [24] for a first contact. More technical or specialized
material is covered in [6, 43, 64].

2. The General Setting

The ambient space for the field theory we are considering is Euclidean R
3. Given an ele-

ment x = (x1, x2, x3) ∈ R
3 we will use the notation |x |∞ def= max(|x1|, |x2|, |x3|) and

|x |2 def=
√

x2
1 + x2

2 + x2
3 . Let ε be a small nonnegative number, then with a slight abuse

of notation the kernel of the covariance operator C̃ = (−∆)−
(

3+ε
4

)
, which is formally

C̃(x, y) = C̃(x − y) =
∫

R3

d3 p

(2π)3
eip(x−y)(p2)

−
(

3+ε
4

)
, (9)

is given (see e.g. [40, Sect. II.3.3] for a careful derivation) for noncoinciding points by
the Riesz potential

C̃(x − y) = κε

|x − y|
3−ε

2
2

, (10)

with

κε
def= π− 3

2 × 2
−
(

3+ε
2

)
× Γ

( 3−ε
4

)
Γ
( 3+ε

4

) . (11)



A Complete Renormalization Group Trajectory 733

Let� : R
3 → R be a pointwise nonnegative C∞ and rotationally invariant function

which vanishes when |x |2 ≥ 1
2 and is equal to one when |x |2 ≤ 1

4 . Let ũ
def= � ∗� be

the convolution of� with itself. It is nonnegative both in direct and momentum spaces,
and also rotationally invariant. Since �(0) > 0, the integral

∫
R3

d3z |z|−
3
2

2 �(z)

is strictly positive. We define the function u0 to be the unique positive multiple of �
such that ∫

R3
d3z |z|−

3
2

2 u0(z) = κ0 = (2π)−
3
2 . (12)

The u0 function is fixed once and for all in this article. Now define

λε
def= κε

∫
R3 d3z |z|−

(
3+ε

2

)
2 u0(z)

, (13)

and let uε(x) = λεu0(x). Now we clearly have λε → 1 when ε → 0 and for x 
= y in
R

3, ∫ +∞

0

dl

l
l
−
(

3−ε
2

)
uε

(
x − y

l

)
= κε

|x − y|
3−ε

2
2

= C̃(x − y) , (14)

i.e., the canonically normalized noncutoff covariance. We now define the scale one
UV-cutoff covariance C by

C(x − y)
def=
∫ +∞

1

dl

l
l
−
(

3−ε
2

)
uε

(
x − y

l

)
. (15)

Remark 1. In [15] the uε is fixed whereas here it is a variable multiple of a fixed function
u0. Since in the regime where ε is small the multiplier λε can be assumed to be say
between 0.9 and 1.1; this has no effect on the estimates in [15] such as the large field
stability bounds: Eq. 2.3, Lemma 5.3 and Lemma 5.4 therein.

Let L ≥ 2 be an integer. We will also need the fluctuation covariance

Γ (x − y)
def=
∫ L

1

dl

l
l
−
(

3−ε
2

)
uε

(
x − y

l

)
. (16)

Note that in Eq. (11) the letter ‘Gamma’ denoted the usual Euler gamma function; how-
ever, from now on the notation will be reserved for the fluctuation covariance (16). The
engineering scaling dimension of the field φ which is denoted by [φ] is defined by the
property C̃(lx) = l−2[φ]C̃(x). One can read it off Eq. (14): [φ] = 3−ε

4 . As in [15] we
use the notation

CL(x)
def= L2[φ]C(Lx) (17)

for scaling of covariances. We define v(2)(x)
def= CL(x)2 − C(x)2 and let

a(L , ε)
def= 36

∫
R3

d3x v(2)(x) . (18)
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It is a simple exercise in analysis to show that, regardless of the precise shape of the
initial cutoff function u0, one has

lim
ε→0

a(L , ε) = a(L , 0) = log L

18π2 (19)

as expected for the second order coefficient of the beta function of a marginal (at ε = 0)
coupling. As a result, the approximate fixed point

ḡ∗ = Lε − 1

L2εa(L , ε)
(20)

satisfies

ḡ∗ ∼ 18π2ε (21)

when ε → 0.
Now consider the lattice Z

3 inside R
3. A unit box is any closed cube of the form

[m1,m1 + 1] × [m2,m2 + 1] × [m3,m3 + 1] with m = (m1,m2,m3) ∈ Z
3. The set of

all unit boxes is denoted by Box0. A nonempty connected subset of R
3 which is a finite

union of unit boxes is called a polymer. The denumerable set of all polymers is denoted

by Poly0. We will also need the set Poly−1
def= {L−1 X |X ∈ Poly0} whose elements

are called L−1-polymers, as well as Poly+1
def= {L .X |X ∈ Poly0}, whose elements are

called L-polymers. Unless otherwise specified, by polymer we will always mean a unit

polymer, i.e., an element of Poly0. For a polymer X , we denote |X | def= Vol(X) which
is also the number of unit boxes in X . We also define its L-closure X̄ L as the union
of all boxes of size L , cut by the (LZ)3 lattice, which contain a unit box in X . This is
the same as the smallest L-polymer containing X , which explains the terminology. A
polymer X ∈ Poly0 with |X | ≤ 8 is called a small polymer. A polymer X ∈ Poly0 with
|X | ≤ 2 is called an ultrasmall polymer. A large polymer simply is one which is not
small. We finally define the large set regulator which is a function A : Poly0 → R

∗
+, by

A(X) def= L5|X |.

3. Functional Spaces

3.1. Sobolev spaces with gluing conditions. To each X ∈ Poly0, we associate a real
separable Hilbert space Fld(X) where the fields φ : X → R will live. Given any open

unit box
◦
∆, with ∆ ∈ Box0, we consider the standard Sobolev space W 4,2(

◦
∆) with the

norm

||φ||
W 4,2(

◦
∆)

def=
⎛
⎝∑

|ν|≤4

||∂νφ||2
L2(

◦
∆)

⎞
⎠

1
2

. (22)

Since obviously
◦
∆ satisfies the so-called strong local Lipschitz condition, by the Sobolev

embedding theorem [3, Theorem 4.12] one has a continuous injection

W 4,2(
◦
∆) ↪→ C2(∆),
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where C2(∆) is the real Banach space of functions φ : ∆ → R which are of class C2 in

the open box
◦
∆ and which are continuous together with their first and second derivatives

on all of the closed box ∆. The norm used on C2(∆) is the standard one

||φ||C2(∆)
def= sup

x∈∆
max|ν|≤2

|∂νφ(x)| . (23)

Besides there is a constant CSobolev independent of the choice of ∆ in Box0, such that

||φ||C2(∆) ≤ CSobolev||φ||
W 4,2(

◦
∆)
. (24)

Now define F̃ld(X) to be the finite direct sum of the Hilbert spaces W 4,2(
◦
∆) for ∆

contained in X . We let Fld(X) be the subspace of F̃ld(X) obtained by imposing the
following gluing conditions. A field φ = (φ∆)∆⊂X belongs to Fld(X) if and only if, for
any neighbouring boxes ∆1,∆2 in X , the C2 images by the Sobolev embedding of φ∆1

and φ∆2 coincide as well as their first and second derivatives, on the common boundary
component ∆1 ∩∆2. Again by the embedding theorem, this is a closed condition, and
Fld(X) is a real Hilbert space with the norm

||φ||Fld(X)
def=
⎛
⎝∑
∆⊂X

∑
|ν|≤4

||∂νφ∆||2
L2(

◦
∆)

⎞
⎠

1
2

. (25)

Note that any polymer X is the closure of its interior. Hence, if one lets as before C2(X)
be the space of functions φ : X → R which are of class C2 in the, possibly disconnected,

open set
◦
X and which are continuous together with their first and second derivatives on

the closed connected set X ; and if the norm used on C2(X) is again the standard one

||φ||C2(X)
def= sup

x∈X
max|ν|≤2

|∂νφ(x)| ; (26)

then it is not difficult to show that one has an embedding

Fld(X) ↪→ C2(X) (27)

and an inequality
||φ||C2(X) ≤ CSobolev||φ||Fld(X) . (28)

The important thing here is that the constant is independent of X . We will often regard
φ as a single function on X .

Remark 2. With this definition the lemmata [15, Lemma 5.1, Lemma 5.2] which are
used for pointwise estimation of the fields, remain valid. The polygonal line arguments
needed in [15, Lemma 5.1] as well as [11, Lemma 15] on which [15, Lemma 5.24]
rests, are also preserved.

Now we will also need the notation

||φ||X,1,4
def=
⎛
⎝∑
∆⊂X

∑
1≤|ν|≤4

||∂νφ∆||2
L2(

◦
∆)

⎞
⎠

1
2

. (29)
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This allows, given a parameter κ > 0, to define for any φ ∈ Fld(X) the large field
regulator

Gκ(X, φ)
def= exp

(
κ||φ||2X,1,4

)
. (30)

An important point is that Gκ(X, ·) is continuous on Fld(X).

3.2. Some natural maps. Note that if X1 ⊂ X2 are two polymers then there is an obvi-
ous linear continuous restriction map Fld(X2) → Fld(X1), φ �→ φ|X1 . Indeed one first
defines this projection from F̃ld(X2) to F̃ld(X1). Namely, it projects φ = (φ∆)∆⊂X2

onto (φ∆)∆⊂X1 . The gluing conditions for the image are automatically satisfied if they
hold for the input φ.

Now let τ be an isometry of Euclidean R
3 which leaves the lattice Z

3 globally
invariant, and let X be a polymer. One has a natural Hilbert space isometry Fld(X) →
Fld(τ−1(X)), φ �→ φ◦τ . Indeed one first defines this map on elements φ = (φ∆)∆⊂X ∈
F̃ld(X), where each component is smooth on

◦
∆, by ordinary composition with τ . Then

by density [3, Theorem 3.17], one extends it to a map F̃ld(X) → F̃ld(τ−1(X)). Finally
one takes the restriction to Fld(X) and corestriction to Fld(τ−1(X)), since the gluing
conditions are preserved.

We will also need an additional map. Let X ∈ Poly0. Then L X is also in Poly0.
Given φ ∈ Fld(X) one can associate to it by a linear continuous map an element
φL−1 ∈ Fld(L X) as follows. First assume that φ = (φ∆)∆⊂X ∈ F̃ld(X) is such that

each φ∆ is smooth on
◦
∆. Then for each∆ ⊂ X , define (φ∆)L−1(x)

def= L−[φ]φ∆(L−1x)
which is smooth in the interior of L∆. Then for any unit box ∆′ ⊂ L∆ consider the
restriction (φ∆)L−1 | ◦

∆′ to the interior of ∆′. The collection of all such restrictions for

∆′ ⊂ L∆ with ∆ ⊂ X is by definition the image of φ in F̃ld(L X). Then extend the
map, by density, to all of F̃ld(X). Finally the wanted map is obtained by restriction to
Fld(X) and corestriction to Fld(L X), since the gluing conditions are easily seen to be
preserved.

3.3. Gaussian measures. Now given any polymer X , and using the standard theory of
Gaussian probability measures in Hilbert spaces [10, 70], it is not difficult to show
that there exists a unique Borel (with respect to the ||.||Fld(X) norm topology) centered
Gaussian probability measure dµΓ,X on Fld(X) such that for any x, y ∈ X , one has

∫
dµΓ,X (ζ ) ζ(x)ζ(y) = Γ (x − y), (31)

where ζ(x) and ζ(y) are defined using the C2(X) realization of ζ . In other words the
covariance of dµΓ,X is the fluctuation covariance Γ .

Indeed, one can define a continuous operator S̃ : F̃ld(X) → F̃ld(X) as follows. Ifφ =
(φ∆)∆⊂X ∈ F̃ld(X) has smooth components, one defines its image S̃φ =

(
(S̃φ)∆

)
∆⊂X

by letting for any x ∈ ◦
∆,

(S̃φ)∆(x)
def=

∑
∆′⊂X

∑
|α|≤4

∫
∆′

dy (−1)|α|∂αΓ (x − y) ∂αφ∆′(y) . (32)
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It is easy to see that S̃ extends on all of F̃ld(X) to a continuous operator with norm
bounded by max|α|≤8 ||∂αΓ ||L∞(R3). Clearly this operator S̃ has its image contained in
the closed subspace Fld(X). It is also symmetric, and positive. Now define the operator
S : Fld(X) → Fld(X) by restriction and corestriction. It is easy to show that

tr S̃ = tr S = |X | ·
∑
|α|≤4

(−1)|α|∂2αΓ (0) . (33)

As a result S is a continuous symmetric positive trace class operator on Fld(X), i. e., a
covariance operator. By the results in [70, Chap. 1], there exists a unique centered Borel
Gaussian probability measure dµΓ,X on Fld(X) such that for any φ1, φ2 ∈ Fld(X),∫

dµΓ,X (ζ ) (φ1, ζ )(φ2, ζ ) = (φ1, Sφ2) . (34)

This equality also holds for φ1, φ2 more generally in F̃ld(X) and with S replaced by S̃. It
is not difficult to show that (31) follows from (34). The uniqueness of Gaussian measures
satisfying (31) is also easy. Indeed one has the uniqueness of Gaussian measures satis-
fying (34), see [70, Chap. 1]. Besides, consider the continuous linear forms on F̃ld(X)
indexed by pairs (∆, x), where ∆ ⊂ X and x ∈ ∆, obtained by evaluating at x the
C2(∆) image of the component φ∆ of a vector φ ∈ F̃ld(X). Let ψ∆,x ∈ F̃ld(X) be the
corresponding vectors obtained by the Riesz representation theorem. By the injectivity
of the Sobolev embedding, it is clear that the subspace generated by the vectors ψ∆,x is
dense in F̃ld(X). The uniqueness then follows easily.

Finally, note that if X1 ⊂ X2 are two polymers, then the direct image measure of
dµΓ,X2 , obtained by the restriction map φ �→ φ|X1 , coincides with dµΓ,X1 .

3.4. Polymer activities. Let K denote either the (algebraic) field of real numbers R or
that of complex numbers C. The main objects of study in this article are polymer activ-
ities or polymer amplitudes. These are functions (or functionals) K (X, ·) from Fld(X)
to K. We will only consider functionals which are n0 times continuously differentiable
in the sense of Frechet between the real Banach spaces Fld(X) and K [7, Chap. 2], [25,
Chap. VIII]. Here n0 is a nonnegative integer constant which we will actually take to be
n0 = 9 as in [15].

Now consider for any integer n, 0 ≤ n ≤ n0, the K-Banach space Ln(Fld(X),K) of
R-multilinear continuous maps W : Fld(X)n → K with the natural norm

||W ||� def= sup
φ1,...,φn∈Fld(X)\{0}

|W (φ1, . . . , φn)|
||φ1||Fld(X) . . . ||φn||Fld(X)

. (35)

Inside it sits the space Ln(Fld(X),C2(X),K) of W ’s for which the stronger norm

||W ||� def= sup
φ1,...,φn∈Fld(X)\{0}

|W (φ1, . . . , φn)|
||φ1||C2(X) . . . ||φn||C2(X)

(36)

is finite. We indeed have for any W ∈ Ln(Fld(X),C2(X),K),

||W ||� ≤ Cn
Sobolev||W ||� . (37)

It is easy to see that Ln(Fld(X),C2(X),K) equipped with the sharp norm is a K-Banach
space. Let us denote by Cn0

� (Fld(X),K) the K-vector space of K-valued functionals
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K (X, ·) defined on all of Fld(X), which are n0 times continuously Frechet differentiable
in the usual sense [7, 25] with respect to the || · ||Fld(X) topology. We will also denote
the nth Frechet differential at the point φ ∈ Fld(X) of a polymer activity K (X, ·) by
Dn K (X, φ). Its evaluation at the sequence of vectors f1, . . . , fn of Fld(X) is

Dn(X, φ; f1, . . . , fn) = ∂n

∂s1 . . . ∂sn
K (X, φ + s1 f1 + · · · + sn fn)

∣∣∣∣
s=0

, (38)

i.e., the corresponding directional or Gateau derivative. We then define the space Cn0
�

(Fld(X),K) of all K (X, ·) ∈ Cn0
� (Fld(X),K) such that for all φ ∈ Fld(X) and all

integer n, 0 ≤ n ≤ n0, the differential Dn K (X, φ) belongs to Ln(Fld(X),C2(X),K),
and such that the maps φ �→ Dn K (X, φ) are continuous from (Fld(X), || · ||Fld(X)) to
(Ln(Fld(X),C2(X),K), || · ||�). From now on the only norm we will be considering for
differentials is the sharp one, therefore we will omit the symbol from the norm notation.

Given a parameter h > 0, a functional K (X, ·) ∈ Cn0
� (Fld(X),K) and a field

φ ∈ Fld(X), we define the local norm

||K (X, φ)||h def=
∑

0≤n≤n0

hn

n! ||D
n K (X, φ)|| . (39)

This allows us to define the space BK

h,Gκ
(X) of all K (X) ∈ Cn0

� (Fld(X),K) for which
the norm

||K (X)||h,Gκ

def= sup
φ∈Fld(X)

Gκ(X, φ)
−1||K (X, φ)||h (40)

is finite. Now one has the following easy proposition.

Proposition 1. For any h, κ > 0, the normed K-vector space

(BK

h,Gκ
(X), || · ||h,Gκ )

is complete.

Now we consider an arbitrary element K = (K (X))X∈Poly0
in the product

∏
X∈Poly0

BK

h,Gκ
(X) ,

and define the norm

||K ||h,Gκ ,A
def= sup

∆∈Box0

∑
X∈Poly0

X⊃∆

A(X) ||K (X)||h,Gκ , (41)

where A is the previously defined large set regulator. Given a parameter h∗ > 0, we also
define the kernel semi-norm,

|K |h∗,A
def= sup

∆∈Box0

∑
X∈Poly0

X⊃∆

A(X) ||K (X, 0)||h∗ , (42)
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where the differentials are taken at the point φ = 0 in each Fld(X). We now introduce
the notion of calibrator: it is a new parameter ḡ > 0. We will use it to set

h = cḡ− 1
4 (43)

for some fixed constant c > 0 to be adjusted later. We will take

h∗
def= L

3+ε
4 . (44)

The space of all K in the previous product space, such that ||K ||h,Gκ ,A and |K |h∗,A
are finite, is equipped with the calibrated norm

|||K |||ḡ def= max
(
|K |h∗,A, ḡ2||K ||h,Gκ ,A

)
, (45)

and it is denoted by BBK

ḡ . So as to keep notations under control we only emphasized the
dependence on the calibrator ḡ which is the most important one in what follows. One
should keep in mind that the calibrated norm depends on ḡ through the ḡ2 factor in front
of || · ||h,Gκ ,A, but also through the relation (43) imposed between the h parameter and
the calibrator ḡ. It is easy to see that BBK

ḡ with the norm ||| · |||ḡ , is a K-Banach space.

Now let τ be an isometry of Euclidean R
3 which leaves the lattice Z

3 globally invari-
ant. This transformation can be made to act on an element K of BBK

ḡ by letting for any
X ∈ Poly0, and any φ ∈ Fld(X),

(τK )(X, φ)
def= K (τ−1(X), φ ◦ τ), (46)

where the map from Fld(X) to Fld(τ−1(X)), given by φ �→ φ ◦ τ is the one defined
in Sect. 3.2. We will only consider τ ∈ Transf, where the set Transf is made of all
translations by a vector m = (m1,m2,m3) in Z

3, together with the three orthogonal
reflections with respect to the coordinate planes respectively given by the equations
x1 = 0, x2 = 0 and x3 = 0. We also define a transformation K �→ K − of BBK

ḡ by

letting K −(X, φ) def= K (X,−φ).
The following lemma is an easy consequence of our previous definitions for norms.

Lemma 1. The maps K �→ τK , for τ ∈ Transf , as well as the map K �→ K −, are
Banach space isometries of BBK

ḡ .

Thanks to this lemma we can finally define the main setting for a single RG map. It
is the space BBSK

ḡ of all collections of polymer activities K ∈ BBK

ḡ such that K − = K
and for any τ ∈ Transf, τK = K . By the previous lemma it is a closed subspace of
BBK

ḡ and therefore a K-Banach space for the norm ||| · |||ḡ .

Remark 3. Note that all the calibrated norms, obtained for different values of ḡ, are
equivalent. The underlying topological vector spaces of the BBK

ḡ ’s are therefore the
same.

The RG map we are interested in is one from a domain in R × R × BBSR

ḡ for some
values of the parameters into another analogous triple-product space with a slightly
different value of ḡ. We will need complex versions of these spaces in order to obtain
Lipschitz contractive estimates with the least effort. The global trajectory we construct
in this article will be obtained by a contraction mapping theorem in a big Banach space
of sequences BBSSK to be precisely defined in Sect. 5 below.



740 A. Abdesselam

4. The Algebraic Definition of the RG Map

In this section we provide all the formulae which express the RG map studied in [15]. We
consider an input (g, µ, R) ∈ C×C×BBSC; and we will give the algebraic definition
for the output (g′, µ′, R′). Recall that the latter have the form

g′ = Lεg − L2εa(L , ε)g2 + ξg(g, µ, R) , (47)

µ′ = L
3+ε

2 µ + ξµ(g, µ, R) , (48)

R′ = L(g,µ)(R) + ξR(g, µ, R), (49)

where a(L , ε) has already been defined. We will therefore provide the expressions for
the ξ remainders as well as for L(g,µ)(R).

4.1. The local potentials. For any X ∈ Poly0, any Borel set Z ⊂ R
3, and any

φ ∈ Fld(X), we let

V (X, Z , φ)
def= g

∫
Z∩X

d3x : φ(x)4 :C +µ
∫

Z∩X
d3x : φ(x)2 :C . (50)

We refer for instance to [43, 66] for a discussion of Wick ordering : • :C . Otherwise the
explicit expressions

: φ(x)2 :C= φ(x)2 − C(0) (51)

and
: φ(x)4 :C= φ(x)4 − 6C(0)φ(x)2 + 3C(0)2 (52)

may be used as definitions. Note that in [15] the notation is simplified to V (Z , φ) or
even V (Z) leaving the φ dependence implicit. Here we prefer to keep everything explicit
including the first X argument which allows one to keep track of which space Fld(·) the
field φ lives in. Also note that the function φ used in the integral formula above is of
course the C2(X) realization of φ ∈ Fld(X) via the embedding (27). Another remark
is that although we made the definition sound quite general by allowing Z to be any
Borel set, we will only need such Z ’s which are complements of the union of some
L−1-polymers in X . Now define

gL
def= Lεg , (53)

µL
def= L

3+ε
2 µ , (54)

CL−1(x)
def= L−2[φ]C(L−1x), (55)

and as in (50) let

Ṽ (X, Z , φ)
def= g

∫
Z∩X

d3x : φ(x)4 :CL−1 +µ
∫

Z∩X
d3x : φ(x)2 :CL−1 , (56)

where Wick ordering is with respect to CL−1 instead of C . Also let

ṼL(X, Z , φ)
def= gL

∫
Z∩X

d3x : φ(x)4 :C +µL

∫
Z∩X

d3x : φ(x)2 :C . (57)



A Complete Renormalization Group Trajectory 741

4.2. The w kernels. We now deal with the hidden variable w. Note that by construction
the cutoff function uε satisfies uε(x) = 0 if |x |2 ≥ 1 and a fortiori if |x |∞ ≥ 1. This
implies that the fluctuation covariance Γ satisfies Γ (x) = 0 if |x |∞ ≥ L . Now we
define w = w∗ = (w(1), w(2), w(3)) to be a triple of real functions w(p) ∈ Wp, where

Wp, p = 1, 2, 3, is the weighted L∞ space L∞(R3, |x |
3p
2∞ d3x). Namely, f ∈ Wp if and

only if f : R
3 → R is measurable and

|| f ||p
def= ess. sup

x∈R3

(
|x |

3p
2∞ | f (x)|

)
(58)

is finite. Thew’s were constructed in [15, Lemma 5.9] by a Banach fixed point argument.
We instead give them explicitly, for x 
= 0, by

w(p)(x)
def= C̃(x)p − C(x)p (59)

=
[

C(x) +
∫ 1

0

dl

l
l
−
(

3−ε
2

)
uε
( x

l

)]p

− C(x)p . (60)

From the last equation it is clear that w(p)(x) = 0 if |x |∞ ≥ 1. Besides, since uε ≥ 0,
for ε small one has

|w(p)(x)| ≤ C̃(x)p = κ
p
ε

|x |p
(

3−ε
2

)
2

≤ O(1)
|x |

3p
2∞
. (61)

The fixed point property w = w∗ is embodied in the equation

w(p)(x) = v(p)(x) + w(p)
L (x) (62)

for any x 
= 0, where we used the notation

v(p)(x)
def= CL(x)

p − C(x)p (63)

and
w
(p)
L (x)

def= L2p[φ]w(p)(Lx) . (64)

Equation (62) trivially follows from the given definition.

4.3. The renormalized expanded quadratic activity Q. For X ∈ Poly0 and φ ∈ Fld(X)

we define the activity Q(X, φ) as follows. If X is not ultrasmall we let Q(X, φ)
def= 0.

If X is ultrasmall we introduce an associated integration domain X̃ ⊂ R
3 × R

3. If X is

reduced to a single unit box ∆, we let X̃
def= ∆×∆. If X = ∆1 ∪∆2, where the boxes

∆1 and ∆2 are distinct but neighbouring, we let

X̃
def= (∆1 ×∆2) ∪ (∆2 ×∆1) . (65)

We now write

Q(X, φ)
def= g2

∫
X̃

d3x d3 y
{
−24w(3)(x − y) : (φ(x)− φ(y))2 :C

−18w(2)(x − y) : (φ(x)2 − φ(y)2)2 :C
+ 8w(1)(x − y) : φ(x)3φ(y)3 :C

}
. (66)
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For reference, the Wick ordered expressions are explicitly given by

: (φ(x)− φ(y))2 :C = (φ(x)− φ(y))2 − 2C(0) + 2C(x − y) , (67)

: (φ(x)2 − φ(y)2)2 :C = (φ(x)2 − φ(y)2)2 − 4C(0)φ(x)2 − 4C(0)φ(y)2

+8C(x − y)φ(x)φ(y) + 4C(0)2 − 4C(x − y)2, (68)

and

: φ(x)3φ(y)3 :C = φ(x)3φ(y)3 − 3C(0)φ(x)φ(y)3 − 3C(0)φ(x)3φ(y)

−9C(x − y)φ(x)2φ(y)2 + 9C(0)2φ(x)φ(y)

+18C(x − y)2φ(x)φ(y) + 9C(0)C(x − y)φ(x)2

+9C(0)C(x − y)φ(y)2 − 9C(0)2C(x − y)

−6C(x − y)3 . (69)

4.4. Integration on fluctuations, reblocking and rescaling. For any unit box∆ and fields
φ, ζ ∈ Fld(∆) we define

P(∆, φ, ζ )
def= e−V (∆,∆,φ+ζ ) − e−Ṽ (∆,∆,φ) . (70)

Now for any X ∈ Poly0 and φ ∈ Fld(X) we let

K (X, φ)
def= Q(X, φ)e−V (X,X,φ) + R(X, φ) . (71)

We also define

R�(X, φ)
def=
∫

dµΓ,X (ζ ) R(X, φ + ζ ) , (72)

as well as

(SK )�(X, φ)
def=
∫

dµΓ,L X (ζ )

⎧⎪⎨
⎪⎩
∑
M,N

M+N≥1

1

M !N !
∑

(∆1,...,∆M ),(X1,...,X N )

exp
[
−Ṽ

(
L X, L X\

((
∪M

i=1∆i

)
∪
(
∪N

j=1 X j

))
, φL−1

)]

×
M∏

i=1

P
(
∆i , φL−1 |∆i , ζ |∆i

)×
N∏

j=1

K
(
X j , φL−1 |X j +ζ |X j

)
⎫⎬
⎭ , (73)

where the sum over sequences (∆1, . . . , ∆M ) and (X1, . . . , X N ) is subjected to the
following conditions:

1. The ∆i are distinct boxes in Box0.
2. The X j are disjoint polymers in Poly0.
3. None of the ∆i is contained in an X j .
4. The L-closure of the union of all the ∆i and the X j is exactly the set L X .

Remark 4. Note that since the X j are closed polymers, the disjointness condition means
that they cannot touch each other and have to be at least 1 apart in | · |∞ distance.
However, the ∆i are allowed to touch each other or an X j , by sharing no more than a
boundary component. Also note that by hypothesis, X and therefore L X is connected.
This rules out situations where for instance the (X j ) sequence would be empty, and the
(∆i ) sequence would be made of two boxes very far apart.
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4.5. Preparations for the extraction. As a preparation for the crucial so called extraction
step we need to introduce for any X ∈ Poly0 the quantities denoted by α̃0(X), α̃2(X),
α̃2,µ(X) for µ = 1, 2, 3, and α̃4(X). These are by definition all set to zero if X is large.
Now if X is small one lets

α̃0(X)
def= eṼ (X,X,0)

|X | R�(X, 0) , (74)

α̃2(X)
def= eṼ (X,X,0)

2|X |
[

D2(R�)(X, 0; 1, 1) + R�(X, 0)D2Ṽ (X, X, 0; 1, 1)
]
, (75)

where the last two arguments of the differentials are given by the constant function equal
to 1, seen as an element of Fld(X). We also let for µ = 1, 2, 3,

α̃2,µ(X)
def= eṼ (X,X,0)

|X |
[

D2(R�)(X, 0; 1,∆X xµ)

+R�(X, 0)D2Ṽ (X, X, 0; 1,∆X xµ)
]
, (76)

where ∆X xµ means the function

x �→ xµ − 1

|X |
(∫

X
d3 y yµ

)
,

the deviation from average of the coordinate function xµ on the polymer X , again seen
as an element of Fld(X). Finally one lets

α̃4(X)
def= eṼ (X,X,0)

24|X |
[

D4(R�)(X, 0; 1, 1, 1, 1)

+6D2(R�)(X, 0; 1, 1)D2Ṽ (X, X, 0; 1, 1)

+R�(X, 0)D4Ṽ (X, X, 0; 1, 1, 1, 1)

+3R�(X, 0)
(

D2Ṽ (X, X, 0; 1, 1)
)2
]
. (77)

Now given Z ∈ Poly0, and x ∈ R
3 we define

α0(Z , x)
def=

∑
X small, X̄ L=L Z

α̃0(X)L
31lL−1 X (x) , (78)

α2(Z , x)
def=

∑
X small, X̄ L=L Z

α̃2(X)L
3+ε

2 1lL−1 X (x) , (79)

α2,µ(Z , x)
def=

∑
X small, X̄ L=L Z

α̃2,µ(X)L
1+ε

2 1lL−1 X (x) , (80)

α4(Z , x)
def=

∑
X small, X̄ L=L Z

α̃4(X)L
ε1lL−1 X (x), (81)

where again µ = 1, 2, 3, and 1lL−1 X denotes the sharp characteristic function of the set
L−1 X . Note that these quantities vanish if Z is not small or if x /∈ Z .
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Now choose some reference box ∆0 ∈ Box0. We define

α0
def= L3

∑
X small, X⊃∆0

α̃0(X), (82)

α2
def= L

3+ε
2

∑
X small, X⊃∆0

α̃2(X), (83)

α4
def= Lε

∑
X small, X⊃∆0

α̃4(X). (84)

Note that the latter do not depend on the choice of ∆0 because of the translational
invariance imposed on polymer activities in Sect. 3. Also note that in [15, Eq. 4.44] the
quantities

α2,µ
def= L

1+ε
2

∑
X small, X⊃∆0

α̃2,µ(X) (85)

for µ = 1, 2, 3, were also defined. However, again by the conditions imposed on poly-
mer activities in Sect. 3, it is easy to see that the latter always vanish. In other words,
the RG flow does not create φ∂φ terms in the effective potential.

After one has defined

b(L , ε)
def= 48

∫
R3

d3x v(3)(x) ; (86)

one can at last give some of the outputs of the RG map. Namely, one poses

ξg(g, µ, R)
def= −α4 , (87)

ξµ(g, µ, R)
def= −

(
L2εb(L , ε)g2 + α2 + 6C(0)α4

)
, (88)

as definition of the first two remainder terms. At this point, the new couplings are defined
via

g′ def= Lεg − L2εa(L , ε)g2 + ξg(g, µ, R) , (89)

µ′ def= L
3+ε

2 µ + ξµ(g, µ, R) . (90)

What remains is L(g,µ)(R), ξR(g, µ, R) and their combination R′.

4.6. The linear map for R. In order to define the linear part L(g,µ)(R)which was denoted
by Rlinear in [15], we need to introduce two polymer activities. For X ∈ Poly0, and

φ ∈ Fld(X), we let F̃R(X, φ)
def= 0 if X is large; otherwise we let

F̃R(X, φ)
def=
∫

X
d3x

[
α̃4(X)φ(x)

4 + α̃2(X)φ(x)
2

+
3∑

µ=1

α̃2,µ(X)φ(x)∂µφ(x) + α̃0(X)

⎤
⎦ . (91)
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Regardless of whether X is small or not, we also let

J (X, φ)
def= R�(X, φ)− F̃R(X, φ)e

−Ṽ (X,X,φ) . (92)

The previous complicated definitions of the α̃...(X) had no other purpose but to secure
the following normalization conditions. For any small polymer X , and for µ = 1, 2, 3,
one needs

J (X, φ) = 0 , (93)

D2 J (X, 0; 1, 1) = 0 , (94)

D2 J (X, 0; 1,∆X xµ) = 0 , (95)

D4 J (X, 0; 1, 1, 1, 1) = 0 . (96)

Note that one would have equivalent conditions if one replaced the function∆X xµ sim-
ply by the coordinate function xµ. These normalization conditions are the analog in the
present setting of the BPHZ subtraction prescription (see e.g. [64]). They are the main
reason why the map L(g,µ)(·) we are about to define is contractive.

Now given X ∈ Poly0, and φ ∈ Fld(X), and using constrained sums over polymers
Y ∈ Poly0, we define

L(g,µ)(R)(X, φ) def=
∑

Y small, Ȳ L=L X

J (Y, φL−1 |Y )e−ṼL (X,X\L−1Y,φ)

+
∑

Y large, Ȳ L=L X

R�(Y, φL−1 |Y )e−ṼL (X,X\L−1Y,φ) . (97)

4.7. The extraction proper. Given X ∈ Poly0, and x ∈ R
3, we define the function

f (4)Q (X, x) as follows.
First case. If X is given by a single box∆ ∈ Box0, and if x lies in the interior of∆, we
let

f (4)Q (X, x)
def=
∫
∆

d3 y v(2)(x − y) . (98)

Second case. If X is given by the union of two distinct neighbouring boxes ∆1,

∆2 ∈ Box0, and if x lies in the interior of say ∆1, we let

f (4)Q (X, x)
def=
∫
∆2

d3 y v(2)(x − y) . (99)

Third case. If none of the first two cases apply, we simply let f (4)Q (X, x)
def= 0.

One can in the same manner define a function f (2)Q (X, x) using v(3) instead of v(2),

as well as a function f (0)Q (X, x) using v(4) which is given by v(4)(z)
def= CL(z)4 −C(z)4.

Now let X ∈ Poly0, and Z be a Borel set in R
3, and define

F0,Q(X, Z)
def= 12g2

L

∫
Z

d3x f (0)Q (X, x), (100)
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as well as

F0,R(X, Z)
def=
∫

Z
d3x

{
α0(X, x) + C(0)α2(X, x) + 3C(0)2α4(X, x)

}
(101)

and
F0(X, Z)

def= F0,Q(X, Z) + F0,R(X, Z) . (102)

If in addition one has a polymer Y ∈ Poly0, and a field φ ∈ Fld(Y ), one can also
define

F1,Q(X, Y, Z , φ)
def= 36g2

L

∫
Z∩Y

d3x : φ(x)4 :C f (4)Q (X, x)

+48g2
L

∫
Z∩Y

d3x : φ(x)2 :C f (2)Q (X, x) (103)

as well as

F1,R(X,Y, Z , φ)
def=
∫

Z∩Y
d3x

{
α4(X, x) : φ(x)4 :C

+
3∑

µ=1

α2,µ(X, x) : φ(x)∂µφ(x) :C

+ (α2(X, x) + 6C(0)α4(X, x)) : φ(x)2 :C
}
, (104)

where : φ(x)∂µφ(x) :C reduces to φ(x)∂µφ(x). We finally need

F1(X,Y, Z , φ)
def= F1,Q(X,Y, Z , φ) + F1,R(X,Y, Z , φ) , (105)

and
F(X,Y, Z , φ)

def= F0(X, Z) + F1(X,Y, Z , φ) . (106)

As before the Y argument is for keeping track of which Fld(·) the φ lives in. The Z
defines the domain of integration. The new argument X , is here to indicate that the F’s
are local counterterms for a polymer activity which originally lived on X .

Now given X ∈ Poly0, and φ ∈ Fld(X), we let

K̃ (X, φ)
def= (SK )�(X, φ)− e−ṼL (X,X,φ) ×

∑
N≥1

1

N !
∑

(Y1,...,YN )

N∏
i=1

[
exp

(
F
(
Yi ,Yi ,Yi , φ|Yi

))− 1
]
, (107)

where the sum is over all sequences of distinct polymers Yi ∈ Poly0 whose union is
equal to X .

Again given X ∈ Poly0, a Borel set Z , and a field φ ∈ Fld(X), we define

VF (X, Z , φ)
def=

∑
∆∈Box0◦
∆⊂Z∩X

⎡
⎢⎣ṼL (∆,∆, φ|∆)−

∑
Y∈Poly0

Y⊃∆

F (Y,∆,∆, φ|∆)
⎤
⎥⎦ . (108)
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Mind the inclusion condition only on the interior
◦
∆ of ∆.

Then for X ∈ Poly0, and φ ∈ Fld(X), we let

Ẽ(X, φ) def=
∑

M≥1, N≥0

1

M !N !
∑

(X1,...,X M ), (Z1,...,Z N )

exp
(
−VF

(
X, X\

(
∪M

i=1 Xi

)
, φ
))

×
M∏

i=1

K̃
(
Xi , φ|Xi

)

×
N∏

j=1

[
exp

(
−F

(
Z j , Z j , Z j\

(
∪M

i=1 Xi

)
, φ|Z j

))
− 1

]
(109)

with the following conditions imposed on the Xi and Z j :

1. The Xi and Z j are polymers in Poly0.
2. The Xi are disjoint.
3. The Z j are distinct.
4. Every Z j has a nonempty intersection, be it by an edge or a corner, with ∪M

i=1 Xi .
5. Every Z j has a nonempty intersection with X\ (∪M

i=1 Xi
)
.

6. The union of all the Xi and Z j is exactly the given polymer X .

Remark 5. We emphasized the condition on the interior of ∆ in (108), and the weak
notion of intersection in items (4) and (5) above, since these are the notable modifi-
cations to make on the treatment of [11, Sect. 4.2] in order to account for the closed
polymers used in [15] and here. The overlap connectedness in [11, Sect. 4.2] is automat-
ically implied by item (6) above and the connectedness of the set X which is assumed a
priori. Also note that this notion was defined in [11, Sect. 4.2] based on the idea of having
a full box in common, whereas here a nonempty intersection by a boundary component
already counts as an overlap. Finally note that if M ≥ 2 then one needs to have N ≥ 1;
this is because the Xi are forced to be at least 1 apart with respect to the | · |∞ distance,
and they need a bridge of Z j ’s joining them.

Now given X ∈ Poly0, and φ ∈ Fld(X), we let

E(X, φ) def= Ẽ(X, φ)× exp

⎡
⎢⎣−

∑
∆∈Box0
∆⊂X

∑
Y∈Poly0

Y⊃∆

F0(Y,∆)

⎤
⎥⎦ . (110)

Finally we define Q′(X, φ) in exactly the same way as Q(X, φ) in Sect. 4.3 but using
the new coupling g′ obtained in Sect. 4.5 instead of the old one g. Likewise we need a
potential V ′(X, Z , φ) defined in the exact same manner as V (X, Z , φ) in Sect. 4.1 using
the new couplings g′, µ′ instead of g, µ. At last one can give the output R′ of the RG
map defined for any X ∈ Poly0, and φ ∈ Fld(X) by

R′(X, φ) def= E(X, φ)− Q′(X, φ)e−V ′(X,X,φ) . (111)

In somewhat of a roundabout manner, the definition of the ξR remainder is then

ξR(g, µ, R)(X, φ)
def= R′(X, φ)− L(g,µ)(R)(X, φ) . (112)



748 A. Abdesselam

The algebraic definition of the RG map is now complete. Note that the Frechet differ-
entiability of the output polymer activities, the justification of the measurability of the
integrations over ζ , follow once the proper estimates are established because of the alge-
braic nature of the operations used in this section. These estimates have been provided
in [15, Sect. 5], and their result is summarized in Theorem 1 below.

5. The Dynamical System Construction

The RG map for which the defining formulae were given in the previous section is
(g, µ, R) �→ (g′, µ′, R′), where

⎧⎨
⎩

g′ = Lεg − L2εa(L , ε)g2 + ξg(g, µ, R) ,

µ′ = L
3+ε

2 µ + ξµ(g, µ, R) ,
R′ = L(g,µ)(R) + ξR(g, µ, R) .

(113)

Our aim is to construct a double-sided sequence s = (gn, µn, Rn)n∈Z which solves
this recursion and such that lim

n→−∞(gn, µn, Rn) = (0, 0, 0) the Gaussian ultraviolet

fixed point, and lim
n→+∞(gn, µn, Rn) = (g∗, µ∗, R∗) the BMS nontrivial infrared fixed

point [15]. We proceed as follows. We will simply write a for the coefficient a(L , ε) > 0.
We also take ε > 0 small enough so that Lε ∈]1, 2[. Recall that ḡ∗ = Lε−1

L2εa
> 0 and

consider the function
f : [0, ḡ∗] → [0, ḡ∗]

x �→ f (x) = Lεx − L2εax2 .
(114)

It is trivial to see that f is a strictly increasing diffeomorphism of [0, ḡ∗]; it is also
strictly concave. The only fixed points are 0 and ḡ∗, and f (x) > x in the interval
]0, ḡ∗[. Given ω0 ∈]0, 1[, there is a unique double-sided sequence (ḡn)n∈Z in ]0, ḡ∗[Z
such that ḡ0 = ω0 ḡ∗, and for any n ∈ Z, ḡn+1 = f (ḡn). This sequence is strictly
increasing from 0 when n → −∞, to ḡ∗ when n → +∞. We call ḡ0 the coupling at
unit scale. Once it is chosen it defines the sequence (ḡn)n∈Z completely. Moreover, if
one ignores the remainder terms ξ in (113) then the renormalization group recursion is

solved by the approximate sequence s̄
def= (ḡn, 0, 0)n∈Z. The true trajectory will be con-

structed in such a way that g0 = ḡ0, and via the construction of the deviation sequence
δs = (δgn, µn, Rn)n∈Z with respect to the approximate sequence s̄. Using the notation
δgn = gn − ḡn , the new recursion which is equivalent to (113) that we have to solve is

⎧⎨
⎩
δgn+1 = f ′(ḡn)δgn +

[−L2εa δg2
n + ξg(ḡn + δgn, µn, Rn)

]
,

µn+1 = L
3+ε

2 µn + ξµ(ḡn + δgn, µn, Rn) ,

Rn+1 = L(ḡn+δgn ,µn)(Rn) + ξR(ḡn + δgn, µn, Rn) .

(115)

The boundary conditions we will need can roughly be stated as:

– δg0 = 0.
– µn does not blow up when n → +∞.
– Rn does not blow up when n → −∞.

Also note the behavior of the linear parts of (115) :

– When n → +∞, f ′(ḡn) → 2 − Lε < 1, i.e., one has a deamplification.
– When n → −∞, f ′(ḡn) → Lε > 1, i.e., one has an amplification.
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– One always has an amplification in the ‘relevant’ µ or mass direction.
– Once the RG map has been properly defined, one can arrange to always have a

deamplification in the ‘irrelevant’ R direction.

Based on these observations, it is natural using the standard method of associated
‘discrete integral equations’, used for instance in [47], to rewrite the system (115) as

∀n > 0,

δgn = f ′(ḡn−1)δgn−1 +
[
−L2εa δg2

n−1 + ξg(ḡn−1 + δgn−1, µn−1, Rn−1)
]
,

(116)

∀n < 0,

δgn = 1

f ′(ḡn)
δgn+1 − 1

f ′(ḡn)

[
−L2εa δg2

n + ξg(ḡn + δgn, µn, Rn)
]
, (117)

∀n ∈ Z,

µn = L
−
(

3+ε
2

)
µn+1 − L

−
(

3+ε
2

)
ξµ(ḡn + δgn, µn, Rn) , (118)

∀n ∈ Z,

Rn = L(ḡn−1+δgn−1,µn−1)(Rn−1) + ξR(ḡn−1 + δgn−1, µn−1, Rn−1) , (119)

and iterate, i.e., replace the linear term occurrences of the dynamical variables δg, µ,
R, in terms of the analogous equations for n − 1 or n + 1, and repeat ad nauseam until
one hits a boundary condition. In sum, the true sequence we are seeking will be con-
structed as a fixed point of a map s �→ s′ or rather δs �→ m(δs), which to a sequence
δs = (δgn, µn, Rn)n∈Z associates the new sequence m(δs) = (δg′

n, µ
′
n, R′

n)n∈Z which
is given as follows.

Definition 1. The map on sequences. Leaving the issue of convergence for later, the
defining formulae for the map m are :

δg′
0

def= 0 , (120)

∀n > 0,

δg′
n

def=
∑

0≤p<n

⎛
⎝ ∏

p< j<n

f ′(ḡ j )

⎞
⎠[−L2εa δg2

p + ξg(ḡp + δgp, µp, Rp)
]
,

(121)

∀n < 0,

δg′
n

def= −
∑

n≤p<0

⎛
⎝ ∏

n≤ j≤p

1

f ′(ḡ j )

⎞
⎠[−L2εa δg2

p + ξg(ḡp + δgp, µp, Rp)
]
,

(122)

∀n ∈ Z,

µ′
n

def= −
∑
p≥n

L
−
(

3+ε
2

)
(p−n+1)

ξµ(ḡp + δgp, µp, Rp) , (123)
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and finally

∀n ∈ Z,

R′
n

def=
∑
p<n

L(ḡn−1+δgn−1,µn−1) ◦ L(ḡn−2+δgn−2,µn−2) ◦ · · ·

· · · ◦ L(ḡp+1+δgp+1,µp+1)
(
ξR(ḡp + δgp, µp, Rp)

)
, (124)

where the composition ◦ is of course with respect to the R argument.

We now come to the definition of the space in which the deviation sequences δs will
live. Let us introduce as in [15] the exponent drops δ ∈ [0, 1

6 ] and η ∈ [0, 3
16 ] which

will be fixed later. We will also define for n ∈ Z,

en
def=
{

1 if n ≤ 0 ,
3
2 if n ≥ 1 .

(125)

Now we define the big Banach space of sequences

BBSSK ⊂
∏
n∈Z

(
K × K × BBSK

ḡn

)
(126)

whose elements are all deviation sequences δs = (δgn, µn, Rn)n∈Z for which the qua-
druple norm

||||δs|||| def= sup
n∈Z

(
max

{
|δgn|ḡ−en

n , |µn|ḡ−(2−δ)
n , |||Rn|||ḡn ḡ

−( 11
4 −η)

n

})
(127)

is bounded and such that δg0 = 0. Note that the approximate sequence s̄ itself does not
belong to BBSSK which somewhat plays the role of a tangent space around it. As an
easy consequence of our definitions one has the following proposition.

Proposition 2. The space
(
BBSSK, |||| · ||||

)

is complete.

6. The BMS Estimates on a Single RG Step

The estimates in [15, Sect. 5], slightly modified for the needs of the present construction,
can be summarized by Theorem 1 below. Before stating the theorem one can give a brief
description of the main ideas behind the estimates of [15, Sect. 5]. Given some a priori
hypotheses on the size of the input g, µ, R of the RG map, the goal is to prove estimates
on the output g′, µ′, R′. The size of these variables is typically measured in powers of
the φ4 coupling g. However the latter is a dynamical variable of the problem, and in
order to avoid a vicious circle one uses instead powers of a predetermined approxima-
tion ḡ which we have called the calibrator. The true value of g is allowed to float in
a small complex ball centred on ḡ. In [15, Eq. 5.1] this calibrator is taken equal to the
approximate fixed point value which we denoted here by ḡ∗ and which is of order ε.
Grosso modo the main purpose of [15, Sect. 5] is to show that provided µ is of order
ḡ2, and R is of order ḡ3, then the linear map L(g,µ) is contractive in the R direction, and
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the remainder ξR remains of order ḡ3. In fact, for technical reasons, the exponents are
slightly altered and a more precise statement would be: provided µ is of order ḡ2−δ , and

R is of order ḡ
11
4 −η, then the linear map L(g,µ) is contractive in the R direction, and the

remainder ξR remains of order ḡ
11
4 . Here δ and η are small nonnegative discrepancies.

A nice feature of the estimates [15, Eq. 5.1] is that they allow a bound on the output
ξR which is strictly better than the one on the input R, when η > 0. This is required
in the subsequent dynamical system construction, for an effective use of the splitting
R′ = L(g,µ)(R) + ξR .

Two norms are required to measure the R coordinate. The first is the kernel semi-norm
| · |h∗,A defined in (42). This norm detects the true power g3 of the coupling constant
inside R. On its own this norm does not carry enough information to control the action
of the renormalization group because it only depends on the size of φ derivatives of R at
φ = 0. The renormalization group involves convolution by the Gaussian measure µΓ .
The role of the second norm ‖ · ‖h,Gκ ,A is to control R when it is tested on the large
fields in the tail of µΓ .

A typical polymer amplitude generated by the expansion of [15, Sect. 3.1] (see also
our Sect. 4.4) is of the form φ1 · · ·φke−V (φ), where φ1, . . . , φk refer to the evaluations
of the background field φ at various locations x1, . . . , xk . The latter eventually are inte-
grated over against a kernel K(x1, . . . , xk). Such φi factors usually need to be estimated
pointwise. This requires a two-step argument (see [15, Lemma 5.1]). One bounds the
difference between φi and the average of φ over some polymer using the large field
regulator Gκ which only involves L2 norms of derivatives of φ but not φ itself. Then
the average value of φ is controlled, via Hölder’s inequality, thanks to a fraction of the
e−g

∫
φ4

which is extracted from e−V (φ) by [15, Lemma 5.5]. The cost of the operation

is a large ḡ− 1
4 factor per φi .

Note that by the choice of Q in Sect. 4.3 the action of the renormalization group
keeps K = e−V Q fixed up to a trivial rescaling of the coupling constant g, in the second
order in perturbation theory approximation. This ensures that the RG map contribution
to R is entirely due to third and higher orders of perturbation theory. Now the expansion
in [15, Sect. 3.1] typically produces a collection of vertices g[(φ + ζ )4 − φ4] which
involve at least one fluctuation field ζ . Therefore, in the worst case scenario, the contri-
bution of such a vertex to a || · ||h norm bound is ḡ × (ḡ− 1

4 )3 = ḡ
1
4 . The R activities

which correspond to remainders beyond second order perturbation theory essentially

contain at least three vertices and satisfy a ḡ
3
4 bound. The last considerations impose

the ḡ2 = ḡ
11
4 × ḡ− 3

4 multiplicative shift of the || · ||h norm in the definition of the
calibrated triple norm (45). This in turn affects the number n0 of functional derivatives
to be accounted for in the norms. This number has to be at least equal to 9 for the needs
of [15, Lemma 5.15] which transforms a ||R||h decay into a bound on |R�|h∗, using a
Taylor expansion of the polymer activities in the field variable around φ = 0.

Once the proper definitions for the polymer activity norms have been made available,
the sequence of estimates in [15, Sect. 5] is for the most part reasonably straightforward.
It successively provides bounds for activities such as P of (70) and (SK )� of (73) which
are intermediates on the way to the final RG product R′. Contour integrations are used
for conceptual economy when breaking R′ into pieces to be estimated separately. They
are also used for bounds on the Ẽ , E defined in the extraction step where one would
otherwise need more cumbersome estimates on derivatives of polymer activities with
respect to interpolation parameters.
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The crucial estimates of [15, Sect. 5] are [15, Corollary 5.25] and [15, Lemma 5.27]
which pertain to the linear part of the R → R′ map, here denoted by L(g,µ)(·). There
lies the heart of the renormalization problem in quantum field theory: the action of the
renormalization group has expanding (relevant) directions. In the present context these
are manifested in (97) which contains a sum over Y small satisfying a constraint. Con-
sider for example the case where Y is a single cube. Then the constraint amounts to
summing over all small cubes contained in a fixed cube at the next scale, see the same
phenomenon discussed in [64]. The renormalization group inevitably has expanding
directions because of the L3 factor resulting from this summation. In (97) there are
two sums and one of them refers to Y large. Typically, for rather intuitive geometrical
reasons, the number of cubes in a polymer strictly decreases when it is coarse grained
to become the smallest covering by cubes on the next scale. This geometrical effect
is exploited in [15, Inequality 2.7] followed by a pin and sum argument [17, Lemma
5.1] to prove that these so-called large polymers are harmless: they are not part of the
expanding direction problem. However this purely geometrical effect breaks down in the

case of small polymers (see also [2, Lemma 11]). A compensating good factor L− 7−ε
2

then has to be provided by the scaling behavior of the activity J . The latter corresponds
to the R-linear part of what the perturbation expansion produces, when both terms R�

and counterterms F̃Re−Ṽ are accounted for. The proper scaling bound on J proceeds
by the clever double Taylor expansion argument of [11, Lemma 15] and [15, Corollary
5.25]. Roughly, one expands J in the field variable φ around zero; then one expands
the fields or test functions appearing in the low order functional derivative terms, with
respect to the space variable x . The normalization conditions [15, Eq. 4.37] eliminate
the low order terms in the bigrading given by the degree in φ and the number of spacial

derivatives ∂ . The surviving terms have enough L− 3−ε
4 factors provided by the φ’s and

L−1 factors given by the ∂’s not only to beat the L3 volume sum but also to leave an

extra L− 1−ε
2 which secures the contractivity of L(g,µ)(·) for L large, uniformly in ε.

We may now proceed to the statement of the BMS estimates theorem. Mind the order
of quantifiers which is important.

Theorem 1. ∃κ0 > 0, ∃L0 ∈ N,
∀κ ∈]0, κ0], ∀δ ∈ [0, 1

6 ], ∀η ∈ [0, 3
16 ],

∀Ag ∈]0, 1
2 ], ∀Aµ > 0, ∀AR > 0, ∀Aḡ > 0,

∃c0 > 0, ∀c ∈]0, c0],
∃Bg > 0, ∃BRL > 0,
∀L ∈ N such that L ≥ L0,
∃Bµ > 0, ∃BRξ > 0,
∃ε0 > 0,
∀ε ∈]0, ε0], ∀ḡ ∈]0, Aḡε],
if one uses the notations

Dg
def= {

g ∈ C| |g − ḡ| < Agḡ
}
, (128)

Dµ
def=
{
µ ∈ C| |µ| < Aµḡ2−δ} , (129)

DR
def=
{

R ∈ BBSC| |||R|||ḡ < ARḡ
11
4 −η} ; (130)

then
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1. The maps ξg, ξµ, ξR, are well defined and analytic on the open set Dg × Dµ × DR

with values in C, C, and BBSC respectively.
2. The map (g, µ, R) �→ L(g,µ)(R) is well defined and analytic from Dg × Dµ×BBSC

to BBSC. Besides, for any (g, µ) ∈ Dg × Dµ, the map R �→ L(g,µ)(R) is linear
continuous from BBSC to itself.

3. The maps ξg, ξµ, ξR send the real cross-section

(Dg ∩ R)× (Dµ ∩ R)× (DR ∩ BBSR)

into R, R, and BBSR respectively.
4. The map (g, µ, R) �→ L(g,µ)(R) sends (Dg ∩ R)× (Dµ ∩ R)× BBSR into BBSR.
5. For any (g, µ, R) ∈ Dg × Dµ × DR one has the estimates

|ξg(g, µ, R)| ≤ Bgḡ
11
4 −η , (131)

|ξµ(g, µ, R)| ≤ Bµḡ2 , (132)

|||ξR(g, µ, R)|||ḡ ≤ BRξ ḡ
11
4 . (133)

6. For any (g, µ, R) ∈ Dg × Dµ × BBSC one has the estimate

|||L(g,µ)(R)|||ḡ ≤ BRLL
−
(

1−ε
2

)
|||R|||ḡ . (134)

Remark 6. We suppressed the reference to a calibrator ḡ when mentioning the spaces
BBSK. This is because the corresponding statements do not really depend on the choice
of one of the equivalent norms ||| · |||ḡ . Also note that the notion of analyticity we used
is the standard one in the Banach space context (see for instance [7, Sect. 2.3]). Finally
remember that the c quantity is the one involved in the relation (43).

For the proof of the theorem we refer to [15, Sect. 5]. The statements about the maps
being well defined and analytic will follow from the algebraic nature of the formulae
in Sect. 4, once the estimates are established. The statements about the map taking real
values are obvious from the formulae in Sect. 4. Now for the estimates, one should say
that it is the ḡ ∼ ε special case of Theorem 1 which is proven in [15]. This is because
the analysis takes place in the vicinity of the infrared fixed point where one can assume
that the g coupling is almost constant equal to ḡ∗ = O(ε). In other words, the small ε
parameter is attributed two roles at once: bifurcation parameter and calibrator. However,
by carefully following [15, Sect. 5], one can see that the arguments still apply if one
dissociates the two functions. Therefore all one needs is to go over and redo the series
of Lemmata from [15, Sect. 5], except that one has to replace the hypothesis in Eqs.
(5.1–5.3) of [15] by the new conditions given by the domains Dg , Dµ and DR , namely,

|g − ḡ| < Agḡ , (135)

|µ| < Aµḡ2−δ , (136)

|||R|||ḡ < ARḡ
11
4 −η , (137)

to which one adds
0 < ḡ ≤ Aḡε , (138)
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knowing that in the end ε will be taken to be small, after having fixed L . Then instead
of using powers of ε in the bounds, one has to use powers of the calibrator ḡ instead. In
Lemmata 5.26 and 5.27 of [15], one has to use bounds in terms of the norms ||R||h,Gκ ,A
and |R|h∗,A. Note that for [15, Lemma 5.5], one needs (�g)

1
4 h to be small, which can

be achieved by taking c small provided �g
ḡ is bounded from above. This is guaranteed

by our assumption (135). Rather than [15, Lemma 5.5], the reader might find it more
convenient to use instead specializations of [11, Theorem 1]. The latter needs the ratio
�g
�g to be bounded, which again is guaranteed by (135) and the condition Ag ≤ 1

2 . Note

that the important [15, Eq. 5.58] on the other hand cannot allow (�g)
1
4 h to be too small

either. This is why it seems hard to avoid the fibered norm problem, and we need to
keep g rather close to the calibrator ḡ as in (135). Note that a stronger hypothesis was
used in [15, Eq. 5.1]. However, as far as [15, Sect. 5] alone is concerned, this hypothesis
only serves to show that it reproduces itself, in [15, Corollary 5.18]. We relaxed this
conclusion in Theorem 1, and therefore we can drop this hypothesis.

Remark that in [15, Sect. 5] the exponents δ, η were taken equal to 1
64 . The reader

who prefers this choice, can simply make the corresponding modifications in our Sect.
8. The ranges [0, 1

6 ] for δ and [0, 3
16 ] for ηwhich we have given come from the following

considerations. First note that the hypothesis δ, η > 0 in [15, Sect. 5] is only used in
order to absorb some constant factors in the bounds provided in [15, Theorem 1]. We
do not need this, since we allow the B factors above. Then note that each time in [15,
Sect. 5] one has a bound with a sum of terms with different powers of ε, or rather here ḡ,
one has to pick the dominant term in the δ, η → 0 limit. Collecting the inequalities on
δ, η which ensure that the term picked is indeed dominant, one can see that δ ≤ 1

6 and
η ≤ 3

16 are sufficient for these inequalities to hold. Finally, the modifications introduced
in our Sect. 3 for the functional analytic setting, do not affect the bounds. One may
simply mention that [15, Lemma 5.15] uses the Taylor formula with integral remainder.
Of course one first has to apply it in the textbook setting of the space we denoted by
Cn0
� (Fld(X),K); and only then, one can use the sharp norm for the differentials and the

|| · ||C2(X) norms for the fields when performing the bounds.
Armed with the previous remarks, the precise statement of Theorem 1 to aim for, and

some patience, the reader with expertise on the techniques from [17, 11, 15] will have
no difficulty adapting the arguments of [15, Sect. 5].

7. Elementary Estimates on the Approximate Sequence

This section collects the elementary but crucial estimates on the sequence (ḡn)n∈Z.

7.1. The discrete step function lemma. We firstly need some basic bounds on the
sequence.

Lemma 2. The step function behaviour. 1) For any nonnegative integer n,

ḡ∗
(
1 − (1 − ω0)(1 + ω0 − Lεω0)

n) ≤ ḡn ≤ ḡ∗
(
1 − (1 − ω0)(2 − Lε)n

)
. (139)

2) For any nonpositive integer n,

ḡ∗ω0 Lεn ≤ ḡn ≤ ḡ∗ω0

(
2

Lε +
√

L2ε − 4ω0(Lε − 1)

)−n

. (140)
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Remark 7. This simply says that, for n → +∞, ḡn goes exponentially fast to ḡ∗ and that,
for n → −∞, ḡn goes exponentially fast to 0, with a transition or ‘step’ in between.
These exponential rates are very weak in the ε → 0 limit. We need as precise estimates
on these rates as we can, to be used as input for the following analysis. Indeed, based on
these estimates, we will have to determine the winner between close competing effects,
as one can see in the next subsections. This is why we included this otherwise trivial
lemma.

Proof. On the interval [ḡ0, ḡ∗] we define the two functions f+h and f+l by

f+h(x)
def= f (ḡ∗) + (x − ḡ∗) f ′(ḡ∗) , (141)

f+l(x)
def= f (ḡ0) + (x − ḡ0)× f (ḡ∗)− f (ḡ0)

ḡ∗ − ḡ0
. (142)

Since f is increasing and concave, one has for any x ∈ [ḡ0, ḡ∗],
ḡ0 ≤ f+l(x) ≤ f (x) ≤ f+h(x) ≤ ḡ∗ . (143)

A trivial iteration then implies

∀n ∈ N,∀x ∈ [ḡ0, ḡ∗],
ḡ0 ≤ ( f+l)

n(x) ≤ f n(x) ≤ ( f+h)
n(x) ≤ ḡ∗ .

(144)

Now note that

( f+h)
n(x) = ḡ∗ + (x − ḡ∗)[ f ′(ḡ∗)]n (145)

= ḡ∗ + (x − ḡ∗)(2 − Lε)n . (146)

Likewise

f+l(x) = ḡ∗ + (x − ḡ∗)
(

ḡ∗ − ḡ1

ḡ∗ − ḡ0

)n

. (147)

Let ḡ1 = ω1ḡ∗, for ω1 ∈]0, 1[, then

ḡ1 = f (ḡ0) = ω0 ḡ∗(Lε − L2εaω0 ḡ∗) , (148)

or
ω1 = ω0(L

ε − ω0(L
ε − 1)) = Lεω0 − Lεω2

0 + ω2
0 , (149)

so

ḡ∗ − ḡ1

ḡ∗ − ḡ0
= 1 − ω1

1 − ω0
(150)

= 1 − Lεω0 + Lεω2
0 − ω2

0

1 − ω0
(151)

= (1 − ω0)(1 + ω0)− Lεω0(1 − ω0)

1 − ω0
(152)

= 1 + ω0 − Lεω0 . (153)

Thus,
( f+l)

n(x) = ḡ∗ + (x − ḡ∗)
(
1 + ω0 − Lεω0

)n
. (154)
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Now on the interval [0, ḡ0] we also define, using the inverse f −1, the two functions
f−h and f−l by

f−h(x)
def= x × f −1(ḡ0)

ḡ0
, (155)

f−l(x)
def= x × ( f −1)′(0) . (156)

One has for any x ∈ [0, ḡ0],
0 ≤ f−l(x) ≤ f −1(x) ≤ f−h(x) ≤ ḡ0, (157)

which trivially iterates into

∀n ∈ N,∀x ∈ [0, ḡ0],
0 ≤ ( f−l)

n(x) ≤ ( f −1)n(x) ≤ ( f−h)
n(x) ≤ ḡ0. (158)

Now
( f−l)

n(x) = L−εn x (159)

and

( f−h)
n(x) =

(
ḡ−1

ḡ0

)n

x . (160)

Let ḡ−1 = ω−1ḡ∗ for ω−1 ∈]0, 1[. The latter is the smallest of the two solutions of the
quadratic equation

Lε(ω−1ḡ∗)− L2εa(ω−1ḡ∗)2 = ω0 ḡ∗ , (161)

i.e.,
(Lε − 1)ω2−1 − Lεω−1 + ω0 = 0 ; (162)

therefore

ω−1 = Lε −√
L2ε − 4ω0(Lε − 1)

2(Lε − 1)
. (163)

As a result

( f−h)
n(x) =

(
Lε −√

L2ε − 4ω0(Lε − 1)

2ω0(Lε − 1)

)n

x (164)

=
(

2

Lε +
√

L2ε − 4ω0(Lε − 1)

)n

x . (165)

From the previous considerations, applied to the sequence (ḡn)n∈Z, the lemma follows.
��

This taken care of, we now proceed to the key lemmata for the construction of a
global RG trajectory.

Firstly, the forward ‘integral equation’ (122) for δg, or the deviation of the running
coupling constant with respect to the reference sequence (ḡn)n∈Z, requires an explicit
bound on

Σδg− f (ε, γ, ν)
def= sup

n<0

⎧⎨
⎩

1

ḡγn

∑
n≤p<0

ḡνp
∏

n≤ j≤p

1

f ′(ḡ j )

⎫⎬
⎭ , (166)
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where γ, ν are some nonnegative real exponents.
Secondly, the backward ‘integral equation’ (121) for δg, requires an analogous bound

on

Σδg−b(ε, γ, ν)
def= sup

n>0

⎧⎨
⎩

1

ḡγn

∑
0≤p<n

ḡνp
∏

p< j<n

f ′(ḡ j )

⎫⎬
⎭ . (167)

Thirdly, the forward ‘integral equation’ (123) for µ, or the squared mass, requires a
bound on

Σµ− f (ε, γ, ν)
def= sup

n∈Z

{
1

ḡγn

∑
p≥n

L
−
(

3+ε
2

)
(p−n+1)

ḡνp

}
. (168)

Fourthly, the backward ‘integral equation’ (124) for R, or the irrelevant terms gen-
erated by the RG transformation, requires a bound on

ΣR−b(ε, γ, ν)
def= sup

n∈Z

{
1

ḡγn

∑
p<n

cn−p−1
R ḡνp

}
, (169)

where cR ∈]0, 1[ is an upper bound on the operator norms of the linearized RG maps
L(·,·) in the R direction. We will provide the necessary estimates in reverse order, i.e.,
from simple to more involved.

7.2. The backward bound for R. Assuming the already mentioned hypotheses on L , ε, a,
cR, ω0 we have the following result.

Lemma 3. Provided the exponents γ, µ satisfy ν ≥ γ ≥ 0, the following inequality
holds:

ΣR−b(ε, γ, ν) ≤ Σ̄R−b(ε, γ, ν)
def= ḡν−γ∗

1 − cR
. (170)

Proof. Let n ∈ Z and denote

∆n
def= 1

ḡγn

∑
p<n

cn−p−1
R ḡνp . (171)

Since the sequence (ḡn)n∈Z contained in ]0, ḡ∗[ is increasing, and ν ≥ γ ≥ 0, we
trivially have

∆n ≤ 1

ḡγn

∑
p<n

cn−p−1
R ḡνn (172)

≤ ḡν−γn

1 − cR
(173)

≤ ḡν−γ∗
1 − cR

. (174)

��
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7.3. The forward bound for µ. Again with the assumptions of Sect. 5, we have the
following result.

Lemma 4. Provided the exponents γ, ν satisfy ν ≥ γ ≥ 0, and εν < 3+ε
2 , we have

Σµ− f (ε, γ, ν) ≤ Σ̄µ− f (ε, γ, ν)
def= ḡν−γ∗

L
3+ε

2 − Lεν
. (175)

Proof. Let n ∈ Z and write

∆n
def= 1

ḡγn

∑
p≥n

L
−
(

3+ε
2

)
(p−n+1)

ḡνp (176)

= ḡν−γn

∑
p≥n

L
−
(

3+ε
2

)
(p−n+1)

⎛
⎝ ∏

n< j≤p

ḡ j

ḡ j−1

⎞
⎠
ν

. (177)

Now
ḡ j

ḡ j−1
= f (ḡ j−1)− f (0)

ḡ j−1 − 0
= f ′(ξ) > 0 (178)

for some ξ ∈]0, ḡ j−1[. Since f is concave f ′(ξ) ≤ f ′(0) = Lε , and therefore

∆n ≤ ḡν−γn

∑
p≥n

L
−
(

3+ε
2

)
(p−n+1)

Lεν(p−n) (179)

≤ ḡν−γn L
−
(

3+ε
2

)
× 1

1 − L
εν−

(
3+ε

2

) . (180)

Since ν − γ ≥ 0, ḡν−γn ≤ ḡν−γ∗ , and we are done. ��

7.4. The backward bound for δg. Again with the assumptions of Sect. 5, we have the
following result.

Lemma 5. For any γ, ν ≥ 0 we have

Σδg−b(ε, γ, ν) ≤ Σ̄δg−b(ε, γ, ν), (181)

where

Σ̄δg−b(ε, γ, ν)
def= ω

−γ
0 ḡν−γ∗
Lε − 1

exp

[
2(1 − ω0)(1 + ω0 − Lεω0)

ω0(2 − Lε)

]
. (182)

Proof. Let n be a strictly positive integer, and denote

∆n
def= 1

ḡγn

∑
0≤p<n

ḡνp
∏

p< j<n

f ′(ḡ j ) . (183)

Lemma 2 shows that ḡn → ḡ∗ when n → +∞. We therefore expect most of the f ′(ḡ j )

to be very close to f ′(ḡ∗) = 2 − Lε . This motivates the rewriting

∆n = 1

ḡγn

∑
0≤p<n

⎧⎨
⎩
∏

p< j<n

f ′(ḡ j )

2 − Lε

⎫⎬
⎭ (2 − Lε)n−p−1ḡνp . (184)



A Complete Renormalization Group Trajectory 759

Since f ′ is decreasing, for any j ≥ 1,

f ′(ḡ j )

2 − Lε
= Lε − 2L2εaḡ j

2 − Lε
> 1 , (185)

and thus

∏
p< j<n

f ′(ḡ j )

2 − Lε
≤
∏
j≥1

Lε − 2L2εaḡ j

2 − Lε
(186)

≤ exp

⎡
⎣∑

j≥1

(
Lε − 2L2εaḡ j

2 − Lε
− 1

)⎤
⎦ . (187)

Now
Lε − 2L2εaḡ j

2 − Lε
− 1 = 2L2εa

2 − Lε
× (ḡ∗ − ḡ j ) (188)

and Lemma 2 implies

ḡ j ≥ ḡ∗ − ḡ∗(1 − ω0)(1 + ω0 − Lεω0)
j , (189)

i.e.,
Lε − 2L2ε ḡ j

2 − Lε
− 1 ≤ 2L2εa

2 − Lε
× ḡ∗(1 − ω0)(1 + ω0 − Lεω0)

j , (190)

where 1 + ω0 − Lεω0 belongs to ]0, 1[. Hence

∏
p< j<n

f ′(ḡ j )

2 − Lε
≤ exp

[
2L2εaḡ∗(1 − ω0)

2 − Lε
× (1 + ω0 − Lεω0)

1 − (1 + ω0 − Lεω0)

]
(191)

≤ exp

[
2(1 − ω0)(1 + ω0 − Lεω0)

ω0(2 − Lε)

]
. (192)

So we are left with bounding

∆′
n

def= 1

ḡγn

∑
0≤p<n

(2 − Lε)n−p−1ḡνp . (193)

To this effect we use the very coarse estimates ḡn ≥ ḡ0 = ω0 ḡ∗ and ḡp ≤ ḡ∗ with the
result that

∆′
n ≤ (ω0 ḡ∗)−γ

∑
0≤p<n

(2 − Lε)n−p−1ḡν∗ (194)

≤ ω
−γ
0 ḡν−γ∗ × 1

1 − (2 − Lε)
. (195)

Inequalities (192) and (195) now imply

∆n ≤ ω
−γ
0 ḡν−γ∗
Lε − 1

exp

[
2(1 − ω0)(1 + ω0 − Lεω0)

ω0(2 − Lε)

]
. (196)

��
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7.5. The forward bound for δg. Once more, with the assumptions of Sect. 5, we have
the following result.

Lemma 6. For any exponents γ, ν such that 0 ≤ γ ≤ 1, ν > 0 and

Υ
def= 2L

ε
ν

Lε +
√

L2ε − 4ω0(Lε − 1)
∈]0, 1[ , (197)

we have
Σδg− f (ε, γ, ν) ≤ Σ̄δg− f (ε, γ, ν), (198)

where

Σ̄δg− f (ε, γ, ν)
def= (ω0 ḡ∗)ν−γ

1 − Υ ν
× exp

⎡
⎣ω0

(
2 − Lε +

√
L2ε − 4ω0(Lε − 1)

)

(1 − ω0) (Lε − 2ω0(Lε − 1))

⎤
⎦ .

(199)

Proof. Let n be a strictly negative integer, and define

∆n
def= 1

ḡγn

∑
n≤p<0

ḡνp
∏

n≤ j≤p

1

f ′(ḡ j )
. (200)

Lemma 2 shows that ḡn → 0 when n → −∞. We therefore expect most of the f ′(ḡ j )

to be very close to f ′(0) = Lε . Therefore write

∆n = 1

ḡγn

∑
n≤p<0

⎛
⎝ ∏

n≤ j≤p

Lε

f ′(ḡ j )

⎞
⎠(L−ε)p−n+1

ḡνp . (201)

Now
Lε

f ′(ḡ j )
= 1

1 − 2Lεaḡ j
> 1 . (202)

We use

∏
n≤ j≤p

Lε

f ′(ḡ j )
≤
∏

j≤−1

1

1 − 2Lεaḡ j
(203)

≤ exp

⎡
⎣∑

j≤−1

(
1

1 − 2Lεaḡ j
− 1

)⎤
⎦ (204)

≤ exp

⎡
⎣∑

j≤−1

2Lεaḡ j

1 − 2Lεaḡ j

⎤
⎦ . (205)

Now for j ≤ −1, ḡ j ≤ ḡ0 = ω0 ḡ∗; hence

2Lεaḡ j

1 − 2Lεaḡ j
≤ 2Lεaḡ j

1 − 2Lεaḡ0
= 2L2εaḡ j

Lε − 2ω0(Lε − 1)
, (206)
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and by Lemma 2

2Lεaḡ j

1 − 2Lεaḡ j
≤ 2L2εaω0 ḡ∗

Lε − 2ω0(Lε − 1)

(
2

Lε +
√

L2ε − 4ω0(Lε − 1)

)− j

. (207)

As a result

∏
n≤ j≤p

Lε

f ′(ḡ j )

≤ exp

⎡
⎢⎢⎣ 2ω0(Lε − 1)

Lε − 2ω0(Lε − 1)
×

(
2

Lε+
√

L2ε−4ω0(Lε−1)

)

1 −
(

2
Lε+

√
L2ε−4ω0(Lε−1)

)
⎤
⎥⎥⎦ . (208)

Note that

0 <
2

Lε +
√

L2ε − 4ω0(Lε − 1)
< 1 , (209)

because of the global assumptions 1 < Lε < 2 and 0 < ω0 < 1. A straightforward
simplification of the argument of the exponential leads to

∏
n≤ j≤p

Lε

f ′(ḡ j )
≤ exp

⎡
⎣ω0

(
2 − Lε +

√
L2ε − 4ω0(Lε − 1)

)

(1 − ω0) (Lε − 2ω0(Lε − 1))

⎤
⎦ . (210)

Now we are left with bounding

∆′
n

def= 1

ḡγn

∑
n≤p<0

(
L−ε)p−n+1

ḡνp . (211)

We now use Lemma 2 to obtain

∆′
n ≤ (ω0 ḡ∗)−γ L−γ εn

×
∑

n≤p<0

(
L−ε)p−n+1

(ω0 ḡ∗)ν
(

2

Lε +
√

L2ε − 4ω0(Lε − 1)

)−νp

,
(212)

i.e.,

∆′
n ≤ (ω0 ḡ∗)ν−γ Lε(γ−1)|n| × L−ε × Υ ν

1 − Υ ν
, (213)

where Υ is the one defined in the statement of the lemma. We now need a bound which
is n-independent; this requires the hypothesis γ ≤ 1. Inequalities (210) and (213) now
clearly imply

∀n ≤ −1, ∆n ≤ Σ̄δg− f (ε, γ, ν) , (214)

and the lemma is proved. ��



762 A. Abdesselam

7.6. The ε → 0 limit. Leaving L , cR, ω0 and the exponents γ, ν fixed, we now analyze
the ε → 0 asymptotics of the previous bounds. Note that in this limit we will have
a = a(L , ε) → log L

18π2 . The crux of our construction lies in the following result.

Lemma 7. For ε → 0+ we have
1)

Σ̄R−b(ε, γ, ν) = εν−γ (K R−b + O(ε)) , (215)

where

K R−b = 1

1 − cR

(
18π2

)ν−γ
, (216)

provided ν ≥ γ ≥ 0;
2)

Σ̄µ− f (ε, γ, ν) = εν−γ
(
Kµ− f + O(ε)) , (217)

where

Kµ− f = 1

L
3
2 − 1

(
18π2

)ν−γ
, (218)

provided ν ≥ γ ≥ 0;
3)

Σ̄δg−b(ε, γ, ν) = εν−γ−1 (Kδg−b + O(ε)) , (219)

where

Kδg−b =
(
18π2

)ν−γ
ω
γ
0 (log L)

exp

[
2(1 − ω0)

ω0

]
, (220)

provided ν ≥ 0 and γ ≥ 0;
4)

Σ̄δg− f (ε, 1, ν) = εν−2 (Kδg− f + O(ε)) , (221)

where

Kδg− f = ων−1
0

(
18π2

)ν−1

(log L) [ν(1 − ω0)− 1]
exp

[
2ω0

1 − ω0

]
, (222)

provided ν > 1
1−ω0

.

Proof. Straightforward first year calculus; the only delicate point is in checking condi-
tion (197). Simply note the asymptotics

Υ = 1 −
(

1 − ω0 − 1

ν

)
ε log L + o(ε) , (223)

in order to check that Lemma 6 applies, with the above hypothesis on ν. ��
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8. Fixed Point in the Space of Sequences

We start by applying Theorem 1. So we choose some κ0 > 0 and L0 ∈ N whose
existence is guaranteed by the theorem. We set κ = κ0, and we take

Ag = 1

2
, (224)

Aµ = 1 , (225)

AR = 1 , (226)

Aḡ = 19π2 , (227)

δ = 1

6
, (228)

η = 3

16
. (229)

Now take c to be equal to a c0 provided by the theorem, which also produces some Bg
and BRL only depending on the quantities which have been fixed so far. Now choose
L ≥ L0 large enough so that

BRLL− 1
4 ≤ 1

3
. (230)

This will guarantee that for any ε ∈]0, 1
2 ],

BRLL
−
(

1−ε
2

)
≤ 1

3
. (231)

Now the theorem provides us with Bµ, BRξ , and ε0. We will choose some ε1 such that
0 < ε1 < min( 1

2 , ε0), and such that for all ε ∈]0, ε1] one has ḡ∗
ε
< Aḡ . This is possible

thanks to (21) and (227).
We now have the following specialization of Theorem 1.

Proposition 3. There exists an ε2 ∈]0, ε1] such that for any ε ∈]0, ε2], and for any
calibrator ḡ ∈]0, ḡ∗[, the conclusions (1)–(6) of Theorem 1 are valid with the inequality
in (134) replaced by

|||L(g,µ)(R)||| f (ḡ) ≤ 1

2
|||R|||ḡ . (232)

The proof is an immediate corollary of the following lemma.

Lemma 8. Provided

max
(

L2ε, (2 − Lε)−
1
4

)
≤ 3

2
, (233)

which will hold true when ε → 0, one has for any ḡ ∈]0, ḡ∗[, and any R ∈ BBSK,

|||R||| f (ḡ) ≤ 3

2
|||R|||ḡ . (234)

Proof. Let ḡ′ = f (ḡ). Since ḡ′ > ḡ, and from the definition of the triple norms it is
immediate that for any R one has

|||R|||ḡ′ ≤ max

[(
ḡ′

ḡ

)2

,

(
ḡ′

ḡ

) 7
4

, . . . , 1,

(
ḡ′

ḡ

)− 1
4
]

× |||R|||ḡ . (235)
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However, by the mean value theorem,

ḡ′

ḡ
= f (ḡ)− f (0)

ḡ − 0
= f ′(ς) (236)

for some ς ∈]0, ḡ∗[. As a result

2 − Lε <
ḡ′

ḡ
< Lε , (237)

and the lemma follows. ��
Now givenω0 ∈]0, 1

2 [, we construct the sequence (ḡn)n∈Z as in Sect. 5, as well as the
associated spaces (BBSSK, |||| · ||||). Given an element δs ∈ BBSSK, and a positive
number β we use the notation BK(δs, β) for the open ball of radius β around δs in
BBSSK. We also use B̄K(δs, β) for the analogous closed ball. We can now state our
main theorem.

Theorem 2. The Main Theorem.
∃β0, ∀β ∈]0, β0],
∃ε3 > 0, ∀ε ∈]0, ε3],
one has

1. The BBSSC valued map m from Sect. 5 is well defined and analytic on BC(0, β).
2. The image by m of BC(0, β) is contained in B̄C(0,

β
6 ).

3. The restriction of m to the closed ball B̄R(0,
β
6 ) is a contraction from that ball to

itself.
4. There exists a unique fixed point for the map m inside the ball B̄R(0,

β
6 ).

Proof. Let β > 0 be such that the condition β ≤ 1
2 = Ag is realized. Then by construc-

tion, for any n ∈ Z, ḡn ∈]0, Aḡε[. Therefore, as a consequence of Proposition 3, for
any

δs = (δgn, µn, Rn)n∈Z ∈ BC(0, β) ,

all the summands in (121), (122), (123), and (124) are well defined and analytic with
respect to δs. The analyticity property required in statement (1) will therefore follow
from the uniform absolute convergence of the series. The latter will in turn result from the
estimates, required for the statement (2), which we now proceed to establish. Using the
notations of Definition 1, we assume that δs is in BC(0, β), and we apply the estimates
of Sect. 7, in order to obtain the following results.
The backward δg bound . Let n > 0, then

1

β
|δg′

n|ḡ− 3
2

n ≤ 1

β ḡ
3
2
n

∑
0≤p<n

⎛
⎝ ∏

p< j<n

f ′(ḡ j )

⎞
⎠

×
[

L2εa(L , ε)|δgp|2 + |ξg(ḡp + δgp, µp, Rp)|
]

≤ 1

β ḡ
3
2
n

∑
0≤p<n

⎛
⎝ ∏

p< j<n

f ′(ḡ j )

⎞
⎠
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×
[

L2εa(L , ε)β2 ḡ3
p + Bgḡ

(
11
4 − 3

16

)
p

]
(238)

≤ βL2εa(L , ε)Σ̄δg−b

(
ε,

3

2
, 3

)
+

1

β
BgΣ̄δg−b

(
ε,

3

2
,

11

4
− 3

16

)
.

(239)

Now by part 3) of Lemma 7 and for any fixed β, the last upper bound goes to zero when
ε → 0. Therefore, by choosing ε small enough, one will have

∀n > 0 ,
1

β
|δg′

n|ḡ− 3
2

n ≤ 1

6
. (240)

The forward δg bound . Let n > 0, then in the same vein one will have

1

β
|δg′

n|ḡ−1
n ≤ βL2εa(L , ε)Σ̄δg− f (ε, 1, 2) +

1

β
BgΣ̄δg−b

(
ε, 1,

11

4
− 3

16

)
. (241)

Now here comes the narrowest passage in the proof. Provided that ω0 ∈]0, 1
2 [, the

limiting case of part 4) in Lemma 7 shows that

L2εa(L , ε)Σ̄δg− f (ε, 1, 2) → ω0

1 − 2ω0
exp

[
2ω0

1 − ω0

]
(242)

when ε → 0. Therefore we need to take

β <
1 − 2ω0

6ω0
exp

[
− 2ω0

1 − ω0

]
. (243)

Then after β is fixed accordingly, the first term in (241) will be strictly less than 1
6 in the

ε → 0 limit while the second term will go to zero, again by 4) of Lemma 7. We will
then have

∀n < 0 ,
1

β
|δg′

n|ḡ−1
n ≤ 1

6
. (244)

The forward µ bound . Let n ∈ Z, then by the same reasoning one will have

1

β
|µ′

n|ḡ−(2− 1
6 )

n ≤ 1

β
BµΣ̄µ− f

(
ε, 2 − 1

6
, 2

)
, (245)

which will go to zero when ε → 0, as results from case 2) of Lemma 7. We will then
have

∀n ∈ Z ,
1

β
|µ′

n|ḡ−(2− 1
6 )

n ≤ 1

6
. (246)



766 A. Abdesselam

The backward R bound . Let n ∈ Z, then proceed in the same manner except that the
varying norms require a little care. We have

1

β
|||R′

n|||ḡn × ḡ
−
(

11
4 − 3

16

)
n

≤ 1

β ḡ

(
11
4 − 3

16

)
n

×
∑
p<n

|||L(ḡn−1+δgn−1,µn−1) ◦ L(ḡn−2+δgn−2,µn−2) ◦ · · · (247)

· · · ◦ L(ḡp+1+δgp+1,µp+1)
(
ξR(ḡp + δgp, µp, Rp)

) |||ḡn

≤ 1

β ḡ

(
11
4 − 3

16

)
n

×
∑
p<n

(
1

2

)n−p−1

× 3

2
× BRξ × ḡ

11
4

p , (248)

where we repeatedly used the inequality (232), as well as (234), and the ξR estimate in
item (5) of Theorem 1. In sum one has

1

β
|||R′

n|||ḡn × ḡ
−
(

11
4 − 3

16

)
n ≤ 3BRξ

2β
× Σ̄R−b

(
ε,

11

4
− 3

16
,

11

4

)
, (249)

and this goes to zero when ε → 0, as shown in part 1) of Lemma 7, with cR = 1
2 .

At this point, statements (1) and (2) of the theorem are proved.
The contraction property . Let δs1 
= δs2 be two elements of the open ball BC(0,

β
6 ).

Let

r = 2β

3||||δs1 − δs2|||| . (250)

Then

||||δs1 − δs2|||| ≤ ||||δs1|||| + ||||δs2|||| ≤ β

3
(251)

implies that r ≥ 2. Therefore, if one defines the contour γ as the counterclockwise
oriented circle or radius r around the origin in the complex plane; one has by the Cauchy
theorem

m(δs1)− m(δs2) = 1

2π i

∮

γ

dz

(
1

z − 1
− 1

z

)
m (δs2 + z(δs1 − δs2)) . (252)

Now for z ∈ γ we have

||||δs2 + z(δs1 − δs2)|||| ≤ ||||δs2|||| + r ||||δs1 − δs2|||| (253)

≤ β

6
+

2β

3
(254)

< β . (255)

As a result of the already established statement (2), one has

||||m(δs1)− m(δs2)|||| ≤ 1

r − 1
× max

0≤θ≤2π
||||m(δs2 + reiθ (δs1 − δs2))||||

(256)

≤ β

6(r − 1)
(257)

≤ β

3r
(258)
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because r ≥ 2. Inserting the definition of r shows that

||||m(δs1)− m(δs2)|||| ≤ 1

2
× ||||δs1 − δs2|||| , (259)

i.e., the contraction property.
The real ball stability follows from statements (3) and (4) in Theorem 1/Proposition

3 and Definition 1. Now statement (3) is proved, and (4) follows from the Banach fixed
point theorem. This concludes the proof of the main theorem. ��
Corollary 1. The constructed two-sided trajectory (gn, µn, Rn)n∈Z is the unique such
sequence inside the ball B̄R(0,

β
6 ) of BBSSR which solves the recursion (113). One has

lim
n→−∞(gn, µn, Rn) = (0, 0, 0) , (260)

the trivial Gaussian ultraviolet fixed point, and

lim
n→+∞(gn, µn, Rn) = (g∗, µ∗, R∗) , (261)

the BMS nontrivial infrared fixed point [15].

Proof. The proof of the first statement is easy and left to the reader. Note that the state-
ments concerning the limits for Rn are topological and do not depend on a particular
choice of a calibrated norm ||| · |||ḡ . The last statement follows from the possibility
of making β as small as we want, provided ε is small enough. Indeed, because of the
choice of exponent 3

2 in (125) at the positive end for n, the convergence of ḡn to ḡ∗ when
n → +∞ will ensure that for large positive values of n, (gn, µn, Rn) will fall within
the small domain around the approximate IR fixed point where the stable manifold has
been constructed, and where the convergence of all one-sided sequences which remain
bounded in the future, towards the IR fixed point, has been been established [15, Sect.
6]. ��

9. Suggestions for Future Work

The following is a list of problems which are natural continuations of the present work.
1) The continuous connecting orbit between the two fixed points should be the graph
of a function g �→ (µ(g), R(g)) with g in the range 0 < g < g∗. In principle, when
considering one of the sequences (gn, µn, Rn)n∈Z we constructed as a function of g0
only, this map should correspond to the one giving µ0 and R0 in terms of g0 (which
is here provided in the range 0 < g < ḡ∗

2 ). One could even say that it is also the map
giving µn and Rn in terms of gn , for any n, provided one could do the proper inversions.
Although we did not yet explore this, it seems likely that by a more refined analysis,
one can construct the full invariant curve connecting the two fixed points. This would
open the door to the investigation, in a constructive setting, of the old ‘reparametriza-
tion’ renormalization group [72, 41]. This has so far remained inaccessible in Bosonic
constructive field theory. In contrast, a continuous RG for Fermions has been developed
through work initiated in [65] and completed in [27].
2) If one could answer the first question, then the immediate one that follows is: what
would be the regularity of this curve? It seems reasonable to conjecture real analyticity
in the range 0 < g < g∗. An interesting question in this regard raised by K. Gawȩdzki,
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concerns the C∞ behavior, or not, of this curve at g = 0+. A similar question was
mentioned in [39], related to a possible explanation of the breakdown of the traditional
perturbative argument ruling out nonrenormalizable theories as consistent [63, 73, 61].
To gain insight on this issue, consider the following simplified flow which mimics the
behavior of the RG map considered here:

{
dg
dt = αg − βg2 ,
dµ
dt = γµ− δg2 .

If one eliminates the time variable then the connecting orbit can be expressed exactly in
terms of an incomplete beta function, which admits a convergent hypergeometric series
representation near g = 0. If one rescales g writing s = βg

α
and letting ν = γ

α
, then the

smoothness of the orbit at 0+ is reduced to that of the function

s �→ sν
π(ν − 1)

sin[π(ν − 1)] +
s2

ν − 2
× 2 F1

[
1 − ν , 2 − ν

3 − ν
; s

]

at s = 0, when ν is not an integer. In this case C∞ behavior is ruled out. In our setting
ν is roughly given by

L

(
3+ε

2

)
− 1

Lε − 1
,

which is very large.
3) The RG map considered in [15] and also here is in the so-called ‘formal infinite
volume limit’. With more work one can probably perform the true scaling limit of the
theory, using an appropriate bare ansatz as in [39] for instance. One should also try to
develop a streamlined rigorous RG framework for the handling of correlation functions,
including those of more general observables, like composite operators. An important
step in this direction was taken in [14]. One should then prove or disprove the existence
of anomalous scaling dimensions not only for the field φ(x), but also for composite
operators. In the hierarchical model there is no anomalous dimension for the field φ(x)
as shown in [37]. A similar result for the full model was recently obtained [57, 58],
together with a preliminary perturbative calculation which supports the hypothesis of
a nonzero anomalous dimension of order ε for the composite field φ(x)2. Justifying
this last statement by a rigorous nonperturbative proof, however is a tantalizing open
problem. Finally if one can go as far, the investigation by analytical means of Wilson’s
operator product expansion would make a nice crowning achievement.
4) Orthogonal to the RG approach by Brydges and collaborators, where one tries to know
as little as possible about the irrelevant terms R, there is also the phase space expansion
method [42] which has become the trademark of the French school of constructive field
theory [32, 33, 64] (see also [5]). In this other approach one, on the contrary, tries to
know as much as possible about the explicit structure of these terms [2]. We therefore
hope to have the future opportunity of investigating the same model as considered here,
with this alternative approach. The lessons learnt with the methods of Brydges and col-
laborators will be useful in this regard. For instance, in [2] the hypothesis of large L
was not used and polymers were allowed which have large gaps in the vertical direction.
Albeit esthetically pleasing, these features lead to additional technical difficulties which
drive one away from maximal simplicity. The use of strictly short ranged fluctuation
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covariances introduced in [59], exploited in [15] as well as the present article, and sys-
tematically developed in [13, 16], should allow major simplifications in the multiscale
phase space expansions framework.
5) Important new methods for dealing with φ4-type lattice models, based on Witten
Laplacian techniques, have been developed recently [45, 69, 4]. It would be desirable
to extend their reach to the case of critical theories. Although one should bear in mind
that according to RG wisdom, rather than the weakly convex case (no φ2 in the bare
potential), it is the double well case (properly adjusted strictly negative φ2 coupling)
which should entail a power law behaviour of correlations. The result in the present
article adds a new confirmation to this picture. Indeed, our trajectory which lies on the
critical manifold essentially has µ = O(g2−δ). Undoing the Wick ordering, this means
that the φ2 coupling is µ− 6C(0)g < 0.
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