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Abstract: For a large class of finite-range quantum spin models with half-integer spins,
we prove that uniqueness of the ground state implies the existence of a low-lying
excited state. For systems of linear size L , with arbitrary finite dimension, we obtain an
upper bound on the excitation energy (i.e., the gap above the ground state) of the form
(C log L)/L . This result can be regarded as a multi-dimensional Lieb-Schultz-Mattis
theorem [14] and provides a rigorous proof of the main result in [8].

1. Introduction and Main Result

1.1. Introduction. Ground state properties of Heisenberg-type antiferromagnets on a
variety of lattices are of great interest in condensed matter physics and material sci-
ence. Antiferromagnetic Heisenberg models are directly relevant for the low-temperature
behavior of many materials, most notably the cuprates that exhibit high-Tc supercon-
ductivity [16].

There are several general types of ground states that are known, or expected, to occur
in specific models: a disordered ground state or spin liquid, critical correlations (power
law decay), dimerization (spin-Peierls states), columnar phases, incommensurate phases,
and Néel order. More exotic phenomena such as chiral symmetry breaking have also
been considered [21, 22].

Which behavior occurs in a given model depends on the lattice, in particular the
dimension and whether or not the lattice is bipartite, on the type of spin (integer versus
half-integer) and, of course, also on the interactions. In this paper we are considering a
class of half-integral spin models (or models where the magnitude of at least some of the
spins is half-integral). Our aim is to prove a generalization of the Lieb-Schultz-Mattis
Theorem [14]. Such a generalization was presented by Hastings in [8] and a substantial
part of our proof is based on his work. Our main contribution is to provide what we hope
is a more transparent argument which in addition is mathematically rigorous.
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The well known theorem by Lieb and Mattis [13] implies, among other things, that
the ground state of the Heisenberg antiferromagnet on a bipartite lattice with isomorphic
sublattices, is non-degenerate. For one-dimensional and quasi-one-dimensional systems
of even length and with half-integral spin Affleck and Lieb [1], generalizing the original
result by Lieb, Schultz, and Mattis [14], proved that the gap in the spectrum above the
ground state is bounded above by constant/L . A vanishing gap can be expected to lead
to a gapless continuous spectrum above the ground state in the thermodynamic limit.
Such an excitation spectrum is generically associated with power-law (as opposed to
exponential) decay of correlations. Aizenman and Nachtergaele proved for the spin-1/2
antiferromagnetic chain that if translation invariance is not broken (in particular, when
the ground state is unique), the spin-spin correlation function can decay no faster than
1/r3 [3]. In other words, uniqueness of the ground state implies slow (power-law) decay
of correlations. Recently, it was proved rigorously that a non-vanishing spectral gap
implies exponential decay of correlations [9, 20]. Therefore, non-exponential decay of
correlations implies the absence of a gap. In particular, the result by Aizenman and Nach-
tergaele implies the absence of a gap in the infinite spin-1/2 antiferromagnetic chain if
the translation invariance is not broken, e.g., if the ground state is unique. This result can
be generalized to an interesting class of antiferromagnetic chains of half-integer spins
[17]. The Lieb-Schultz-Mattis Theorem has also been extended to fermion systems on
the lattice [24, 25]. All these results are for one-dimensional systems. The bulk of the
applications of the spin-1/2 Heisenberg antiferromagnet is in two-dimensional physics
and therefore, the rigorous proof we provide here, based in part on ideas of Hastings [8],
should be of considerable interest as it is applicable to higher-dimensional models.

The most common argument employed to bound a spectral gap from above uses the
variational principle. Often, the variational state is a perturbation of the ground state.
The proofs in [14] and [1] are of this kind. However, since the ground state is not known,
and no assumptions are made about it except for its uniqueness, these proofs are not a
variational calculation in the usual sense. The variational states are defined by acting
with suitable local operators A on the (unknown) ground state.

For a finite volume Hamiltonian HL generated by a potentialΦ of the type we consider
(see the paragraph including (1.7) and (1.8) in Sect. 1.2 for the relevant definitions), and
with a unique ground state, it is straightforward to show that the gap above the ground
state, γL , is bounded uniformly in L . To see this, note that for any ground state vectorΩ
and for any site x , there exists a unitary on the state space of x with vanishing expectation
in the state Ω , i.e., UΩ ⊥ Ω . Since Ω is the unique ground state by assumption, UΩ
is a variational state for the gap. Therefore, we have the bound

γL ≤ 〈Ω, [HL ,U ]Ω〉 ≤ 2 inf
x

∑

X�x

‖Φ(X)‖ ≤ 2|||Φ|||1 , (1.1)

which is uniform in the system size L . Here, |||Φ|||1 is as defined in (1.13). See Sect. 5.5
for the proof that such a unitary exists.

In order to obtain a better bound on the energy of the first excited state one has
to exploit the few properties assumed of the ground state, such as its uniqueness and
symmetries. Furthermore, one must show that any proposed variational state has a suffi-
ciently large component in the orthogonal complement of the ground state. In Sect. 2.2,
we propose a variational state for finite systems of size L and then demonstrate the
relevant estimates, as mentioned above, in Sects. 3 and 4. It is interesting to note that
the energy estimate we obtain will itself contain the spectral gap of the finite system in
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such a way that assuming a large gap leads to an upper bound less than the assumed gap.
From this contradiction one can conclude an upper bound on the finite-volume gaps.

Our results apply to a rather general class of models, which we will define pre-
cisely in the next section. The application of our general result to spin-1/2 Hamiltonians
with translation invariant (or periodic) isotropic finite-range spin-spin interactions on a
d-dimensional lattice is easy to state. First, let ΛL = [1, L] × VL with L even and with
periodic boundary conditions in the 1-direction, i.e., in the direction that is of even size. It
will be important that the number of spins in VL , |VL |, is odd, and satisfies |VL | ≤ cLd−1,
for some d ≥ 1 and a suitable constant c. Assuming that the model defined on ΛL has
a unique ground state, we prove that the spectral gap γL satisfies the bound

γL ≤ C
log L

L
, (1.2)

where C depends on d and the specifics of the interaction, but not on L .
Because of the presence of the factor log L , the bound (1.2) applied to one-

dimensional models does not fully recover the original Lieb-Schultz-Mattis Theorem in
[14] or the bound proved by Affleck and Lieb in [1]. This indicates that in general our
bound is not optimal. Our proof uses in an essential way Lieb-Robinson bounds [9, 15,
20], as does Hastings’ argument in [8], and the appearance of the factor log L seems to
be an inevitable consequence of this. In fact, it is known that the standard Heisenberg
antiferromagnets with spin ≥ 1 on the two-dimensional square lattice or with spin ≥ 1/2
on Z

d with d ≥ 3, have Néel ordered ground states [5, 10] and in that case one can show
that the gap is bounded by C/L (see, e.g., [11, 12]).

1.2. Setup and main result. The arguments we develop below can be applied to a rather
general class of quantum spin Hamiltonians defined on a large variety of lattices. We
believe it is useful to present them in a suitably general framework which applies to
many interesting models. Attempting to be as general as possible, however, would lead
us into a morass of impenetrable notation. Therefore, we have limited the discussion of
further generalizations to some brief comments in Sect. 1.5.

We assume that the Hamiltonians describe interactions between spins that are situated
at the points of some underlying set Λ. For simplicity, one may think of Λ = Z

d , but
we need only assume that the set Λ has one direction of translational invariance, which
we will refer to as the 1-direction. We assume that there is an increasing sequence of
sets {ΛL}∞L=1 which exhaustΛ of the formΛL = [1, L]× VL , where |VL | ≤ cLd−1 for
some d ≥ 1. Here each x ∈ ΛL can be written as x = (n, v), where n ∈ {1, 2, . . . , L}
and v ∈ VL , and we will denote by (n, VL) the set of all x ∈ ΛL of the form x = (n, v)
for some v ∈ VL .

Estimates on the decay of correlations in the ground state and Lieb-Robinson bounds
on the dynamics will play an important role in the proof of the main result. Both are
expressed in terms of a distance function on Λ, which we will denote by d. Often, Λ
has the structure of a connected graph and d(x, y) is the minimum number of edges in
a path from x to y. In any case, we will assume that d is a metric and furthermore that
there is a function F : [0,∞) → (0,∞) satisfying the following two conditions.
Condition F1: F is uniformly integrable over Λ in the sense that

‖ F ‖ := sup
x∈Λ

∑

y∈Λ
F(d(x, y)) < ∞. (1.3)
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Condition F2: F satisfies

C(F) := sup
x,y∈Λ

∑

z∈Λ

F (d(x, z)) F (d(z, y))

F (d(x, y))
< ∞, (1.4)

which means that the “convolution” of F with itself is bounded by a multiple of itself.
F1 and F2 are restricitve conditions only when Λ is infinite, however, for finite Λ,

the constants ‖F‖ and C(F) will be useful in our estimates. It is also important to note
that for any given set Λ and function F that satisfies F1 and F2 above, we can define a
one-parameter family of functions, Fλ, λ ≥ 0, by

Fλ(x) := e−λx F(x), (1.5)

and easily verify that F1 and F2 hold for Fλ, with ‖Fλ‖ ≤ ‖F‖ and Cλ(F) ≤ C(F).
As a concrete example, take Λ = Z

d and d(x, y) = |x − y|. In this case, one may
take the function F(x) = (1 + x)−d−ε for any ε > 0. Clearly, (1.3) is satisfied, and a
short calculation demonstrates that (1.4) holds with

C(F) ≤ 2d+ε+1
∑

n∈Zd

1

(1 + |n|)d+ε . (1.6)

Each x ∈ Λ is assigned a finite-dimensional Hilbert space Hx . For any finite subset
X ⊂ Λ, the Hilbert space associated with X is the tensor product HX = ⊗

x∈X Hx , and
the set of corresponding observables supported in X is denoted by AX = B(HX ), the
bounded linear operators over HX . These local observables form an algebra, and with
the natural embedding of AX1 in AX2 for any X1 ⊂ X2, one can define the C∗-algebra of
all observables, A, as the norm completion of the union of all local observable algebras
AX for finite X ⊂ Λ. Since we have assumed that ΛL is of the form [l, r ] × VL with
r − l = L − 1, we can define translation automorphisms τn , for n ∈ Z, which map
A(m,VL ) into A(n+m,VL ) for all m ∈ Z.

An interaction for the system is a map Φ from the finite subsets of Λ to A such that
for each finite X ⊂ Λ, Φ(X)∗ = Φ(X) ∈ AX . For given Λ and F , and any λ ≥ 0, let
Bλ(Λ) be the set of interactions that satisfy

‖Φ‖λ := sup
x,y∈Λ

∑

X�x,y

‖Φ(X)‖
Fλ (d(x, y))

< ∞. (1.7)

All interactions considered in this paper are assumed to belong to Bλ(Λ) for some choice
of F and λ > 0. The constant ‖Φ‖λ will show up in many estimates. The finite volume
Hamiltonians are defined in terms of the interaction Φ in the usual way by

HL =
∑

X⊂ΛL

Φ(X) + boundary terms. (1.8)

We will always assume periodic boundary conditions in the 1-direction and arbitrary
boundary conditions in the other directions (i.e., any boundary terms in the other direc-
tions are included in the definition of Φ).

The condition that ‖Φ‖λ is finite is sufficient to guarantee the existence of the dynam-
ics in the thermodynamic limit as a one-parameter group of automorphisms on A. In
particular this means that the limits

αΦt (A) := lim
L→∞α

Φ,L
t (A) := lim

L→∞ eit HL Ae−i t HL (1.9)
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exist in norm for all t ∈ R, and all observables A ∈ AX , for any finite X ⊂ Λ. We will
often suppress the L or Φ dependence in the notation αΦ,Lt . See [4, 18, 23] for more
details.

Next, we turn to a set of conditions that more specifically describe the class of models
to which the Lieb-Schultz-Mattis Theorem may be applied.
Condition LSM1: We assume that the interaction is translation invariant in at least one
direction, which we will take to be the 1-direction. This means

Φ (X + e1) = τ1 (Φ(X)) , (1.10)

where, for any X ⊂ Λ, X + e1 is translation of all points in X by one unit in the
1-direction. We will consider finite systems with Hamiltonians HL defined with peri-
odic boundary conditions in the 1-direction. For convenience of the presentation we will
assume free boundary conditions in the other directions but this is not crucial. Since we
have assumed periodicity in the 1-direction, we can implement the translation invari-
ance for finite systems by a unitary T ∈ AΛL such that Φ(X + e1) = T ∗Φ(X)T , for all
X ⊂ ΛL . Here T depends on L , but we suppress this dependence in the notation.
Condition LSM2: The interactions are assumed to be of finite range in the 1-direction,
i.e., there exists R > 0 (the range), such that if X ⊂ Λ and X � xi = (ni , vi ) for
i = 1, 2 with |n1 − n2| ≥ R, then Φ(X) = 0.
Condition LSM3: We assume rotation invariance about one axis. More precisely, we
assume that there is a hermitian matrix in every A{x}, x ∈ Λ, which we will denote by
S3

x , with eigenvalues that are either all integer or all half-integer (i.e. belonging to Z+1/2).
We also require that τm(S3

x ) = S3
x+me1

. Define, for θ ∈ R, the unitary U (θ) ∈ AΛL by

U (θ) =
⊗

x∈ΛL

eiθ S3
x . (1.11)

The interaction is taken to be rotation invariant in the sense that for each finite X ⊂ Λ,

U∗(θ)Φ(X)U (θ) = Φ(X) for all θ ∈ R. (1.12)

Condition LSM4: We assume that the S3
x are uniformly bounded: there exists S such that

‖S3
x ‖ ≤ S, for all x ∈ Λ. The following condition, which we call odd parity, is crucial:

define the parity of x , px to be 0 if the eigenvalues of S3
x are integers, and px = 1/2

if they are half-integers. We assume that
∑
v∈VL

p(n,v) ∈ Z + 1/2, for all n ∈ Z. The
simplest and most important case where this is satisfied is when we have a spin 1/2 at
each site, and |VL | is odd.
Condition LSM5: The ground state of HL is assumed non-degenerate. This implies it is
an eigenvector of the translation T and rotations U (θ). Without loss of generality we
can assume that 1 is the corresponding eigenvalue of T (if the eigenvalue is eiφ , replace
T by e−iφT ). We also assume that the ground state has eigenvalue 1 for the rotations
U (θ).
Condition LSM6: We assume that there are orthonormal bases of the Hilbert spaces HΛL

with respect to which S3
x and Φ(X) are real, for all x ∈ ΛL , X ⊂ ΛL . This condition

is only used in the proof of Lemma 1. Therefore, this condition may be replaced by the
property proved in that lemma.

We will also use the following quantities:

|||Φ|||1 := sup
x∈Λ

∑

X�x

‖Φ(X)‖ < ∞, (1.13)



442 B. Nachtergaele, R. Sims

and

|||Φ|||2 := sup
x∈Λ

∑

X�x

|X |
∑

x ′∈X

‖[S3
x ′ , Φ(X)]‖ < ∞. (1.14)

It is not hard to show that the conditions F1 and F2 are sufficient to imply that |||Φ|||1
and |||Φ|||2 are finite.

We can now state our main result.

Theorem 1. Let γL be the spectral gap, i.e., the difference between the lowest and next-
lowest eigenvalue of the Hamiltonian HL of a model satisfying conditions F1, F2, and
LSM1-6. Then, there exists a constant C, depending only on properties ofΛ (such as the
dimension), the constants ‖F‖ and C(F), and the interaction (‖Φ‖λ, for some λ > 0,
|||Φ|||1, and |||Φ|||2), such that

γL ≤ C
log L

L
. (1.15)

1.3. Structure of the proof. The simplest way to present the proof is as a proof by con-
tradiction. Under the assumption that there exists a sufficiently large constant C > 0,
such that γL exceeds (C log L)/L for large L , we will construct a state orthogonal to the
ground state with an energy difference that is boundable by a quantity that is strictly less
than the assumed gap for sufficiently large L . Thus, the proof is in essence a variational
argument. The variational state is constructed as a perturbation of the ground state, as
the solution of the differential equation proposed by Hastings [8] with the ground state
as initial condition (see Sect. 2, in particular (2.25), for this equation). The important
idea is that this equation will lead to a state which resembles the ground state of the
Hamiltonian with twisted rather than periodic boundary conditions (see Sect. 2.1 for the
definition of the twists), at least in part of the system, say the left half. In the right half
the ground state will be left essentially unperturbed. This state is defined in Sect. 2.

After the variational state has been defined, there are two main steps in the proof:
estimating its excitation energy and verifying that it is “sufficiently orthogonal” to the
ground state. In general, one may also have to consider the normalization of the varia-
tional state, but in our case the differential equation defining it will be manifestly norm
preserving. Hence, this is not an issue for our proof.

The main difficulty is that under the general assumptions we have made, no explicit
information about the ground state is available. Its uniqueness, translation, and rotation
invariance are the only properties we can use. In combination with the general assump-
tions on the interactions and the assumption on the magnitude of the spectral gap above
the ground state, however, one can obtain an upper bound on the decay of correlations
of the ground state in the 1-direction. The recently proved Lieb-Robinson bounds [9, 18,
20] will be essential to show that the effects of the perturbations we define in the left half
of the system remain essentially localized there. This allows us to compare the energy
of the variational state with the ground state energy of a Hamiltonian, Hθ,−θ introduced
in (2.5), which, instead of twisted boundary conditions, has two twists that cancel each
other. The twisted Hamiltonian is unitarily equivalent to the original one and therefore
has the same ground state energy. We work out this argument in Sect. 3. The result is

|〈ψ1, HLψ1〉 − E0| ≤ C Lνe−cγL L (1 + corrections) , (1.16)
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where ψ1 is the normalized variational state we construct, and E0 is the ground state
energy. The dependence of both quantities on L is surpressed in the notation. ν, C and c
are positive constants that only depend on properties of the lattice and the interactions.
The correction terms appearing above, and also in (1.17) below, can be made explicit
by the estimates provided in Sect. 5. They depend on the quantity γL L in such a way
that assuming there exists a constant C > 0 for which γL L ≥ C for sufficiently large
L , they are uniformly bounded in L . Due to the nature of our proof of Theorem 1, see
below, we do not write these additional terms out explicitly.

For the orthogonality, our strategy is to show that ψ1 is almost an eigenvector of the
translation T with eigenvalue −1. Since the ground state ψ0 is an eigenvector of T with
eigenvalue 1, by assumption, this shows that ψ1 is nearly orthogonal to ψ0. In Sect. 4
we obtain a bound on their inner product of the form:

|〈ψ1, ψ0〉| ≤ C ′Lν′
e−c′γL L (1 + corrections) , (1.17)

where ν′, C ′ and c′ are positive constants similar to ν, C and c.
The proof of Theorem 1 then easily follows.

Proof of Theorem 1. Suppose that γL L ≥ C log L with a sufficiently large constant C .
In this case, the correction terms which appear in the bounds (1.16) and (1.17) above
are negligible. It is easy to see then that one obtains a contradiction for L large enough.
��

To help the reader see the forest through the trees we have tried to streamline the
estimates in Sects. 3 and 4 by collecting some results of a more technical nature in
Sect. 5.

1.4. Examples. The conditions LSM1-6 we have imposed on the models are not unrea-
sonable. We will illustrate this by considering various antiferromagnetic Heisenberg
models defined onΛL = [1, L] × VL , where for each L , VL is a finite set. As before, at
each x ∈ ΛL , we have a finite-dimensional spin with spin-matrices Si

x , i = 1, 2, 3, and
we consider Hamiltonians of the form

H =
∑

x,y∈ΛL ,x �=y

J (x, y)Sx · Sy, (1.18)

where J (x, y) ∈ R are the coupling constants.
If VL ⊂ Z

d−1, with d ≥ 1, and such |VL | ≤ cLd−1, for a suitable constant c, which
describes the case for d-dimensional systems defined on subsets of Z

d , there exists a
function F satisfying Conditions F1 and F2 as we have indicated in the paragraph con-
taining (1.6). It is also easy to see that if VL is a fixed finite set independent of L , in
which case the system is (quasi) one-dimensional, any function F that works for the
one-dimensional lattice will suffice. All the examples we discuss below will be of this
type.

Certainly, there are still many Hamiltonians of the form (1.18) that fail to satisfy all
six conditions, but this is generally for a good reason. For example, without translation
invariance in at least one direction one can easily have a non-vanishing gap above the
ground state.

Condition LSM2, finite-range, does not need to be satisfied in the strict sense.
Sufficiently rapidly decaying interactions could also be treated. For the present
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discussion, let’s assume that the model is translation invariant in the 1-direction, and
that the interactions are nearest neighbor in the 1-direction in the sense that for any
x = (n1, v) and y = (n2, u), with |n1 − n2| > 1, we have J (x, y) = 0.

The rotation invariance about at least one axis imposed in Condition LSM3 is essen-
tial for the type of result we prove. The models (1.18) have full rotation invariance,
so they clearly satisfy this condition. Anisotropic models of the XXZ type would still
satisfy LSM3.

In order to satisfy LSM4, we have to assume a uniform bound on the size of the
spin. Clearly, all models with only one kind of spins or a periodic arrangement of spin
magnitudes satisfy this condition. Since we already assumed translation invariance in the
1-direction, we can verify the odd parity condition by adding the magnitudes of all spins
in the “slice” (1, VL). If we have only spin 1/2’s, e.g., we simply need that |VL | is odd.
For the one-dimensional chains of identical spins of magnitude S, the condition requires
that S is half-integral. Haldane’s Conjecture [6, 7] predicts that for integer values of S
there exists a non-vanishing gap. There are examples of isotropic integer-spin chains
which satisfy all the other conditions and for which the existence of a non-vanishing gap
has been rigorously established, such as the AKLT chain [2]. For p-periodic spin chains
with a repeating pattern of spin magnitudes S1, . . . , Sp, LSM4 is satisfied if S1 + · · ·+ Sp
is half-integral. Similarly, for spin ladders LSM4 is satisfied if the total spin in each rung
is half-integral.

There is a large class of models for which the uniqueness of the ground state demanded
by LSM5 follows from the Lieb-Mattis Theorem [13]. For Hamiltonians of the form
(1.18), a simple case where the Lieb-Mattis Theorem applies is the following: if ΛL
is the union of two disjoint subsets ΛL ,A and ΛL ,B of equal size, with J (x, y) ≤ 0
whenever x and y do not belong to the same subset, and sufficiently many J (x, y) are
non-vanishing such that the graph formed by the edges with non-zero coupling constants
is connected. This is satisfied if VL ⊂ Z

d−1 is connected and the Hamiltonian is the
usual nearest neighbor antiferromagnetic Heisenberg model.

All models of the form (1.18) satisfy LSM6.
The above discussion demonstrates that there is a large variety of models that satisfy

all conditions of our main theorem. In particular, all nearest-neighbor half-integer spin
Heisenberg antiferromagnets defined on subsets ΛL = [1, 2L] × VL of d-dimensional
hypercubic lattice with |VL | odd and such that |VL | ≤ cLα , for some α ≥ 0 (it is natural
but not necessary to assume α = d −1), have a unique ground state with a gap γL above
it satisfying γL ≤ C(log L)/L , for some constant C .

1.5. Generalizations. One can envision several generalizations of Theorem 1. An obvi-
ous one is to remove the condition that the interaction is strictly finite range in the
1-direction. It is not hard to see that the arguments given in the following sections can
be extended to long-range interactions with sufficiently fast decay.

One may wonder whether the assumption that L is even is essential. It is used in the
proof of near orthogonality of the variational state, which is based on investigating the
behavior under translations of the state: the variational state is close to an eigenvector
with eigenvalue −1 of the translation operator T , whereas the ground state has eigen-
value 1. Our proof of this fact assumes that the ground state is an eigenvector of the
rotations with eigenvalue 1. For L odd, our assumptions preclude the existence of such
an eigenvector. However, it seems plausible that for odd L a slight modification of our
proof will work to show that the ground state and the variational excited state have
opposite eigenvalues for translations.
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The main applications we think of are to SU(2)-invariant Hamiltonians with
antiferromagnetic interactions. Affleck and Lieb [1] pointed out that their proof eas-
ily extends to a class of models with SU(N) symmetry. There are no obstructions to
generalizing our arguments to such models with SU(N) symmetry given by suitable
representations.

It may also be of interest to consider different topologies of the underlying lattice
and/or the twistings. Instead of cylindrical systems with periodic boundary conditions
which can be deformed by a twist, one could apply a similar strategy to systems defined
on a ball or a sphere. We do not explore such possibilities here.

Another question we do not address in this paper is under what circumstances the
trial state we construct is actually a good approximation of a low-lying eigenstate with
energy close to the first excited state, or even whether it is a state orthogonal to the ground
state and with energy bounded by C(log L)/L . We do not believe that statements of this
kind hold under the general conditions we impose. It is expected that in some cases
the true gap of the system is much smaller than the bound we prove. This is of course
not in contradiction with our result, but under such circumstances our method does not
provably construct a good variational state. There is no reason to assume that it always
would.

2. Construction of the Variational State

2.1. Twisted Hamiltonians. The main motivation behind the construction of the varia-
tional excited state is that it should resemble the ground state of the model with twisted
(as opposed to periodic) boundary conditions. Therefore, we first describe some ele-
mentary properties of a family of perturbations of the Hamiltonian, which we will call
twisted Hamiltonians for reasons that will become obvious.

Given an interactionΦ which satisfies the general assumptions outlined in Sect. 1.2,
we will now define a two parameter family of “twisted Hamiltonians” to analyze. These
Hamiltonians will be defined on a finite volume ΛL = [1, L] × VL , where [1, L] is
considered with periodic boundary conditions for some even L > 4R, where R > 0 is
the range ofΦ in the 1-direction. LetΦL be the periodic extension ofΦ restricted toΛL .
Recall that each point x ∈ ΛL can be written as x = (n, v), where n ∈ {1, 2, . . . , L}
and v ∈ VL , and we will denote by (n, VL) = {x ∈ ΛL : x = (n, v) for some v ∈ VL}.
For any θ ∈ R and n ∈ {1, 2, . . . , L}, define the “column” rotations Un(θ) by

Un(θ) =
⊗

x∈(n,VL )

eiθ S3
x . (2.1)

For m ∈ {1, 2, . . . , L − 1}, we will denote by Vm(θ) the unitary given by

Vm(θ) =
⊗

m<n≤L

Un(θ). (2.2)

The “twisted Hamiltonians” are defined to be perturbations of the initial Hamiltonian
with periodic boundary conditions defined by

H =
∑

X⊂ΛL

ΦL(X). (2.3)
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The perturbations have the following form:

Hθ (m) :=
∑

X⊂ΛL

Vm(θ)
∗Φ(X)Vm(θ)−Φ(X), (2.4)

for m ∈ [R, L − R] to avoid interactions across the seam created by identifying L + 1
with 1. Note that here we use the original potentialΦ, and not its periodic extensionΦL .
Clearly, if X ⊂ ⋃

m<n≤L(n, VL) or X ⊂ ⋃
1≤n<m(n, VL), then Vm(θ)

∗Φ(X)Vm(θ) −
Φ(X) will vanish by rotation invariance of the interaction, and therefore only those
interactions across the column (m, VL) contribute in (2.4). For θ, θ ′ ∈ R and m ∈
{R, R + 1, . . . , L/2 − R} fixed, we define

Hθ,θ ′ := H + Hθ (m) + Hθ ′(m + L/2), (2.5)

to be a doubly twisted Hamiltonian. With m fixed, we regard ΛL as the disjoint union
of two sets

ΛL = Λ
(W )
L ∪Λ(S)L , (2.6)

whereΛ(W )
L consists of two windows, one about each column at which a twist has been

applied; namely

Λ
(W )
L := Λ

(W )
L (m) ∪Λ(W )

L (m + L/2) and Λ
(W )
L (y) :=

⋃

|n−y|≤ L
4 −R

(n, VL), (2.7)

for y ∈ {m,m + L/2}. Moreover,Λ(S)L comprises the remaining strips inΛL . Given this
decomposition of the underlying space, the twisted Hamiltonian can be written as

Hθ,θ ′ = H (W )

θ,θ ′ + H (S), (2.8)

where

H (S) =
∑

X⊂ΛL :
X∩Λ(S)L �=∅

ΦL(X), (2.9)

and H (W )

θ,θ ′ denotes the remaining terms in Hθ,θ ′ which, due to (2.9), are supported strictly
within the windows.

There are a variety of useful symmetries the Hamiltonians Hθ,θ ′ , introduced in (2.5),
possess. With m ∈ {R, R + 1, . . . , L/2 − R} fixed as above, one may define

W (φ) :=
⊗

m<n≤m+L/2

Un(−φ), (2.10)

for any real φ. See (2.1) for the definition of the column rotations Un . It is easy to check
that for any angles θ, θ ′, φ ∈ R, one has that

W ∗(φ) Hθ,θ ′ W (φ) = Hθ−φ,θ ′+φ, (2.11)

due to the (term by term) rotation invariance of the interactions. Given this relation, it is
clear that along the path θ ′ = −θ the twisted Hamiltonian is unitarily equivalent to the
untwisted Hamiltonian, i.e.,

W (θ)∗ Hθ,−θ W (θ) = H0,0 = H, (2.12)

which, due to the periodic boundary conditions, is not true for general pairs θ, θ ′.
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The untwisted Hamiltonian is translation invariant (in the 1-direction), and it is
important that the twisted Hamiltonians inherit a “twisted” translation invariance. Define

Tθ,θ ′ = T Um(θ)Um+L/2(θ
′), (2.13)

where T is the unitary implementing the translation by 1 in the 1-direction. It is then
straightforward to verify that

Hθ,θ ′ = T ∗
θ,θ ′ Hθ,θ ′ Tθ,θ ′ . (2.14)

Note that under the odd parity condition LSM4 we have

T2π,0 = −T, (2.15)

which will be important in the proof of the almost orthogonality of the trial state in
Sect. 4.

If we denote byψ0 the (unique) ground state of H , i.e., Hψ0 = E0ψ0, then by trans-
lation invariance, and specifically LSM5, we have that Tψ0 = ψ0. Moreover, using
the unitary equivalence (2.12), we see that the ground state of the twisted Hamilto-
nian Hθ,−θ satisfies Hθ,−θψ0(θ,−θ) = E0(θ,−θ)ψ0(θ,−θ) with E0(θ,−θ) = E0
and ψ0(θ,−θ) = W (θ)ψ0. Although the twisted ground state ψ0(θ,−θ) is not trans-
lation invariant, it does satisfy invariance with respect to the twisted translations, i.e.,
Tθ,−θψ0(θ,−θ) = ψ0(θ,−θ). As a consequence, we have the following simple but
important property of E0.

Lemma 1. Let E0(θ, θ
′) denote the ground state energy of Hθ,θ ′ .Then, the partial deriv-

atives of E0 vanish on the line θ ′ = −θ :

∂1 E0(θ,−θ) = ∂2 E0(θ,−θ) = 0. (2.16)

Proof. First, we note that E0 is differentiable in its two variables in a neighborhood
of (0, 0) by the non-degeneracy condition LSM5. By unitary equivalence E0 is then
differentiable in a neighborhood of the line (θ,−θ). For ψ, φ ∈ R, let E(ψ, φ) =
E0(ψ − φ,ψ + φ) denote the ground state energy of Hψ−φ,ψ+φ . Due to the unitary
equivalence Eq. (2.11), E depends only on ψ . Hence, ∂φE(ψ, φ) = 0, for all ψ, φ.
Under the additional assumption that the interactions Φ(X) are real (LSM6), we have
that Hθ,θ ′ = H−θ,−θ ′ , and therefore E(ψ, 0) = E(−ψ, 0). Hence, E is an even function
of ψ and ∂ψE(ψ, φ)|ψ=0 = 0. Using these properties and the fact that the partial deriv-
atives of E0 are linear combinations of the partial derivatives of E , we find that both
partial derivatives of E0 vanish on the line θ ′ = −θ . ��

2.2. The variational state. Our aim is to construct a state that resembles the ground state
of Hθ,−θ in a region surrounding those spins that were twisted by an angle of θ , while
it otherwise resembles the ground state of H = H0,0.

From the unitary equivalence (2.12) we have that E0(θ,−θ) is independent of θ , i.e.,
∂θ E0(θ,−θ) = 0. Moreover, the partial derivatives of E0 vanish on the line (θ,−θ), as
was proven in Lemma 1. This property, in general, allows one to derive an equation for
the ground state.

Consider a differentiable one-parameter family of self-adjoint operators H(x), x ∈
[a, b] ⊂ R, and let E0(x) denote the ground state energy of H(x) with a differentiable
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family of ground state eigenvectors ψ0(x). Suppose ∂x E0(x) = 0 for x ∈ [a, b]. Then,
it is easy to see that ψ0(x) ⊥ (∂x H(x))ψ0(x), from which we obtain:

∂xψ0(x) = − [H(x)− E0(x)]
−1 ∂x H(x) ψ0(x). (2.17)

For any vector ψ , this leads to

〈ψ, ∂xψ0(x)〉 = −
∫ ∞

E0(x)

1

E − E0(x)
d
〈
ψ, Px

E∂x H(x)ψ0(x)
〉

(2.18)

= −
∫ ∞

E0(x)

∫ ∞

0
e−(E−E0(x))t dt d

〈
ψ, Px

E∂x H(x)ψ0(x)
〉

= −
∫ ∞

0

〈
ψ, αx

i t (∂x H(x)) ψ0(x)
〉

dt,

where Px
E is the spectral resolution for H(x) and αx

i t is the imaginary-time evolution
corresponding to the Hamiltonian.

Motivated by this calculation, we introduce the family of operators B(A, H), where
H is a Hamiltonian for which the dynamics {αt | t ∈ R} exists as a strongly continuous
group of ∗-automorphisms and A is any local observable, defined by

B(A, H) = −
∫ ∞

0
αi t (A)dt, (2.19)

where αi t is the imaginary time evolution generated by H . For unbounded Hamiltonians
H , it may not be obvious that B(A, H) can be defined on a dense domain. However, ifψ
is a ground state corresponding to the Hamiltonian H , then B(A, H)ψ exists. Moreover,
from (2.18), we conclude that

∂xψ0(x) = B(x)ψ0(x), (2.20)

where B(x) = B (∂x H(x), H(x)). Similarly, in the density matrix formalism, for

ρ0(x) := |ψ0(x)〉 〈ψ0(x)|, (2.21)

Eq. (2.20) implies that

∂xρ0(x) = B(x)ρ0(x) + ρ0(x)B(x)
∗. (2.22)

We will define the proposed excited state ψ as the solution of a differential equation
analogous to (2.20). First, we need to introduce some further notation. Let H be a Ham-
iltonian for which the dynamics {αt } exists; finite volume is sufficient. For any a > 0,
t ∈ R \ {0}, and local observable A ∈ A, we may define

Aa(i t, H) := 1

2π i
e−at2

∫ ∞

−∞
αs(A)

e−as2

s − i t
ds. (2.23)

In addition, for T > 0 the quantity

Ba,T (A, H) := −
∫ T

0
Aa(i t, H)− Aa(i t, H)∗dt, (2.24)
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will play a crucial role. In Lemma 7 of Sect. 5, we will show that when projected onto
the ground state of a gapped Hamiltonian H , the quantity Ba,T (A, H) well approxi-
mates B(A, H) for a judicious choice of parameters, e.g., a = γL/L and T = L/2; we
note that the observable A must also satisfy the constraint that its range is orthogonal
to the ground state. With this in mind, consider the solution of the differential equation
introduced by Hastings in [8]:

∂θψa,T (θ) = Ba,T (θ) ψa,T (θ), (2.25)

where Ba,T (θ) = Ba,T (∂θ Hθ,0, Hθ,−θ ), subject to the boundary condition ψa,T (0) =
ψ0. Note that Ba,T (θ) is anti-hermitian, and hence any ψa,T (θ) solving (2.25) will have
constant norm.

To be explicit, the proposed state ψa,T (θ) differs from the actual ground state of the
doubly twisted Hamiltonian Hθ,−θ , in three essential ways. Compare (2.19) in the case
that A = ∂θ Hθ,−θ and H = Hθ,−θ with (2.24) given that A = ∂θ Hθ,0 and H = Hθ,−θ .
i) We have introduced a cut-off at T < ∞.
ii) We have approximated the imaginary-time evolution of an observable A, αi t (A), by
Aa(i t, H)− Aa(i t, H)∗.
iii) We have replaced the observable ∂θ Hθ,−θ with ∂θ Hθ,0.

The modifications i) and ii) are of a technical nature, i.e., to make the relevant quan-
tities well-defined and amenable to estimation (see Sect. 5). The motivation behind the
third replacement is an attempt to approximate the ground state of the singly twisted
Hamiltonian Hθ,0.

3. Energy Estimates

As is discussed in the introduction, the goal of this section is to prove an estimate of the
form

|〈ψ1, HLψ1〉 − E0| ≤ C Lνe−cγL L , (3.1)

see (1.16) and Theorem 3 below, for the proposed variational state. Explicitly, we will
take ψ1 = ψa,T (2π), i.e., the solution of (2.25) evaluated at θ = 2π , with the specific
choice of parameters a = γL/L and T = L/2. Since the operator Ba,T (θ), defined in
(2.25), is anti-hermitian, it is clear that ψ1 remains normalized, and the bound stated
above demonstrates that if the gap is sufficiently large, γL ≥ C log(L)/L , then ψ1 cor-
responds to a state with small (depending on C) excitation energy. An estimate of the
form (3.1), with correction terms, can be proven based on the general results in Sect. 5.
In the proof of Theorem 1, which is a proof by contradiction, we will be assuming
γL ≥ C log(L)/L . Therefore, we can assume here, without loss of generality, that there
exists a constant c > 0 such that γL L ≥ c for sufficiently large L . This assumption,
which is not necessary, will simplify the presentation in Sects. 3 and 4.

3.1. Local estimates on the states. In this subsection we prove a technical result which
estimates, uniformly in θ , the norm difference between the ground state of Hθ,−θ and
the proposed state in the left half of the system, more precisely in the window centered
around the location, (m, VL)where the θ -twist occurs. Since the restrictions of the states
to the half-systems are described by density matrices, it is natural to use the trace norm
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for this estimate. Recall that for any bounded operator A on a Hilbert space H, the trace
norm is defined by

‖A‖1 = Tr
√

A∗ A, (3.2)

assuming this quantity is finite. Using the polar decomposition for bounded linear oper-
ators, it is easy to see that, alternatively,

‖A‖1 = sup
B∈B(H):‖B‖=1

|Tr AB|. (3.3)

Recall that the density matrix corresponding to the ground state of the Hθ,−θ Ham-
iltonian satisfies the equation

∂θρ0(θ,−θ) = B(θ) ρ0(θ,−θ) + ρ0(θ,−θ) B(θ)∗, (3.4)

compare with (2.22), where we have used the notation B(θ) = B(A(θ), Hθ,−θ ) for the
operator B(A, H) as defined in (2.19) and the observable A(θ) = ∂θ Hθ,−θ . Note that by
construction ρ0(θ,−θ) remains normalized. We will often write A(θ) = A1(θ)− A2(θ)

where, the observables A1(θ) = ∂θ Hθ,0 and A2(θ) = ∂θ H0,θ are supported in the
window about the twists of angle θ and −θ , respectively. Regarding Hθ,θ ′ as a func-
tion of two variables, we may write Ai (θ) = ∂i Hθ,−θ for convenience. The notation
Bi (θ) = B(Ai (θ), Hθ,−θ ) will also be useful.

The proposed state is the solution of

∂θρa,T (θ) = [
Ba,T (θ), ρa,T (θ)

]
, (3.5)

where the operator

Ba,T (θ) = Ba,T (A1(θ), Hθ,−θ )

is defined in (2.24) with observable A1(θ) = ∂1 Hθ,−θ . The parametrization we choose
is a = γL/L and T = L/2. Since the operator Ba,T (θ) is anti-hermitian, the solution
ρa,T (θ) is a density matrix. We will denote by Trmc [·] the partial trace over the Hilbert
space corresponding to Λ(S)L ∪ Λ

(W )
L (m + L/2). Note that the terms in the Hamilto-

nian that have been twisted by an angle θ are supported in the complementary region
Λ
(W )
L (m). Given a gap γL > 0 above the ground state of the H = H0,0 Hamiltonian,

we will be able to estimate the trace norm of the difference in the two states restricted
to Λ(W )

L (m). We will show this by estimating ∂θ Trmc
[
ρa,T (θ)− ρ0(θ,−θ)

]
.

Theorem 2. As described in the introduction, we assume F1, F2, and LSM1-6. If there
exists a constant c > 0 such that γL L ≥ c for sufficiently large L and we choose the
parameters a = γL/L and T = L/2, then there exist constants C > 0 and k > 0 so
that

sup
θ∈[0,2π ]

∥∥Trmc
[
ρa,T (θ)− ρ0(θ,−θ)

]∥∥
1 ≤ C L2d e−kγL L , (3.6)

for L large enough. Here C and k depend only on the interaction Φ and the underlying
set Λ.
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We note that the assumption concerning the existence of a constant c > 0 such that
γL L ≥ c for sufficiently large L is not necessary. We impose it here for simplicity of
presentation. Without this additional assumption, one may prove an analogue of (3.6),
which contains correction terms, by inserting the bounds proven in Sect. 5 directly into
the proof given below. Since we make this assumption, it is convenient to state a lemma
which compiles many of the technical results found in Sect. 5 and applies them to the
present set-up. For this, we need two more definitions. Denote by B(W )

a,T (θ) the operator

defined by Ba,T

(
A1(θ), H (W )

θ,−θ
)

, where the Hamiltonian H (W )
θ,−θ is the full Hamiltonian

Hθ,−θ restricted to the windows about the twists, see (2.8). Lastly, set Pθ0 to be the
projection onto the ground state ψ0(θ,−θ) of the twisted Hamiltonian Hθ,−θ .

Lemma 2. Assume F1, F2, and LSM1-6. If there exists a constant c > 0 such that
γL L ≥ c for sufficiently large L and we choose the parameters a = γL/L and T = L/2,
then there exists constants C > 0 and k > 0 for which both

sup
θ∈[0,2π ]

‖Ba,T (θ)− B(W )
a,T (θ)‖ ≤ C L2d e−kγL L (3.7)

and

sup
θ∈[0,2π ]

‖ (Ba,T (θ)− B1(θ)
)

Pθ0 ‖ ≤ C Ld e−kγL L (3.8)

when L is large enough.

Proof of Lemma 2. Equation (3.7) follows by combining Lemma 4 and Remark 1. Using
Lemma 7 and Remark 3, one obtains (3.8). ��
Proof of Theorem 2. The proof of Theorem 2 follows by deriving a uniform bound on
the θ -derivative of the differences in these density matrices. Specifically, the bound is
in trace norm, and the uniformity is with respect to θ ∈ [0, 2π ].

Using (3.4), (3.5), and inserting the local operator B(W )
a,T (θ) for comparison, one may

easily verify that

∂θTrmc
[
ρa,T (θ)− ρ0(θ,−θ)

] = Trmc

([
B(W )

a,T (θ), ρa,T (θ)− ρ0(θ,−θ)
] )

+
3∑

i=1

ri (θ), (3.9)

where the three remainder terms are given by

r1(θ) := Trmc

( [
Ba,T (θ)− B(W )

a,T (θ), ρa,T (θ)
] )
, (3.10)

r2(θ) := Trmc

( [
B(W )

a,T (θ), ρ0(θ,−θ)
]

− ∂1ρ0(θ,−θ)
)
, (3.11)

and

r3(θ) := Trmc [∂1ρ0(θ,−θ) − ∂θρ0(θ,−θ)] . (3.12)
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As A1(θ) is supported near (m, VL) and H (W )
θ,−θ contains only those interaction terms over

sets X ⊂ Λ
(W )
L , it is clear that B(W )

a,T (θ) is contained in the algebra of local observables

with support in Λ(W )
L (m); we will denote this algebra by A(m). Therefore,

Trmc

([
B(W )

a,T (θ), ρa,T (θ)− ρ0(θ,−θ)
])

=
[

B(W )
a,T (θ),Trmc

(
ρa,T (θ)− ρ0(θ,−θ)

)]
.

(3.13)

Since B(W )
a,T (θ) is anti-hermitian, we may apply norm preservation, i.e. Theorem 7, to

(3.9) and conclude that

∥∥Trmc
[
ρa,T (θ)− ρ0(θ,−θ)

] ∥∥
1 ≤

3∑

i=1

∫ θ

0
‖ri (θ

′)‖1 dθ ′. (3.14)

We need only bound the trace norms of the remainder terms ri (θ).
As ρa,T (θ) is a density matrix, in particular non-negative with a normalized trace,

one has that

‖r1(θ)‖1 ≤ 2
∥∥∥Ba,T (θ)− B(W )

a,T (θ)

∥∥∥ ≤ C L2d e−kγL L , (3.15)

using Lemma 2 above.
To estimate r2(θ), we note that as in (3.4),

∂1ρ0(θ,−θ) = B1(θ) ρ0(θ,−θ) + ρ0(θ,−θ) B1(θ)
∗, (3.16)

where ∂1 denotes differentiation with respect to only the first twist angle, namely θ ,
which is situated near the sites (m, VL). Here we have also used that ∂1 E0(θ,−θ) = 0,
see Lemma 1. A simple norm estimate yields that

‖r2(θ)‖1 ≤ 2
∥∥∥
(

B(W )
a,T (θ) − B1(θ)

)
Pθ0

∥∥∥

≤ 2
∥∥∥ Ba,T (θ) − B(W )

a,T (θ)

∥∥∥ + 2
∥∥ ( Ba,T (θ) − B1(θ)

)
Pθ0

∥∥ . (3.17)

Appealing again to Lemma 2, we see that r2(θ) satisfies the desired bound.
Lastly, r3(θ) = Trmc [ ∂2ρ0(θ,−θ)]. Since we have shown in Lemma 1 that

∂2 E0(θ,−θ) = 0 as well, the analogue of (3.16) holds for ∂2ρ0(θ,−θ). Thus,

‖r3(θ)‖1 = sup
O∈A(m):‖O‖=1

∣∣Tr
[

O
(

B2(θ) ρ0(θ,−θ) + ρ0(θ,−θ) B2(θ)
∗ ) ]∣∣

≤ 2 sup
O∈A(m):‖O‖=1

∫ ∞

0
| 〈ψ0(θ,−θ), O αi t (A2(θ)) ψ0(θ,−θ) 〉 | dt, (3.18)

where the observables O are arbitrary elements of A(m), again, the algebra of local
observables with support inΛ(W )

L (m). Integrals of this type are bounded using Lemma 6;
see also Remark 2. Since the observables we are considering have a separation distance
proportional to L , we may estimate

‖r3(θ)‖1 ≤ C L2d e−kγL L . (3.19)

Combining the results found on each of the remainders, we arrive at the estimate
claimed in (3.6). ��
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3.2. Bound on the energy. Equipped with Theorem 2 and Lemma 2, we may now bound
the excitation energy corresponding to the proposed state.

Theorem 3. Assume F1, F2, and LSM1-6. If there exists a constant c > 0 such that
γL L ≥ c for sufficiently large L and we choose the parameters a = γL/L and T = L/2,
then there exists constants C > 0 and k > 0 so that

|〈ψ1, HLψ1〉 − E0| ≤ C L3d−1e−kγL L (3.20)

for large enough L. Here, we take ψ1 = ψa,T (2π).

The proof of this theorem may be understood as follows. Recall that the ground state
energy of the doubly twisted Hamiltonian is independent of θ , i.e.,

E0 = 〈ψ0, HLψ0〉 = 〈ψ0(θ,−θ), Hθ,−θψ0(θ,−θ)〉. (3.21)

Moreover, the separation between the twists of angle θ and −θ grows with the volume.
Locality should enable one to estimate the energy difference between performing two
twists, the ground state, and performing only one twist, the excited state. A rigorous
version of this idea is described below.

First, we recall some of the notation introduced in Sect. 2.1. We have written the
twisted Hamiltonian as the sum of two terms

Hθ,−θ = H (W )
θ,−θ + H (S). (3.22)

It is useful to further subdivide the twisted terms as

H (W )
θ,−θ = H (W )

θ (m) + H (W )
−θ (m + L/2), (3.23)

where H (W )
θ (m) contains all those interaction terms in H (W )

θ,−θ with support in a window

about the twist of angle θ , i.e. Λ(W )
L (m), and similarly, H (W )

−θ (m + L/2) contains all

those interaction terms in H (W )
θ,−θ with support in Λ(W )

L (m + L/2). The untwisted terms
in (3.22) are supported in the remaining strips. We refer to Eqs. (2.5)–(2.9) for more
details. It was also noted in Sect. 2.1 that

W (θ)∗ Hθ,−θ W (θ) = H, (3.24)

see (2.12).
Now, for any state ψ , one may calculate the expected energy due to a single twist:

〈ψ, Hθ,0ψ〉 = 〈ψ, H (W )
θ (m)ψ〉 + 〈ψ,

(
H (W )

0 (m + L/2) + H (S)
)
ψ〉

= E0 + R1(θ) + R2(θ). (3.25)

Here, we inserted appropriate terms so that we may compare 〈ψ, Hθ,0ψ〉 to the ground
state energy; the remainder terms are given by

R1(θ) := 〈ψ, H (W )
θ (m)ψ〉 − 〈ψ0(θ,−θ), H (W )

θ (m)ψ0(θ,−θ)〉 (3.26)

and

R2(θ) := 〈ψ,
(

H (W )
0 (m + L/2) + H (S)

)
ψ〉 − 〈ψ0,

(
H (W )

0 (m + L/2) + H (S)
)
ψ0〉,

(3.27)
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where ψ0 is the ground state of H = H0,0. The bound
∣∣ 〈ψ, Hθ,0ψ〉 − E0

∣∣ ≤ |R1(θ)| + |R2(θ)|, (3.28)

readily follows for any state ψ .

Proof of Theorem 3. For each fixed θ , the bound (3.28) is valid for our proposed state
ψa,T (θ). We will estimate the resulting remainders uniformly for θ ∈ [0, 2π ] and thereby
prove the claimed result.

To see this, we first rewrite the remainders in terms of the density matrices of the
states restricted to the region containing the first twist. It is clear that

R1(θ) = Tr
[ (
ρa,T (θ)− ρ0(θ,−θ)

)
H (W )
θ (m)

]
(3.29)

= Trm

[
Trmc

[
ρa,T (θ)− ρ0(θ,−θ)

]
H (W )
θ (m)

]
,

where the partial traces are as defined just prior to Theorem 2. Thus

|R1(θ)| ≤ ‖H (W )
θ (m)‖ ‖ Trmc

[
ρa,T (θ)− ρ0(θ,−θ)

] ‖1 (3.30)

≤ C L3d−1 e−kγL L ,

where we have used Theorem 2. In fact, from the assumptions we have made, one verifies
that

‖H (W )
θ (m)‖ ≤ 2

∑

x∈Λ(W )
L (m)

∑

X�x

‖Φ(X)‖ ≤ 2|||Φ|||1 |Λ(W )
L (m)| ≤ C Ld−1. (3.31)

For the second remainder,

R2(θ) = Tr
[ (
ρa,T (θ)− ρ0(0, 0)

) (
H (W )

0 (m + L/2) + H (S)
) ]
, (3.32)

we observe that the only θ dependence is in the density matrix corresponding to the
proposed state. Using the differential equation (3.5), we find that

R′
2(θ) = Tr

( [
Ba,T (θ), ρa,T (θ)

] (
H (W )

0 (m + L/2) + H (S)
) )

= − Tr
( [

Ba,T (θ),
(

H (W )
0 (m + L/2) + H (S)

)]
ρa,T (θ)

)
. (3.33)

The first term above is easy to estimate. Recall that the quantity B(W )
a,T (θ) is supported

in Λ(W )
L (m), whereas H (W )

0 (m + L/2) has support in Λ(W )
L (m + L/2). Thus

[
Ba,T (θ), H (W )

0 (m + L/2)
]

=
[

Ba,T (θ) − B(W )
a,T (θ), H (W )

0 (m + L/2)
]
, (3.34)

and moreover,
∣∣∣Tr

( [
Ba,T (θ) − B(W )

a,T (θ), H (W )
0 (m + L/2)

]
ρa,T (θ)

) ∣∣∣

≤ 2
∥∥∥H (W )

0 (m + L/2)
∥∥∥
∥∥∥ Ba,T (θ)− B(W )

a,T (θ)

∥∥∥ ≤ C L3d−1 e−kγ L . (3.35)

The second term may be similarly estimated. Let H̃ (W )
θ,−θ be defined as in (2.8), excepting

that the windows are slightly smaller: of size L
4 − 2R. Then [B̃(W )

a,T (θ), H (S)] = 0, and
the argument above applies. We have bounded R2(θ). ��



A Multi-Dimensional Lieb-Schultz-Mattis Theorem 455

4. Orthogonality

We will now prove that, under the assumptions given in the Introduction, the proposed
state is nearly orthogonal to the ground state. As in Sect. 3, we again make the assumption
that γL L ≥ c > 0, for sufficiently large L .

The reasoning behind orthogonality is simple. From LSM5, we know that the ground
state is an eigenvector of the translation operator with eigenvalue 1, i.e., Tψ0 = ψ0. On
the other hand, the proposed state will very nearly be an eigenvector of T2π,0, as defined
in Sect. 2.1, with eigenvalue 1. Due to the odd parity condition T2π,0 = −T and, hence,
we find that the ground state and the proposed state are eigenvectors corresponding to
distinct eigenvalues.

More concretely, it is easy to check that

〈ψa,T (2π),ψ0〉 = 〈T2π,0ψa,T (2π), Tψ0〉 + 〈(I − T2π,0
)
ψa,T (2π),ψ0〉, (4.1)

from which the estimate

∣∣〈ψa,T (2π),ψ0〉
∣∣ ≤ 1

2

∥∥(T2π,0 − I
)
ψa,T (2π)

∥∥ (4.2)

immediately follows. The remainder of this section will be used to prove a bound on
∥∥ Tθ,0ψa,T (θ)− ψa,T (θ)

∥∥ (4.3)

uniformly for θ ∈ [0, 2π ]. This is the content of Theorem 4.

4.1. Observations concerning the twisted ground state. We begin with a warm-up exer-
cise involving the twisted ground state. In Sect. 2.1, we saw that the twisted ground state
is invariant with respect to the twisted translations; i.e.,

Tθ,−θ , ψ0(θ,−θ) = ψ0(θ,−θ) ,
and therefore

∂θ
[

Tθ,−θψ0(θ,−θ) − ψ0(θ,−θ)
] = 0. (4.4)

One may rewrite this derivative in the form of an operator acting on ψ0(θ,−θ), i.e.,
(4.4) is equivalent to

D(θ)ψ0(θ,−θ) = 0, (4.5)

where D(θ) is given by

D(θ) = ∂θTθ,−θ T ∗
θ,−θ + Tθ,−θ B(θ) T ∗

θ,−θ − B(θ). (4.6)

Here we have used the differential equation for ψ0(θ,−θ), i.e. (2.20), and the notation
from the beginning of Sect. 3.1, which will be used throughout this section.

It will be easy to see that the operator D(θ) can be written as the sum of two terms,
D1(θ) and D2(θ), corresponding to the twists at m and m + L/2, respectively. The goal
of this subsection is to estimate ‖D1(θ)ψ0(θ,−θ)‖, see Lemma 3 below.

Using (2.13), one finds that

∂θTθ,−θ T ∗
θ,−θ = i

∑

v∈VL

S3
(m+1,v) − i

∑

v∈VL

S3
(m+L/2+1,v). (4.7)
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One has that D(θ) = D1(θ)− D2(θ), where

D1(θ) = i
∑

v∈VL

S3
(m+1,v) + Tθ,−θ B1(θ) T ∗

θ,−θ − B1(θ), (4.8)

and

D2(θ) = i
∑

v∈VL

S3
(m+L/2+1,v) + Tθ,−θ B2(θ) T ∗

θ,−θ − B2(θ). (4.9)

For what follows, we will denote by 〈A〉θ = 〈ψ0(θ,−θ), Aψ0(θ,−θ)〉 the twisted
ground state expectation of a local observable A. We have demonstrated in Lemma 1
that

0 = ∂i E0(θ,−θ) = 〈∂i Hθ,−θ 〉θ = 〈Ai (θ)〉θ , (4.10)

for i = 1, 2. From this, we conclude that
〈
Tθ,−θ Bi (θ) T ∗

θ,−θ
〉
θ

= 〈 Bi (θ) 〉θ = 〈Ai (θ)〉θ = 0, (4.11)

as well. Moreover, we similarly have that

〈Di (θ)〉θ = 0 as

〈
∑

v∈VL

S3
(x,v)

〉

θ

=
〈
∑

v∈VL

S3
(x,v)

〉

0

= 0, (4.12)

for any x ∈ [1, L]. For the last equality above, we used that ψ0(θ,−θ) = W (θ)ψ0,
W (θ) commutes with the third component of the spins, rotation invariance implies that
the total spin is zero, and translation invariance in the 1-direction.

Since D(θ)ψ0(θ,−θ) = 0, we have that D1(θ)ψ0(θ,−θ) = D2(θ)ψ0(θ,−θ) from
which it is clear that

0 = 〈D(θ)∗D(θ)〉θ = 2〈D1(θ)
∗ D1(θ)〉θ − 2〈D1(θ)

∗D2(θ)〉θ . (4.13)

As indicated above, we wish to estimate the first term on the right-hand side above. We
do so by estimating the second term. Observe that

〈D1(θ)
∗D2(θ)〉θ = −

∑

v,v′∈VL

〈S3
(m+1,v) S3

(m+L/2+1,v′)〉0

+ i
∑

v∈VL

∫ ∞

0

〈(
S3
(m,v) − S3

(m+1,v)

)
αi t (A2(θ))

〉

θ
dt

+
∫ ∞

0

∫ ∞

0

〈
αi t (A1(θ))

∗ (αis(A2(θ))− αis
(
T ∗
θ,−θ A2(θ)Tθ,−θ

) )〉
θ

ds dt

+i
∑

v′∈VL

∫ ∞

0

〈
αi t (A1(θ))

∗ (S3
(m+L/2+1,v′) − S3

(m+L/2,v′)

)〉

θ
dt

+
∫ ∞

0

∫ ∞

0

〈
αi t (A1(θ))

∗ (αis(A2(θ))− αis
(
Tθ,−θ A2(θ)T

∗
θ,−θ

) )〉
θ

ds dt. (4.14)

That each of these terms is bounded follows from our decay of correlation results found
in Sect. 5.3. In fact, we have proven the following lemma.
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Lemma 3. Assume F1, F2, and LSM1-6. If there exist a constant c > 0 such that
γL L ≥ c for sufficiently large L, then there exist constants C > 0 and k > 0 so that

‖D1(θ)ψ0(θ,−θ)‖2 ≤ C L3d−1e−kγL L , (4.15)

for L large enough.

Proof. Clearly, one has that

‖D1(θ)ψ0(θ,−θ)‖2 = 〈
D1(θ)

∗ D1(θ)
〉
θ

= 〈
D1(θ)

∗ D2(θ)
〉
θ
, (4.16)

from (4.13) above. Applying Theorem 6, Lemma 6, and Remark 2, as appropriate, to
the terms found in (4.14), one arrives at (4.15). ��

4.2. Orthogonality of the excited state. We are now ready to provide the orthogonality
estimate.

Theorem 4. Assume F1, F2, and LSM1-6. If there exist a constant c > 0 such that
γL L ≥ c for sufficiently large L and we choose the parameters a = γL/L and T = L/2,
then there exist constants C > 0 and k > 0 so that

∣∣〈ψa,T (2π),ψ0〉
∣∣ ≤ C L2de−kγL L (4.17)

when L is large enough.

Proof. As is clear from (4.2), Theorem 4 follows from bounding the quantity appearing
in (4.3) uniformly for θ ∈ [0, 2π ]. A short calculation, using (2.25), shows that

∂θ
[
Tθ,0ψa,T (θ)− ψa,T (θ)

] = Ca,T (θ)
[
Tθ,0ψa,T (θ)− ψa,T (θ)

]

+ Da,T (θ) ψa,T (θ), (4.18)

where

Ca,T (θ) = ∂θTθ,0 T ∗
θ,0 + Tθ,0 Ba,T (θ) T ∗

θ,0, (4.19)

and

Da,T (θ) = ∂θTθ,0 T ∗
θ,0 + Tθ,0 Ba,T (θ) T ∗

θ,0, − Ba,T (θ), (4.20)

are both anti-Hermitian operators. The first term on the right-hand side of (4.18) is norm-
preserving, and therefore, we need only bound the norm of the second by Theorem 7.

The norm of Da,T (θ)ψa,T (θ)will now be estimated by rewriting it in terms of quan-
tities for which we have already proven bounds. Each term will be shown to satisfy a
bound of the form (4.17).

We begin by writing

‖ Da,T (θ) ψa,T (θ) ‖2 = Tr
[
Da,T (θ)

∗Da,T (θ) ρa,T (θ)
]

= Tr
[
Da,T (θ)

∗Da,T (θ) ρ0(θ,−θ)
]

+ Tr
[
Da,T (θ)

∗ Da,T (θ)
(
ρa,T (θ) − ρ0(θ,−θ)

)]
. (4.21)
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The first term on the right-hand side above, which is equal to ‖Da,T (θ)ψ0(θ,−θ)‖2,
may be estimated by comparing it with the vector D1(θ)ψ0(θ,−θ) introduced in the
previous subsection. In fact,

‖Da,T (θ)ψ0(θ,−θ)‖ ≤ ‖D1(θ)ψ0(θ,−θ)‖+‖ (Da,T (θ)−D1(θ)
)
ψ0(θ,−θ)‖. (4.22)

We bounded the first term above in Lemma 3. For the second, observe that

Da,T (θ)− D1(θ) = Tθ,−θ
(
Ba,T (θ)− B1(θ)

)
T ∗
θ,−θ + Tθ,0

(
Ba,T (θ)− B(W )

a,T (θ)
)

T ∗
θ,0

− Tθ,−θ
(

Ba,T (θ) − B(W )
a,T (θ)

)
T ∗
θ,−θ + B1(θ) − Ba,T (θ),

(4.23)

from which it is clear that

‖ (Da,T (θ) − D1(θ)
)
ψ0(θ,−θ)‖ ≤ 2 ‖Ba,T (θ) − B(W )

a,T (θ)‖
+ 2 ‖ (Ba,T (θ) − B1(θ)

)
Pθ0 ‖. (4.24)

That each of these terms satisfies the desired bound follows from Lemma 2.
For the final term on the right-hand side of (4.21), we insert and remove

D(W )
a,T (θ) = ∂θTθ,0 T ∗

θ,0 + Tθ,0 B(W )
a,T (θ) T ∗

θ,0, − B(W )
a,T (θ), (4.25)

a local observable supported in Λ(W )
L (m). Observe that

‖D(W )
a,T (θ)‖ ≤ ‖∂θTθ,0T ∗

θ,0‖ + 2‖B(W )
a,T (θ)‖ ≤ C Ld , (4.26)

where we have used Proposition 2. We may write

Tr
[
Da,T (θ)

∗Da,T (θ)
(
ρa,T (θ) − ρ0(θ,−θ)

)]

= Tr
[

D(W )
a,T (θ)

∗D(W )
a,T (θ)

(
ρa,T (θ) − ρ0(θ,−θ)

)]

+ Tr
[(

Da,T (θ)
∗ Da,T (θ)− D(W )

a,T (θ)
∗D(W )

a,T (θ)
) (
ρa,T (θ)− ρ0(θ,−θ)

)]
. (4.27)

The first term above may be estimated by
∣∣∣Trm

[
D(W )

a,T (θ)
∗ D(W )

a,T (θ)Trmc
[
ρa,T (θ) − ρ0(θ,−θ)

] ]∣∣∣

≤
∥∥∥D(W )

a,T (θ)
∗ D(W )

a,T (θ)

∥∥∥
∥∥Trmc

[
ρa,T (θ) − ρ0(θ,−θ)

]∥∥
1

≤ C L4de−kγ L , (4.28)

where for the final inequality above we used Theorem 2 again.
For the second term, we rewrite the difference as

Da,T (θ)
∗Da,T (θ)−D(W )

a,T (θ)
∗D(W )

a,T (θ) =
(

Da,T (θ)−D(W )
a,T (θ)

)∗
Da,T (θ)

+D(W )
a,T (θ)

∗ (Da,T (θ)−D(W )
a,T (θ)

)
, (4.29)
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and apply the norm estimate
∥∥∥Da,T (θ)− D(W )

a,T (θ)

∥∥∥ ≤ 2
∥∥∥Ba,T (θ)− B(W )

a,T (θ)

∥∥∥ . (4.30)

We find that

Tr
[(

Da,T (θ)
∗Da,T (θ) − D(W )

a,T (θ)
∗D(W )

a,T (θ)
) (
ρa,T (θ) − ρ0(θ,−θ)

)]

≤ 4
∥∥∥Ba,T (θ)− B(W )

a,T (θ)

∥∥∥
(
‖Da,T (θ)‖ + ‖D(W )

a,T (θ)‖
)
, (4.31)

which satisfies the required bound by Lemma 2 and an estimate analogous to (4.26).
This completes the proof of Theorem 4. ��

5. Auxiliary Results

In this section, we collect a number of auxiliary results, technical estimates as well as a
few lemmas of a more general nature, which are needed for the proofs in Sects. 3 and 4.

We first recall the Lieb-Robinson bounds which are used to demonstrate quasi-local-
ity of the dynamics associated to general quantum spin systems, see Theorem 5. Then,
we observe in Proposition 1 that these Lieb-Robinson bounds may be used to compare
the dynamics of a Hamiltonian defined on a given system with the dynamics of the same
Hamiltonian restricted to a subsystem. Next, we provide in Lemma 4 an explicit bound
which applies to the specific type of interactions we consider in this work.

In Sect. 5.2, we introduce the operators Ba,T (A, H) which play a prominent role in
our argument. We first discuss a few of their basic properties, and then use Proposition 1
to estimate the difference that arises in defining the operator with the full Hamiltonian
as opposed to the Hamiltonian restricted to a subsystem; this is the content of Lemma 5.
Lastly, we remark on exactly how this estimate will be used in the main text.

We review the Exponential Clustering Theorem in Sect. 5.3, and use it to prove a
technical estimate, see Lemma 6. Moreover, in this section we also prove Lemma 7. This
result provides an estimate on the quantity ‖ (Ba,T (A, H)− B(A, H)

)
P0‖ in terms of

the parameters a, T , and the spectral gap of H , see (5.64). Here P0 denotes the spectral
projection onto the ground state of H , and the bound is valid for local observables A
satisfying P0 AP0 = 0.

Lastly, we formulate a statement concerning solutions of certain simple differential
equations in Sect. 5.4.

5.1. Lieb-Robinson bounds. For what follows, we adopt the same general framework
for quantum spin models that was described in Sect. 1.2, including Conditions F1, F2,
and the assumption that ‖Φ‖λ < +∞ for some λ > 0 (see (1.7) for the definition of the
norm ‖ · ‖λ).

We will use the following version of the Lieb-Robinson bound [18], which is a variant
of the results proven in [20, 9].

Theorem 5 (Lieb-Robinson Bound). Let λ ≥ 0 and take Φ ∈ Bλ(Λ). For any pair of
local observables A ∈ AX and B ∈ AY with X,Y ⊂ Λ, one may estimate

‖[αt (A), B]‖ ≤ 2 ‖A‖ ‖B‖
Cλ(F)

gλ(t)
∑

x∈X

∑

y∈Y

Fλ (d(x, y)) , (5.1)
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for any t ∈ R. Here {αt } is the dynamics generated by Φ, and one may take

gλ(t) =
{(

e2 ‖Φ‖λ Cλ(F) |t | − 1
)

if d(X,Y ) > 0,
e2 ‖Φ‖λ Cλ(F) |t | otherwise.

(5.2)

Our proof of the Lieb-Schultz-Mattis theorem relies heavily on comparing the time
evolution corresponding to a given Hamiltonian to that of the Hamiltonian restricted to
a subsystem. The errors that result from such a comparison can be estimated in terms of
a specific commutator to which the Lieb-Robinson bounds readily apply.

We begin with some notation. Let λ ≥ 0 and considerΦ ∈ B(Λ). For finiteΛ0 ⊂ Λ,
the Hamiltonian corresponding toΦ restricted toΛ0 is given by the self-adjoint operator

H0 =
∑

X⊂Λ0

Φ(X). (5.3)

We will denote by α(0)t the time evolution corresponding to H0, i.e., for any local ob-
servable A, α(0)t (A) = eit H0 Ae−i t H0 for all t ∈ R.

Proposition 1. Let λ ≥ 0 and Φ ∈ Bλ(Λ). Suppose the Hamiltonian corresponding
to Φ restricted to a finite volume Λ0 ⊂ Λ is written as the sum of two self-adjoint
operators, i.e., H0 = H1 + H2. Denoting by α(i)t the time evolution corresponding to Hi ,
for i = 0, 1, 2, then for any local observable A and t ∈ R, one has that

‖α(0)t (A) − α
(1)
t (A) ‖ ≤

∫ |t |

0

∥∥∥[H2, α
(1)
s (A)]

∥∥∥ ds. (5.4)

Proof. Define the function f : R → A by

f (t) := α
(0)
t (A) − α

(1)
t (A). (5.5)

A simple calculation shows that f satisfies the following differential equation:

f ′(t) = i
[

H0 − H1, α
(1)
t (A)

]
+ i [H0, f (t)] , (5.6)

subject to the boundary condition f (0) = 0. As this is a first order equation, the solution
can be found explicitly:

f (t) = α
(0)
t

(∫ t

0
α
(0)
−s

(
i
[

H2, α
(1)
s (A)

] )
ds

)
. (5.7)

Using expression (5.7) and the automorphism property of α(0)t , it is clear that

‖ f (t) ‖ ≤
∫ |t |

0

∥∥∥[H2, α
(1)
s (A)]

∥∥∥ ds, (5.8)

as claimed. ��
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To estimate the norm of the commutator appearing in Proposition 1, specifically in
the bound (5.4), it is useful to specialize the general Lieb-Robinson bounds described
above to the exact context we encounter in the present work. For example, we will be
interested in specific finite volume Hamiltonians, those defined in Sect. 2 as Hθ,θ ′ , and
particular observables, such as A1(θ) = ∂1 Hθ,−θ and A2(θ) = ∂2 Hθ,−θ . Let αt be the
time evolution corresponding to the Hθ,θ ′ Hamiltonian, and letα(W )

t denote the dynamics

associated with the Hamiltonian H (W )

θ,θ ′ which is defined in (2.8). We use the following
estimate several times.

Lemma 4. Let Φ ∈ Bλ(Λ), then there exists constants C > 0 and k > 0 for which

max
i=1,2

sup
θ∈[0,2π ]

∥∥∥
[

H (S), α
(W )
t (Ai (θ))

] ∥∥∥ ≤ C ek|t | L2(d−1) e−λL/4. (5.9)

Here it is important that C and k depend only on the properties of the underlying set Λ
and the interaction Φ; they do not depend on the length scale L.

Proof. We will estimate the above commutator in the case that the observable is A1(θ);
an analogous result holds for A2(θ). Recall that in (2.9) we wrote H (S) as a sum of inter-
action terms. Similarly, if one denotes by Pm(θ; Y ) := Vm(θ)

∗Φ(Y )Vm(θ) − Φ(Y ),
then A1(θ) may be written as

A1(θ) =
∑

Y⊂ΛL

∂θ Pm(θ; Y )

= −i
∑

Y⊂ΛL :
Pm (θ;Y ) �=0

∑

y∈Y+

Vm(θ)
∗ [S3

y , Φ(Y )
]

Vm(θ), (5.10)

where Y+ is the set of sites y ∈ Y strictly to the right of m. Inserting both of these
expressions into the right-hand side of (5.9) and applying the triangle inequality, it is
clear that we must bound many terms of the form

∥∥∥
[
Φ(X), α(W )

t

(
Vm(θ)

∗ [ S3
y , Φ(Y )

]
Vm(θ)

) ] ∥∥∥ . (5.11)

Term by term, we apply the Lieb-Robinson bound provided by Theorem 5, and use that
the distance between the supports of X and Y is linear in L; concretely for any x ∈ X
and y ∈ Y , d(x, y) ≥ d(X,Y ) ≥ L

4 − 3R. We find that each term described by (5.11)
satisfies an upper bound of the form

C(t) ‖Φ(X)‖ |Y | ‖[S3
y , Φ(Y )]‖ e−λL/4, (5.12)

where C(t) may be taken as

C(t) = 2‖F‖
Cλ(F)

e2Cλ(F)‖Φ‖λ|t |+3λR . (5.13)

We need only count the number of terms. The combinatorics of the sums may be naively
estimated as follows: H (S) corresponds to a sum of the form

∑

X⊂ΛL :
X∩Λ(S)L �=∅

≤
L
4 +R−1∑

n= L
4 −R+1

∑

v∈VL

∑

X�(m+n,v)

+

3L
4 +R−1∑

n= 3L
4 −R+1

∑

v∈VL

∑

X�(m+n,v)

, (5.14)
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whereas for A1(θ) we have that the sum

∑

Y⊂ΛL :
Pm (θ;Y ) �=0

∑

y∈Y

≤
m+R∑

n=m−R

∑

v∈VL

∑

Y�(n,v)

∑

y∈Y

. (5.15)

Putting everything together, we have obtained that
∥∥∥
[

H (S), α
(W )
t (A1(θ))

]∥∥∥ ≤ 2 C(t) |||Φ|||1 |||Φ|||2 |VL |2 (2R + 1)(2R − 1) e−λ L
4 ,

(5.16)

which proves the claim. Recall,

|||Φ|||1 := sup
x∈Λ

∑

X�x

‖Φ(X)‖ (5.17)

and

|||Φ|||2 := sup
x∈Λ

∑

X�x

|X |
∑

x ′∈X

‖ [S3
x ′ , Φ(X)] ‖. (5.18)

��

5.2. Approximation of the imaginary time evolution. For our proof of the Lieb-Schultz-
Mattis Theorem, we introduce an operator which, under certain assumptions, approxi-
mates the imaginary time evolution corresponding to a given Hamiltonian. In this section,
we provide several basic estimates of this operator to which we will often refer in the
main text.

Let λ ≥ 0, Φ ∈ Bλ(Λ), Λ0 ⊂ Λ be a finite set, and H be the Hamiltonian corre-
sponding to Φ restricted to Λ0. Denote by αt , for t ∈ R, the time evolution determined
by H . For any local observable A, a > 0, M > 0, and t �= 0, define

Aa,M (i t, H) = e−at2

2π i

∫ M

−M
αs(A)

e−as2

s − i t
ds, (5.19)

and set Aa(i t, H) = limM→∞ Aa,M (i t, H). We use the operator

Ba,T (A, H) = −
∫ T

0
Aa(i t, H)− Aa(i t, H)∗ dt, (5.20)

to define our variational state in the main text, see (2.25). We begin with some basic
properties.

Proposition 2 (Shanti’s Bound). Let Φ ∈ Bλ(Λ), A be a local observable, a > 0, and
T > 0. The operator Ba,T (A, H) is anti-hermitian and bounded. In particular,

‖Ba,T (A, H)‖ ≤ ‖A‖
2

√
π

a
. (5.21)

It is important to note that the bound above is independent of the finte volumeΛ0 on
which the Hamiltonian H is defined.



A Multi-Dimensional Lieb-Schultz-Mattis Theorem 463

Proof. That Ba,T (A, H) is anti-hermitian follows immediately from (5.20). Combining
(5.19) and (5.20), one finds that

Ba,T (A, H) = i

π

∫ T

0

∫ ∞

−∞
e−a(s2+t2) αs(A)

s

s2 + t2 ds dt, (5.22)

from which (5.21) easily follows as

‖Ba,t (A, H)‖ ≤ ‖A‖
π

∫ ∞

−∞
e−as2 |s|

∫ T

0

1

s2 + t2 dt ds ≤ ‖A‖
2

√
π

a
. (5.23)

��
In situations where the local observable A and the Hamiltonian H are fixed, we will
often write Aa(i t) and Ba,T to simplify notation. The following estimate is a simple
consequence of (5.19).

Proposition 3. Let Φ ∈ Bλ(Λ) and A be a local observable. One has that
∥∥∥∥
∫ T

0
Aa(i t)− Aa,M (i t) dt

∥∥∥∥ ≤ T

2M

‖A‖√
πa

e−aM2
. (5.24)

Proof. For any t �= 0,

Aa(i t)− Aa,M (i t) = e−at2

2π i

∫

|s|>M
αs(A)

e−as2

s − i t
ds, (5.25)

and therefore, one has the pointwise estimate

∥∥ Aa(i t)− Aa,M (i t)
∥∥ ≤ e−at2 ‖A‖

2πM
e−aM2

√
π

a
. (5.26)

Upon integration, (5.24) readily follows. ��
We will now prove an analogue of Proposition 1 for the quantities Ba,T (A, H) intro-

duced in (5.20). The estimate provided below is made explicit in terms of an a priori
input, an assumed form of the Lieb-Robinson bound, see (5.27) below.

Lemma 5. Let λ ≥ 0 and Φ ∈ Bλ(Λ). Suppose the Hamiltonian corresponding to Φ
restricted to a finite volume Λ0 ⊂ Λ is written as the sum of two self-adjoint opera-
tors, i.e., H0 = H1 + H2. Denote by α(i)t the time evolution corresponding to Hi , for
i = 0, 1, 2. If, for a given local observable A, there exists numbers ci > 0, i = 1, 2, 3,
for which

∥∥∥ [ H2, α
(1)
t (A) ]

∥∥∥ ≤ c1 ec2|t | − c3, (5.27)

for all t ∈ R, then the following estimate holds:

∥∥ Ba,T (A, H0)− Ba,T (A, H1)
∥∥ ≤ 2T

M
e−aM2

( ‖A‖√
πa

+
c1 M2

π

)
, (5.28)

where M has to be chosen as the positive solution of

aM2 + c2 M − c3 = 0. (5.29)
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We note that in our applications the numbers ci will depend on the observables A and
H2; in fact, they will be functions of the length scale L . We articulate this dependence
explicitly in Remark 1 below.

Proof. One may write

Ba,T (A, H0)− Ba,T (A, H1) = −
∫ T

0
Aa(i t, H0)− Aa(i t, H1) dt

+
∫ T

0
Aa(i t, H0)

∗ − Aa(i t, H1)
∗ dt, (5.30)

and therefore

∥∥ Ba,T (A, H0)− Ba,T (A, H1)
∥∥ ≤ 2

∥∥∥∥
∫ T

0
Aa(i t, H0)− Aa(i t, H1) dt

∥∥∥∥ . (5.31)

Moreover, the integrand may be expressed as

Aa(i t, H0)− Aa(i t, H1) = Aa(i t, H0)− Aa,M (i t, H0) + Aa,M (i t, H0)

−Aa,M (i t, H1) + Aa,M (i t, H1)− Aa(i t, H1), (5.32)

and for j = 0, 1, the bounds

∥∥∥∥
∫ T

0
Aa(i t, Hj )− Aa,M (i t, Hj ) dt

∥∥∥∥ ≤ T

2M

‖A‖√
πa

e−aM2
, (5.33)

follow immediately from Proposition 3. From this we conclude that for any M > 0,

∥∥ Ba,T (A, H0)− Ba,T (A, H1)
∥∥ ≤ 2

∥∥∥∥
∫ T

0
Aa,M (i t, H0)− Aa,M (i t, H1) dt

∥∥∥∥

+
2T

M

‖A‖√
πa

e−aM2
. (5.34)

Clearly, the pointwise estimate

‖Aa,M (i t, H0)− Aa,M (i t, H1)‖ ≤ e−at2

2π

∫ M

−M

‖α(0)s (A)−α(1)s (A)‖
|s| e−as2

ds, (5.35)

follows directly from (5.19). By Proposition 1, we have that

‖α(0)s (A)− α(1)s (A)‖ ≤
∫ |s|

0

∥∥∥[H2, α
(1)
x (A)]

∥∥∥ dx, (5.36)

and by assumption (5.27), the integrand satisfies a uniform bound for |s| ≤ M . The
implication is that for all |s| ≤ M ,

‖α(0)s (A)− α
(1)
s (A)‖

|s| ≤ c1ec2 M−c3 . (5.37)
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Putting everything together, we obtain that

∥∥ Ba,T (A, H0)− Ba,T (A, H1)
∥∥ ≤ 2T

M

‖A‖√
πa

e−aM2

+
c1ec2 M−c3

π

∫ T

0

∫ M

−M
e−a(t2+s2) dsdt. (5.38)

As M here was arbitrary, we chose it as the (positive) solution of the following quadratic
equation aM2 + c2 M − c3 = 0. In this case,

∥∥ Ba,T (A, H0)− Ba,T (A, H1)
∥∥ ≤ 2T

M
e−aM2

( ‖A‖√
πa

+
c1 M2

π

)
(5.39)

as claimed. ��
Remark 1. In the main text of the paper, we will use Lemma 5 for the Hamiltonians
H0 = Hθ,−θ and H1 = H (W )

θ,−θ each of which depends on the length scale L; see Sect. 2
for the relevant definitions. It is assumed that H0 has a gap γL > 0 above the ground state
energy. The local observable A will be exactly as in Lemma 4, and therefore, the numbers
ci , i = 1, 2, 3, may be taken as follows: c1 = C L2(d−1), c2 = k, and c3 = λL/4, where
again C and k depend only on the interaction and the underlying set Λ. In this case, we
will choose the parametrization a = γL/L and T = L/2. With this choice, the estimate
(5.28) takes the form:

sup
θ∈[0,2π ]

∥∥∥ Ba,T (θ)− B(W )
a,T (θ)

∥∥∥ ≤ C L2de−kγL L
(

1 +
1

Ld
√
γL L

)
. (5.40)

Here we have used the notation from Sect. 3 and the fact that the gap γL has a uniform
bound from above; see (1.1) in Sect. 1.

5.3. Estimates for gapped systems. We derive two useful results in this subsection. For
the first we recall the Exponential Clustering Theorem [9, 20], and use it to prove a
technical estimate Lemma 6.

The second crucial estimate in this subsection, Lemma 7 below, applies specifically
to gapped systems. It provides a bound on the norm of the difference in the operators
Ba,T (A, H) and B(A, H) when restricted to the space of ground states corresponding
to H . The bound applies to local observables A which project off the ground state, i.e.
satisfy P0 AP0 = 0, where P0 is the spectral projection of H onto the ground states, and
is explicit in the parameters a, T , and the spectral gap of H , see (5.64) below.

We will consider Hamiltonians H , of the type introduced in Sect. 5.1, with an addi-
tional feature: a gap above the ground state energy. To state the gap condition precisely,
we consider a representation of the system on a Hilbert space H. This means that there
is a representation π : A → B(H), and a self-adjoint operator H on H such that

π(αt (A)) = eit Hπ(A)e−i t H ,

for all t ∈ R and A ∈ A. For the results which follow, we will assume that H ≥ 0 and
that Ω ∈ H is a normalized ground state, i.e., a vector state for which HΩ = 0 and
‖Ω‖ = 1. We say that the system has a spectral gap in this representation if there exists
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δ > 0 such that σ(H) ∩ (0, δ) = ∅, where σ(H) is the spectrum of the operator H . In
that case, the spectral gap, γ , is defined to be

γ = sup{δ > 0 | σ(H) ∩ (0, δ) = ∅}. (5.41)

Let P0 denote the orthogonal projection onto ker H . From now on, we will work in this
representation and simply write A instead of π(A).

The following result concerning exponential clustering was proven in [20].

Theorem 6 (Exponential Clustering). Fix λ > 0. Let Φ ∈ Bλ(Λ) be an interaction
for which the corresponding self-adjoint Hamiltonian has a representation H ≥ 0 with
a normalized ground state vector Ω , i.e., HΩ = 0 and ‖Ω‖ = 1. Let PE denote the
family of spectral projections corresponding to H. If H has a spectral gap of size γ > 0
above the ground state energy, then there existµ > 0 such that for any local observables
A and B with A ∈ AX , B ∈ AY , d := dist(X,Y ) > 0, and P0 BΩ = P0 B∗Ω = 0, the
estimate

| 〈Ω, Aαi t (B)Ω 〉 | ≤ C(A, B) e
−µd

(
1 + γ 2 t2

4µ2d2

)

, (5.42)

holds for all t : 0 ≤ t (4‖Φ‖λCλ + γ ) ≤ 2 λ d. Here, one may choose

C(A, B) = ‖A‖ ‖B‖
⎛

⎝ 1 +
2

π Cλ

∑

x∈X

∑

y∈Y

F (d(x, y)) +
1√
πµd

⎞

⎠ (5.43)

and

µ = λ γ

4‖Φ‖λ Cλ + γ
. (5.44)

The above result easily leads to estimates on integrals of these ground state expecta-
tions. We state two such bounds in the next lemma, as they will arise in the proof of our
main result.

Lemma 6. Under the assumptions of Theorem 6, we have the estimates

∫ ∞

0
| 〈Ω, Aαi t (B)Ω〉 | dt ≤

(
2µd C(A, B) + ‖A‖ ‖B‖ e−µ d

) e−µd

γ
, (5.45)

and
∫ ∞

0

∫ ∞

0

∣∣ 〈Ω, Aαi(s+t)(B)Ω〉 ∣∣ ds dt

≤
[
(µd)2 C(A, B) + ‖A‖ ‖B‖

(
2µd + e−µ d

) ] e−µd

γ 2 . (5.46)

Proof. Define T by the equation γ T = 2µ d. We have that

∫ T

0
| 〈Ω, Aαi t (B)Ω〉 | dt ≤ C(A, B) T e−µ d , (5.47)



A Multi-Dimensional Lieb-Schultz-Mattis Theorem 467

and also
∫ ∞

T
| 〈Ω, Aαi t (B)Ω〉 | dt ≤ ‖A‖ ‖B‖

γ
e−γ T . (5.48)

Combining these two bounds, we arrive at (5.45). Similarly, one may estimate
∫ T/2

0

∫ T/2

0

∣∣ 〈Ω, Aαi(s+t)(B)Ω〉 ∣∣ ds dt ≤ C(A, B) T 2

4
e−µ d , (5.49)

∫ ∞

T/2

∫ T/2

0

∣∣ 〈Ω, Aαi(s+t)(B)Ω〉 ∣∣ ds dt ≤ ‖A‖ ‖B‖ T

2γ
e−µ d , (5.50)

and finally,
∫ ∞

T/2

∫ ∞

T/2

∣∣ 〈Ω, Aαi(s+t)(B)Ω〉 ∣∣ ds dt ≤ ‖A‖ ‖B‖
γ 2 e−γ T . (5.51)

��
Remark 2. In our applications, the Hamiltonian H = Hθ,−θ depends on a length scale
L and has a gap γL > 0 above the ground state energy. The support of the observables
A and B will have a minimal distance d = L/2 − 2R − 1, and moreover, B = B(θ)
will either be A1(θ) or A2(θ). In this case, 〈B(θ)〉θ = 0 by Lemma 1, and therefore,
the assumptions of Theorem 6 hold. Here we have used 〈·〉θ to denote the ground state
expectation corresponding to ψ0(θ,−θ). It is easy to see that there exist positive con-
stants C ′ and C ′′ for which C ′γL L ≤ µd ≤ C ′′L , and thus ultimately constants C and
k for which the bounds appearing in (5.45) and (5.46) may be estimated by

sup
θ∈[0,2π ]

∫ ∞

0
| 〈Aαi t (B(θ))〉θ | dt ≤ C ‖A‖ |X | Ld

γL
e−kγL L , (5.52)

and

sup
θ∈[0,2π ]

∫ ∞

0

∫ ∞

0

∣∣ 〈Aαi(s+t) (B(θ))〉θ
∣∣ ds dt ≤ C ‖A‖ |X | Ld+1

γ 2
L

e−kγL L , (5.53)

respectively.

For the next lemma we will need the following basic estimate involving the decay of
certain Fourier transforms.

Proposition 4. Let a > 0 and T > 0 be given. Define a function Fa,T : R → C by

Fa,T (E) := 1

2π i

∫ T

0
e−at2

∫ ∞

−∞
e−i Es e−as2

s − i t
ds dt. (5.54)

For all E ∈ R, Fa,T (E) ≥ 0 and the estimate

Fa,T (E) ≤ T

2
e− E2

4a , (5.55)

is valid for E ≥ 0. In the parameter range, E ≥ 2aT > 0, one may also show that
∫ T

0
e−Et dt − Fa,T (−E) ≤ T

2
e− E2

4a . (5.56)
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Proof. One may easily verify that for any t > 0,

1

2π i

∫ ∞

−∞
e−i Es e−as2

s − i t
ds = 1

2
√
πa

∫ ∞

0
e−tw e− (w+E)2

4a dw, (5.57)

for all E ∈ R, see e.g. Lemma 1 in [20]. This implies the first claim. Evaluating the
Gaussian integral yields

1

2
√
πa

∫ ∞

0
e−tw e− (w+E)2

4a dw ≤ 1

2
e− E2

4a , (5.58)

in the case that E ≥ 0, from which (5.55) is clear.
To obtain (5.56), we first recall that the Fourier transform of a Gaussian is a Gaussian,

i.e., for all z ∈ C,

e− z2
2 = 1√

2π

∫ ∞

−∞
e− x2

2 e−i xz dx, (5.59)

and therefore, by rescaling z �→ −√
2az, multiplying through by ei Ez (for E ∈ R), and

changing variables w = √
2ax + E , we have that

ei Ez e−az2 = 1

2
√
πa

∫ ∞

−∞
eiwz e− (w−E)2

4a dw, (5.60)

for all z ∈ C.
Now, by direct substitution into (5.57), we have that

Fa,T (−E) = 1

2
√
πa

∫ T

0
e−at2

∫ ∞

0
e−tw e− (w−E)2

4a dw. (5.61)

Applying (5.60), with the special choice of z = i t , one sees that

∫ T

0
e−Et dt − Fa,T (−E) = 1

2
√
πa

∫ T

0
e−at2

∫ 0

−∞
e−tw e− (w−E)2

4a dw. (5.62)

Since w < 0 and t > 0, the integrand above

e−tw e− (w−E)2
4a = e− E2

4a e
(E−2at)w

2a e−w2
4a (5.63)

satisfies a trivial bound when E ≥ 2aT . For these values of E , (5.56) holds. ��
We may now prove the main estimate for gapped systems. Recall the definitions of

the operators B = B(A, H) and Ba,T = Ba,T (A, H) in (2.19) and (2.24), respectively.

Lemma 7. Let H ≥ 0 be a self-adjoint operator and PE denote the family of spectral
projections corresponding to H. Suppose H has a gap γ > 0, and let A be a local
observable for which P0 AP0 = 0. If 2aT ≤ γ , then one has that

∥∥ (Ba,T − B
)

P0
∥∥ ≤ T e− γ 2

4a

(‖AP0‖ + ‖A∗ P0‖
2

)
+

e−γ T

γ
‖AP0‖. (5.64)
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Proof. One may rewrite the difference in these operators as

(
Ba,T − B

)
P0 =

∫ T

0
(αi t (A)− Aa(i t)) dt P0

+
∫ ∞

T
αi t (A) dt P0 +

∫ T

0
Aa(i t)

∗dt P0. (5.65)

Each of these terms may be bounded in norm.
For any vectors f and g, one may calculate

〈 f,
∫ ∞

T
αi t (A)dt P0 g 〉 =

∫ ∞

T
〈 f, e−t H AP0g 〉 dt

=
∫ ∞

T

∫ ∞

γ

e−t E d〈 f, PE AP0g 〉 dt, (5.66)

where we have used the spectral theorem to rewrite the time evolution and the fact that
P0 AP0 = 0. Clearly then,

∣∣∣∣〈 f,
∫ ∞

T
αi t (A)dt P0 g 〉

∣∣∣∣ ≤ ‖ f ‖ ‖AP0g‖
∫ ∞

T
e−γ t dt, (5.67)

and therefore,
∥∥∥∥
∫ ∞

T
αi t (A) dt P0

∥∥∥∥ ≤ e−γ T

γ
‖AP0‖. (5.68)

Likewise, one may similarly calculate

〈 f,
∫ T

0
Aa(i t)

∗dt P0g 〉 = −
∫ T

0

e−at2

2π i

∫ ∞

−∞
〈αs(A) f, P0g 〉 e−as2

s + i t
ds dt

=
∫ ∞

γ

Fa,T (E) d〈 f, PE A∗ P0g 〉, (5.69)

where we have introduced Fa,T (E) = Fa,T (E) as in (5.54) of Proposition 4 above. The
estimate

∥∥∥∥
∫ T

0
Aa(i t)

∗ dt P0

∥∥∥∥ ≤ T

2
e− γ 2

4a ‖A∗ P0‖, (5.70)

readily follows from (5.55) of Proposition 4 and the fact that 0 < γ ≤ E .
Lastly, an analogous calculation shows that

∫ T

0
〈 f, [αi t (A)− Aa(i t)] P0g 〉 dt

=
∫ ∞

γ

[ ∫ T

0
e−Et dt − Fa,T (−E)

]
d〈 f, PE AP0g 〉. (5.71)

Thus, for 2aT ≤ γ , we may apply (5.56) of Proposition 4 and establish the bound
∥∥∥∥
∫ T

0
[αi t (A)− Aa(i t) ] dt P0

∥∥∥∥ ≤ T

2
e− γ 2

4a ‖AP0‖. (5.72)
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Compiling our estimates, we have proven that: if 2aT ≤ γ , then

∥∥ (Ba,T − B
)

P0
∥∥ ≤ T e− γ 2

4a

(‖AP0‖ + ‖A∗ P0‖
2

)
+

e−γ T

γ
‖AP0‖, (5.73)

as claimed. ��
Remark 3. Applying Lemma 7 to the operator H = Hθ,−θ , whose spectral projections
we denote by PθE , and the local observable A = A1(θ), we find that there exists a
constant C > 0 for which, along the parametrization a = γL/L and T = L/2,

sup
θ∈[0,2π ]

∥∥ (Ba,T (θ)− B1(θ)
)

Pθ0
∥∥ ≤ C Ld e− γL L

4

(
1 +

e− γL L
4

γL L

)
. (5.74)

5.4. Norm preserving flows. In this section, we collect some basic facts about the solu-
tions of first order, inhomogeneous differential equations.

Definition 1. Let B be a Banach space. For each θ ∈ R, let A(θ) : B → B be a bounded
linear operator, and denote by X (θ) the solution of the differential equation

∂θ X (θ) = A(θ) X (θ) (5.75)

with boundary condition X (0) = X0 ∈ B. We say that the family of operators A(θ)
is norm-preserving if the corresponding flow is isometric, i.e., for every X0 ∈ B, the
mapping γθ : B → B which associates X0 → X (θ), i.e., γθ (X0) = X (θ), satisfies

‖ γθ (X0) ‖ = ‖ X0 ‖ for all θ ∈ R. (5.76)

Two typical examples are the case where B is a Hilbert space and A(θ) is anti-hermi-
tian and the case where B is a Banach space of linear operators on a Hilbert space with
a spectral norm (such as a p−norm with p ∈ [1,+∞]), and where A(θ) is a symmetric
derivation (e.g., i times the commutator with a self-adjoint operator).

Theorem 7. Let A(θ), for θ ∈ R, be a family of norm preserving opeartors in some
Banach space B. For any bounded measurable function B : R → B, the solution of

∂θY (θ) = A(θ)Y (θ) + B(θ), (5.77)

with boundary condition Y (0) = Y0, satisfies the bound

‖ Y (θ) − γθ (Y0) ‖ ≤
∫ θ

0
‖ B(θ ′) ‖ dθ ′. (5.78)

Proof. For any θ ∈ R, let X (θ) be the solution of

∂θ X (θ) = A(θ) X (θ) (5.79)

with boundary condition X (0) = X0, and let γθ be the linear mapping which takes X0
to X (θ). By variation of constants, the solution of the inhomogeneous equation (5.77)
may be expressed as

Y (θ) = γθ

(
Y0 +

∫ θ

0
(γs)

−1 (B(s)) ds

)
. (5.80)

The estimate (5.78) follows from (5.80) as A(θ) is norm preserving. ��
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5.5. Existence of local unitaries with vanishing expectation. Consider a finite system
with a Hamiltonian of the form

H =
∑

X

Φ(X), (5.81)

where Φ is an interaction as defined at the beginning of the paragraph containing
Eq. (1.7). In the introduction, (1.1), we stated a simple upper bound for the spectral
gap of any such Hamiltonian with a unique ground state. The argument we gave there
made use of a one-site unitary U ∈ A{x} with the property that 〈Ω,UΩ〉 = 0. In the
following lemma we show that such a unitary always exists.

Lemma 8. Let H be a complex Hilbert space of dimension at least 2. Then, for any
density matrix ρ on H, there exists a unitary U ∈ B(H) such that TrρU = 0.

Proof. First consider the case where dim H is finite and even, or infinite. The odd-
dimensional case has to be treated slightly differently. Let {e0, e1, . . .} denote an ortho-
normal basis of eigenvectors of ρ, with eigenvalues ρi ordered in non-increasing order.
If H is not separable, it is sufficient that {e0, e1, . . .} contain a basis for the separable
subspace ranρ. Then, a suitable unitary U can be defined as follows:

U =
⊕

i≥0

|e2i+1〉〈e2i | + |e2i 〉〈e2i+1|. (5.82)

If dim H is odd (and hence by our assumptions ≥ 3), it is sufficient to change the first
summand in (5.82) as follows

U = a|e0〉〈e0| − a|e1〉〈e1| + b|e1〉〈e0| + b|e0〉〈e1| + eiφ |e2〉〈e2|
+
⊕

i≥2

|e2i−1〉〈e2i | + |e2i 〉〈e2i−1|,

where a, b ∈ C and φ ∈ R, are chosen such that |a|2 + |b|2 = 1 and

eiφρ2 = aρ0 − aρ1.

This is always possible since ρ2
2 ≤ (ρ0 + ρ1)

2.
It is straightforward to check that U thus defined has the desired properties. ��
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