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Abstract: The theory of local asymptotic normality for quantum statistical experiments
is developed in the spirit of the classical result from mathematical statistics due to Le
Cam. Roughly speaking, local asymptotic normality means that the family ϕn

θ0+u/
√

n
consisting of joint states of n identically prepared quantum systems approaches in a
statistical sense a family of Gaussian state φu of an algebra of canonical commutation
relations. The convergence holds for all “local parameters” u ∈ R

m such that θ =
θ0 + u/

√
n parametrizes a neighborhood of a fixed point θ0 ∈ � ⊂ R

m .
In order to prove the result we define weak and strong convergence of quantum

statistical experiments which extend to the asymptotic framework the notion of quantum
sufficiency introduces by Petz. Along the way we introduce the concept of canonical
state of a statistical experiment, and investigate the relation between the two notions
of convergence. For the reader’s convenience and completeness we review the relevant
results of the classical as well as the quantum theory.

1. Introduction

The statistical interpretation of quantum mechanics, also known as the Born rule, is an
interface connecting the mathematical framework based on Hilbert space operators and
wave functions, with the reality in the form of measurement results. While the Born rule
describes the probability distribution of measurement results, quantum statistical infe-
rence deals with the inverse problem of estimating quantities related to the preparation
of the quantum system, based on the measurement data.

The first papers dealing with quantum statistical problems appeared in the seventies
[23,56,55,6,24] and tackled issues such as quantum Cramér-Rao bounds for unbia-
sed estimators, optimal estimation for families of states possessing a group symmetry,
estimation of Gaussian states, optimal discrimination between non-commuting states. In
recent years there has been a renewed interest in the field [21,22,36,5] and the advances
in quantum engineering have led to the first practical implementations of theoretical
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methods [1,16,43]. An illustrating example is that of quantum homodyne tomogra-
phy [53,9,30], a measurement technique developed in quantum optics, which allows
the estimation with arbitrary precision [2,7] of the state of a monochromatic beam of
light, by repeatedly measuring a sufficiently large number of identically prepared beams
[44,42,57].

Asymptotic inference is now a well established topic in quantum statistics, with
many papers [32,8,52,12,26,3,20,19,4,11] concentrating on the problem of estimating
an unknown state ρ using the results of measurements performed on n quantum systems,
identically prepared in the state ρ. For two dimensional systems, or qubits, the optimal
state estimation problem has an explicit solution [4] in the special context of Bayesian
inference, with invariant priors and figure of merit (risk) based on the fidelity distance
between states. However this particular optimization method does not work for more
general priors or loss functions and it seems to be limited to the qubit case. In the
pointwise approach, Hayashi and Matsumoto [20] showed that the Holevo bound [24] for
the variance of locally unbiased estimators can be attained asymptotically, and described
a sequence of measurements achieving this purpose. Their results, building on earlier
work [18,17], provide the first evidence for the emergence of a Gaussian limit in the
problem of optimal state estimation for qubits.

This paper together with the closely related works [14,13] extend the results of
Hayashi and Matsumoto, and aim at developing quantum statistical analogues of fun-
damental concepts and tools in asymptotic statistics, such as convergence of statistical
experiments and local asymptotic normality. The idea of approximating a sequence
of statistical models by a family of Gaussian distributions appeared in [54], and was
fully developed by Le Cam [28] who introduced the term “local asymptotic normality”.
Among the many applications in mathematical statistics, local asymptotic normality
is essential in asymptotic optimality theory and explains the asymptotic normality of
certain estimators such as the maximum likelihood estimator. Based on the same prin-
ciple, the paper [14] shows that a similar phenomenon occurs in quantum statistics: the
family of joint states of n identically prepared qubits converges to a family of Gaussian
states of a quantum oscillator with unknown displacement. More precisely, there exists
a physical transformation (quantum channel) which maps the joint state of the spins into
the oscillator state, such that local rotations around a fixed spin direction correspond
to displacements of a thermal equilibrium state. In [13], it was further shown that the
passage to the limit can be physically implemented by transferring the joint qubits state
to an approximate Gaussian state of a Bosonic field through a spontaneous emission
coupling. After the transfer, the parameters of the initial qubit state can be estimated by
means of standard measurements in the field, which turns out to be optimal with respect
to various criteria and a large class of loss functions.

In this paper we consider the general set-up of identically prepared finite dimensional
quantum systems and prove a different version of the local asymptotic normality principle
which we call weak convergence, in analogy with the classical statistics terminology.
To motivate the result we build the first elements of a theory of weak convergence of
quantum statistical models in close relation with the work of Petz on quantum sufficiency
[37,40,35]. Our results add to the accumulating evidence for an underlying theory of
quantum statistical experiments and quantum statistical decisions, which parallels the
classical framework, but in the same time has new ‘quantum’ features generating a
fruitful interaction between Mathematical Statistics, Quantum Information and Operator
Algebras.
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Before presenting the structure of the paper, here is a short summary of the key
concept and ideas used in the paper. By adopting the terminology introduced by Le Cam
[28] we call a quantum statistical experiment a family

E := (A, ϕθ : θ ∈ �),
of states ϕθ on a von Neumann algebra A indexed by a parameter set�. One may think of
the quantum system as the carrier of a type of statistical information about the unknown
parameter θ encoded by Nature (or an adversary) in the state ϕθ . Quantum decision
problems such as state estimation or hypothesis testing can be formulated as a game
between Nature who has the choice between different parameters θ and the physicist
who tries to extract the maximum amount of information about the chosen θ for a given
statistical purpose.

Quantum sufficiency deals with the situation when two such experiments

E := (A, ϕθ : θ ∈ �), F := (B, σθ : θ ∈ �),
can be mapped into each other by quantum channels, i.e. there exist unit preserving
completely positive maps T : A → B and S : B → A such that

ϕθ = σθ ◦ T, σθ = ϕθ ◦ S, ∀θ.
In this case it is clear that the two experiments are equivalent from a statistical point of
view and the solution to any decision problem concerning one experiment can be easily
mapped to the other.

What if we have two experiments which are not equivalent but are ‘close to each other’
in a statistical sense? In Sect. 3 we enlarge the concept of sufficiency by defining the
notion of convergence of experiments whereby a sequence En approaches asymptotically
a limit experiment E

En → E, n → ∞.

When convergence holds, statistical problems concerning the experiment En can be cast
into problems concerning the potentially simpler experiment E with vanishingly small
loss of optimality for large n. An important example is that of local asymptotic normality
which means roughly the following: the sequence En of experiments consisting of joint
states ϕn of n identical quantum systems prepared independently in the same state ϕ,
converges to a limit experiment E which is described by a family of Gaussian states on
an algebra of canonical commutation relations.

This paper is intended to be a self-contained introduction to the theory of quantum
statistical experiments and local asymptotic normality. In Sect. 2 we give an account
of the classical concepts which will later be extended to the quantum domain. Suffi-
ciency and equivalence of statistical experiments are defined in Sect. 2.1. We then show
how equivalence classes of experiments can be described using the notion of canoni-
cal measure and Hellinger transform (see Sect. 2.2). This enables us to define weak
convergence of experiments as the pointwise convergence of the Hellinger transforms
for all finite subsets of the parameter space. In parallel with the weak convergence we
introduce the stronger topology of the Le Cam distance between two experiments. This
distance is based on the existence of a randomization mapping the first experiment as
close as possible to the second, and the other way around (see Sect. 2.3). We close the
exposition of the classical theory with the exact formulation of local asymptotic norma-
lity. Given a “smooth” m-dimensional family of distributions Pθ with θ ∈ � ⊂ R

m we
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consider the experiments En consisting of n independent, identically distributed variables
X1, . . . , Xn with distribution Pθ , where θ := θ0 + u/

√
n lies in a local neighborhood of

a fixed point θ0, parametrized by u. Then En converges weakly to a Gaussian shift expe-
riment consisting of a single m-dimensional normal variable with distribution N (u, I −1

θ0
)

having unknown center u and variance equal to the inverse of the Fisher information of
Pθ at θ0 (see Sect. 2.4).

Section 3 begins with a brief review of quantum sufficiency followed by the cha-
racterization of equivalence classes of experiments through the canonical state (cf.
Theorem 3.5). The latter gives the expectation of monomials of Connes cocycles
[Dϕθ , Dϕ]t for arbitrary θ ∈ � and t ∈ R, and plays a similar role to that of the
Hellinger transform of the classical case. Section 3.4 deals with the relation between
weak and strong convergence of experiments. We show that for finite parameter sets
� the weak and strong topologies coincide, under certain assumptions. The quantum
Central Limit Theorem which is presented in Sect. 4 is one of the main ingredients of
our result.

Finally, in Sect. 5 we prove the quantum local asymptotic normality Theorem 5.4
as weak convergence of the i.i.d. experiment ϕn

θ0+u/
√

n
to a quantum Gaussian shift

experiment φu , which is the main result of the paper. This theorem holds for smooth
families of states on matrix algebras of arbitrary finite dimension, and it is complementary
to the result of [14] concerning strong convergence for qubit states. For pedagogical
reasons we first prove the result for a unitary family of states in Sect. 5.1, which could
be seen as a purely quantum experiment, after which we allow the change in eigenvalues
leading to the presence of a classical Gaussian component in the limit experiment.

2. Classical Statistical Experiments

In this section we describe the notion of local asymptotic normality and its significance
in statistics [28,49,45,50]. Suppose that we observe a sample X1, . . . , Xn with Xi taking
values in a measurable space (�,�) and assume that Xi are independent, identically
distributed with distribution Pθ indexed by a parameter θ belonging to an open subset
� ⊂ R

m . The full sample is a single observation from the product Pn
θ of n copies of Pθ on

the sample space (�n, �n). The family of probability distributions
(
Pn
θ : θ ∈ �) is called

a statistical experiment and the point of local asymptotic normality is to show that for
large n such statistical experiments can be approximated by Gaussian experiments after a
suitable reparametrization. Let us fix a value θ0, define a local parameter u = √

n(θ−θ0)

and rewrite Pn
θ as Pn

θ0+u/
√

n
seen as a distribution depending on the parameter u. We will

show that for large n the experiments
(

Pθ0+u/
√

n : u ∈ R
m
)

and
(

N (u, I −1
θ0
) : u ∈ R

m
)
,

have similar statistical properties for “smooth” models θ �→ Pθ . The point of this result is
that while the original experiment may be difficult to analyze, the limit one is a tractable
Gaussian shift experiment which can give us information about the original one, for
instance in the form of lower bounds of estimation errors. Let pθ be the density of Pθ
with respect to some measure µ. In the second experiment we observe a single sample
from the normal distribution with unknown mean u and fixed variance I −1

θ0
, where

[
Iθ0

]
i j = Eθ0

[
	̇θ0,i 	̇θ0, j

]
,

is the Fisher information matrix at θ0, with 	̇θ,i := ∂ log pθ /∂θi .
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In the following subsections we will introduce the key concepts needed to unders-
tand local asymptotic normality: sufficiency, statistical equivalence, canonical measure,
convergence of experiments.

2.1. Statistical experiments, sufficiency, randomizations. A typical statistical problem
can be formulated as follows: given a sample X from a distribution Pθ over the measure
space (�,�), find θ̂ depending on X , an estimator of the unknown parameter θ ∈ �

such that the expected value of the distance d(θ, θ̂ ) is small. In general the space� need
not be finite dimensional, for instance in the case of estimating an unknown probability
density on R.

The estimation problem is an example of a statistical decision problem, a broad
framework containing estimation as well as hypothesis testing problems. Clearly it is
important to understand how much ‘statistical information’ is contained in the expe-
riment E := (Pθ : θ ∈ �), when is an experiment more informative than another, and
when two experiments are close to each other in a statistical sense. Such questions have
been the main motivation for the development of the theory of statistical experiments
pioneered by Le Cam [28]. In this section we will present some basic ideas of this
theory, the converging point being the notion of local asymptotic normality. For more
information we refer to the monographs [28,49,45,50].

Let us start by explaining the notion of sufficiency at the hand of an example. Let
X1, . . . , Xn be independent identically distributed random variables with values in {0, 1}
and distribution Pθ := (1 − θ, θ) with θ ∈ (0, 1), and denote En := (Pn

θ : θ ∈ �) as
before. It is easy to see that X̄n = 1

n

∑n
i=1 Xi is an unbiased estimator of θ and moreover

it is a sufficient statistic for En , i.e. the conditional distribution Pn
θ (·|X̄n = x̄) does not

depend on θ ! In other words the dependence on θ of the total sample (X1, X2, . . . , Xn)

is completely captured by the statistic X̄n which can be used as such for any statistical
decision problem concerning En . If we denote by P̄(n)θ the distribution of X̄n then the

experiment Ēn = (P̄(n)θ : θ ∈ �) is statistically equivalent to En . To convince ourselves
that X̄n does contain the same statistical information as (X1, . . . , Xn), we show that we
can simulate the latter by using a sample from X̄n and an additional random variable
Y uniformly distributed on [0, 1]. Indeed for every fixed value x̄ of X̄n there exists a
measurable function

fx̄ : [0, 1] → {0, 1}n,

such that the distribution of fx̄ (Y ) is Pn
θ (·|X̄n = x̄) or

λ( f −1
x̄ (x1, . . . , xn)) = Pn

θ (x1, . . . , xn|X̄n = x̄),

where λ is the Lebesgue measure on [0, 1]. Then

F(X̄n,Y ) := f X̄n
(Y ),

has distribution Pn
θ . The function F is an example or randomized statistic and it is a

particular case of a more general construction called randomization which should be
seen as a transformation of an experiment into another which typically contains less
information than the original one. We will give a short account of this notion in the
case of dominated experiments. An experiment E = (Pθ : θ ∈ �) on (�,�) is called
dominated if there exists a σ -measure µ such that Pθ 	 µ for all θ . We will often use
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the notation Pθ ∼ µ meaning that for any A ∈ �, µ(A) = 0 if and only if Pθ (A) = 0
for all θ .

Definition 2.1. A positive linear map

M∗ : L1(�1, �1, µ1) → L1(�2, �2, µ2)

is called a stochastic operator or transition if ‖M∗(g)‖1 = ‖g‖1 for every g ∈ L1
+(�1).

Definition 2.2. A positive linear map

M : L∞(�2, �2, µ2) → L∞(�1, �1, µ1)

is called a Markov operator if M1 = 1, and if for any fn ↓ 0 in L∞(�2) we have
M fn ↓ 0.

The pair (M,M∗) with M and M∗ as above is called a dual pair if
∫

f M(g)dµ1 =
∫

M∗( f )gdµ2,

for all f ∈ L1(�1) and g ∈ L∞(�2). It is a theorem that for any stochastic operator M∗
there exists a unique dual Markov operator M and conversely, for any Markov operator
M there exists a unique dual stochastic operator M∗.

Definition 2.3. Let Ei = (Pθi : θ ∈ �) be two dominated statistical experiments on
(�i , �i )with Pi ∼ µi , i = 1, 2. Then E2 is a randomization of E1 if any of the following
equivalent conditions is satisfied:

(i) there exists a stochastic operator M∗ : L1(�1, �1, µ1) → L1(�2, �2, µ2) such
that

M∗(d Pθ1 /dµ1) = d Pθ2 /dµ2, ∀θ ;
(ii) there exists a Markov operator M : L∞(�2, �2, µ2) → L∞(�1, �1, µ1) such

that

Pθ2 = Pθ1 ◦ M, ∀θ.
A statistic f : �1 → �2 generates a sub−σ−field�0 ⊂ � and a randomization which
is the restriction of the measures Pθ to�0. At the level of Markov operator this is simply
described by the embedding of L∞(�,�0, µ) into L∞(�,�,µ).

In general by passing to a sub−σ−field some information about the initial distribution
is lost. It turns out that the concept of randomization is the proper generalization of suf-
ficiency. Indeed the next theorem shows that�0 is sufficient for a dominated experiment
E if this can be recovered by a randomization from the restricted experiment E0.

Theorem 2.4. Let E = (Pθ : θ ∈ �) be a dominated experiment on (�,�) and�0 ⊂ �

a sub-σ -field. Denote by E0 the restriction of E to �0. Then �0 is sufficient for E if and
only if E is a randomization of E0.

Although the concept of randomization does not have a such a direct statistical meaning
as that of randomized statistic, it is a very useful functional analytic generalization of
the later and it is important as a mathematical tool due to the compactness of the space
of randomizations in a certain weak topology.
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Definition 2.5. Two dominated experiments (Pθi : θ ∈ �), i = 1, 2 are statistically
equivalent if each one is a randomization of the other.

The idea of statistical equivalence is that for any statistical decision problem the two
experiments will have matching statistical procedures with the same risks, and thus
contain ‘the same information’.

Finally we mention another useful characterization of sufficiency known as the Fac-
torization Theorem [45] which later will be extended to the quantum case.

Theorem 2.6. Let E = (Pθ : θ ∈ �) be a dominated experiment on (�,�) with
Pθ ∼ µ, and let�0 ⊂ � be a sub-σ -field. Then�0 is sufficient for E if and only if there
exist a measurable function h and for each θ a �0-measurable function gθ such that

d Pθ
dµ

= gθh, µ− almost surely.

2.2. The canonical measure and the Hellinger transform. An important example of a
sufficient statistic for (Pθ : θ ∈ �) is the likelihood ratio process.

Definition 2.7. Let (Pθ : θ ∈ �) be an experiment over (�,�) and suppose that
Pθ 	 Pθ0 for some fixed θ0 ∈ � and all θ ∈ �. The associated likelihood ratio process
based at θ0 is

�θ0 =
{
θ �→ d Pθ

d Pθ0

}
.

Note that the likelihood ratio process is a rather ‘large’ statistic which takes values
in R

|�|,

�θ0 : ω �→
{
θ �→ d Pθ

d Pθ0

(ω)

}
, ω ∈ �.

The choice of the base point θ0 is not important as long as the distributions Pθ are
dominated by Pθ0 . A variation on this can be considered if we restrict to a finite set� of
parameters. In this case there exists a ‘standard representation’ of statistical experiments
such that statistically equivalent experiments have the same representation. Let E =
(Pθ : θ ∈ �) on (�,�) and define µ := ∑

θ∈� Pθ which will play the role of Pθ0 .
Then the vector of likelihood ratios V := (d Pτ /dµ)τ∈� seen as a R

|�|−valued random
variable on (�,�) induces the law σE = L(V |µ) called the canonical measure of E .
Note that neitherµ nor σE is a probability distribution, but they both have mass |�|. The
experiment consisting in observing V is called the canonical experiment and has law
Qθ := L (V |Pθ ). Because the likelihood ratio process is sufficient for E , the canonical
experiment is statistically equivalent to E and the distribution Qθ is supported by the
simplex

S� :=
{

v = (vθ ) ∈ R
|�|
+ ,

∑

θ

vθ = 1

}

.

We can now write

Qθ (B) = Eθ1B(V ) = Eµ1B(V )
d Pθ

dµ
= Eµ1B(V )Vθ =

∫

B
vθσE (dv),
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which implies that

Qθ (dv) = vθσE (dv),

and thus the canonical experiment over the fixed measure space S� is uniquely deter-
mined by the canonical measure σE . Note that not every measure on the simplex is the
canonical measure of some experiment.

Theorem 2.8. Two statistical experiments with the same finite parameter space � are
statistically equivalent if and only if their canonical measures coincide.

The canonical measure is at its turn completely characterized by the Hellinger transform
which is the function ηE : S� → R given by

z �→ ηE (z) =
∫

S�

∏

θ∈�
v

zθ
θ σE (dv).

The Hellinger transform is a continuous function on the interior of S� taking values in
[0, 1]. Note that if � = {1, 2} and if z ∈ S� is given by z1 = z2 = 1/2 then

ηE (1/2, 1/2) =
∫

S�
√
v1v2σE (dv) =

∫ √
d P1

dµ

d P2

dµ
dµ,

which is the affinity of P1 and P2 appearing in the well known Hellinger distance

h(P1, P2) =
∫ (√

d P1

dµ
−
√

d P2

dµ

)2

dµ = 2(1 − ηE (1/2, 1/2)).

2.3. Convergence of statistical experiments. How can we compare two statistical

experiments Ei =
(

P(i)θ : θ ∈ �
)

on two different measure spaces (�i , �i ) for i = 1, 2

? When can we say that one is more informative than the other, or that the two are very
close to each other? More specifically we will be interested in the situation where a
sequence of experiments En converges to a fixed one E . A natural route is to compare
their canonical measures.

Definition 2.9. We say that a sequence of experiments En :=
(

P(n)θ : θ ∈ �
)

converges

weakly to an experiment E := (Pθ : θ ∈ �) if for every finite I ∈ �, the sequence of
canonical measures of En converges weakly (in distribution) to the canonical measure
of E .

Another possibility is to compare the likelihood ratio processes

�
(n)
θ0

=
{

θ �→ d P(n)θ

d P(n)θ0

}

and �θ0 =
{
θ �→ d Pθ

d Pθ0

}
,

by demanding convergence in distribution of the marginals of these processes for all
finite sets I ⊂ �.

Theorem 2.10. Let E be such that Pθ 	 Pθ0 for all θ . Then the following are equivalent:
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(i) The sequence En converges weakly to E .
(ii) For any finite subset I ⊂ �, the sequence of Hellinger transforms ηEn |I converge

to ηE |I pointwise on SI .

(iii) The sequence of likelihood ratio processes �(n)θ0
converges to �θ0 marginally in

distribution.

Example 2.1. Consider a binomial variable with parameters n and success probability
θ/n: P(n)θ (k) = (n

k

)
(θ/n)k(1 − θ/n)n−k , and the corresponding experiment En with θ

ranging over the finite set {θ1, . . . , θp}. Then the Hellinger transform is

ηEn (v1, . . . , vp) =
( p∏

i=1

(
θi

n

)vi

+
p∏

i=1

(
1 − θi

n

)vi
)n

.

As n → ∞ this converges pointwise to

η(v1, . . . , vp) = exp

( p∏

i=1

θ
vi
i −

p∑

i=1

θivi

)

,

which is the Hellinger transform of an experiment consisting of observing a Poisson
variable with mean belonging to the set {θ1, . . . , θp}.
Example 2.2. The central example of this paper is that of local asymptotic normality.
Let En be the experiment consisting in observing a sample X1, . . . Xn of independent
identically distributed random variables with distribution Pθ0+u/

√
n , where u ∈ R

m

should be seen as the unknown local parameter and we assume sufficient “smoothness”
for the map θ �→ Pθ . The claim is that

En :=
(

Pθ0+u/
√

n : u ∈ R
m
)

−→
(

N (u, I −1
θ0
) : u ∈ R

m
)
,

where in the limit experiment we observe a single sample from the normal distribution
with unknown mean u and fixed variance I −1

θ0
. This claim will be detailed in Sect. 2.4.

Although minimalist with respect to the set of required relations, the concept of weak
convergence is sufficiently strong to allow the derivation of certain statistical properties of
the sequence En from those of the limit experiment E . A stronger convergence concept is
that introduced by Le Cam using randomizations. As shown in Sect. 2.1, we can check
statistical equivalence of two experiments by finding randomizations which map one
experiment into the other. Naturally, when this can be done only approximately we think
of the two experiments as being close to each other.

Definition 2.11. Let Ei := (Pθi : θ ∈ �) be two statistical experiments dominated by
µi for i = 1, 2. The deficiency of E1 with respect to E2 is the quantity

δ(E1, E2) := inf
M

sup
θ

‖Pθ1 ◦ M − Pθ2 ‖,

where the infimum is taken over all Markov operators

M : L∞(�2, �2, µ2) → L∞(�1, �1, µ1),

and ‖ · ‖ is the total variation norm. The Le Cam distance between E1 and E2 is defined
as

�(E1, E2) = max {δ(E1, E2), δ(E2, E1)} .
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We remind the reader that the total variation norm can be written in terms of the L1−norm
distance between the probability densities

‖Pθ1 ◦ M − Pθ2 ‖ = 1

2

∥∥∥∥
∥

M∗

(
d Pθ1
dµ1

)

− d Pθ2
dµ2

∥∥∥∥
∥

1

.

The deficiency measure satisfies the triangle inequality δ(E,F) + δ(F ,G) ≥ δ(E,G)
but is not symmetric. This is remedied by the Le Cam distance which is a mathematical
semi-distance. It can be shown that two experiments are at distance zero from each other
if and only if they are statistically equivalent in the sense of Definition 2.5, and thus �
defines a proper distance on the space of equivalence classes of experiments.

The relation between the strong convergence in the Le Cam distance and the weak
convergence in the sense of convergence of canonical measures is given by the following
theorem.

Theorem 2.12. Let � be a finite set. Then strong convergence of experiments in the
sense of Le Cam is equivalent to weak convergence of the canonical measures.

If� is not finite then weak convergence implies strong convergence under the additional
uniformity assumption: for any ε > 0 there exists a finite set I ⊂ � such that

lim sup
n→∞

sup
θ

inf
τ∈I

‖P(n)θ − P(n)τ ‖ < ε.

Although the Le Cam distance is very appealing from the mathematical point of view,
it is often difficult to calculate and will not play any role in our discussion. However, in a
quantum theory of experiments the Le Cam distance should play a central role and some
encouraging results in this direction exist already. In [14,13] it is shown that the quantum
version of the local asymptotic normality with the Le Cam type convergence holds for
identically prepared qubits with the limit experiment being a family of displaced thermal
equilibrium states. In [15], the problem of optimal cloning of mixed quantum Gaussian
states is solved along lines similar to the solution of the classical problem of finding the
deficiency between two Gaussian shift experiments.

2.4. Local asymptotic normality. We return now to the second example of Sect. 2.3.
a sufficient smoothness property for the family (Pθ : θ ∈ �) is the differentiability
of θ �→ √

pθ in quadratic mean: there exists a vector of measurable functions 	̇θ =
(	̇θ,1, . . . , 	̇θ,k)

T such that
∫ [√

pθ+u − √
pθ − 1

2
uT 	̇θ

√
pθ

]2

dµ = o(‖u‖2).

This condition is satisfied in many models and it is sufficient to have
√

pθ (x) conti-
nuously differentiable in θ for almost all x and the Fisher information Iθ continuous
in θ .

Theorem 2.13. [50] Suppose that� is an open set in R
m and that the family (Pθ : θ ∈ �)

is differentiable in quadratic mean at θ0. Then

log
n∏

i=1

pθ0+u/
√

n

pθ0

(Xi ) = 1√
n

n∑

i=1

uT 	̇θ0(Xi )− 1

2n
uT Iθ0 u + oPθ0

(1).
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We refer to [50] for the proof of the theorem and outline here only the key points under
the stronger assumption that 	θ (x) = log pθ (x) is twice differentiable with respect to θ
for every x ∈ �. Assume for simplicity that θ is a one dimensional parameter, then we
have the expansion

log
n∏

i=1

pθ0+u/
√

n

pθ0

(Xi ) = u√
n

n∑

i=1

	̇θ0(Xi ) +
1

2

u2

n

n∑

i=1

	̈θ0(Xi ) + Remn .

The first term on the right side has mean zero because Pθ 	θ = 0 and thus it can be written
as u�n,θ0 with �n,θ0 converging to a normal distribution of zero mean and variance Iθ0

by the Central Limit Theorem. The second term converges to − 1
2 u2 Iθ0 by the Law of

Large Numbers. Thus we have the convergence in distribution for X ∼ N (0, Iθ0),

log
n∏

i=1

pθ0+u/
√

n

pθ0

(Xi ) → u X − 1

2
u2 Iθ0 = log

d N (uIθ0 , Iθ0)

d N (0, Iθ0)
(X).

Theorem 2.14. Let En := (Pn
θ0+u/

√
n

: u ∈ R
m) be a sequence of experiments satisfying

local asymptotic normality and E = (N (u, I −1
θ0
) : u ∈ R

m). Then

En → E, n → ∞,

in the sense of weak convergence of experiments.

3. Quantum Statistical Experiments

The first steps in developing a quantum analogue of the classical theory of statistical
experiments were taken by Petz [37], and the latest results on quantum sufficiency can be
found in [40]. We begin this section with the basic notions of quantum sufficiency. Later
we will further extend the theory to cover approximate sufficiency through the notion
of convergence of quantum statistical experiments. For a review of the complementary
theory of quantum statistical inference we refer to [5].

We remind the reader that a quantum mechanical system is modeled by a C∗-algebra
A, where the observables of the system correspond to self-adjoint elements and the
states are represented by normalized positive functionals on A. Let S = (ϕθ : θ ∈ �)
be a parametrized family of states on A, then the couple E = (A,S) is called a
quantum statistical experiment. We will mostly assume that A is also a von Neumann
algebra, in which case the states ϕθ are required to be normal. Von Neumann algebras
are the non-commutative analogues of classical algebras of bounded random variables
L∞(�,�,µ), and the normal states are the analogue of the probability distributions
which are continuous with respect to µ, i.e. their densities span the space L1(�,�,µ).

The interest in considering subsets of the whole set of states is that in this way we can
encode prior information about the preparation, for instance if we know that the state is
pure, or that it has a block diagonal form.

Let B be another von Neumann algebra and let α : B → A be a linear map. Then α
is a channel if it is completely positive, unit-preserving and normal. Such maps are the
quantum versions of Markov operators (see Definition 2.2), and their duals which act
on states, are the quantum state transitions. We will further suppose that all the channels
are faithful, that is if α(a) = 0 for some positive a then a = 0.
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Let E = (A, ϕθ : θ ∈ �) be an experiment and α : B → A a channel. The induced
experiment F = E ◦ α := (B, ϕθ ◦ α : θ ∈ �) is called a randomization of E . If also E
is a randomization of F , i.e. there is a channel β : A → B, such that ϕθ ◦ α ◦ β = ϕθ
for all θ , then the experiments E and F are statistically equivalent. In this case, we also
say that the channel α is sufficient for E . If B ⊂ A is a subalgebra and the inclusion map
B → A is sufficient for E , then B is a sufficient subalgebra for E . Note that a sufficient
channel is intrinsically related to the quantum experiment, in particular it may not be
invertible on the whole set of states of A as we will see in examples.

In order to give a characterization of quantum sufficiency, we first need to describe
its basic ingredients. We restrict to the case when all the states in S are faithful, and we
refer to [40] for the more general situation. We denote the set of all such experiments
with parameter space � by E(�).
Definition 3.1. Let ϕ be a state on A. There exists a unique group σϕt of automorphisms
of A called the modular group of ϕ such that the following modular condition holds.
For each a, b ∈ A, there is a function F ∈ A(J ), such that

F(t) = ϕ(aσϕt (b)), F(t + i) = ϕ(σ
ϕ
t (b)a), t ∈ R,

where A(J ) denotes the set of functions analytic in the strip

J := {z ∈ C, 0 < Im z < 1},
and continuous on the closure J̄ .

Definition 3.2. Let θ0, θ be two points in � and ϕ := ϕθ0 and ϕθ be the corresponding
states. The Connes cocycle derivative ut = [Dϕθ , Dϕ]t is a σ -strongly continuous one
parameter family of unitaries in A with the following properties [47]:

(a) ut satisfies the cocycle condition us σ
ϕ
s (ut ) = ut+s , s, t ∈ R.

(b) utσ
ϕ
t (a)u

∗
t = σ

ϕθ
t (a), a ∈ A, t ∈ R.

(c) For all a, b ∈ A, there is a function F ∈ A(J ), such that

F(t + i) = ϕ(autσ
ϕ
t (b)), F(t) = ϕθ (utσ

ϕ
t (b)a), t ∈ R.

The family of cocycle derivatives ([Dϕθ , Dϕ]t : t ∈ R, θ ∈ �) is the quantum analogue
of the likelihood ratio process (see Definition 2.7). Indeed in the commutative case the
modular group is trivial and the above conditions are satisfied by ut = (d Pθ /d Pθ0

)i t .
In this paper we are particularly interested in the case of type I algebras A which

appear more often in physical applications, i.e. matrix algebras M(Cd), the algebra
B(H) for H separable infinite dimensional Hilbert space, and direct sums thereof. Then
A admits a trace Tr and each state ϕ is uniquely characterized by its density operator
ρ as

ϕ(a) = Tr(ρa), a ∈ A.

Let ρθ be the density operator for ϕθ , then the modular group and the cocycle derivatives
are given by

σ
ϕ
t (a) = ρi t aρ−i t and [Dϕθ , Dϕ]t = ρi t

θ ρ
−i t . (1)
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Note that if we put a = b = 1 in (c) and if F is the corresponding function in A(J ),
then F(i1/2) is the transition probability PA(ϕθ , ϕ) := Tr(

√
ρ
√
ρθ ). Moreover, for

p ∈ (0, 1), we can define the relative quasi-entropy by

Sp(ϕθ , ϕ) = 1

p(1 − p)
(1 − F(i p)) = 1

p(1 − p)
(1 − Tr(ρ pρ

1−p
θ )).

Let A and B be von Neumann algebras and let α : B → A be a channel. Then the
multiplicative domain of α is the subalgebra Bα ⊂ B, defined by

Bα := {a ∈ B, α(a∗a) = α(a)∗α(a) : α(aa∗) = α(a)α(a)∗},
and the restriction of α to the multiplicative domain is an isomorphism onto α(Bα) if α
is faithful.

Theorem 3.3. [40] Let E = (A, ϕθ : θ ∈ �) be a quantum statistical experiment and
let ϕ = ϕθ0 . Let α : B → A be a faithful channel, then the following are equivalent:

(i) α is sufficient for E ,
(ii) Sp(ϕθ , ϕ) = Sp(ϕθ ◦ α, ϕ ◦ α) for all θ and for some p ∈ (0, 1),

(iii) [Dϕθ , Dϕ]t = α([D(ϕθ ◦ α), D(ϕ ◦ α)]t ) for all θ and t ∈ R,
(iv) α(Bα) is a sufficient subalgebra for E .

Note that in the case that B is a subalgebra in A, the condition (iii) is equivalent to

(iii’) [Dϕθ , Dϕ]t ∈ B for all θ ∈ � and t ∈ R.

This implies that the subalgebra generated by the cocycle derivatives is sufficient for
E and it is contained in any other sufficient subalgebra, so that it is minimal sufficient.
We will denote this subalgebra by AE . Moreover, the cocycle condition implies that AE
is invariant under the modular group σϕt . For a channel α : B → A, the conditions of
the theorem are equivalent to the fact that the minimal sufficient subalgebra BF for the
induced experiment F = E ◦ α is contained in the multiplicative domain of α.

Corollary 3.4. Two statistical experiments E := (A, ϕθ : θ ∈ �)and F := (B, σθ : θ ∈
�) are statistically equivalent if and only if there exists an isomorphism α : BF → AE
between their minimal sufficient algebras such that ϕθ ◦ α = σθ for all θ .

Example 3.1. Let A = Md(C) and let E = (A, ϕθ : θ ∈ θ) be a quantum experiment.
Let A0 ⊂ A be a subalgebra. Then there is a decomposition

C
d =

m⊕

i=1

H L
i ⊗ H R

i ,

with the projections pi : C
d → H L

i ⊗H R
i , such that A0 is isomorphic to

⊕m
i=1 B(H L

i )⊗
1H R

i
. Let us also suppose that A0 is invariant under σϕt . Then A0 is sufficient for E if

and only if the density matrices have the form

ρθ =
m∑

i=1

ϕθ (pi )ρ
L
θ,i ⊗ ρR

i , θ ∈ �, (2)

where ρL
θ,i ∈ B(H L

i ), ρ
R
i ∈ B(H R

i ) are density matrices (cf. [33], see also [40] for
an infinite dimensional version). If A0 is the minimal sufficient subalgebra, then the
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decomposition (2) is the maximal decomposition obtained in [27]. Since any sufficient
subalgebra contains the minimal sufficient subalgebra, we may conclude that an arbitrary
subalgebra A0 is sufficient if and only if there is an orthogonal sequence of projections
{pi } in A0 with

∑
i pi = 1, positive elements ρθ,i ∈ A0 and ρi ∈ A with supports pi ,

commuting for all θ , such that

ρθ =
∑

i

ϕθ (pi )ρθ,iρi .

This result is the quantum version of the factorization Theorem 2.6.

3.1. Equivalence classes of experiments. The notion of statistical equivalence of expe-
riments as introduced in the previous Section defines an equivalence relation on E(�). In
this section, we want to describe the equivalence classes. The aim is to construct quan-
tum analogues of the notions of canonical experiment and canonical measure described
in Sect. 2.2.

Let E = (A, ϕθ : θ ∈ �) be an experiment in E(�). Then the equivalence class of
E contains also the restriction E |AE to the minimal sufficient subalgebra AE . We may
therefore consider only experiments such that A is generated by the cocycle derivatives.
In what follows (AE , HE , ξE ) always denotes the GNS representation of the minimal
sufficient subalgebra with respect to the state ϕ = ϕθ0 .

Let G = G(�) be the free group generated by the set of symbols

{ut (θ) : u0(θ) = ut (θ0) = e, θ ∈ �, t ∈ R}.
We denote by L1(G) the Banach space of all summable functions f : G → C, with
norm ‖ f ‖ := ∑

g∈G | f (g)|. The dual space L1(G)∗ can be identified with the space
L∞(G) of bounded functions over G, equipped with the supremum norm.

For each experiment E ∈ E(�) there is a unique group homomorphism

πE : G → U(HE ),
ut (θ) �→ [Dϕθ , Dϕ]t , ∀θ ∈ �, t ∈ R,

thus πE is a unitary representation of G on HE . We define a function on G by

ωE (g) = 〈ξE , πE (g)ξE 〉 = ϕ(πE (g)), g ∈ G.

Then ωE is a state, that is a positive definite function on G, satisfying ωE (e) = 1 and
will be called the canonical state of the experiment E . Since for any state ω we have
|ω(g)| ≤ ω(e) = 1 for all g ∈ G, the set of all states is a subset in the unit ball of
L∞(G). Clearly, the GNS representation πωE of G with respect to ωE is equivalent with
πE .

From property (c) of the cocycle derivatives we know that for any θ ∈ � and g ∈ G
there is a function FE,g,θ ∈ A(J ) such that

FE,g,θ (t + i) = ϕ(πE (g)[Dϕθ , Dϕ]t ) = ωE (gut (θ)),

and|FE,g,θ (z)| ≤ 1 for all z ∈ J . We have the following characterization of the
equivalence classes of experiments.
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Theorem 3.5. Let E = (A, ϕθ : θ ∈ �) and F = (B, ψθ : θ ∈ �) be experiments
in E(�) with A and B minimal sufficient. Then E is equivalent with F if and only if
ωE = ωF .

Proof. Let E be equivalent with F , then by Corollary 3.4, there is an isomorphism
α : A → B, such that ϕθ = ψθ ◦ α and α([Dϕθ , Dϕ]t ) = [Dψθ, Dψ]t , θ ∈ �, t ∈ R.
(We remind the reader that AE = A and BF = B.) By uniqueness of πF , it follows that
πF = α ◦ πE and

ωF = ψ ◦ πF = ψ ◦ α ◦ πE = ωE .

To prove the converse, letωE = ωF =: ω, then πE and πF are equivalent, since they are
both equivalent with πω. Hence there is a unitary U : HF → HE , such that πF (g) =
U∗πE (g)U and the cyclic vectors satisfy UξF = ξE . In particular [Dψθ, Dψ]t =
U∗[Dϕθ , Dϕ]tU and it is enough to prove that ψθ = ϕθ ◦ AdU for all θ ∈ �. For
θ ∈ �, g ∈ G, the functions FE,g,θ and FF ,g,θ are in A(J ) and coincide on R + i , hence
they coincide on J . It follows that

ψθ(πF (g)) = FF ,g,θ (0) = FE,g,θ (0) = ϕθ (πE (g)) = ϕθ (UπF (g)U∗),

for all g ∈ G. Since the elements {πF (g), g ∈ G} generate B, the proof is finished. ��
Remark. Let us suppose that E is a binary experiment, that is, � consists of two points
{θ1, θ0}. Let F be the analytic continuation of the function t �→ ωE (ut (θ1)). Then the
function

φE : (0, 1) � p → F(i p),

can be viewed as a quantum version of the Hellinger transform. If for some binary
experiments E and F we have φE = φF , then clearly ωE (ut (θ1)) = ωF (ut (θ1)) for all
t , but, unlike the classical case, this is not enough to characterize quantum statistical
equivalence, since we need the values of the canonical states on all products of ut (θ1).
This corresponds to the results in [34], where it is proved that, at least in the finite
dimensional case, quantum statistical equivalence cannot be determined by the class of
quantum f -divergences, unless the experiments are commutative.

3.2. The set of canonical states. As we have seen, E(�) can be identified with a subset
in the unit ball of L∞(G(�)) through the canonical state. In this section we will describe
this subset.

For each s ∈ R, we define an automorphism on G as the extension of the map

αs(ut (θ)) = us(θ)
−1ut+s(θ), θ ∈ �.

Then αs , s ∈ R is a group of automorphisms on G. If ω = ωE is a canonical state, then
the cocycle condition implies

πE (αs(ut (θ))) = [Dϕθ , Dϕ]∗s [Dϕθ , Dϕ]t+s = σϕs (πE (ut (θ))).

It follows that

πE (αs(g)) = σϕs (πE (g)), g ∈ G, (3)
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so that ω satisfies the modular condition with respect to αs . Moreover, it follows from
the properties of the Connes cocycle that for g, h ∈ G and θ ∈ �, the functions
t �→ ω(gut (θ)αt (h)) have an analytic continuation to the strip J̃ ⊂ C which is the
reflection of J with respect to the real axis (see Definition 3.1), and they are bounded
by 1 in absolute value on J̃ . The next theorem shows that this-property completely
characterizes the canonical states.

Theorem 3.6. Let ω be a state in L∞(G). Then ω is the canonical state for some expe-
riment E if and only if for each θ ∈ � and g, h ∈ G, there is a function Fg,h,θ ∈ A(J ),
|Fg,h,θ (z)| ≤ 1 for z ∈ J , satisfying

Fg,h,θ (t + i) = ω(gut (θ)αt (h)), t ∈ R,

Fg,h,θ0(t) = ω(αt (h)g), g, h ∈ G, t ∈ R, Fe,e,θ (0) = 1, θ ∈ �.
Proof. Note that the conditions for θ = θ0 imply that ω satisfies the modular condition
for αt . If ω is a canonical state, then by Definition 3.2 the function

Fg,h,θ (t) = ωθ(ut (θ)αt (h)g), t ∈ R

satisfies the required conditions, where

ωθ(g) = ϕθ (πω(g)), g ∈ G. (4)

For the converse, let (πω, Hω, ξω) be the GNS triple forω and define Mω = πω(G)′′.
We will first show that the state ϕ = 〈ξω, · ξω〉 is faithful on Mω.

Suppose that a is a positive element in Mω, such that ϕ(a) = 0. Let C[G] be the
algebra of all finite complex-linear combinations of elements of G, thenπω extends natu-
rally to C[G] and πω(C[G]) is a strongly dense *-subalgebra in Mω. By the Kaplansky
density theorem [25], there is a net {a j } j∈I of positive elements in C[G], such that
πω(a j ) converges strongly to a1/2. By assumptions, for any b, c ∈ C[G] and j ∈ I,
there is a function Fj := Fa j b∗,c,θ0 ∈ A(J ), such that

Fj (t + i) = ω(a j b
∗αt (c)), Fj (t) = ω(αt (c)a j b

∗).
Since ω satisfies the modular condition, it is invariant under αt , so that both Fj (t) and
Fj (i +t) converge uniformly on R. By the maximum modulus principle, Fj (z) converges
uniformly on J to a function F ∈ A(J ). But since |Fj (t + i)|2 ≤ ω(a j b∗ba j )ω(c∗c) →
0, F(t + i) = 0, for t ∈ R and hence F(z) = 0 on J̄ . It follows that

F(0) = 〈πω(c∗)ξω, a1/2πω(b
∗)ξω〉 = 0.

As this is true for all b, c ∈ C[G], we get a1/2 = 0.
Let now Ut be the unitary on Hω, given by Utπω(a)ξω = πω(αt (a))ξω, a ∈ C[G]

and let σt = AdUt . Then σt ◦ πω = πω ◦ αt and ϕ satisfies the modular condition for σt
on a σ -strongly dense subset in Mω. It follows that σt is the modular group of ϕ [47].

Moreover, for each θ , let Ut (θ) = πω(ut (θ))Ut , then

Ut (θ)πω(a)ξω = πω(ut (θ)αt (a))ξω.

By continuity of the functions Fg,h,θ , the map t �→ Ut (θ) is σ -strongly continuous.
It follows that πω(ut (θ)) is a σ - strongly continuous family of unitaries, satisfying the
cocycle condition. By Theorem 3.8 of [47], there are faithful semifinite normal weights
ϕθ , such that πω(ut (θ)) = [Dϕθ , Dϕ]t . By properties of the cocycle derivatives,

ϕθ (1) = Fe,e,θ (0) = 1.

It follows that E = (Mω, ϕθ : θ ∈ �) is an experiment in E(�) and ω = ωE . ��
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3.3. The convex structure of experiments. A convex combination of experiments can be
obtained as follows. Let Ei = (Ai , ϕi,θ : θ ∈ �), i = 1, 2 be two experiments in E(�)
and let 0 < λ < 1. Then we define an experiment Eλ ∈ E(�) by

Eλ = (A1 ⊕ A2, ϕθ = λϕ1,θ ⊕ (1 − λ)ϕ2,θ : θ ∈ �),

It is easy to see that

[Dϕθ , Dϕ]t = [Dϕ1,θ , Dϕ1]t ⊕ [Dϕ2,θ , Dϕ2]t , θ ∈ �, t ∈ R.

and this implies that ωEλ = λωE1 + (1 −λ)ωE2 . We will characterize the extremal points
in E(�).

Theorem 3.7. Let ω̃, ω be two canonical states, such that ω̃ ≤ tω for some t > 0. Then
there is a positive element T in the center of πω(G)′′, with ‖T ‖ ≤ t , satisfying

ωθ(T ) = ω(T ) = 1, ∀θ, (5)

and such that

ω̃(g) = 〈ξω, πω(g)T ξω〉, g ∈ G. (6)

Conversely, let T ≥ 0 be a central element in π(G)′′ satisfying (5), then (6) defines an
experiment in E(�).

Proof. Let ω̃ ≤ tω, then by standard arguments there is a positive element T ∈ πω(G)′,
‖T ‖ ≤ t , such that (6) holds. Therefore, ω̃ can be extended to a normal state on πω(G)′′,
which we again denote by ω̃. Let a, b be elements in C[G], then by (3),

ω̃(πω(a)σ
ω
s (πω(b))) = 〈ξω, πω(aαs(b))T ξω〉 = ω̃(aαs(b)).

Since πω(C[G]) is σ -strongly dense in πω(G)′′, we obtain from Theorem 3.6 that ω̃
satisfies the modular condition forσωt . This implies that there is a positive central element
S in πω(G)′′, such that ω̃(a) = 〈ξω, aSξω〉 for all a ∈ πω(G)′′. Since ξω is separating
for πω(G)′, we have T = S.

To obtain the condition (5), let F, F̃ ∈ A(J ) be such that

F(t + i) = ω(T [Dωθ , Dω]t ), F(t) = ωθ([Dωθ , Dω]t T ),

F̃(t + i) = ω̃(ut (θ)), F̃(t) = ω̃θ (ut (θ)),

where we have used (4) and the properties of the cocycle derivatives. Then F(t + i) =
F̃(t + i) for all t and this implies F = F̃ . In particular, ωθ(T ) = F(0) = F̃(0) = 1.

Conversely, let T ≥ 0 be a central element, satisfying (5), then it is not difficult to
check that ω̃ given by (6) satisfies the properties in Theorem 3.6. ��
Corollary 3.8. A canonical state ω is extremal if and only if the center of πω(G)′′
contains no positive element T , satisfyingωθ(T ) = ω(T ) for all θ , other than a multiple
of identity.
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Proof. Let the experiment ω be such that πω(G)′′ has the required property and let
ω = λω1 + (1−λ)ω2. Then ω1 ≤ 1

λ
ω and by the previous theorem, ω1 is of the form (6)

for some positive central element T , satisfying (5). It follows that T = I and we must
have ω1 = ω2 = ω.

Conversely, suppose that there is a positive element T̃ , other than a multiple of identity,
satisfying ωθ(T̃ ) = ω(T̃ ) for all θ . Then by putting T = 1/ω(T̃ )T̃ in Theorem 3.7, we
obtain an experiment ω1 ≤ tω, with t = ‖T ‖ > 1. Since the vector ξω is separating for
πω(G)′′, we must have ω1 �= ω.

It follows that ω = 1
t ω1 + (1 − 1

t )ω2, where ω2 has the form (6) with the element
S = 1/(t − 1)(t − T ). Since S is a positive central element, satisfying (5), ω2 is an
experiment. ��
Corollary 3.9. If E ⊂ E(�) is extremal then the center of πω(G)′′ is of the form C

d with
1 ≤ d ≤ |�|.

3.4. Weak and strong convergence of quantum experiments. The strong convergence of
quantum experiments is a natural extension of the classical convergence with respect to
the Le Cam distance.

Definition 3.10. Let E := (A, ϕθ : θ ∈ �) and F := (B, σθ : θ ∈ �) be two quantum
statistical experiments. The deficiency δ(E,F) is defined as

δ(E,F) = inf
T

sup
θ

‖ϕθ ◦ T − σθ‖,

where the infimum is taken over all channels T : B → A. The Le Cam distance between
E and F is

�(E,F) := max (δ(E,F), δ(F , E)).
We say that a net Eα := (Aα, ϕθ,α : θ ∈ �), α ∈ I, converges strongly to E if

�(Eα, E) → 0, i.e. there are channels Tα : Aα → A and Sα : A → Aα, such that

supθ∈� ‖ϕθ ◦ Tα − ϕθ,α‖ → 0, (7)

supθ∈� ‖ϕθ,α ◦ Sα − ϕθ‖ → 0. (8)

We say that Eα converges weakly to E if the canonical states converge pointwise

ωEα (g) → ωE (g), ∀g ∈ G.

Theorem 3.11. Let A,B be C∗-algebras and let C P1(B,A) be the space of unital com-
pletely positive maps T : B → A. Then C P1(B,A) is compact with respect to the
topology defined by convergence of the linear functionals T �→ φ(T (b)) for all b ∈ B
and φ ∈ A∗.

Proof. Standard application of Tychonoff’s Theorem. ��
We will now show that the Le Cam distance is a metric on the space of equivalence

classes of quantum statistical experiments.

Lemma 3.12. The experiments E := (A, ϕθ : θ ∈ �) and F := (B, σθ : θ ∈ �) are
statistically equivalent if and only if �(E,F) = 0.
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Proof. The direct implication follows from the definitions. We have to prove that if
�(E,F) = 0 then there exists a channel T : B → A such that ϕθ ◦ T = σθ for all θ ,
and similarly in the opposite direction. Let Tα be a sequence (net) of channels such that

sup
θ

‖ϕθ ◦ Tα − σθ‖ → 0.

By Theorem 3.11 applied to A,B seen as C∗-algebras we have that C P1(B,A) is
compact and thus there exists a subnet TI (α) which converges to some unital completely
positive map T̃ . The two statements together imply that ϕθ ◦ T̃ = σθ . The only problem
is now that T̃ is not necessarily normal.

Let us denote by T̃∗ : A∗ → B∗ the restriction to A∗ of the adjoint map T̃ ∗, then
the map T ′ := (T̃∗)∗ : B̃ → A is an extension of T̃ to the universal enveloping von
Neumann algebra B̃ � B∗∗ of B. Clearly, T ′ is completely positive and unital. Let z0 be
the central projection in B̃, such that B∗ = B∗z0, see [46] and let ψ be any state in B∗.
Define the map S : B → B̃ by

S(a) = az0 + ψ(a)(1 − z0).

Then S is completely positive and unital, moreover, ϕ ◦ S ∈ B∗ for all ϕ ∈ B∗ and
ϕ ◦ S = ϕ for ϕ ∈ B∗.

Finally, let T = S ◦ T ′, then T : B → A is a channel, such that ϕθ ◦ T = σθ . ��
We will now show that our definition of weak convergence coincides with the classical

one in the case of commutative statistical experiments with faithful states.

Lemma 3.13. Let E = (�,�, Pθ : θ ∈ �) and En = (�(n), �(n), P(n)θ : θ ∈ �)

be classical statistical experiments with n = 1, 2, . . .. Assuming that all experiments
belong to the class E(�), that is Pθ ∼ Pθ0 and P(n)θ ∼ P(n)θ0

for some θ0, then the
following are equivalent

(i) En converges weakly to E in the sense of Definition 2.9 for classical experiments.
(ii) En converges weakly to E in the sense of Definition 3.10 for quantum experiments.

Proof. Without loss of generality we can consider� to be finite. According to Theorem
2.10 En converges weakly to E if and only if the corresponding sequence of likelihood
ratio processes �(n)θ0

converges in distribution to �(n)θ0
. We will show that the latter is

equivalent to Definition 3.10. Thus we can represent all experiments as families of
distributions on R

|�|−1
+ with Qθ (dr) = rθλ(dr) and Q(n)

θ (dr) = rθλ(n)(dr), where
λ, λn are the laws of their respective likelihood ratio processes. The associated von
Neumann algebras are A := L∞(R|�|−1

+ , λ) and An := L∞(R|�|−1
+ , λ(n)) and the

cocycle derivatives act by multiplication with the function r it
θ (for θ �= θ0):

[DQθ , Dλ]t : f (r) �→ f (r) · r it
θ .

Since by assumption, all measures have support in the interior of R
|�|−1
+ , we can consi-

der their restriction to this subset without altering the weak convergence property (cf.
Theorem 1.3.10 [51]). Assuming (i) and considering that the functions

r �→
∏

θ �=θ0

r itθ
θ ,
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are bounded and continuous on the interior of R
|�|−1
+ , we obtain

∫ ∏

θ �=θ0

r itθ
θ λ

(n)(dr) →
∫ ∏

θ �=θ0

r itθ
θ λ(dr), as n → ∞,

which proves (i i).
Conversely, if (i i) holds, we can map r one-to-one into x ∈ R

|�|−1 by xθ = log rθ .
Then

∫ ∏

θ �=θ0

r itθ
θ λ(dr) =

∫ ∏

θ �=θ0

eixθ tθ µ(dx),

with µ(A) = λ(log−1(A)). The right-hand side represents the characteristic function of
the measure µ and by the Lévy-Cramér Continuity Theorem we get that µn converges
weakly to µ. Finally, by the continuity of the x → r transformation we get (i). ��
Proposition 3.14. Let Eα , α ∈ I be a net of experiments in E(�), converging weakly to
E ∈ E(�). Let ωθ , ωθ,α be defined by (4). Then limα ωθ,α(g) = ωθ(g) for all g ∈ G,
θ ∈ �.

Proof. First, note that on the set of states, the pointwise convergence coincides with the
weak* convergence in L∞(G), and since the unit ball is compact in this topology, it is
enough to prove that any convergent subnet ωθ,γ must converge to ωθ .

Let g ∈ G and let Fα := FEα,g,θ , F := FE,g,θ . Then Fα, F ∈ A(J ) and |Fα(z)| ≤ 1,
|F(z)| ≤ 1 for z ∈ J . By assumptions, Fα(t) converges to F(t) for each t . We will use
the following family of functions:

fβ,z(t) = 1√
βπ

exp{− (t − z)2

β
}, β > 0, z ∈ C.

For any β > 0, define

φα,β(z) =
∫

Fα(t) fβ,z(t)dt, φβ(z) =
∫

F(t) fβ,z(t)dt.

Then φα,β , φβ are entire analytic and uniformly bounded on compact subsets in C.
Moreover, for s ∈ R,

|φα,β(s)− φβ(s)| ≤
∫

|Fα(t)− F(t)| fβ,s(t)dt → 0

by dominated convergence theorem. It follows that φα,β(z) → φβ(z) for all z ∈ C.
Since Fα , F are analytic in J and continuous on J̄ ,

φα,β(z + w)=
∫

Fα(t + w) fβ,z(t)dt, φβ(z + w)=
∫

F(t + w) fβ,z(t)dt, w ∈ J̄ .

In particular,
∫

Fα(t + i) fβ,0(t)dt = φα,β(i) → φβ(i) =
∫

F(t + i) fβ,0(t)dt, β > 0.

Suppose now that ωθ,γ is a convergent subnet, then Fγ (t + i) = ωθ,γ (ut (θ)g)
converges pointwise to some function ψ(t), bounded by 1. But then again, we have∫

Fγ (t + i) fβ,0(t)dt → ∫
ψ(t) fβ,0(t)dt , so that

∫
ψ(t) fβ,0(t)dt = ∫ F(t + i) fβ,0(t)dt

for all β > 0. Letting β → 0, we get limγ ωθ,γ (g) → ωθ(g). ��
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Remark. Let us choose another point θ ∈ � instead of θ0 in the definition of the canonical
state. Then by the chain rule for the cocycle derivatives,

[Dϕθ ′, Dϕθ ]t = [Dϕθ ′ , Dϕ]t [Dϕ, Dϕθ ]t , θ ′ ∈ �, t ∈ R,

so that we obtain the same group G(�) and the new canonical state is equal to ωθ . The
above proposition implies that weak convergence of experiments does not depend on
the choice of θ0.

We have shown that our definition of weak convergence corresponds to the classical
one, in the commutative case. What is still missing is the relation to the strong conver-
gence, namely that weak and strong convergence are equivalent for finite parameter sets
(cf. Theorem 2.12). Note that this would also imply that strong convergence is stronger
than the weak one. We will show this equivalence under some conditions. First, we will
consider uniformly dominated sets of experiments.

Let ψ be any experiment in E(�) and let B > 0. Let us denote by E(ψ, B) the set of
all experiments ω ∈ E(�), such that ω ≤ Bψ . By Theorem 3.7, there is a one-to-one
correspondence between E(ψ, B) and the set Z(ψ, B) of positive elements in the center
of Mψ with ‖T ‖ ≤ B and ψθ(T ) = 1, for all θ . Namely, for any ω ∈ E(ψ, B), there is
an element T ∈ Z(ψ, B), such that

ωθ(g) = ψθ(T g) = 〈ξψθ , Tπψ(g)ξψθ 〉, g ∈ G, θ ∈ �,
and since ψ is faithful on Mψ , such T is unique. This also implies that ωθ can be
extended to a normal state on Mψ .

Let us endow E(ψ, B)with the topology of pointwise convergence and Z(ψ, B)with
the σ(Mψ,Mψ∗)- topology. Then Z(ψ, B) is compact. Let Tα be a net in Z(ψ, B),
converging to T and let ωα and ω be the corresponding canonical states in E(ψ, B).
Then for any g ∈ G,

ωα(g) = 〈ξψ, Tαπψ(g)ξψ 〉 → 〈ξψ, Tπψ(g)ξψ 〉 = ω(g),

so that the map � : Z(ψ, B) � T �→ ψ(T ·) ∈ E(ψ, B) is continuous. It follows that
E(ψ, B) is compact.

Conversely, let ωα be a net in E(ψ, B), converging to ω and let Tα , T be the corres-
ponding elements in Z(ψ, B). Then for any a, b ∈ C[G], we have

〈πψ(a)ξψ, Tαπψ(b)ξψ 〉 = ωα(a
∗b) → ω(a∗b) = 〈πψ(a)ξψ, Tπψ(b)ξψ 〉.

Since the vectors π(a)ξψ , a ∈ C[G] are dense in Hψ and Tα are uniformly bounded,
this implies that Tα converges to T . It follows that the inverse map �−1 : E(ψ, B) →
Z(ψ, B) is continuous. Moreover, we get that ωθ,α(a) → ωθ(a), for all a ∈ Mψ ,
θ ∈ �.

We can summarize as follows:

Lemma 3.15. The topology in E(ψ, B) coincides with the topology obtained from the
weak topology in Mψ∗. The set E(ψ, B) is compact, and therefore sequentially compact,
by the Eberlein - Smulyan theorem.

Now we can state the equivalence theorem, for uniformly dominated sequences of
experiments of type I with discrete center.
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Theorem 3.16. Let En := (An, ϕθ,n : θ ∈ �) be a sequence of experiments in E(�)
with � a finite set. Assume that the sequence is uniformly dominated, i.e. the canonical
states ωn := ωEn ∈ E(ψ, B) for all n, for some fixed experiment ψ and B > 0. Assume
further that the minimal sufficient von Neumann algebras of the experiments En are type
I with discrete center. Then En converges weakly to E if and only if �(En, E) → 0, i.e.
there exist sequences of channels

αn : An → A, βn : A → An,

such that

lim
n→∞ ‖ϕθ ◦ αn − ϕθ,n‖ = 0, lim

n→∞ ‖ϕθ,n ◦ βn − ϕθ‖ = 0, ∀θ ∈ �.
Proof. Letωn ∈ E(ψ, B), satisfying the assumptions. Then the support pn ofωn in Mψ

is a central projection, such that pnMψ is type I with discrete center. Let ω̄ =∑n λnωn ,
with some λn > 0,

∑
n λn = 1, then ω̄ is an experiment in E(ψ, B). Let p be the support

of ω̄, then Mω̄ � pMψ and p = supn pn . It follows that Mω̄ is type I with discrete
center and ωn(a) = ωn(pa) for a ∈ Mψ . Moreover, since ωθ,n have the same support
for all θ , ωθ,n(pa) = ωθ,n(a).

Suppose that En → E weakly and let ω := ωE . By the remarks before Lemma 3.15,
the normal extensions of ωθ,n converge weakly to ωθ in Mψ∗. It follows that ωθ(pa) =
ωθ(a) for all a ∈ Mψ , and we can conclude that ωθ,n(a) → ωθ(a), for all a ∈ Mω̄

and θ ∈ �.
In [10] it is shown that the preduals of the type I von Neumann algebras with atomic

center have the Kadec-Klee property: any sequence of normal states ωn converging
weakly to a normal state ω is also norm convergent limn ‖ωn −ω‖ = 0. We apply this to
the experiments Ẽn := (Mω̄, ωn,θ : θ ∈ �) which by construction are equivalent with
the original experiments En and we get limn ‖ωn,θ − ωθ‖ = 0 for all θ .

Conversely, suppose that�(En, E) → 0. By Lemma 3.15, there is a subsequence Enk ,
converging weakly to some experiment F . By the first part of the proof,�(Enk ,F) → 0.
Since also�(Enk , E) → 0, we have�(E,F) = 0 and by Lemma 3.12, this implies that
F is equivalent with E , so that ωF = ω. It follows that the whole sequence converges
weakly to E . ��
Remark. Our result is complementary to the classical one in two respects. First, the
range of covered experiments consists of type I algebras with discrete center, thus the
“typical” noncommutative probability spaces. Second, the proof uses the Kadec-Klee
property specific to this type of algebras and is not true for general probability spaces.

4. Quantum Central Limit Theorem

We have seen that in classical statistics the Central Limit Theorem is an essential
ingredient of the proof of local asymptotic normality in its weak version. In the quantum
case the situation is similar, so we will proceed in this section to explain the quantum
Central Limit Theorem in the simplest situation, that is for a matrix algebra M(Cd)

and a faithful state ϕ on M(Cd), i.e. a state whose density matrix ρ is strictly positive.
However the result holds in the general framework of C∗-algebras and we refer to the
references [35,38] for more details and proofs.

Let L2(ρ) = (M(Cd), 〈·, ·〉ρ) be the complex Hilbert space with inner product

〈X,Y 〉ρ = Tr(ρY ∗ X), X,Y ∈ M(Cd).
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On M(Cd) we define the symplectic form σ by

σ(X,Y ) = Im(〈X,Y 〉ρ),
and we construct the algebra CC R(M(Cd), σ ) of canonical commutation relations
having as generators the Weyl operators W (X) for all X ∈ M(Cd) and satisfying the
relations

W (X)W (Y ) = W (X + Y ) exp(−iσ(X,Y )).

On this algebra we define the quasifree state φ by

φ(W (X)) = exp

(
−1

2
α(X, X)

)
,

where α is the positive bilinear form α(X,Y ) = Re(〈X,Y 〉ρ).By the GNS construction,
φ generates a representation of the CCR algebra and for now we denote by W (X) the
Weyl operators in this representation and occasionally express them in terms of the
field operators W (X) = exp(i B(X)). Note that any field operator B(X) has a Gaussian
distribution centered at 0 and with variance ‖X‖2

ρ = α(X, X).
Consider the tensor product

⊗n
k=1 M(Cd) of algebras M(Cd)which is generated by

elements of the form

X (k) = 1 ⊗ · · · ⊗ X ⊗ · · · ⊗ 1, (1)

with X acting on the kth position of the tensor product. We are interested in the asymp-
totics as n → ∞ of the joint distribution under the state ϕ⊗n , of ‘fluctuation’ elements
of the form

Fn(X) := 1√
n

n∑

k=1

X (k).

Theorem 4.1. Let A1, . . . , As ∈ M(Cd)sa satisfying ϕ(Al) = 0, for l = 1, . . . , s. Then
we have the following:

lim
n→∞ϕ

⊗n

(
s∏

l=1

Fn(Al)

)

= φ

(
s∏

l=1

(B(Al))

)

,

lim
n→∞ϕ

⊗n

(
s∏

l=1

exp(i Fn(Al))

)

= φ

(
s∏

l=1

W (Al)

)

.

Note that only joint distributions for selfadjoint operators are considered. This is suffi-
cient for the purpose of this paper and for the rest of this section we concentrate on the
properties of the subalgebra CC R(M(Cd)sa, σ ) generated by the Weyl operators W (A)
with A selfadjoint operator in M(Cd). This subalgebra will be the key to understanding
the limit quantum experiment.

In the case of selfadjoint operators the symplectic form becomes

σ(A, B) = i

2
Tr (ρ[A, B]).
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The bilinear form α is a positive inner product on M(Cd)sa and from now on we will
denote its restriction to this subspace as

(A, B)ρ := α(A, B) = Tr (ρA ◦ B),

and the corresponding real Hilbert space by L2
R
(ρ) = (M(Cd)sa, (·, ·)ρ). We write

L2
R
(ρ) as a direct sum of orthogonal subspaces Hρ ⊕ H⊥

ρ , where

Hρ =
{

A ∈ L2
R
(ρ) : [A, ρ] = 0

}
.

In particular if B = B1 ⊕ B2 ∈ L2
R
(ρ) then

φ(W (B)) = exp

(
−1

2
(B1, B1)ρ

)
exp

(
−1

2
(B2, B2)ρ

)
. (2)

Moreover since σ(A, B) = 0 for A ∈ Hρ and B arbitrary we get the following factori-
zation

CC R(M(Cd)sa, σ ) ∼= CC R(Hρ, σ )⊗ CC R(H⊥
ρ , σ ), (3)

and by (2) the state φ factorizes as

φ = φ1 ⊗ φ2. (4)

The left side of the tensor product is a commutative algebra which is isomorphic to
L∞ (

R
|Hρ |) carrying a Gaussian state with covariance (A, B)ρ .

5. Local Asymptotic Normality for Quantum States

We are now ready to introduce the central result of the paper which extends the concept
of local asymptotic normality to the quantum domain and provides also an important
example of convergence of quantum statistical experiments. Throughout this section
we consider the algebra A = Md(C), a family of strictly positive density matrices
ρθ in Md(C) such that the map θ �→ ρθ has the property that both the eigenvalues
and eigenvectors of ρθ are twice continuously differentiable, and denote by ϕθ the
corresponding faithful states on A.

Consider n quantum systems prepared in the same state ϕθ with θ ∈ � ⊂ R
m

an unknown parameter which will be taken of the form θ = θ0 + u/
√

n, where u is
an unknown parameter belonging to some open, bounded neighborhood of the origin
I ⊂ R

m , and θ0 is a fixed and known parameter. We are interested in the asymptotic
behavior as n → ∞ of the quantum statistical experiments

En =
(
An = A⊗n, ϕu,n = (ϕθ0+u/

√
n)

⊗n : u ∈ I
)
,

whose family of states is indexed by a parameter u ∈ I . Namely, we will show that the
sequence En converges weakly to an experiment E , consisting of a family {φu, u ∈ I }
of quasifree states on the CCR algebra

(
M(Cd)sa, σ

)
with σ(A, B) = i

2 Tr(ρθ0 [A, B])
(cf. Sect. 4).
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5.1. One parameter unitary family of states. We will first consider a simple model
of a one-parameter family of states where the eigenvalues of the density matrices are
fixed and only the eigenvectors vary smoothly. This will be helpful in the next section
where the general multi-parameter case is considered and it is shown that the quantum
local asymptotic normality can be obtained by combining the fixed eigenvalues situation
with the classical problem of evaluating the eigenvalues of a density matrix for fixed
eigenvectors.

For simplicity we consider a local neighborhood around θ0 = 0. Let ρ = ρθ0 be
a density matrix on A := M(Cd) and define ρa = eia Hρe−ia H for a ∈ R, where H
is a selfadjoint operator which can be chosen such that ϕ(H) = 0. Denote by ϕa the
corresponding state functionals ϕa(A) := Tr(ρa A). Consider now n quantum systems
prepared in the same state ρu/

√
n , where u is an unknown parameter belonging to some

bounded open interval I ⊂ R containing the origin. We are interested in the asymptotic
behavior as n → ∞ of the quantum statistical experiments

En =
(
(M(Cd))⊗n, ρ⊗n

u/
√

n
: u ∈ I

)
, (1)

whose family of states is indexed by a parameter u ∈ I .
As explained in Sect. 2, the likelihood ratio process is a sufficient statistic in the case

of classical statistical experiments, and the local asymptotic normality property means
that this process converges in distribution to the corresponding likelihood process of the
limit experiment. For a quantum experiment however, there is no obvious analogue of
the likelihood ratio process. In Sect. 3 we argued that the guiding principle in finding
the quantum analog of this process should be to look at operators which are intrinsically
related to the quantum experiment in the sense that they generate the minimal sufficient
algebra, similarly to the case of the likelihood ratio process. Such operators are the
Connes cocycles which in the case of the experiment En are given by

C (n)
u,t = [Dϕ⊗n

u/
√

n
, Dϕ⊗n]t :=

[
ρ⊗n

u/
√

n

]i t [
ρ⊗n]−i t

.

We can rewrite this as

C (n)
u,t =

{[
eiu H/

√
nρe−iu H/

√
n
]⊗n
}i t [

ρ⊗n]−i t =
[
eiu H/

√
nρi t e−iu H/

√
n
]⊗n [

ρ−i t
]⊗n =

[
eiu H/

√
nρi t e−iu H/

√
nρ−i t

]⊗n =
[
eiu H/

√
ne−iuσt (H)/

√
n
]⊗n =

exp

(
iu√

n

n∑

k=1

H (k)

)

exp

⎛

⎝−iu√
n

n∑

p=1

σt (H)
(p)

⎞

⎠,

where σt (H) := ρi t Hρ−i t is the action of the modular group of ϕ on H , and H (k)

represents the operator 1⊗· · ·⊗ H ⊗· · ·⊗1 with H acting on the kth term of the tensor
product.
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Consider now the expectation values of products of such cocycles with respect to the
state ϕ⊗n :

E (n)(u1, t1, . . . , us, ts) := ϕ⊗n

[
s∏

l=1

C (n)
ul ,tl

]

= Tr

[

ρ⊗n
s∏

l=1

exp (iul Fn(H)) exp
(−iul Fn(σtl (H))

)
]

.

We apply now the second part of the central limit Theorem 4.1 to obtain

lim
n→∞ E (n)(u1, t1, . . . , us, ts) = φ

(
s∏

l=1

W (ul H)W
(−ulσtl (H)

)
)

,

where φ is the quasifree state on the algebra CC R(M(Cd)sa, σ ) with symplectic form

σ(A, B) := i

2
Tr(ρ[A, B]).

The state φ is defined by φ (W (X)) = exp
(− 1

2α(X, X)
)
,where α is the real symmetric

positive bilinear form α(A, B) = Tr (ρA ◦ B), where A ◦ B = AB + B A/2. By using
the Weyl relations we get

lim
n→∞ E (n)(u1, t1, . . . , us, ts) = φ

(
s∏

l=1

W (ul(H − σt (H))) exp

[
u2

l

2
ϕ ([H, σt (H)])

])

.

In analogy to the classical local asymptotic normality, we would like to interpret
the expression on the right side as the expectation of a product of cocycles of the
form [Dφu, Dφ0]t for some family of states {φu : u ∈ I } with φ0 = φ, on W :=
CC R(M(Cd)sa, σ ). Later on we will restrict our attention to the minimal sufficient
subalgebra which is generated by the Connes cocycles [40] and still have a statistically
equivalent quantum experiment. Let us define the family of translated states on W ,

φu(W (A)) = φ (W (u H)W (A)W (−u H)), A ∈ M(Cd)sa .

The cocycles can be calculated (see e.g. p. 160 of [35]):

[Dφu, Dφ0]t = W (u(H − σt (H))) exp

[
u2

2
ϕ ([H, σt (H)])

]
. (2)

Thus we obtain the convergence in distribution of the Connes cocycles

lim
n→∞ϕ

⊗n

(
s∏

l=1

[
Dϕ⊗n

ul/
√

n
, Dϕ⊗n

]

tl

)

= φ

(
s∏

l=1

[
Dφul , Dφ0

]

tl

)

.

Notice that [Dφu, Dφ0]t do not commute for different times as in general ϕ([H −σt (A),
H − σs(H)]) �= 0. This implies that the minimal sufficient algebra W0 ⊂ W is non-
commutative and is generated by the Weyl operators W (A) with A ∈ K := LinR(H −
σt (H) : t ∈ R). We denote by E the limit experiment in its minimal form

E = (W0, φ
u : u ∈ I

)
. (3)
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Theorem 5.1. As n → ∞ we have

En → E,
in the sense of weak convergence of experiments, where En is the sequence defined in
(1) and E is the quantum Gaussian shift experiment defined in (3).

We will take now a closer look at the limit experiment and in particular at the op-
timal measurement for estimating the unknown parameter u ∈ I . It is known [24] that
asymptotically the optimal procedure for En is to measure the symmetric logarithmic
derivative L at the point θ0 = 0 on each of the individual systems separately. As we
will see, the optimal procedure for the limit experiment is to measure the corresponding
observable B(L) and obtain a classical experiment with Fisher information equal to the
quantum Fisher information of E (see also [20]).

Let A be an arbitrary element of K . When restricted to the commutative algebra
generated by the field B(A), the states φu give rise to a family of displaced Gaussian
distributions on R,

Pu
A := N (−iuϕ([H, A]), ϕ(A2)).

Indeed the expected value of B(A) is

φu(B(A)) = φ(W (u H)B(A)W (−u H)) = φ(B(A) + 2uσ(H, A)1)
= −iuϕ([H, A]),

and the variance is φ(B(A)2) = α(A, A) = ϕ(A2). It can be shown that for a Gaussian
shift family (N (au, v), u ∈ I ) the Fisher information is given by I = a2/v2, thus in
our case we have

IA = ϕ([H, A])2/ϕ(A2). (4)

Coming back to the original quantum experiment (M(Cd), ϕa : a ∈ R) we define the
symmetric logarithmic derivative at θ0 = 0 by

L ◦ ρ = dρa

da

∣∣
∣∣
a=0

= i[H, ρ]. (5)

Thus

iφ([A, H ]) = iTr(ρ[A, H ]) = iTr(A[H, ρ]) = Tr(ρA ◦ L) = (A,L)ρ ,
and by inserting into (4) we get IA = | (A,L)ρ |2/‖A‖2,which takes its maximum value
for A = L. Thus

sup
A

IA = IL = Tr(ρL2),

where the last expression is the quantum Fisher information H(ρ) [24].
We will show now that L belongs to the subspace K , so that its corresponding

field belongs to the minimal sufficient algebra W0. Let ρ = ∑d
i=1 λi Pi be the spectral

decomposition of ρ, then the symmetric logarithmic derivative can be written as

〈ei ,Le j 〉 = 2i
λi − λ j

λi + λ j
〈ei , He j 〉. (6)
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By derivating H − σt (H) with respect to t we obtain that the multiple commutators
Cr := [. . . [H, log ρ], . . . , log ρ] belongs to K for any number r of commutators. It is
easy to see that

〈ei ,Cr e j 〉 = 〈ei , He j 〉(log(λ j/λi ))
r ,

and by writing (6) in the form

〈ei ,Le j 〉 = 2i〈ei , He j 〉1 − elog(λ j /λi )

1 + elog(λ j /λi )
,

we see that L belongs to the linear span of Cr for r ≥ 1 and thus L ∈ K .
In conclusion there exists a measurement on the limit experiment such that the Fisher

information of the measurement results achieves the upper bound given by the quantum
Fisher information. This suggests that the classical statistical experiment

F = (R, Pu
L : u ∈ I ),

‘contains all the information’ about the asymptotics of the sequence En . We will show
that this is not true in the sense that F is not equivalent to E . Indeed if that was the
case there would exist a linear positive map S from L1(R) to W0∗, the space of normal
functionals on W0 such that

S : Pu
L �→ φu, u ∈ I.

But S is completely positive and thus E and F can be obtained from each other by
quantum randomizations which is impossible as their minimal sufficient subalgebras
cannot be isomorphic [40]. In particular this means that there exists a classical statistical
decision problem for which the minimax risk of the experiment E is strictly smaller than
the minimax risk of the experiment F . An example of such a decision problem [14] is
that of distinguishing between two states φu and φ−u with u �= 0 for which the optimal
measurement is different from the measurement of L.

5.2. Local asymptotic normality: general case. We pass now the the general case of
an m dimensional family of states as described in the beginning of Sect. 5. The main
ingredients of the proof are the quantum central limit theorem and the following form
of the law of large numbers [35,38]:

Let B be the infinite tensor product of copies of A and let ψ be the product state
ψ = ϕ⊗ϕ⊗· · · Each element a ∈ An can be identified with the element a⊗ I ⊗ I ⊗ . . .
in B. For a ∈ A, we denote

Sn(a) := 1

n

n∑

k=0

a(k) ∈ An

with a(k) as in Eq. (1), and similarly for any element b ∈ An , we denote the k-places
translated b(k) := 1 ⊗ · · · ⊗ 1 ⊗ b ⊗ 1 ⊗ · · · ∈ B .

Let us consider the GNS representation of B with respect to ψ on a Hilbert space H
with cyclic vector �. We define the contraction V : H → H by V b� = b(1)�, for
b ∈ An . Then we have

lim
n

1

n

n∑

k=0

V ka� = lim
n

Sn(a)� = ϕ(a)�,

for all a ∈ A. As a consequence, we get the following lemma.
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Lemma 5.2. Let an, a be selfadjoint elements in A, such that an → a, and let ρ̃n ∈ A∗
be density matrices such that ρ̃n → ρ. Let un, vn ∈ A be unitaries such that un → 1
and vn → 1. With the notation

wn,t = exp{i t (log ρ̃n +
1

n
an)}ρ̃−i t

n , t ∈ R,

we have

lim
n→∞ϕ

⊗n(u⊗n
n w⊗n

n,t v
⊗n
n ) = exp{i tϕ(a)} lim

n→∞ϕ
⊗n(u⊗n

n v⊗n
n ).

Proof. We will use the Dyson expansion [35]

exp{i t (log D + b)}D−i t =
∞∑

k=0

i k
∫ t

0
ds1 . . .

∫ sk−1

0
dskσ

D
sk
(b) . . . σ D

s1
(b),

where σ D
s (b) = DisbD−is . Let us denote bn = an − ϕ(a). We get

ϕ⊗n(u⊗n
n w⊗n

n,t v
⊗n
n ) =

exp{i tϕ(a)}ϕ⊗n
(

u⊗n
n exp{i t (log(ρ̃⊗n

n ) + Sn(bn))}(ρ̃⊗n
n )−i tv⊗n

n

)
=

exp{i tϕ(a)}[ϕ⊗n (u⊗n
n v⊗n

n

)
+

ϕ⊗n(u⊗n
n

∞∑

k=1

i k
∫ t

0
ds1 . . .

∫ sk−1

0
dsk Sn(σ

ρ̃n
sk
(bn)) . . . Sn(σ

ρ̃n
s1
(bn))v

⊗n
n )].

The term in the last line can be rewritten as
∫ t

0
ds1

∞∑

k=0

∫ s1

0
dx1 . . .

∫ xk−1

0
dxk ik

×
〈
Sn(σ

ρ̃n
x1
(bn)) . . . Sn(σ

ρ̃n
xk
(bn))(u

∗
n)

⊗n�, i Sn(σ
ρ̃n
s1
(bn))v

⊗n
n �

〉
=
∫ t

0
ds1

×
〈
(v∗

n ρ̃n
it )⊗n exp{−is1(log(ρ̃⊗n

n ) + Sn(bn))}(u∗
n)

⊗n�, i Sn(v
∗
nσ

ρ̃n
s1
(bn)vn)�

〉
.

The sequence v∗
nσ

ρ̃n
s (bn)vn converges to σϕs (a −ϕ(a)) in norm and Sn(σ

ϕ
s (a −ϕ(a)))�

converges to 0, by the weak law of large numbers. Moreover, for all n and s we have
‖Sn(v

∗
nσ

ρ̃n
s (bn)vn)‖ ≤ ‖bn‖ and ‖bn‖ is bounded. So the last term goes to 0 as n → ∞,

by the dominated convergence theorem. ��
Let us now return to the family {ρθ : θ ∈ �}, and consider the spectral decomposition

ρθ := ∑
j λ j,θ Pj,θ . By the differentiability of the map θ �→ ρθ there exist self-adjoint

matrices Hj,θ ∈ A, such that

∂

∂θk
Pj,θ = i[Hk,θ , Pj,θ ] θ ∈ �, j = 1, . . . , d, k = 1 . . . ,m. (7)

We fix a point θ0 ∈ � and make the notations ρ = ρθ0 , Pj = Pj,θ0 , Hk = Hk,θ0 , and
τθ =∑ j λ j,θ Pj . For a smooth function f : R → R, we have

∂

∂θk
f (ρθ )

∣∣∣∣
θ=θ0

= ∂

∂θk
f (τθ )

∣∣∣∣
θ=θ0

+ i[Hk, f (ρ)], k = 1, . . . ,m.
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The first term commutes with ρ and the second term satisfies Tr a[Hk, f (ρ)] = 0,
whenever [a, ρ] = 0. We may suppose that ϕ(Hk) = 0 for all k.

We will deal with expressions of the form ϕ⊗n(v⊗n
n,1 . . . v

⊗n
n,k), where

vn, j = ρ
i t j

θ0+ 1√
n

u jρ
−i t j , or vn, j = ρi t jρ

−i t j

θ0+ 1√
n

u j , t j ∈ R, u j ∈ I. (8)

We will first show that the original family of states can be replaced by a simpler one
without changing the asymptotics.

Lemma 5.3. Let

ρ̃a = exp

(

i
∑

k

ak Hk

)

τθ0+a exp

(

−i
∑

k

ak Hk

)

, a ∈ I,

and let Ẽn = (An, ρ̃n,u := ρ̃⊗n
u/

√
n

: u ∈ I ). Then limn ωEn (g) = limn ωẼn
(g), for all

g ∈ G.

Proof. Let us denote ṽn, j the expression obtained from vn, j by replacing ρθ0+u j /
√

n by
ρ̃u j /

√
n , j = 1, . . . , k. We have to show that

lim
n
ϕ⊗n(v⊗n

n,1 . . . v
⊗n
n,k) = lim

n
ϕ⊗n(ṽ⊗n

n,1 . . . ṽ
⊗n
n,k).

Let ρn = ρn,0 = ρ̃n,0. Then

ρi t
n,uρ

−i t
n = exp{i t (log ρ̃u/

√
n + log ρθ0+u/

√
n − log ρ̃u/

√
n)}⊗n ρ̃−i t

n,u ρ̃
i t
n,uρ

−i t
n .

By considering the Taylor expansion of the functions s �→ log ρ̃su/
√

n and s �→
log ρθ0+su/

√
n , we get

log ρθ0+u/
√

n − log ρ̃u/
√

n = 1

2

(
d2

ds2 log ρθ0+ su√
n

∣
∣∣∣
s=s′

n

− d2

ds2 log ρ̃ su√
n

∣
∣∣∣
s=s′′

n

)

with s′
n, s′′

n ∈ [0, 1] and it can be shown by some computation that the last expression is
equal to 1

n an , where an converges in norm to

a = −1

2
ρ−1[[ρ, H(u)], H(u)], H(u) =

∑

k

uk Hk,

satisfying ϕ(a) = 0, where we have used the fact that the states ϕθ are faithful and thus
ρθ is invertible. The statement can be now proved by a repeated use of Lemma 5.2. ��

We introduce the following notations:

l(u) :=
∑

k

uklk =
∑

k

uk
∂

∂θk
log τθ |θ=θ0 , (9)

h(u) :=
∑

k,l

ukul
∂2

∂θk∂θl
log τθ |θ=θ0 ,

	(u) :=
∑

k

uk	k, 	k ◦ ρ = i[Hk, ρ],
(10)

L(u) :=
∑

k

ukLk, Lk ◦ ρ = ∂

∂θk
ρθ |θ=θ0 .
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Note that lk are the logarithmic derivatives in θ0 of the commutative family of states τθ .
Similarly 	k is the symmetric logarithmic derivative of the unitary family obtained by
rotating ρ with the unitary. The sum Lk = lk +	k is the symmetric logarithmic derivative
at θ0 of the original family ρθ . We notice further that ϕ(H(u)) = ϕ(l(u)) = ϕ(	(u)) = 0
and −ϕ(h(u)) = ϕ(l(u)2) is the Fisher information of the family s �→ τθ0+su , at s = 0.

We compute now the Connes cocycles for the family ρ̃n,u :

ρ̃i t
n,u ρ̃

−i t
n =

[
exp

(
i√
n

H(u)

)
τ i t
θ0+ 1√

n
u

exp

(
− i√

n
H(u)

)]⊗n

(ρ−i t )⊗n

= exp

(
i√
n

H(u)

)⊗n (
τ i t
θ0+ 1√

n
u
ρ−i t

)⊗n (
ρi t exp

(
− i√

n
H(u)

)
ρ−i t

)⊗n

= exp

(
i√
n

H(u)

)⊗n

exp
(

i t (log τθ0+u/
√

n − log ρ)
)⊗n

exp

(
− i√

n
σ
ϕ
t (H(u))

)⊗n

.

Note that τθ0 = ρ and all the elements τθ are mutually commuting. Using again Taylor
expansion up to the second order, we get

ρ̃i t
n,u ρ̃

−i t
n

= exp

(
i√
n

H(u)

)⊗n

exp

(
i t√

n
l(u) +

i t

2n
bn

)⊗n

exp

(
− i√

n
σ
ϕ
t (H(u))

)⊗n

= exp (i Fn(H(u))) exp (i t (Fn(l(u))) exp

(
i t

2
Sn(bn)

)
exp
(−i Fn(σ

ϕ
t (H(u)))

)
,

where

bn =
∑

k,l

ukul
∂2

∂θk∂θl
log τθ |θ=θn , ‖θn − θ0‖ ≤ 1√

n
‖u‖.

By continuity of the second derivatives, {bn} converges to h(u) in norm. By the quantum
Central Limit Theorem and Lemma 5.2, we can now conclude that the family of cocycles
of the modified states ρ̃i t

n,u ρ̃
−i t
n converges to

Vu,t := exp

(
i t

2
ϕ(h(u))

)
W (H(u))W (tl(u))W (−σϕt (H(u))),

where W (A) are the Weyl operators. The convergence holds as usual in the weak sense:
for any u1, . . . uk ∈ I and t1, . . . tk ∈ R,

lim
n
ϕ⊗n(ṽ⊗n

n,1 . . . ṽ
⊗n
n,k) = φ(V1 . . . Vk),

where Vj is shorthand notation for Vu j ,t j or V ∗
u j ,t j

, according to (8). In combination with
Lemma 5.3 this gives

lim
n
ϕ⊗n(v⊗n

n,1 . . . v
⊗n
n,k) = φ(V1 . . . Vk).
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It remains now to identify Vu,t as Connes cocycles of the limit experiment, Vu,t =
[Dφu, Dφ0]t , where φu are states on the algebra CC R(M(Cd)sa, σ ). Using the fact
that [B(l(u)), B(A)] = 0 for any A ∈ M(Cd)sa we can decompose Vu,t into a product

Vu,t = W (H(u)− σt (H(u)))) exp

[
1

2
ϕ ([H(u), σt (H(u))])

]

×W (tl(u)) exp

[
i t

2
ϕ (h(u))

]
, (11)

where the first term is exactly the cocycle appearing in (2) for the unitary family of states
and the second term is the ‘classical cocycle’ due to the change in the eigenvalues of the
density matrix. We will show that indeed the product of cocycles can be accounted for
by a product of transformations such that

[Dφu, Dφ]t = [D (φ ◦ R(u) ◦ L(u)), D (φ ◦ R(u))]t [D (φ ◦ R(u)) , Dφ]t .

The inner automorphism R(u) of CC R(M(Cd)sa, σ ) is the ‘translation’ with momen-
tum B(H),

R(u) : W (A) �→ W (H(u))W (A)W (−H(u))

= W (A) exp{i(A, 	(u))ρ}, (12)

just like in the unitary case (see Eq. (10)). The transformation L(u) is an outer automor-
phism of CC R(M(Cd)sa, σ ), i.e. whose generator is a field which does not belong to
the algebra as it corresponds to a non-selfadjoint operator,

L(u) : W (A) → W (−il(u)/2)W (A)W (il(u)/2)

= W (A) exp
{
i(A, l(u))ρ

}
. (13)

Using the factorization (3) of CC R(M(Cd)sa, σ ) and the definitions of L(u) and R(u)
we get the following picture of the action the product L(u) ◦ R(u):

L(u) ◦ R(u) : W (B1)⊗ W (B2) �→ L(u)(W (B1))⊗ R(u)(W (B2)).

Moreover, from (4) we obtain that the state φu factorizes as well,

φu = φ1 ◦ L(u)⊗ φ2 ◦ R(u) := φu
1 ⊗ φu

2 .

It is now easy to see that the cocycles for this family of states have the expression (11)
and the states φu are given by [20]

φu (W (A)) = exp

(
−1

2
(A, A)ρ

)
exp

[

iTr

(

A
∑

i

ui
∂ρθ

∂θi

)]

= exp

(
−1

2
(A, A)ρ + i(A,L(u))ρ

)
. (14)
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Theorem 5.4. The sequence

En :=
(

M(Cd)⊗n, ϕ⊗n
θ0+u/

√
n

: u ∈ I
)
,

of quantum statistical experiments converges weakly as n → ∞ to the limit experiment

E :=
(

CC R(M(Cd)sa, σ ), φu : u ∈ I
)
.

The latter is a tensor product between a classical Gaussian shift experiment correspon-
ding to the change in the eigenvalues of ρθ , and a non-commutative one corresponding
to the rotation of the eigenbasis of ρθ . On the algebraic level we have the isomorphism

CC R
(

M(Cd)sa, σ
) ∼= CC R

(Hρ

)⊗ CC R
(
H⊥
ρ

)
,

as described in Sect. 4. With respect to this isomorphism the state φu given by (14),
factorizes as

φu = φu
1 ⊗ φu

2 = φ1 ◦ L(u)⊗ φ2 ◦ R(u),

with automorphisms R(u), L(u) defined in (12) and (13) respectively.

In the reminder of this section we will identify the minimal sufficient algebra W0 ⊂
CC R(M(Cd)sa, σ ) of the experiment E . We know that the Connes cocycles generate the
minimal sufficient algebra, and from the expression (11) we get that W0 = CC R(K ),
where K is the real linear space,

K := LinR

{
H(u)− σ

ϕ
t (H(u)) + tl(u) : t ∈ R, u ∈ I

}
.

By taking derivatives with respect to t and using Eqs. (7) and (9) we get that K is the
linear span of the orbits of the logarithmic derivatives log ρ′

k := ∂ log ρθ/∂θk |θ=θ0 under
the modular group σϕt .

Lemma 5.5. The minimal sufficient algebra of the experiment E is given by
W0 = CC R(K , σ ) with

K = LinR {l(u) : u ∈ I } ⊕ LinR

{
H(u)− σ

ϕ
t (H(u)) : u ∈ I, t ∈ R

}
.

In particular Lk ∈ K and lk ∈ K .

Proof. We have

Lk ◦ ρ := ∂ρθ

∂θk

∣
∣∣∣
θ=θ0

=
∑

i

∂λi,θ

∂θk

∣
∣∣∣
θ=θ0

Pi +
∑

i

iλi [Hk, Pi ],

which on the matrix elements becomes

〈ei ,Lke j 〉 = δi j
∂ log λθi
∂θk

∣∣∣∣∣
θ=θ0

+ 2i
1 − elog(λ j /λi )

1 + elog(λ j /λi )
〈ei , Hke j 〉. (15)

The logarithmic derivative log ρ′
k is in K and has matrix elements

〈ei , log ρ′
ke j 〉 = δi j

∂ log λθi
∂θk

∣∣∣∣∣
θ=θ0

+ i log(λ j/λi )〈ei , Hke j 〉,
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and by derivating σt
(
log ρ′

k

)
we get that the multiple commutators

Cr = [. . . [log ρ′
k, log ρ], . . . , log ρ],

are also in K and have the expression

〈ei ,Cr e j 〉 = i log(λ j/λi )
r+1〈ei , Hke j 〉

for r ≥ 1. By comparing (15) with the last two equations we conclude that Lk ∈ K for
all k = 1, . . . ,m, and additionally that l(u) ∈ K for all u ∈ I . Indeed, there exist a
finite number of real coefficients {ar , r = 0 . . . } such that

d(d−1)∑

r=0

ar log(λ j/λi )
r = 0, ∀1 ≤ i �= j ≤ d,

and a0 �= 0. With such coefficients we have

a0 log ρ′
k +

d(d−1)∑

r=1

ar Cr = a0lk ∈ K .

In conclusion K is the linear span of the vectors lk ∈ Hρ and the vectors Hk −σt (Hk) ∈
H⊥
ρ as desired. ��
Another interesting feature of the minimal sufficient algebra W0 is that apart from

the standard symmetric logarithmic derivatives Lk , it contains a broad set of quantum
versions of the logarithmic derivative which were investigated in [39] and are defined
as follows:

LF
k = J F (ρ′

k

)
,

where ρ′
k = ∂ρθ/∂θk |θ=θ0 and J F is an operator on matrices defined as

J F = [F(L R−1)]−1 R−1.

Here L and R are the left and respectively right multiplication by ρ, and F : R
+ → R

is an operator-monotone function satisfying F(t) = t F(t−1) for t > 0 and F(1) = 1.
This function is required to satisfy the physical admissibility condition that the associated
quantum Fisher information Ikp := Trρ′

kLF
p is monotone under coarse-grainings. Two

well-known examples of a quantum score are the symmetric logarithmic derivative Lk ,
for which F(t) = (1 + t)/2, and the Bogoljubov-Kubo-Mori logarithmic derivative
LB M K

k := log ρ′
k for which F(t) = t−1

log(t) , and as we have seen they both belong to the
subspace K .

Lemma 5.6. For any admissible function F the logarithmic derivative LF
k belongs to K .

Proof. First, we see that

〈ei ,LF
k e j 〉 = δi j

∂ log λθi
∂θk

∣∣∣∣∣
θ=θ0

+ i
(1 − λi/λ j )

F(λi/λ j )
〈ei , Hke j 〉.
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Furthermore, for each F we have the integral representation [31]

1 − t

F(t)
=
∫

[0,∞]
1 − t

s + t
(1 + s)µ(ds),

where µ(s) is a positive finite measure on [0,∞]. Therefore,

〈ei ,LF
k e j 〉 = δi j

∂ log λθi
∂θk

∣∣
∣∣∣
θ=θ0

+ i
∫

[0,∞]
(1 − λi/λ j )

(s + λi/λ j )
〈ei , Hke j 〉(1 + s)µ(ds),

and LF
k ∈ K is proved similarly as for Lk . ��

6. Application to Qubit States

In this section we apply the local asymptotic normality results to the simplest situation
of a family of qubit states. In Theorem 1.1 of [14] it is shown that in this case local
asymptotic normality holds in the strong sense of Definition 3.10.

An arbitrary density matrix in M(C2) can be written as

ρ = 1 + −→r −→σ
2

,

where −→r = (rx , ry, rz) ∈ R
3 is a vector satisfying |−→r | ≤ 1, and −→σ = (σx , σy, σz) are

the Pauli matrices. Due to the rotation symmetry, we may choose ρ0 = 1+rσz
2 correspon-

ding to −→r0 = (0, 0, r) for some fixed r ∈ (0, 1). All the states in a neighborhood of ρ0
can be obtained by a combination of a translation in the radial direction, and a rotation
around an axis in the x-y plane. Thus we can use the local coordinates −→u = (rx , ry, a)
around −→r0 such that

ρ−→u = 1 + (−→r0 + −→u )−→σ
2

.

Notice that only the coordinate a contributes to the classical part of the experiment
calculated and the functions l and h defined in Sect. 5.2 are

la = ∂ log ρ−→u
∂a

∣∣
∣∣
u=0

= 1

1 + r
P+ − 1

1 − r
P−,

haa = ∂2 log ρ−→u
∂a2

∣∣∣
∣
u=0

= −
(

1

(1 + r)2
P+ +

1

(1 − r)2
P−
)
,

where P± are the eigenprojectors of ρ0, and the components corresponding to other
derivatives are equal to 0. With the notations defined in Sect. 4, we construct the real
Hilbert space L2

R
(ρ0) with inner product

(A, B)ρ0 = Tr (ρ0 A ◦ B), A, B ∈ M(C2)sa,

with respect to which we have the orthogonal decomposition

L2
R
(ρ0) = Hρ0 ⊕ H⊥

ρ0
= Lin{1, σz} ⊕ Lin{σx , σy}. (1)
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Next, we use the symplectic form σ(A, B) = i
2 Tr (ρ0[A, B]) , to construct the algebra

CC R(M(C2)sa, σ ). We obtain that B(σz) and B(1) commute with all the other fields
and B(σy), B(σx ) satisfy the canonical commutation relations

[B(σy), B(σx )] = 2ir1.

By rescaling we get the usual quantum oscillator relations [Q,P] = i1 with Q =
B(σy)/

√
2r and P = B(σx )/

√
2r . Thus

CC R(M(C2)sa, σ ) ∼= CC R(Lin{1, σz})⊗ Alg(Q,P),

where the left side of the tensor product is itself a commutative algebra which is naturally
isomorphic to L∞(R2), and the right side is the algebra of a quantum harmonic oscillator
with variables Q and P. On this algebra we have a state φ0 given by φ0(W (A)) =
exp
(− 1

2 Tr(ρ0 A2)
)
, which due to (1) splits into a tensor product φ0 = φ0

1 ⊗ φ0
2 . In

Sect. 5.2 we have shown that the minimal sufficient algebra of the limit experiment is
generated by the fields corresponding to a real linear subspace K ⊂ M(C2)sa which in
this case is K = Rla ⊕ Lin{σx , σy}. Then the minimal sufficient algebra is of the form

CC R(K , σ ) ∼= L∞(R)⊗ Alg(Q,P)

and the family of states defining the limit experiment is

φu = N (Ica, Ic)⊗ φ
rx ,ry
2 .

Let us explain the meaning of the right side:

Ic = Tr(ρ0l2
a) = −Tr(ρ0haa) = 1

1 − r2

is the Fisher information corresponding to the parameter a. The state φ
rx ,ry
2 of the

quantum oscillator can be described through its Wigner function [29]

W rx ry (q, p) = exp
[
−r
(
(q − qx )

2 + (p − py)
2
)]
,

which corresponds to a displaced thermal equilibrium state with center (qx , qy) =
(rx/

√
2r , ry/

√
2r).

7. Concluding Remarks

In this paper we have made a further step in the development of a theory of quantum statis-
tical experiments started by Petz. We believe that the notions which we have introduced
are the proper analogues of the classical concepts: weak and strong convergence of ex-
periments, canonical state of an experiment, local asymptotic normality. However the
theory is far from complete and the following is a short list of open problems and topics
for future work.

1. Extend the theory of statistical experiments to the case of non-faithful states. We
expect that the extended space of experiments will be compact under the weak
topology.
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2. One of the crucial aspects of the theory is the relation between strong and weak
convergence of experiments for finite parameter sets. In Theorem 3.16 we have tou-
ched upon this by showing that the two notions are equivalent when the experiments
are uniformly dominated and the corresponding algebras are of type I with discrete
center. We believe that the same result holds for a much larger class of experi-
ments, where one would have to consider non-trivial channels in order to achieve
the convergence in Le Cam sense. One possibility, perhaps too ambitious, would
be to construct a quantum version of the Skorohod almost sure representation theo-
rem [41]. Another strategy could be to approximate the quantum experiments by
finite dimensional ones, similarly to the treatment of nuclear C∗-algebras [48].

3. The work on the previous issue might be simplified by finding alternative characte-
rizations of weak convergence in terms of quantum Radon-Nikodym derivatives.

4. Derive local asymptotic normality under weaker smoothness conditions for the
family of states, similar to the differentiability in quadratic mean from the clas-
sical set-up [50]. Going beyond the finite parameter, i.i.d. case – which classically
is rather standard – remains a challenge for the quantum theory.

5. Develop a quantum statistical decision theory for quantum experiments. This will
connect the abstract framework to concrete statistical problems such as estimation
and testing.
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15. Guţă, M., Matsumoto, K.: Optimal cloning of mixed gaussian states. Phys. Rev. A 74, 032305 (2006)
16. Hannemann, T., Reiss, D., Balzer, C., Neuhauser, W., Toschek, P.E., Wunderlich, C.: Self-learning

estimation of quantum states. Phys. Rev. A, 65, 050303–+ (2002)
17. Hayashi, M.: Presentations at maphysto and quantop workshop on quantum measurements and quantum

stochastics, Aarhus, 2003, and Special week on quantum statistics, Isaac Newton Institute for Mathema-
tical Sciences, Cambridge, 2004

18. Hayashi, M.: Quantum estimation and the quantum central limit theorem. Bulletin of the Mathematical
Society of Japan 55, 368–391 (2003) (in Japanese; Translated into English in quant-ph/0608198)

19. Hayashi, M., Matsumoto, K.: Statistical model with measurement degree of freedom and quantum physics.
In: Masahito Hayashi, editor, Asymptotic theory of quantum statistical inference: selected papers, River
Edge HJ: 162–170. World Scientific, 2005, pp. 162–170 (English translation of a paper in Japanese
published in Surikaiseki Kenkyusho Kokyuroku, Vol. 35, pp. 7689-7727, 2002)

20. Hayashi, M., Matsumoto K.: Asymptotic performance of optimal state estimation in quantum two level
system. http://arxiv.org/list/quant-ph/0411073, 2007

21. Hayashi, M., editor. Asymptotic theory of quantum statistical inference: selected papers, River Edge, NJ:
World Scientific, 2005

22. Hayashi, M.: Quantum Information. Berlin Heidelberg: Springer-Verlag, 2006
23. Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1, 231–252 (1969)
24. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. Amsterdam: North-Holland, 1982
25. Kadison, R.V., Ringrose, J.R.: Fundamentals of the Theory of Operator Algebras I. Providence, RI: Amer.

Math. Soc., 1997
26. Keyl, M., Werner, R.F.: Estimating the spectrum of a density operator. Phys. Rev. A 64, 052311 (2001)
27. Koashi, M., Imoto, N.: Operations that do not disturb partially known quantum states. Phys. Rev.

A 66, 022318 (2002)
28. Le Cam, L.: Asymptotic Methods in Statistical Decision Theory. New York: Springer Verlag, 1986
29. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge: Cambridge University Press, 1997
30. Leonhardt, U., Munroe, M., Kiss, T., Richter, Th., Raymer, M.G.: Sampling of photon statistics and

density matrix using homodyne detection. Optics Communications 127, 144–160 (1996)
31. Lesniewski, A., Ruskai, M.B.: Monotone riemannian metrics and relative entropy on noncommutative

probability spaces. J. Math. Phys. 40, 5702–5724 (1999)
32. Massar, S., Popescu, S.: Optimal extraction of information from finite quantum ensembles. Phys. Rev.

Lett. 74, 1259–1263 (1995)
33. Mosonyi, M., Petz, D.: Structure of sufficient quantum coarse-grainings. Lett. Math. Phys. 68,

19–30 (2004)
34. Ogawa, T., Nagaoka, H.: On the statistical equivalence for sets of quantum states. UEC-IS-2000-5, IS

Technical Reports, Univ. of Electro-Comm., 2000
35. Ohya, M., Petz, D.: Quantum Entropy and its Use. Berlin-Heidelberg: Springer Verlag, 2004
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