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Abstract: Phenomenological implications of the volume of the Calabi-Yau threefolds
on the hidden and observable M-theory boundaries, together with slope stability of their
corresponding vector bundles, constrain the set of Kähler moduli which give rise to
realistic compactifications of the strongly coupled heterotic string. When vector bun-
dles are constructed using extensions, we provide simple rules to determine lower and
upper bounds to the region of the Kähler moduli space where such compactifications
can exist. We show how small these regions can be, working out in full detail the case
of the recently proposed Heterotic Standard Model. More explicitly, we exhibit Kähler
classes in these regions for which the visible vector bundle is stable. On the other hand,
there is no polarization for which the hidden bundle is stable.

1. Introduction

Our understanding of Calabi-Yau compactifications of string/M-theory has been
increased considerably during the last years. On the one hand, distributions of vacua
for type IIB, IIA and type I string theory are much better understood. On the other hand,
promising compactifications of the heterotic string have been found at special points of
the moduli space.

Although a systematic study of distributions of vacua for compactifications of the
heterotic string is much harder, because our primitive understanding of their moduli
stabilization and the huge amount of vector bundle moduli, we can still find systematic
criteria to constrain the regions of the moduli space where realistic vacua should be
located.

Recently, phenomenologically interesting Calabi-Yau compactifications of the
heterotic string have appeared in the literature [2, 5]. Using certain elliptically fibered
threefold with fundamental group ZZ3 × ZZ3, and an SU (4) × ZZ3 × ZZ3 instanton living
on the visible E8-bundle, give rise to an effective field theory on IR4 which has the parti-
cle spectrum of the Minimal Supersymmetric Standard Model (MSSM), with no exotic
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matter but an additional pair of Higgs-Higgs conjugate superfields. In these models,
vector bundles are constructed using vector bundle extensions, which correspond to
Hermitian Yang-Mills connections when they are slope-stable. We use this specific con-
struction to exemplify how a systematic selection of realistic Kähler moduli can be
done.1

The organization of the paper is as follows: Sect. 2 contains an outline of the natural
criteria for selecting Kähler moduli in realistic Calabi-Yau compactifications of the het-
erotic string. In Sect. 3, we analyze the case of the Heterotic Standard Model, describe
the geometry of the elliptic Calabi-Yau and construct its Kähler cone. Section 4 provides
lower and upper bounds to the region of the Kähler cone that makes stable the observable
vector bundle of the HSM. In such construction we find a destabilizing sub-line bundle
for the hidden vector bundle, and exhibit Kähler classes that make stable the visible one.

2. Picking Kähler Moduli

The spacetime in a Calabi-Yau compactification of the strongly coupled heterotic string
[15], defined through the direct product eleven-dimensional manifold Y = IR4 × X ×
[0, 1], with X a Calabi-Yau threefold. N = 1 supersymmetry on the four dimen-
sional Effective Field Theory, requires to fix a G2-holonomy metric on X × [0, 1] plus
gauge connections at the hidden and visible vector bundles, which satisfy the Hermitian
Yang-Mills equations. In order to define a barely G2-holonomy metric on X × [0, 1]
we introduce a calibration 3-form, according to D. Joyce [16],

� = (At + B)ω ∧ dt + Re(�), (2.1)

which depends on the differential dt along the interval and the holomorphic 3-form � and
Kähler class ω of the threefold. Such a calibration defines a barely G2-holonomy metric
on X × [0, 1], where the Kähler class is linearly dilated along the interval; therefore at
the visible and hidden boundaries the Kähler classes are ω0 = Bω and ω1 = (A + B)ω

(i = 1 stands for the ‘hidden’ boundary and i = 0 for the ‘visible’ one). The set of Kähler
classes on X is usually known as the Kähler cone and denoted by K(X) ⊂ H2(X, ZZ).

One approach to model building is to attach a SU (n) × G Hermitian Yang-Mills
gauge connection at the boundary, to obtain an Effective Field Theory with the com-
mutant of SU (n) × G ⊂ E8 as gauge group while the N = 1 supersymmetry of the
EFT is preserved. Here G is the non-trivial holonomy group associated to a certain
flat line bundle. By the theorem of Donaldson and Uhlenbeck-Yau [9], we know that
SU (n)-connections that satisfy the Hermitian Yang-Mills equations and slope-stable
rank-n holomorphic vector bundles with vanishing first Chern class are in one-to-one
correspondence.

2.1. Constraining angular degrees of freedom. Thus, the holomorphic vector bundles
Vi → X that we fix at the hidden and visible sectors, have to be slope stable in order
to get a sensible vacuum. Slope stability can impose severe constraints on the Kähler
moduli.

1 Recently, Donagi and Bouchard [8] have also proposed an independent CY compactification of the het-
erotic string with the spectrum of the MSSM and no exotic matter, using a different Calabi-Yau with an
explicitly slope-stable vector bundle in the observable sector. It would be also interesting to study in detail
these questions with the vector bundle which has just appeared in [4], on the same CY [5].
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If Wi ↪→ Vi is a rank-m (with m < n) holomorphic torsion free subsheaf2, then only
the ωi ∈ K(X) that verify

1

m

∫
X

ω2
i ∧ c1(Wi ) <

1

n

∫
X

ω2
i ∧ c1(Vi ) = 0, (2.2)

can make Vi stable. At this point we realize that if ωi is a stablemaker for Vi , then Nωi
with N ∈ ZZ+ is also a stablemaker. The stablemakers form a subcone Ks

i (X) ⊆ K(X)

within the Kähler moduli, [20].
The physical importance of slope stability is clear, [9]: Non-stablemaker classes at the

boundary ofKs
i (X)make the vector bundle Vi semistable, i.e. we can only find correspon-

dences to connections with reduced gauge group H ⊂ SU (n), thus the gauge dynamics
of the Effective Field Theory would be governed by the commutant of H × G ⊂ E8
instead of SU (n) × G.

Usually, a detailed computation of Ks
i (X) is difficult because we need to identify

every subsheaf Wi of Vi . Note that if h0(W ∨
i ⊗ Vi ) = 0, then Wi cannot be a subsheaf of

Vi , but the converse is not necessarily true. If the vector bundle Vi is constructed through
a non-trivial extension, defined by a short exact sequence

0 −→ VL −→ Vi −→ VR −→ 0, (2.3)

with Ext1(VR, VL) �= 0, we can give upper and lower bounds to Ks
i (X) in a simple way,

looking at subsheaves of VL and VR .
On the one hand, the set ULi of subsheaves of VL is a subset of the set of subsheaves

of Vi , since VL → Vi is injective. This provides an upper bound for cone Ks
i (X) of

Kähler classes for which Vi is stable:

Ks
i (X)> =

{
ωi ∈ K(X) :

∫
X

ω2
i ∧ c1(Li ) < 0, ∀ Li ∈ ULi

}
. (2.4)

On the other hand, a subsheaf of Vi gives an element of ULi × URi , where URi is the
subset of subsheaves of VR . Indeed, if Wi is a subsheaf of Vi , there is a commutative
diagram

0 −→ VL −→ Vi −→ VR −→ 0
↑ ↑ ↑

0 −→ WL −→ Wi −→ WR −→ 0
(2.5)

where the vertical arrows are injective, hence we obtain subsheaves WL and WR of VL
and VR . This gives a lower bound

Ks
i (X)< =

{
ωi ∈ K(X) :

∫
X
ω2

i ∧ (c1(WL)+c1(WR)) < 0, ∀ WL ∈ ULi , WR ∈ URi

}
.

(2.6)

Note that the ones belonging to ULi are true subsheaves of Vi , and the ones in URi are
possible subsheaves of Vi . Therefore, we can construct two bounds to the stablemaker
Kähler subcone Ks

i (X),

Ks
i (X)< ⊆ Ks

i (X) ⊆ Ks
i (X)>. (2.7)

2 It is enough to consider reflexive sheaves, i.e., sheaves with Wi = W∨∨
i . Furthermore, we can assume

that Wi is semistable.
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Sometimes we can use further information to discard some pairs (WL , WR) which do
not come from subsheaves Wi of Vi , hence obtaining a better lower bound. For instance,
the pair (0, VR) can be discarded, because it would give a splitting of the defining
exact sequence (2.3), but we have assumed that the extension is not trivial, hence has
no splitting. Other cases that can be discarded are pairs of the form (0, WR) when
h0(W ∨

R ⊗ Vi ) = 0. We shall apply these ideas in the next sections to the vector bundles
constructed in the Heterotic Standard Model, [2].

2.2. Constraining radial degrees of freedom. In the last subsection we have seen how
to choose rays in the Kähler cone that preserve the slope stability of a given vector bun-
dle, and thus define a consistent gauge group in the effective field theory. On the other
hand, radial degrees of freedom in Ks

i (X) are related with variations of the volume of
X , [11]. We are not free to choose arbitrary volumes for the threefolds at the hidden and
observable sector, if we want to preserve sensible values for Newton’s constant and the
E8 gauge coupling, [22].

Using Liouville’s measure, we can estimate the volume of the Calabi-Yau threefold
at the point ωi ∈ K(X) as 3

Vol(X)i = 1

3!
∫

X
ω3

i , (2.8)

thus radial dilations in the Kähler cone ωi �→ Nωi with N ∈ ZZ+, map the volume as
Vol(X)i �→ N 3Vol(X)i .

The volume of the threefolds at the boundaries of Y , are related through Witten’s
formula [22]

Vol(X)1 = Vol(X)0 + 2π
ρ

�P

∫
X

ω0 ∧
(

c2(V0) − 1

2
c2(T X)

)
+ O(ρ2), (2.9)

with �P the eleven dimensional Planck length and ρ the length of the M-theory interval.
This formula (2.9) holds at first order in ρ, which is the limit where we work, as in (2.1).
A more accurate relation between the volumes of the CYs at the boundaries, taking into
account the non-linear corrections in ρ, was derived in [6] and [7]. Newton’s constant
in the effective supergravity theory on the observable IR4 of Y goes as

G N ∼ �9
P

ρVol(X)0
, (2.10)

and the E8 gauge coupling as

αGU T ∼ �6
P

Vol(X)0
. (2.11)

Witten observed in [22], that in order to find realistic values for these physical quantities,
the volume of the threefold in the visible sector has to be very large. As the integral in
the right-hand side of (2.9) is negative due to Chern-Weil theory, and the identity∫

X
Tr
(
F2) ∧ ω = −

∫
X

|F |2ω3, (2.12)

3 Being rigorous, we should work with the dimensionfull measure (α′ω)3, although this will be irrele-
vant for our purposes because α′ factorizes out in the formulae that we use. In the small volume limit this
approximation can fail, and we should use conformal field theory to give a more accurate estimation.
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he deduced that sensible values for G N and αGU T are only possible for very small
Vol(X)1.
Summarizing: Let Ks

0(X) and Ks
1(X) be the set of Kähler classes that make stable

V0 → X and V1 → X , respectively. Physically interesting vacua should be located in
rays of the Kähler cone lying in the intersection Ks

0(X) ∩ Ks
1(X) ⊂ K(X), such that the

relative dilating factor ω0/ω1 is very large, and the Witten’s correlation

1

3!
∫

X
ω3

1 ∼ 1

3!
∫

X
ω3

0 + 2π
ρ

�P

∫
X

ω0 ∧
(

c2(V0) − 1

2
c2(T X)

)
(2.13)

is satisfied.

Remark 1. Although the study of distributions of vacua for these models is not as devel-
oped as for Calabi-Yau compactifications of the type II string theory, the presence of
vacua in these regions of the Kähler moduli space should be statistically favorable along
the lines of [10], once the vector bundle, dilaton and complex moduli are stabilized.

We have shown how to identify these regions explicitly. In the rest of the paper we
determine them for the recently proposed Heterotic Standard Model.

3. The Elliptic Calabi-Yau and its Kähler Cone

First, we briefly recall the construction of the Calabi-Yau threefold used the Heterotic
Standard Model, following the reference [5]. Let X̃ be the fiber product over IP1 of two
rational elliptic surfaces X̃ = B1 ×IP1 B2, as in the diagram:

X̃
π1 ↙ ↘ π2

B1 ↓ π B2
β1 ↘ ↙ β2

IP1

(3.1)

This kind of Calabi-Yau threefolds was already studied by C. Schoen in S. The geometry
of X̃ is basically encoded in the geometry of the rational elliptic surfaces B1 and B2.
Due to the phenomenological interest in finding threefolds which admit certain Wilson
lines4, the aim of [5] was to look for threefolds X̃ such that ZZ3 × ZZ3 ⊆ Aut(X̃). This
search was achieved thanks to the existence of certain elliptic surfaces that admit an
action of ZZ3 ×ZZ3 which can be characterized explicitly through a proper understanding
of the Mordell-Weil group of B.

Following Kodaira’s classification of singular fibers, our elliptic surfaces B1 and B2
are characterized by three I1 and three I3 singular fibers. Such rational elliptic surfaces
are described by one-dimensional families that allow us to build fiber products X̃ , cor-
responding to smooth Calabi-Yau threefolds. Furthermore, X̃ admits a free action of
G = ZZ3 × ZZ3 and the quotient X = X̃/G is also a smooth Calabi-Yau threefold
with fundamental group π1(X) = ZZ3 × ZZ3. Let g1 and g2 be generators of this group,
g2 acting as translation tη by a section η of the fibration β : B → IP1, and g1 acting
nontrivially on the base. Let ξ = g1(σ ) and αB = t−ξ ◦ g1.

The threefold used in the description of the Heterotic Standard Model is X = X̃/G,
although we will work with G-equivariant objects on X̃ . In the rest of this section

4 I.e. flat line bundles with non-trivial holonomy.
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we describe the G-invariant homology rings of B and X̃ , and their corresponding
G-invariant Kähler cones (i.e. their ample cones, or spaces of polarizations).

For the homology of a surface B, we choose a set of generators: the 0-section σ ,
the generic fiber F , the 6 irreducible components of the three I3 singular fibers that do
not intersect the 0-section 1,1,1,2, . . . , 3,1,3,2, and the two sections generating
the free part of the Mordell-Weil group5 ξ and αBξ . These generators are a basis for
H2(B,ZZ) ⊗ Q, but adding the torsion generator of the Mordell-Weil group

η = σ + F − 2

3

(
1,1 + 2,1 + 3,1

)− 1

3

(
1,2 + 2,2 + 3,2

)
, (3.2)

we generate all H2(B,ZZ).
The intersection matrix of the homology generators is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

η

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1 1
0 0 −2 0 0 1 0 0 0 0 1
0 0 0 −2 0 0 1 0 1 0 1
0 0 0 0 −2 0 0 1 0 1 1
0 0 1 0 0 −2 0 0 0 1 0
0 0 0 1 0 0 −2 0 0 0 0
0 0 0 0 1 0 0 −2 1 0 0
0 1 0 1 0 0 0 1 −1 1 0
0 1 0 0 1 1 0 0 1 −1 0
0 1 1 1 1 0 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.3)

The invariant homology under the action of G = ZZ3 × ZZ3, is generated by

H2(B,ZZ)G = spanZZ

{
F, t = −σ + 2,1 + 3,1 + 3,2 + 2ξ + αBξ + η − F

}
, (3.4)

where t can be also expressed as the homological sum of three sections, i.e. t = ξ +
αBξ + η � ξ .

The cohomology ring of X can be expressed as

H∗(X, Q) = H∗(X̃ , Q)G, (3.5)

using the G-invariant cohomology of X̃ . Hence

H2(X̃ , Q)G =
(

H2(B1, Q) ⊕ H2(B2,Q)

H2(IP1,Q)

)G

= H2(B1,Q)G ⊕ H2(B2,Q)G

H2(IP1,Q)
, (3.6)

that due to (3.4), is the same as

H2(X, Q) = H2(X̃ , Q)G

= spanQ
{
τ1 = π∗

1 (t1), τ2 = π∗
2 (t2), φ = π∗

1 (F1) = π∗
2 (F1)

}
, (3.7)

where t1 and t2 (respectively, F1 and F2) are the t-classes (respectively, F-classes)
defined in (3.4), corresponding to each surface B1 and B2. Using Poincaré duality, we
know that H4(X, Q) is isomorphic to H2(X, Q), also H1(X, ZZ) � π1(X) = ZZ3 ×ZZ3
because the Hurewicz theorem, thus H1(X, Q) = H1(X, ZZ) ⊗ Q = 0.

5 See Appendix A, for a complete description of the Mordell-Weil group of the elliptic surface.
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The ring H ev(X̃ , Q)G is generated through the cup product of the generators (3.7),
and is isomorphic to

H ev(X̃ , Q)G = Q[τ1, τ2, φ]/〈φ2, φτ1 = 3τ 2
1 , φτ2 = 3τ 2

2 〉, (3.8)

with the top cohomology element being τ 2
1 τ2 = τ1τ

2
2 = 3{pt.}.

3.1. The ample cone of the elliptic surface. As first step to determine the Kähler cone on
the threefold, we build the G-invariant ample cone of the rational elliptic surface through
Nakai’s criterion. The set of ample classes is by definition the integral cohomology part
of the Kähler moduli.

Using Looijenga’s classification of the effective curves in a rational elliptic surface
[17], we know that the cone of effective classes in H2(B, ZZ) is generated by the fol-
lowing classes e ∈ H2(B, ZZ):

1) The exceptional curves e2 := −1, i.e. every section of the elliptic fibration.
2) The nodal curves e2 := −2, i.e. the irreducible components of the singular fibers.
3) The positive classes, i.e. the classes that live in the “future” side of the cone of

e2 > 0.

Nakai’s criterion for surfaces says that a class s is ample if and only if s · s > 0 and
e · s > 0 for every effective curve e. We will apply this criterion to the invariant classes
s = aF + bt .
• Intersection of s with the exceptional curves. Although there is an infinite amount of
exceptional curves or sections in the elliptic surface, we can characterize them com-
pletely thanks to our understanding of the Mordell-Weil group.

As it is explained in Appendix A, the representation of the Mordell-Weil group
E(K ) � ZZ ⊕ ZZ ⊕ ZZ3 in End(H2(B, ZZ)) has as generators: (tξ )∗, (tαBξ )∗ and (tη)∗.
Thus, the homology of an arbitrary section can be expressed as

[
� xξ � yαBξ � zη

] = (tξ )
x∗(tαBξ )

y∗(tη)z∗σ, (3.9)

where �xξ (respectively �yαBξ and �zη) means �xξ = ξ � ξ � . . . � ξ︸ ︷︷ ︸
x

.

Finding the Jordan canonical forms associated to (tξ )∗, (tαBξ )∗ and (tη)∗, allows us to
expand (3.9), explicitly. We exhibit the list of homology classes associated to the sections
in Appendix A. Hence, the intersections of the exceptional curves with the generators
of the invariant homology are

F · [�xξ � yαBξ � zη] = 1 (3.10)

and

t · [�xξ � yαBξ � zη] = x2 + y2 − xy − x . (3.11)

It is easy to check that x2 + y2 − xy − x as a function ZZ ⊕ ZZ → ZZ is non-negative and
becomes zero for (x = 0, y = 0), (x = 1, y = 0) and (x = 1, y = 1). Therefore a
G-invariant ample class s = aF + bt has to verify

s · [�0ξ � 0αBξ � zη] = a > 0, (3.12)
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and

s · [�∞ξ � ∞αBξ � zη] = a + ∞b > 0, ⇒ b > 0. (3.13)

• Intersection of s with the nodal curves. The nodal curves are identified with the irre-
ducible components i, j of the singular fibers, thus their intersections with the invariant
class s = aF + bt give us

s · i, j = b > 0, (3.14)

an identical result to the inequality (3.13), derived above.
• Intersection of s with the positive classes. Let K+(B) be the cone of positive classes
in B, i.e. K+(B) = {e ∈ H2(B,ZZ)| e · e > 0}. As K+(B) is a convex set and we
have to take intersections of elements in K+(B) with invariant classes in H2(B,ZZ)G ,
only the intersection K+(B) ∩ H2(B,ZZ)G matters. From the intersection matrix of the
homology generators, we know that the intersection matrix of the invariant homology
H2(B,ZZ)G is

( F
t

)T
·
( F

t

)
=
( 0 3

3 1

)
(3.15)

hence, we find

K+(B) ∩ H2(B,ZZ)G :=
{

e = x F + yt | 6xy + y2 > 0
}

, (3.16)

being the edges of such a “future” cone F and 6t − F . Furthermore, their intersections
with our ample candidate s = aF + bt give us the conditions

s · F = (aF + bt) · F = 3b > 0,

s · (6t − F) = 18a + 6b − 3b = 18a + 3b > 0,
(3.17)

that do not constrain the inequalities (3.12), and (3.13).
Finally, as the cone generated by F and t is within K+(B) ∩ H2(B,ZZ)G , the last

Nakai condition s · s > 0 or positivity of the Liouville measure is verified. Therefore,
the G-invariant ample cone associated to the elliptic surface B is simply

K(B)G = spanZZ+ {F, t} . (3.18)

3.2. Ampleness in the threefold. Once we have characterized the G-invariant ample cone
on the rational surface, we can construct G-invariant ample classes on the threefold X̃
as a product of ample classes on the surfaces B1 and B2. In fact, the following proposi-
tion shows that the ample classes on X̃ constructed in this way determine explicitly its
G-invariant ample cone K(X̃)G = K(X).

Proposition 3.1. The G-invariant ample cone of X̃ is

K(X̃)G = spanZZ+ {τ1, τ2, φ} . (3.19)
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Proof. If Li is an ample class in Bi , then π∗
1 L1 ⊗ π∗

2 L2 is an ample class in X̃ , hence
K(X̃)G contains the positive linear span of τ1, τ2 and φ.

To show the opposite inclusion, we apply Nakai’s criterion to some effective classes.
Let H = aτ1 + bτ2 + cφ be an ample class. If C1 is the class of a fiber of π1,

0 < H · C1 = 0a + 3b + 0c = 3b.

Analogously, if C2 is the class of a fiber of π2, we obtain a > 0. Let i : B1 ×IP1 B2 →
B1 × B2. Let C be the class of σ1 ×IP1 σ2, let c1, c2 be two integers with c = c1 + c2, and
denote [Bi ] (respectively, [pt]) the class of Bi in H0(Bi ,ZZ) (respectively, of a point in
H4(Bi ,ZZ)),

0 < H · C = i∗ ((at1 + c1 f1) ⊗ [B2] + [B1] ⊗ (bt2 + c2 f2)) · i∗[σ1 ⊗ σ2]
= i∗ ((at1 + c1 f1)σ1 [pt] ⊗ σ2 + σ1 ⊗ [pt] (bt2 + c2 f2)σ2)

= i∗ (c1 [pt] ⊗ σ2 + c2 σ1 ⊗ [pt]) (3.20)

= c1 + c2 = c.

��
4. Slope Stability of the Vector Bundles

The concept of (slope) stability of a vector bundle depends on the choice of a polariza-
tion H ∈ K(X) ⊂ H2(X, ZZ), i.e., we say that a holomorphic vector bundle E → X is
stable iff

µ(F) < µ(E) ; with µ(·) = H2 · det(·)
rank (·) , (4.1)

for every reflexive subsheaf F → E . By det(E) and det(F) we mean the determinant
line bundles associated to E and F .

There is a natural bijection between vector bundles on X and G-equivariant vector
bundles on X̃ . We will recall a few general remarks on G-invariance and G-equivariance,
which will be useful in the rest of this section.

Let X be a complex projective variety and G a complex algebraic group acting on it.
A subvariety X ′ of X is said to be invariant if gX ′ = X ′ for all g in G. A divisor D is
said to be invariant if gD = D for all g in G. A divisor class is said invariant to be if for
any divisor D in the class and g and in G, the divisor gD is linearly equivalent to D.

An equivariant structure on a vector bundle E on X is a lifting by linear maps
E(x) −→ E(gx) (for all g ∈ G) between fibers, of the action of G on X . We will
widely use this notion, and sometimes also the notion of equivariant coherent sheaf (we
will talk about some equivariant ideal sheaf) so it is convenient to generalize it defining
an equivariant structure on a coherent sheaf F on X as a family of isomorphisms ϕF

g :
F ∼= g∗F , for each g ∈ G, so that ϕF

g′g = ϕF
g ϕF

g′ . Equivariant morphisms

f : F −→ F ′, (4.2)

between equivariant sheaves are those such that

ϕF
g

F −→ g∗F
f ↓ g∗ f ↓
F ′ −→ g∗F ′

ϕF ′
g

(4.3)

for all g ∈ G.
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If two vector bundles have an equivariant structure, obviously their tensor products
inherit an equivariant structure. If a vector bundle E has an equivariant structure, all
of its exterior powers, and in particular its determinant line bundle, det (E), inherit an
equivariant structure, and also its dual E∗ (pointwise, take the inverse of the transposed
action). The trivial bundle L = X × C, or OX as an associated sheaf, admits a trivial
equivariant structure.

A vector bundle with equivariant structure is always invariant, which means, by def-
inition, that g∗E is isomorphic to E for any g in G . In the case E is a vector bundle L
of rank 1, this definition means that both g∗L and L define the same point of Pic(X),
i.e. that the point corresponding to E in Pic(X) is fixed by the action of the group, or
still, in terms of associated divisors, that the corresponding divisor class is invariant.

A vector subbundle E ′ ⊂ E of an equivariantly structured bundle E is called an
equivariant vector subbundle when g(E ′(x)) ⊂ E ′(x) for all x in X and g in G. This
is equivalent to say that, for all g ∈ G, the isomorphism E ∼= g∗E given by the equi-
variant structure applies E ′ into g∗E ′, so this notion still has a meaning when E ′ is just
a coherent subsheaf. An equivariant coherent subsheaf E ′ obviously inherits a structure
of the equivariant coherent sheaf, as well as its quotient E ′′ = E/E ′, and we just say
that the extension

0 −→ E ′ −→ E −→ E ′′ −→ 0, (4.4)

is equivariant.
An equivariant vector bundle is said to be equivariantly stable if all its equivariant

coherent sheaves (enough to check with reflexive) have smaller slope. A section s of
equivariantly structured E is called equivariant when, for all x in X and g in G, it is
g(s(x)) = s(gx) . When viewing the section, as usual, as a subbundle OX → E , this
amounts to say that the subbundle is equivariant and the inherited equivariant structure
on the trivial bundle is the trivial equivariant structure. Clearly, the vanishing locus V (s)
of an equivariant section is invariant. If the vector bundle E is a line bundle L of rank
one, and s is a meromorphic equivariant section of it, i.e. equivariant section defined
on a Zariski open set, the divisor it defines is an invariant divisor (not only a divisor of
invariant class). We say L is equivariantly effective if it has a nonzero equivariant global
(i.e. holomorphic) section.

In a surface X , a line bundle L = OX (D) is equivariantly ample when it is equivari-
ant and has positive selfinterseccion, and its itersection number with all equivariantly
effective equivariant line bundles is positive. Therefore, ample and equivariant implies
equivariantly ample.

4.1. Conditions on the effective divisors. This is an analysis previous to the solution of
both problems. We show now that if there exists an effective divisor in the invariant class
OB(at + bF) on the elliptic surface, then a ≥ −3b. We start with the following:

Remark 2. Denote a′ the defect quotient

a′ =
[a

3

]
. (4.5)

Recall that t is the homology sum of three sections, namely ξ , αBξ and η � ξ , which
we denote, respectively, s1, s2 and s3. The 3a summands in

at = as1 + as2 + as3 (4.6)
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can be ordered

at = s′
1 + · · · + s′

3a, (4.7)

so to fullfill the following three conditions:

• For all index i such that s′
i = s1,

�{s′
j | j ≤ i and s′

j = s2} − { j | j ≤ i and s′
j = s1} ≤ a′. (4.8)

• For all index i such that s′
i = s3,

�{s′
j | j ≤ i and s′

j = s2} − { j | j ≤ i and s′
j = s3} ≤ a′. (4.9)

• For all index i such that s′
i = s2,

�{s′
j | j ≤ i and s′

j = s1 or s3} − { j | j ≤ i and s′
j = s2} ≤ a′. (4.10)

Indeed, the following ordering of the 3a summands satisfies the three conditions:
take its first 3a′ summands to be

(s1 + s2 + s3) + · · · + (s1 + s2 + s3). (4.11)

Next, add summands of the alternating form

(s1 + s2) + (s3 + s2) + (s1 + s2) + (s3 + s2) + · · · (4.12)

(so s has already ocurred a times) and add finally summands s1, s3, in no matter which
order, until completing a ocurrences of each.

The consequence of this remark is the following

Lemma 1. For any direct factor OIP1(l) occurring in the splitting of β∗OB(at) it is
l ≤ a′ := [ a

3

]
, i.e. h0(β∗OB(at)(−a′ − 1)) = 0.

Proof. Recall β∗OB = OIP1 . Order the 3a summands in

at = s′
1 + · · · + s′

3a, (4.13)

as in the former remark. For some index 1 ≤ i < 3a, assume it is already proved that

h0(β∗OB(s′
1 + · · · + s′

i−1)(−a′ − 1)) = 0. (4.14)

It is then enough to prove that

h0(β∗OB(s′
1 + · · · + s′

i )(−a′ − 1)) = 0. (4.15)

From

0 −→ OB(s′
1+· · ·+s′

i−1) −→ OB(s′
1+· · · + s′

i ) −→ Os1(s
′
1+· · · + s′

i ) −→ 0, (4.16)

we obtain

0−→β∗OB(s′
1 + · · · + s′

i−1)−→β∗OB(s′
1+· · ·+s′

i )−→OIP1((s′
1 + · · · + s′

i )s1)−→0.

(4.17)
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Assume first that s′
i = s1. Recalling that s2

1 = −1, s1s3 = 0, s1s2 = 1, we have

(s′
1 + · · · + s′

i )s1 = �{ j | j ≤ i and s′
j =s2} − �{ j | j ≤ i and s′

j =s1} ≤ a′, (4.18)

proving, by consulting the former exact sequence, the wanted vanishing. The vanishing
is analogously proved in the case s′

i = s3.
Assume now that s′

i = s2. Recalling that s2
2 = −1, s2s1 = s2s3 = 1, we have

(s′
1+· · · + s′

i )s2 =�{ j | j ≤ i and s′
j =s1 or s3}−�{ j | j ≤ i and s′

j =s2} ≤ a′, (4.19)

thus proving also the wanted vanishing. ��
Corollary. If

H0(B,OB(at + bF)) �= 0, (4.20)

then a ≥ −3b.

Proof. We assume

0 �= H0(B,OB(at + bF)) = H0(IP1, β∗OB(at + bF))

= H0(IP1,OIP1(b) ⊗ β∗OB(at)), (4.21)

where β∗OB(at) is a direct sum of factors OIP1(l) with l ≤ a/3, by the lemma. Therefore,
for some of these factors, we obtain

0 ≤ b + l ≤ b +
a

3
. (4.22)

��
Let  be the inverse image of Z under the second projection.

Lemma 2. a) If H0(X̃ ,OX̃ (a1τ1 + a2τ2 + bφ)) �= 0, then a1, a2 ≥ 0 and b ≥ − 1
3 (a1 +

a2).
b) If H0(X̃ , I(a1τ1 + bφ)) �= 0, then a1 ≥ 0, b ≥ − 1

3 a1 + 3.

Proof. a) If ai were negative, then the restriction of this section to any elliptic fibre Ei
of π2 would be

OEi −→ OEi (a1(p1 + p2 + p3)), (4.23)

and this is impossible. On the other hand,

H0 (OX̃ (a1τ1 + a2τ2 + bφ)
) = H0 (OB1(a1t1 + bF1) ⊗ π1∗π∗

2 OB2(a2t2)
)

= H0(OB1(a1t1 + bF1) ⊗ β∗
1 β2∗OB2(a2t2))

(4.24)= H0(β1∗OB1(a1t1) ⊗ OIP1(b) ⊗ β2∗OB2(a2t2))

= H0(
⊕

i

OIP1(l1i ) ⊗ OIP1(b) ⊗
⊕

j

OIP1(l2 j )).

In these sums l1i ≤ a′
1 := [ a1

3

]
and l2 j ≤ a′

2 := [ a2
3

]
, because of the former lemma,

so if this is nonzero, then for some direct factors OIP1(l1) and OIP1(l2) appearing in the
decomposition it is

0 ≤ l1 + b + l2 ≤ a1

3
+ b +

a2

3
(4.25)
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b) Remark that

π1∗π∗
2 I = β∗

1 β2∗I = β∗
1 OIP1(−3) = OX̃ (−3φ). (4.26)

since β2∗I = OIP1(−p1 − p2 − p3) ∼= OIP1(−3) (because Z lies in the fibers of β2 at
three different points p1, p2, p3 ∈ IP1). Therefore

0 �= H0(X̃ , I(a1τ1 + bφ)) = H0(B1, π1∗π∗
2 I ⊗ OB1(a1τ1 + bφ))

= H0(B1,OB1(a1τ1 + (b − 3)φ)), (4.27)

and we conclude using the previous corollary. ��

4.2. The hidden bundle. Let H be a rank-2 subbundle of the vector bundle Eh → X ,
adjoint representation of the hidden E8 gauge group, defined through the short exact
sequence

0 −→ OX̃ (2τ1 + τ2 − φ) −→ H −→ OX̃ (−2τ1 − τ2 + φ) −→ 0. (4.28)

By construction of the extension, the determinant line bundle associated to H is trivial,
thus the slope of the rank-2 vector bundle is µ(H) = 0. On the other hand, OX̃ (2τ1 +
τ2 − φ) admits a morphism to H as it is shown in the diagram (4.28), therefore given a
polarization H = OX̃ (xτ1 + yτ2 + zφ) with x, y, z ∈ ZZ+, we have

µ
(OX̃ (2τ1+τ2 − φ)

)= H2 · OX̃ (2τ1+τ2−φ)=3(x2 +2y2 + 6xz+12yz) > 0, (4.29)

that is positive for all H ∈ K(X), thus µ
(OX̃ (2τ1 + τ2 − φ)

)
> µ(H), which means

that OX̃ (2τ1 + τ2 −φ) is a destabilizing line bundle for H. As H is not stable, we cannot
integrate the hermitian Yang-Mills equations in order to construct an SU (2)-instanton
on H. We must substitute H in order to find a sensible vacuum for the heterotic string.

4.3. The visible bundle. Here we recall the construction of the visible bundle, [2]. First
it is defined as an equivariant rank 2 vector bundle V2 on B of trivial determinant given
as a nontrivial extension

0 −→ OB(−2F) −→ V2 −→ IZ (2F) −→ 0, (4.30)

with Z the scheme of 9 points, together with an equivariant structure on V2 so that this
extension is equivariant

0 −→ OX̃ (−2φ) −→ π∗
2 V2 −→ I(2φ) −→ 0. (4.31)

Recall that  is the lifting to X̃ of Z by the second projection. Then the visible rank 4
vector bundle V4 of the trivial determinant is defined through the extension

0 −→ O(−τ1 + τ2) ⊕ O(−τ1 + τ2) −→ V4 −→ V2(τ1 − τ2) −→ 0, (4.32)

together with an equivariant structure making this extension equivariant, and general
among such extensions.

We will show there exists some equivariant line bundle OX̃ (x1τ1 + x2τ2 + yφ), thus
of corresponding class of divisors H being invariant, i.e. H = x1τ1 + x2τ2 + yφ, such
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that the integers x, y, z are positive (thus OX̃ (x1τ1 + x2τ2 + yφ) equivariantly ample)
and making the equivariant bundle V4 equivariantly stable.

The degree of a line bundle OX̃ (a1τ1 + a2τ2 + bφ), with respect to the polarization
H is

H2(a1τ1 + a2τ2 + b f ) = 3(x1 + x2 + 6y)(a1x2 + a2x1) + x1x2(3a1 + 3a2 + 18b)
(4.33)= 3x2(2x1 + x2 + 6y)a1 + 3x1(x1 + 2x2 + 6y)a2 + 6x1x2b.

Clearly, this degree function is strictly monotonous with respect to the obvious partial
ordering among these line bundles or triples of integers (a1, a2, b). Now we will list all
possible subsheaves.
1). Possible line subbundles.

For this we see the first necessary conditions on a1, a2, b for π∗
2 V2 to admit OX̃ (a1τ1+

a2τ2 + bφ) as an equivariant line subbundle

0 −→ OX̃ (−2φ) −→ π∗
2 V2 −→ I(2φ) −→ 0.

↑
OX̃ (a1τ1 + a2τ2 + bφ)

(4.34)

If a1 ≤ 0 and a2 ≤ 0 and b ≤ −2− 1
3 (a1 +a2) is not fulfilled, then the intersection of

this subbundle with the one on the left must be null, so OX̃ (a1τ1 +a2τ2 +bφ) becomes an
equivariant subsheaf of the one on the right, thus giving an equivariant nonzero section
of OX̃ (−a1τ1 − a2τ2 + bφ) vanishing at . We thus get possibilities

i) a1 ≤ 0 and a2 ≤ −1 and b ≤ 2 − 1

3
(a1 + a2),

ii) a1 ≤ 0 and a2 = 0 and b ≤ −1 − 1

3
a1, (4.35)

iii) a1 ≤ 0 and a2 ≤ 0 and b ≤ −2 − 1

3
(a1 + a2).

For ii) we have used Lemma 2 b). Let us find now necessary conditions for the existence
of an equivariant rank 1 reflexive sheaf, i.e. equivariant subbundle OX̃ (a1τ1 +a2τ2 +bφ),
of V4:

0 −→ OX̃ (−τ1 + τ2) ⊕ OX̃ (−τ1 + τ2) −→ V4 −→ π∗
2 V2(τ1 − τ2) −→ 0.

↑
OX̃ (a1τ1 + a2τ2 + bφ)

(4.36)

By the same argument as above, combined with our former discusion on equivariant line
subbundles of π∗

2 V2, we obtain these possibilities:

i.1) a1 ≤ −1 and a2 ≤ 1 and b ≤ −1

3
(a1 + a2),

i.2) a1 ≤ 1 and a2 ≤ −2 and b ≤ 2 − 1

3
(a1 + a2),

(4.37)
i.3) a1 ≤ 1 and a2 = −1 and b ≤ −2

3
− 1

3
a1,

i.4) a1 ≤ 1 and a2 ≤ −1 and b ≤ −2 − 1

3
(a1 + a2).

2). Possible reflexive sheaves of rank 2.
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Let us consider now an equivariant reflexive subsheaf of rank 2

0 −→ OX̃ (−τ1 + τ2) ⊕ OX̃ (−τ1 + τ2) −→ V4 −→ π∗
2 V2(τ1 − τ2) −→ 0

↑
R2

(4.38)

having nonnegative degree. Since all of its equivariant line subbundles, as equivariant
subbundles of V4, must have, as seen, negative degree, the reflexive sheaf R2 is equiva-
riantly semistable. If its intersection with the subbundle of V4 in its above presentation
were not zero, then there would be a nonzero equivariant morphism

R2 −→ OX̃ (−τ1 + τ2) ⊕ OX̃ (−τ1 + τ2) , (4.39)

between both equivariantly semistable sheaves, so that the first should have slope not
bigger than the slope of the second, i.e. R2 should have degree not bigger than the
degree of the direct sum, which is negative (as seen in the former step). We thus obtain
an injection

0 −→ R2 −→ V2(τ1 − τ2) −→ Q −→ 0, (4.40)

between these equivariant reflexive sheaves of rank 2, thus its quotient Q is a torsion
sheaf. We thus obtain a nonzero equivariant morphism

OX̃ (a1τ1 + a2τ2 + bφ) =
2∧

R2 −→
2∧

V2(τ1 − τ2) = OX̃ (2τ1 − 2τ2). (4.41)

Therefore, necessarily

ii.1) a1 ≤ 2 and a2 ≤ −2 and b ≤ −1

3
(a1 + a2). (4.42)

The top case a1 = 2 and a2 = −2 and b = 0, would give a contradiction to what
we want to prove, if it occurred, since no polarization of X̃ giving negative degree to
O(−τ1 + τ2) ⊕ O(−τ1 + τ2) would give negative degree to OX̃ (2τ1 − 2τ2), but for-
tunately it does not occur. Indeed, if this were the case, then the quotient Q would be
supported in codimension at least two, but this is incompatible with the kernel R2 of
such a quotient being reflexive, unless Q = 0, i.e. R2 ∼= V2(τ1 − τ2), thus splitting the
sequence presenting V4. This would contradict the genericity of the extension taken in
its presentation. Therefore, we get three subcases:

ii.1.a) a1 ≤ 1 and a2 ≤ −2 and b ≤ −1

3
(a1 + a2),

ii.1.b) a1 ≤ 2 and a2 ≤ −3 and b ≤ −1

3
(a1 + a2), (4.43)

ii.1.c) a1 ≤ 2 and a2 ≤ −2 and b ≤ −1 − 1

3
(a1 + a2).

3). Possible rank 3 equivariant reflexive sheaves. We can consider these equivariant
subsheaves saturated, i.e. having as a quotient a rank 1 torsion free sheaf, with a line
bundle OX̃ (a1τ1 +a2τ2 +bφ) as dual. In other words, giving such a subsheaf is equivalent
to giving an equivariant line subbundle as in the diagram

0 −→ π∗
2 V2(−τ1 + τ2) −→ V ∨

4 −→ OX̃ (τ1 − τ2) ⊕ OX̃ (τ1 − τ2) −→ 0.

↑
OX̃ (a1τ1 + a2τ2 + bφ)

(4.44)
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Here we have used that V ∨
2

∼= V2, since it is a rank two bundle of trivial determinant.
Since V ∨

4 has zero degree for any polarization, all we must show is that the equivariant
line subbundle OX̃ (a1τ1 + a2τ2 + bφ) has negative degree for the polarization we are
considering. If the compositions

OX̃ (a1τ1 + a2τ2 + bφ) −→ OX̃ (τ1 − τ2), (4.45)

with each of the two direct factors on the right-hand side were both null, then we would
have a nonzero equivariant morphism

OX̃ (a1τ1 + a2τ2 + bφ) −→ π∗
2 V2(−τ1 + τ2), (4.46)

and these morphisms have already been analyzed in step one. Therefore, in our situation
we are necessarily in one of the following cases:

iii.1) a1 ≤ 1 and a2 ≤ −1 and b ≤ −1

3
(a1 + a2),

iii.2) a1 ≤ −1 and a2 ≤ 0 and b ≤ 2 − 1

3
(a1 + a2),

(4.47)
iii.3) a1 ≤ −1 and a2 = 1 and b ≤ −4

3
− 1

3
a1,

iii.4) a1 ≤ −1 and a2 ≤ 1 and b ≤ −2 − 1

3
(a1 + a2).

In case iii.1), the top instance (a1 = 1 and a2 = −1 and b = 0) would provide
an essential contradiction to what we want, if it ocurred, since no polarization giving
OX̃ (τ1 − τ2) negative degree could also give negative degree to the bundle OX̃ (−τ1 +
τ2) ⊕ OX̃ (−τ1 + τ2) in the presentation of V4. Fortunately, this instance does not occur.
Indeed, in such a case the above morphism OX̃ (a1τ1 +a2τ2 +bφ) → OX̃ (τ1 −τ2) would
be isomorphic, thus splitting the bottom sequence presenting V3 in the diagram

0 −→ OX̃ (−τ1 + τ2) ⊕ OX̃ (−τ1 + τ2) −→ V4 −→ V2(τ1 − τ2) −→ 0,

inclusion ↑ of one summand ↑ ↑ id.

0 −→ OX̃ (−τ1 + τ2) −→ V3 −→ V2(τ1 − τ2) −→ 0,

(4.48)

in contradiction with the fact that the extension presenting V4 has been taken to be
general, with both of its components in the decomposition

Ext1(V2(τ1 − τ2),OX̃ (−τ1 + τ2) ⊕ OX̃ (−τ1 + τ2))

= Ext1(V2(τ1 − τ2),OX̃ (−τ1 + τ2)) ⊕ Ext1(V2(τ1 − τ2),OX̃ (−τ1 + τ2)) (4.49)

being nonzero. Therefore, the first case splits into three subcases:

iii.1.a) a1 ≤ 0 and a2 ≤ −1 and b ≤ −1

3
(a1 + a2),

iii.1.b) a1 ≤ 1 and a2 ≤ −2 and b ≤ −1

3
(a1 + a2), (4.50)

iii.1.c) a1 ≤ 1 and a2 ≤ −1 and b ≤ −1 − 1

3
(a1 + a2).

Summing up, the vector bundle V4 will then be stable if all the subsheaves that we
have listed have negative degree. Recall that the degree d(x1, x2, y, a1, a2, b) is monot-
onous in a1, a2 and b, so in each case it is enough to check that it is negative when these
numbers take the maximum possible value. Therefore, we get the following sufficient
conditions for a polarization to make V4 stable:
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Fig. 1. Polarizations which make V4 stable

Proposition 1. The vector bundle V4 is equivariantly stable for any polarization
OX̃ (x1, x2, y) admitting equivariant structure (for instance, x1, x2 multiple of 3) and
making the number

d(x1, x2, y, a1, a2, b) :=3(x1 + x2+6y)(a1x2 + a2x1)+x1x2(3a1 + 3a2 +18b) (4.51)

negative for the following triples (a1, a2, b) of integers

i.1) (−1, 1, 0),

i.2) (1,−2, 7/3),

i.3) (1,−1,−1),

ii.1.b) (2,−3, 0), (4.52)

ii.1.c) (2,−2,−1),

iii.1.a) (0,−1, 0),

iii.2) (−1, 0, 5/3).

Remark. We have removed some cases which are redundant. For instance, case i.4)
corresponds to the point (1,−1,−2), but this case is automatic once case i.3), corre-
sponding to (1,−1,−1), has been checked, since the degree function is monotonous in
a1, a2 and b.

Using the proposition, it is easy to find examples of ample sheaves which make V4
stable. For instance, OX̃ (18τ1 + 21τ2 + 49φ). In Figure 1 we have ploted the region of
ample bundles which satisfy the conditions of Proposition 1, and hence make stable the
vector bundle V4.
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Appendix A. Action of the Mordell-Weil Group on the Homology

The Mordell-Weil group E(K ), is defined adding sections fiberwise thanks to the group
structure of an elliptic curve, once the zero section is fixed. More rigorously, we define
E(K ) in terms of the short exact sequence

0 −→ T −→ H2(B, ZZ) −→ E(K ) −→ 0 (A.1)

for a certain subgroup T in H2(B, ZZ).
For our elliptic surface, we know that the Mordell-Weil group is isomorphic to ZZ ⊕

ZZ⊕ZZ3 and is generated by the sections ξ , αBξ and η, thus we can express every section
as

�xξ � yαBξ � zη for x, y ∈ ZZ and z ∈ ZZ3 (A.2)

with �xξ (respectively �yαBξ and �zη) meaning �xξ = ξ � ξ � . . . � ξ︸ ︷︷ ︸
x

.

Therefore, if ta : B → B is the Mordell-Weil action of translating by the section a,
we have to determine the push forwards (tξ )∗, (tαBξ )∗ , (tη)∗ as maps H2(B) → H2(B),
in order to express the homology class of an arbitrary section as

[�xξ � yαBξ � zη] = (tξ )
x∗ · (tαBξ )

y∗ · (tη)
z∗σ (A.3)

with σ the zero section.
The push forwards (tξ )∗, (tη)∗ and (αB)∗ were already determined in [5], using the

quotient structure of the Mordell-Weil group on H2(B, ZZ) and computing intersection
numbers with sections. Here, we state their result, and derive (tαBξ )∗ as (αB)∗(tξ )∗(αB)−1∗ ,
hence we have

(tξ )∗ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 −1 −1
0 1 0 0 1 0 1 0 0 −1
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 −1 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 −1 0 0 0
0 0 0 0 −1 0 0 0 1 1
1 0 0 0 0 0 0 0 2 1
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.4)

(tαBξ )∗ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 −1 −1
0 1 1 0 0 0 0 1 −1 0
0 0 −1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 −1 1 1
0 0 −1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 −1 1 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.5)
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(tη)∗ ·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 1 1 1 0 0

−2/3 0 0 0 0 −1 0 0 −2/3 1/3
−2/3 0 0 0 0 0 −1 0 1/3 −2/3
−2/3 0 0 0 0 0 0 −1 1/3 1/3
−1/3 0 1 0 0 −1 0 0 −1/3 2/3
−1/3 0 0 1 0 0 −1 0 −1/3 −1/3
−1/3 0 0 0 1 0 0 −1 2/3 −1/3

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ

F
1,1

2,1

3,1

1,2

2,2

3,2

ξ

αBξ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A.6)

Another way of looking at these three matrices is as generators of the representation of the
Mordell-Weil group in End

(
H2(B, ZZ)

)
. The commutation relations [(tξ )∗, (tαBξ )∗] =

0, [(tξ )∗, (tη)∗] = 0, [(tη)∗, (tαBξ )∗] = 0 are obeyed and the torsion generator (tη)∗,
verifies (tη)3∗ = 1 as expected.

Thus, expanding the equation

[�xξ � yαBξ � zη] = (tξ )
x∗ · (tαBξ )

y∗ · (tη)
z∗σ (A.7)

for the homology classes of the sections, gives us the following list6: If
(

x
y
z

)
≡
(

0
0
0

)
(mod 3) or

(
2
1
1

)
(mod 3) or

(
1
2
2

)
(mod 3), (A.8)

then[
� xξ � yαBξ � zη

] = (1− x − y)σ + (1/3x2 +1/3y2 −1/3xy − x − y)F +1/3y1,1 +
2/3x2,1 +(1/3x +2/3y)3,1 +2/3y1,2 +1/3x2,2 +(2/3x +1/3y)3,2 +xξ + yαBξ.

If (
x
y
z

)
≡
(

1
2
0

)
(mod 3) or

(
0
0
1

)
(mod 3) or

(
2
1
2

)
(mod 3) (A.9)

then[
� xξ � yαBξ � zη

] = (1 − x − y)σ + (1/3x2 + 1/3y2 − 1/3xy − x − y + 1)F +
(1/3y −2/3)1,1 + (2/3x −2/3)2,1 + (1/3x + 2/3y −2/3)3,1 + (2/3y −1/3)1,2 +
(1/3x − 1/3)2,2 + (2/3x + 1/3y − 1/3)3,2 + xξ + yαBξ. If

(
x
y
z

)
≡
(

2
1
0

)
(mod 3) or

(
1
2
1

)
(mod 3) or

(
0
0
2

)
(mod 3) (A.10)

then[
� xξ � yαBξ � zη

] = (1 − x − y)σ + (1/3x2 + 1/3y2 − 1/3xy − x − y + 1)F +
(1/3y −1/3)1,1 + (2/3x −1/3)2,1 + (1/3x + 2/3y −1/3)3,1 + (2/3y −2/3)1,2 +
(1/3x − 2/3)2,2 + (2/3x + 1/3y − 2/3)3,2 + xξ + yαBξ. If

(
x
y
z

)
≡
(

0
1
0

)
(mod 3) or

(
2
2
1

)
(mod 3) or

(
1
0
2

)
(mod 3) (A.11)

6 It can be proven to hold by using induction.
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then[
�xξ � yαBξ �zη

] = (1−x − y)σ +(1/3x2 +1/3y2−1/3xy−x − y+2/3)F +(1/3y−
1/3)1,1 + 2/3x2,1 + (1/3x + 2/3y − 2/3)3,1 + (2/3y − 2/3)1,2 + 1/3x2,2 +
(2/3x + 1/3y − 1/3)3,2 + xξ + yαBξ.If

(
x
y
z

)
≡
(

1
0
0

)
(mod 3) or

(
0
1
1

)
(mod 3) or

(
2
2
2

)
(mod 3) (A.12)

then[
� xξ � yαBξ � zη

] = (1 − x − y)σ + (1/3x2 + 1/3y2 − 1/3xy − x − y + 2/3)F +
1/3y1,1+(2/3x−2/3)2,1+(1/3x +2/3y−1/3)3,1+2/3y1,2+(1/3x−1/3)2,2+
(2/3x + 1/3y − 2/3)3,2 + xξ + yαBξ. If

(
x
y
z

)
≡
(

2
2
0

)
(mod 3) or

(
1
0
1

)
(mod 3) or

(
0
1
2

)
(mod 3) (A.13)

then[
� xξ � yαBξ � zη

] = (1 − x − y)σ + (1/3x2 + 1/3y2 − 1/3xy − x − y + 2/3)F +
(1/3y−2/3)1,1 +(2/3x −1/3)2,1 +(1/3x +2/3y)3,1 +(2/3y−1/3)1,2 +(1/3x −
2/3)2,2 + (2/3x + 1/3y)3,2 + xξ + yαBξ. If

(
x
y
z

)
≡
(

0
2
0

)
(mod 3) or

(
2
0
1

)
(mod 3) or

(
1
1
2

)
(mod 3) (A.14)

then[
�xξ � yαBξ �zη

] = (1−x − y)σ +(1/3x2 +1/3y2 −1/3xy−x − y +2/3)F +(1/3y−
2/3)1,1 + 2/3x2,1 + (1/3x + 2/3y − 1/3)3,1 + (2/3y − 1/3)1,2 + 1/3x2,2 +
(2/3x + 1/3y − 2/3)3,2 + xξ + yαBξ. If

(
x
y
z

)
≡
(

1
1
0

)
(mod 3) or

(
0
2
1

)
(mod 3) or

(
2
0
2

)
(mod 3) (A.15)

then[
� xξ � yαBξ � zη

] = (1 − x − y)σ + (1/3x2 + 1/3y2 − 1/3xy − x − y + 2/3)F +
(1/3y−1/3)1,1 +(2/3x −2/3)2,1 +(1/3x +2/3y)3,1 +(2/3y−2/3)1,2 +(1/3x −
1/3)2,2 + (2/3x + 1/3y)3,2 + xξ + yαBξ. If

(
x
y
z

)
≡
(

2
0
0

)
(mod 3) or

(
1
1
1

)
(mod 3) or

(
0
2
2

)
(mod 3) (A.16)

then[
� xξ � yαBξ � zη

] = (1 − x − y)σ + (1/3x2 + 1/3y2 − 1/3xy − x − y + 2/3)F +
1/3y1,1+(2/3x−1/3)2,1+(1/3x +2/3y−2/3)3,1+2/3y1,2+(1/3x−2/3)2,2+
(2/3x + 1/3y − 1/3)3,2 + xξ + yαBξ.
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