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Abstract: In this paper we study minimal affinizations of representations of quantum
groups (generalizations of Kirillov-Reshetikhin modules of quantum affine algebras
introduced in [Cha1]). We prove that all minimal affinizations in types A, B, G are
special in the sense of monomials. Although this property is not satisfied in general, we
also prove an analog property for a large class of minimal affinizations in types C , D,
F . As an application, the Frenkel-Mukhin algorithm [FM1] works for these modules.
For minimal affinizations of type A, B we prove the thin property (the l-weight spaces
are of dimension 1) and a conjecture of [NN1] (already known for type A). The proof
of the special property is extended uniformly for more general quantum affinizations of
quantum Kac-Moody algebras.
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1. Introduction

In this paper q ∈ C
∗ is fixed and is not a root of unity.

Affine Kac-Moody algebras ĝ are infinite dimensional analogs of semi-simple Lie
algebras g, and have remarkable applications (see [Ka]). Their quantizations Uq(ĝ),
called quantum affine algebras, have a very rich representation theory which has been
intensively studied in mathematics and physics (see references in [CP6, DM] and in
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[CP2, FR, Nak1, Nak4] for various approaches). In particular Drinfeld [Dr2] discovered
that they can also be realized as quantum affinizations of usual quantum groups Uq(g) ⊂
Uq(ĝ). By using this new realization, Chari-Pressley [CP6] classified their finite dimen-
sional representations.

Chari [Cha1] introduced the notion of minimal affinizations of representations of
quantum groups: starting from a simple representation V of Uq(ĝ), an affinization of V
is a simple representation V̂ of Uq(ĝ) such that V is the head in the decomposition of
V̂ in simple Uq(g)-representations. Then one can define a partial ordering on the set of
affinizations of V and so a notion of minimal affinization for this ordering. For example
the minimal affinizations of simple Uq(g)-modules of highest weight a multiple of a
fundamental weight are the Kirillov-Reshetikhin modules which have been intensively
studied in recent years (for example see [KOS, KNH, Kl, HKOTY, KN, Cha2, Nak4,
Nak5, H4, CM3, FL] and references therein). An (almost) complete classification of
minimal affinizations was done in [Cha1, CP3, CP4, CP5].

The motivation to study minimal affinizations comes from physics: the affinizations
of representations of quantum groups are important objects from the physical point of
view, as stressed for example in [FR, Remark 4.2] and in the introduction of [Cha1].
For example in the theory of lattice models in statistical mechanics, they are related
to the problem of proving the integrability of the model: the point is to add spectral
parameters to a solution of the related quantum Yang-Baxter equation (see [CP6]). A
second example is related to the quantum particles of the affine Toda field theory (see
[BL, Do]) which correspond to simple finite dimensional representations of quantum
affine algebras.

In the present paper we prove new results on the structure of minimal affinizations,
in particular in the light of recent developments in the representation theory of quantum
affine algebras.

A particular class of finite dimensional representations, called special modules [Nak4],
attracted much attention as Frenkel-Mukhin [FM1] proposed an algorithm which gives
their q-character (analog of the usual character adapted to the Drinfeld realization
and introduced by Frenkel-Reshetikhin [FR]: they encode a certain decomposition of
representations in so called l-weight spaces or pseudo weight spaces). For example
the Kirillov-Reshetikhin modules [Nak4, Nak5, H4] are special (this is the crucial
point of the proof of the Kirillov-Reshetikhin conjecture). A dual class of modules
called antispecial modules is introduced in the present paper (antispecial does not mean
the opposite of special), and an analog of the Frenkel-Mukhin algorithm gives their
q-character.

In the present paper we prove that minimal affinizations in type A, B, G are special
and antispecial. We get counterexamples for other types, but we prove in type C , D,
F that a large class of minimal affinizations are special or antispecial. In particular the
Frenkel-Mukhin algorithm works for these modules. As an application, we prove that
minimal affinizations of type A and B are thin (the l-weight spaces are of dimension 1).
We also get the special property for analog simple modules of quantum affinizations of
some non-necessarily finite quantum Kac-Moody algebras.

In the proofs of the present paper, the crucial steps include techniques developed in
[H4] to prove the Kirillov-Reshetikhin conjecture and in [H6] to solve the Nakajima’s
smallness problem. The general idea is to prove simultaneously the special property and
the thin property by induction on the highest weight of the minimal affinizations. This
allows to use the elimination theorem [H4] which leads to eliminate some monomials
in the q-character of simple modules.
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Nakajima first conjectured the existence of such large classes of special modules for
simply-laced cases (see [Nak4]), and the existence of a large class of special minimal
affinizations was conjectured by Mukhin in a conversation with the author in the confer-
ence “Representations of Kac-Moody Algebras and Combinatorics” at Banff in March
2005.

In some situations, the properties are already known or can be proved directly from
already known explicit formulas. Indeed, for Kirillov-Reshetikhin modules the special
property was proved in [Nak5] (simply-laced case) and in [H4] (non-simply-laced case).
So for Kirillov-Reshetikhin modules in classical types, the explicit formulas in [KOS,
KNH] are satisfied (the formulas for fundamental representations are given in [KS]) and
we can get the properties directly from them. General formulas and the thin proper-
ties were proved for irreducible tame modules, which include minimal affinizations, for
Yangians of type A [Che1, Che2, NT]. (The author was told by Nakajima that the same
results hold for quantum affine algebras of type A by [V].) See also [FM2] for the cases
of minimal affinizations, which are evaluation representations in type A.

Explicit formulas are also available for twisted yangians in classical types [Mo,
Naz1]. But the author did not find in the literature a proof of the correspondence between
quantum affine algebras and twisted (or non-simply laced) yangians.

In general no explicit formulas for q-characters of quantum affine algebras are avail-
able, so our proofs use direct arguments without explicit formulas and are independent
of previous results on yangians. In particular this allows to extend uniformly our argu-
ments to previously unknown situations (like type B, C, D, G2, F4), and to more general
quantum affinizations which are not necessarily quantum affine algebras.

For quantum affine algebras in classical types, explicit conjectural formulas [NN1,
NN2, NN3] are available for a large class of representations including many minimal
affinizations (all of them for type A; see [KOS, KNH] for more general formulas). In
types A, B, the results proved in the present paper imply [NN1, Conjecture 2.2] for
these minimal affinizations. The author did not find in the literature a proof of this
result, except for type A as explained above. The main subject of the present paper is
minimal affinizations and so we give a proof of [NN1, Conjecture 2.2] in this case. But
it is possible to prove [NN1, Conjecture 2.2] for more general representations by using
a variation of this proof (this and [NN1, Conjecture 2.2] in types C , D will be discussed
in a separate publication).

The results of [NT, KS, KOS] and of [NN1, Conjecture 2.2] (and the thin property
as their consequence) were explained to the author by Nakajima in an early stage of this
research, June 2005.

Let us describe the organization of the present paper. In Sect. 2 we give some back-
ground on the representation theory of quantum affine algebras. In Sect. 3 we recall the
definition of minimal affinizations and state the main results of the paper. In Sect. 4 we
give preliminary results, including results from [H6] and discussion about an involution
of Uq(ĝ). In Sect. 5 we prove the main result of the paper. In Sect. 6 we explain the proof
of [NN1, Conjecture 2.2] for minimal affinizations in types A, B, we state additional
results (Theorem 6.6) for more general quantum affinizations, and we discuss possible
further developments, in particular on generalized induction systems involving minimal
affinizations.

2. Background

2.1. Cartan matrix and quantized Cartan matrix. Let C = (Ci, j )1≤i, j≤n be a Cartan
matrix of finite type. We denote I = {1, . . . , n}. C is symmetrizable: there is a matrix
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D = diag(r1, . . . , rn) (ri ∈ N
∗) such that B = DC is symmetric. In particular if C is

symmetric then D = In (simply-laced case).
We consider a realization (h,�,�∨) of C (see [B, Ka]): h is a n dimensional Q-vec-

tor space, � = {α1, . . . , αn} ⊂ h∗ (set of the simple roots) and �∨ = {α∨
1 , . . . , α∨

n } ⊂ h
(set of simple coroots) are set such that for 1 ≤ i, j ≤ n, α j (α

∨
i ) = Ci, j . Let

�1, . . . , �n ∈ h∗ (resp. �∨
1 , . . . , �∨

n ∈ h) be the fundamental weights (resp. coweights):
�i (α

∨
j ) = αi (�

∨
j ) = δi, j , where δi, j is 1 if i = j and 0 otherwise. Denote

P = {λ ∈ h∗|∀i ∈ I, λ(α∨
i ) ∈ Z} the set of weights and P+ = {λ ∈ P|∀i ∈

I, λ(α∨
i ) ≥ 0} the set of dominant weights. For example we have α1, . . . , αn ∈ P and

�1, . . . , �n ∈ P+. Denote Q = ⊕
i∈I Zαi ⊂ P the root lattice and Q+ = ∑

i∈I Nαi ⊂
Q. For λ,µ ∈ h∗, denote λ ≥ µ if λ − µ ∈ Q+. Let ν : h∗ → h linear such that
for all i ∈ I we have ν(αi ) = riα

∨
i . For λ,µ ∈ h∗, λ(ν(µ)) = µ(ν(λ)). We use the

enumeration of vertices of [Ka].
We denote qi = qri and for l ∈ Z, r ≥ 0, m ≥ m′ ≥ 0 we define in Z[q±]:

[l]q = ql − q−l

q − q−1 , [r ]q ! = [r ]q [r − 1]q · · · [1]q ,

[
m
m′

]

q
= [m]q !

[m − m′]q ![m′]q ! .

For a, b ∈ Z, we denote qa+bZ = {qa+br |r ∈ Z} and qa+bN = {qa+br |r ∈ Z, r ≥ 0}.
Let C(z) be the quantized Cartan matrix defined by (i 
= j ∈ I ):

Ci,i (z) = zi + z−1
i , Ci, j (z) = [Ci, j ]z .

C(z) is invertible (see [FR]). We denote by C̃(z) the inverse matrix of C(z) and by D(z)
the diagonal matrix such that for i, j ∈ I , Di, j (z) = δi, j [ri ]z .

2.2. Quantum algebras

2.2.1. Quantum groups

Definition 2.1. The quantum group Uq(g) is the C-algebra with generators k±1
i , x±

i
(i ∈ I ) and relations:

ki k j = k j ki , ki x±
j = q

±Ci, j
i x±

j ki ,

[x+
i , x−

j ] = δi, j
ki − k−1

i

qi − q−1
i

,

∑

r=0···1−Ci, j
(−1)r

[
1 − Ci, j

r

]

qi

(x±
i )1−Ci, j −r x±

j (x±
i )r = 0 (for i 
= j).

This algebra was introduced independently by Drinfeld [Dr1] and Jimbo [J]. It is remark-
able that one can define a Hopf algebra structure on Uq(g) by:

�(ki ) = ki ⊗ ki ,

�(x+
i ) = x+

i ⊗ 1 + ki ⊗ x+
i , �(x−

i ) = x−
i ⊗ k−1

i + 1 ⊗ x−
i ,
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S(ki ) = k−1
i , S(x+

i ) = −x+
i k−1

i , S(x−
i ) = −ki x−

i ,

ε(ki ) = 1, ε(x+
i ) = ε(x−

i ) = 0.

Let Uq(h) be the commutative subalgebra of Uq(g) generated by the k±1
i (i ∈ I ).

For V a Uq(h)-module and ω ∈ P we denote by Vω the weight space of weight ω:

Vω = {v ∈ V |∀i ∈ I, ki .v = q
ω(α∨

i )

i v}.
In particular we have x±

i .Vω ⊂ Vω±αi .
We say that V is Uq(h)-diagonalizable if V = ⊕

ω∈P Vω (in particular V is of type 1).
For V a finite dimensional Uq(h)-diagonalizable module we define the usual character

χ(V ) =
∑

ω∈P
dim(Vω)e(ω) ∈ E =

⊕

ω∈P

Z.e(ω).

2.2.2. Quantum loop algebras. We will use the second realization (Drinfeld realization)
of the quantum loop algebra Uq(Lg) (subquotient of the quantum affine algebra Uq(ĝ)):

Definition 2.2. Uq(Lg) is the algebra with generators x±
i,r (i ∈ I, r ∈ Z), k±1

i (i ∈ I ),
hi,m (i ∈ I, m ∈ Z − {0}) and the following relations (i, j ∈ I, r, r ′ ∈ Z, m, m′ ∈
Z − {0}):

[ki , k j ] = [ki , h j,m] = [hi,m, h j,m′ ] = 0,

ki x±
j,r = q

±Ci, j
i x±

j,r ki ,

[hi,m, x±
j,r ] = ± 1

m
[m Bi, j ]q x±

j,m+r ,

[x+
i,r , x−

j,r ′ ] = δi, j
φ+

i,r+r ′ − φ−
i,r+r ′

qi − q−1
i

,

x±
i,r+1x±

j,r ′ − q±Bi, j x±
j,r ′ x

±
i,r+1 = q±Bi, j x±

i,r x±
j,r ′+1 − x±

j,r ′+1x±
i,r ,

∑

π∈
s

∑

k=0···s(−1)k
[

s
k

]

qi

x±
i,rπ(1)

· · · x±
i,rπ(k)

x±
j,r ′ x

±
i,rπ(k+1)

· · · x±
i,rπ(s)

= 0,

where the last relation holds for all i 
= j , s = 1 − Ci, j , all sequences of integers
r1, . . . , rs . 
s is the symmetric group on s letters. For i ∈ I and m ∈ Z, φ±

i,m ∈ Uq(Lg)

is determined by the formal power series in Uq(Lg)[[z]] (resp. in Uq(Lg)[[z−1]]):
∑

m≥0
φ±

i,±m z±m = k±
i exp(±(q − q−1)

∑

m′≥1
hi,±m′ z±m′

),

and φ±
i,∓m = 0 for m > 0.
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Uq(Lg) has a Hopf algebra structure (from the Hopf algebra structure of Uq(ĝ)).
For J ⊂ I we denote by Uq(LgJ ) ⊂ Uq(Lg) the subalgebra generated by the x±

i,m ,

hi,m , k±1
i for i ∈ J . Uq(LgJ ) is a quantum loop algebra associated to the semi-sim-

ple Lie algebra gJ of Cartan matrix (Ci, j )i, j∈J . For example for i ∈ I , we denote
Uq(Lgi ) = Uq(Lg{i}) 
 Uqi (Lsl2).

The subalgebra of Uq(Lg) generated by the hi,m, k±1
i (resp. by the x±

i,r ) is denoted
by Uq(Lh) (resp. Uq(Lg)±).

2.3. Finite dimensional representations of quantum loop algebras Denote by Rep
(Uq(Lg)) the Grothendieck ring of (type 1) finite dimensional representations of Uq (Lg).

2.3.1. Monomials and q-characters. Let V be a representation in Rep(Uq(Lg)). The
subalgebra Uq(Lh) ⊂ Uq(Lg) is commutative, so we have:

V =
⊕

γ=(γ ±
i,±m )i∈I,m≥0

Vγ ,

where: Vγ = {v ∈ V |∃p ≥ 0,∀i ∈ I, m ≥ 0, (φ±
i,±m − γ ±

i,±m)p.v = 0}.
The γ = (γ ±

i,±m)i∈I,m≥0 are called l-weights (or pseudo-weights) and the Vγ 
= {0} are
called l-weight spaces (or pseudo-weight spaces) of V . One can prove [FR] that γ is
necessarily of the form:

∑

m≥0
γ ±

i,±mu±m = qdeg(Qi )−deg(Ri )

i

Qi (uq−1
i )Ri (uqi )

Qi (uqi )Ri (uq−1
i )

, (1)

where Qi , Ri ∈ C(u) satisfy Qi (0) = Ri (0) = 1. The Frenkel-Reshetikhin q-charac-
ters morphism χq [FR] encodes the l-weights γ (see also [Kn]). It is an injective ring
morphism:

χq : Rep(Uq(Lg)) → Z[Y ±
i,a]i∈I,a∈C∗

defined by

χq(V ) =
∑

γ
dim(Vγ )mγ ,

where:

mγ =
∏

i∈I,a∈C∗Y
qi,a−ri,a
i,a ,

Qi (u) =
∏

a∈C∗(1 − ua)qi,a , Ri (u) =
∏

a∈C∗(1 − ua)ri,a .

The mγ are called monomials (they are analogs of weight). We denote by A the set of
monomials of Z[Y ±

i,a]i∈I,a∈C∗ . For an l-weight γ , we denote Vγ = Vmγ . We will also

use the notation i p
r = Y p

i,qr for i ∈ I and r, p ∈ Z.

For J ⊂ I , χ J
q is the morphism of q-characters for Uq(LgJ ) ⊂ Uq(Lg).
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For a m monomial we denote ui,a(m) ∈ Z such that m = ∏
i∈I,a∈C∗Y

ui,a(m)

i,a .
We also denote ω(m) = ∑

i∈I,a∈C∗ui,a(m)�i , ui (m) = ∑
a∈C∗ ui,a(m) and u(m) =∑

i∈I ui (m). m is said to be J -dominant if for all j ∈ J, a ∈ C
∗ we have u j,a(m) ≥ 0.

An I -dominant monomials is said to be dominant.
Observe that χq , χ J

q can also be defined for finite dimensional Uq(Lh)-modules in
the same way.

In the following for V a finite dimensional Uq(Lh)-module, we denote by M(V ) the
set of monomials occurring in χq(V ).

For i ∈ I, a ∈ C
∗ we set:

Ai,a =Yi,aq−1
i

Yi,aqi

∏

{ j |C j,i =−1}
Y −1

j,a

×
∏

{ j |C j,i =−2}
Y −1

j,aq−1 Y −1
j,aq

∏

{ j |C j,i =−3}
Y −1

j,aq2 Y −1
j,a Y −1

j,aq−2 .
(2)

As the A−1
i,a are algebraically independent [FR] (because C(z) is invertible), for M a

product of A−1
i,a we can define vi,a(M) ≥ 0 by M = ∏

i∈I,a∈C∗ A
−vi,a(m)

i,a . We put vi (M) =
∑

a∈C∗vi,a(M) and v(M)= ∑
i∈I vi (M). For λ ∈ −Q+ we set v(λ) = −λ(�∨

1 + · · · +
�∨

n ). For M a product of A−1
i,a , we have v(M) = v(ω(λ)). For m, m′ two monomials,

we write m′ ≤ m if m′m−1 is product of A−1
i,a .

Definition 2.3. [FM1] A monomial m ∈ A − {1} is said to be right-negative if for all
a ∈ C

∗, for L = max{l ∈ Z|∃i ∈ I, ui,aq L (m) 
= 0} we have ∀ j ∈ I , u j,aq L (m) ≤ 0.

Observe that a right-negative monomial is not dominant. We can also define left-negative
monomials by replacing max by min in the formula of L in Definition 2.3.

Lemma 2.4. [FM1]

1) For i ∈ I, a ∈ C
∗, A−1

i,a is right-negative.
2) A product of right-negative monomials is right-negative.
3) If m is right-negative, then m′ ≤ m implies that m′ is right-negative.

We have the same results by replacing right-negative by left-negative.
For J ⊂ I and Z ∈ Y , we denote Z→J the element of Y obtained from Z by putting

Y ±1
j,a = 1 for j /∈ J . Let β : Z[Y ±

j,b] j∈I,b∈C∗ → E be the ring morphism such that
β(m) = e(ω(m)).

Proposition 2.5. [FR, Theorem 3] For V ∈ Rep(Uq(Lg)), let Res(V ) be the restricted
Uq(g)-module. We have (β ◦ χq)(V ) = χ(Res(V )).

2.3.2. l-highest weight representations. The irreducible finite dimensionalUq(Lg)-mod-
ules have been classified by Chari-Pressley. They are parameterized by dominant mono-
mials:

Definition 2.6. A Uq(Lg)-module V is said to be of l-highest weight m ∈ A if there is
v ∈ Vm such that V = Uq(Lg)−.v and ∀i ∈ I, r ∈ Z, x+

i,r .v = 0.

For m ∈ A, there is a unique simple module L(m) of l-highest weight m.



228 D. Hernandez

Theorem 2.7. [CP6, Theorem 12.2.6] The dimension of L(m) is finite if and only if m
is dominant.

For i ∈ I , a ∈ C
∗, k ≥ 0 we denote X (i)

k,a = ∏
k′∈{1,...,k}Yi,aqk−2k′+1

i
.

Definition 2.8. The Kirillov-Reshetikhin modules are the W (i)
k,a = L(X (i)

k,a).

We denote by W (i)
0,a the trivial representation (it is of dimension 1). For i ∈ I and

a ∈ C
∗, W (i)

1,a is called a fundamental representation and is denoted by Vi (a) (in the case
g = sl2 we simply write Wk,a and V (a)). For g = sl2, the monomials m1 = Xk1,a1 , m2 =
Xk2,a2 are said to be in special position if the monomial m3 = ∏

a∈C∗Y max(ua(m1),ua(m2))
a

is of the form m3 = Xk3,a3 and m3 
= m1, m3 
= m2. A normal writing of a dominant
monomial m is a product decomposition m = ∏

i=1,...,L Xkl ,al such that for l 
= l ′, Xkl ,al ,
Xkl′ ,al′ are not in special position. Any dominant monomial has a unique normal writing
up to permuting the monomials (see [CP6, Sect. 12.2]).

It follows from the study of the representations of Uq(Lsl2) in [CP1, CP2, FR] that:

Proposition 2.9. Suppose that g = sl2.

(1) Wk,a is of dimension k + 1 and:

χq(Wk,a) = Xk,a(1 + A−1
aqk (1 + A−1

aqk−2(1 + · · · (1 + A−1
aq2−k )) · · · ).

(2) V (aq1−k) ⊗ V (aq3−k) ⊗ · · · ⊗ V (aqk−1) is of q-character:

Xk,a(1 + A−1
aqk )(1 + A−1

aqk−2) · · · (1 + A−1
aq2−k ).

In particular all l-weight spaces of the tensor product are of dimension 1.
(3) For m a dominant monomial and m = Xk1,a1 · · · Xkl ,al a normal writing we have:

L(m) 
 Wk1,a1 ⊗ · · · ⊗ Wkl ,al .

2.3.3. Special modules and complementary reminders

Definition 2.10. For m ∈ A let D(m) be the set of monomials m′ ∈ A such that there
are m0 = m, m1, . . . , m N = m′ ∈ A satisfying for all j ∈ {1, . . . , N }:
(1) m j = m j−1 A−1

i j ,a1qi j
· · · A−1

i j ,ar j qi j
, where i j ∈ I , r j ≥ 1 and a1, . . . , ar j ∈ C

∗,

(2) for 1 ≤ r ≤ r j , ui j ,ar (m j−1) ≥ |{r ′ ∈ {1, . . . , r j }|ar ′ = ar }|, where r j , i j , ar are
as in condition (1).

For all m′ ∈ D(m), m′ ≤ m. Moreover if m′ ∈ D(m), then (D(m′) ⊂ D(m)).

Theorem 2.11. [H5, Theorem 5.21] For V ∈ Mod(Uq(ĝ)) a l-highest weight module of
highest monomial m, we have M(V ) ⊂ D(m).

In particular for all m′ ∈ M(V ), we have m′ ≤ m and the vi,a(m′m−1), v(m′m−1) ≥ 0
are well-defined. As a direct consequence of Theorem 2.11, we also have:

Lemma 2.12. For i ∈ I, a ∈ C
∗, we have (χq(Vi (a)) − Yi,a) ∈ Z[Y ±

j,aql ] j∈I,l>0.
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This result was first proved in [FM1, Lemma 6.1, Remark 6.2].
A monomial m is said to be antidominant if for all i ∈ I, a ∈ C

∗, ui,a(m) ≤ 0.

Definition 2.13. A Uq(Lg)-module is said to be special (resp. antispecial) if its
q-character has a unique dominant (resp. antidominant) monomial.

The notion of special module was introduced in [Nak4]. It is of particular importance
because an algorithm of Frenkel-Mukhin [FM1] gives the q-character of special modules.
It is easy to write a similar algorithm for antispecial modules from the Frenkel-Mukhin
algorithm (for example it suffices to use the involution studied in Sect. 4.2).

Observe that a special (resp. antispecial) modules is a simple l-highest weight mod-
ules. But in general all simple l-highest weight modules are not special. The following
result was proved in [Nak4, Nak5] for simply-laced types, and in full generality in [H4]
(see [FM1] for previous results).

Theorem 2.14. [H4, Theorem 4.1, Lemma 4.4] The Kirillov-Reshetikhin modules are
special. Moreover for m ∈ M(W (i)

k,a), m 
= X (i)
k,a implies m ≤ X (i)

k,a A−1
i,aqk

i
.

Define

µI
J : Z[(A±

j,a)→(J )] j∈J,a∈C∗ → Z[A±
j,a] j∈J,a∈C∗,

the ring morphism such that µI
J ((A±

j,a)→(J )) = A±
j,a . For m J -dominant, denote by

L J (m→(J )) the simple Uq(LgJ )-module of l-highest weight m→(J ). Define:

L J (m) = mµI
J ((m→(J ))−1χ J

q (L J (m→(J )))).

We have:

Proposition 2.15. [H6] For a representation V ∈ Rep(Uq(Lg)) and J ⊂ I , there is
unique decomposition in a finite sum:

χq(V ) =
∑

m′ J -dominant

λJ (m′)L J (m′). (3)

Moreover for all m′ J -dominant we have λJ (m′) ≥ 0.

Remark 2.16. Let m be a dominant monomial and m′ ∈ M(L(m)) a J -dominant mono-
mial such that there are no m′′ > m′ satisfying m′′ ∈ M(m) and m′ appears in L J (m′′).
Then from Proposition 2.15 the monomials of L J (m′) are in M(L(m)). It gives induc-
tively from m a set of monomials occurring in χq(L(m)).

2.3.4. Thin modules

Definition 2.17. [H6] A Uq(Lg)-module V is said to be thin if its l-weight spaces are
of dimension 1.

For example for g of type A, B, C , all fundamental representations are thin (it can
be established directly from the formulas in [KS]; this thin property was observed and
proved with a different method in [H3, Theorem 3.5]; see also [CM2]).

Observe that it follows from [H1, Sect. 8.4] that for g of type G2, all fundamental
representations are thin. For g of type F4, the fundamental representations corresponding
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to i = 1 and i = 4 are thin, but the fundamental representations corresponding to i = 2
or i = 3 are not thin (see [H3]).

For type D, it is known that fundamental representations are not necessarily thin: for
example for g of type D4, the fundamental representations V2(a) have an l-weight space
of dimension 2. Explicit formulas for the q-character of fundamental representation
in type D are given in [KS] (the thin fundamental representations of type D are also
characterized in [CM2]; see also Remark 2.19 below for a general statement).

For m ∈ Z[Yi,a]i∈I,a∈C∗ a dominant monomial, the standard module M(m) is defined
as the tensor product :

M(m) =
⊗

a∈(C∗/qZ)

(· · · ⊗ (
⊗

i∈I

Vi (aq)⊗ui,aq (m)) ⊗ (
⊗

i∈I

Vi (aq2)
⊗ui,aq2 (m)

) ⊗ · · · ).

It is well-defined as for i, j ∈ I and a ∈ C
∗ we have Vi (a) ⊗ Vj (a) 
 Vj (a) ⊗ Vi (a)

and for a′ /∈ aqZ, we have Vi (a)⊗ Vj (a′) 
 Vj (a′)⊗ Vi (a). Observe that fundamental
representations are particular cases of standard modules.

As a direct corollary of a result of Nakajima, there is the following result for simply-
laced types:

Corollary 2.18. We suppose that g is simply-laced. Let m = ∏
i∈I Y wi

i,aqφi
where a ∈ C

∗,

wi ≥ 0 and φi ∈ Z satisfies (Ci, j < 0 ⇒ |φi − φ j | = 1). Then the standard module
M(m) is thin if and only if it is simple as a Uq(g)-module.

Proof. It follows from [Nak3, Proposition 3.4] that in this situation the number of mono-
mials in χq(M(m))) is equal to the dimension of the simple Uq(g)-module of highest
weight

∑
i∈I wi�i . ��

Observe that this result is false for not simply-laced g (for example there is a thin
fundamental representation for type G2 which is not simple as a Uq(g)-module, see [H1,
Sect. 8.4]).

The following remark was communicated to the author by Nakajima:

Remark 2.19. In particular for g simply-laced, a fundamental representation is thin if
and only if the corresponding coefficient of the highest root is 1 (this point is also a
trivial consequence of previously known results, for example the geometric construction
[Nak1]).

We got also the following example:

Proposition 2.20. [H6, Proposition 6.6] Let g = sln+1 and consider a monomial of the
form m = Yi1,aql1 Yi2,aql2 · · · YiR ,aqlR , where R ≥ 0, i1, i2, . . . , iR ∈ I , l1, l2, . . . , lR ∈
Z, satisfying for all 1 ≤ r ≤ R − 1, lr+1 − lr ≥ ir + ir+1. Then L(m) is thin.

3. Minimal Affinizations and Main Results

In this section we recall the definition of minimal affinizations and their classification
in regular cases. Then we state the main results which are proved in other sections.
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3.1. Definitions [Cha1]

Definition 3.1. For V a simple finite dimensional Uq(g)-module, a simple finite dimen-
sional Uq(Lg)-module L(m) is said to be an affinization of V if ω(m) is the highest
weight of V .

For V a Uq(g)-module and λ ∈ P+, denote by mλ(V ) the multiplicity in V of the simple
Uq(g)-module of highest weight λ. Two affinizations are said to be equivalent if they are
isomorphic as Uq(g)-modules. Denote by QV the equivalence classes of affinizations of
V and for L an affinization of V denote by [L] ∈ QV its classes. For [L], [L ′] ∈ QV ,
we write [L] ≤ [L ′] if and only if for all µ ∈ P+, either

(i) mµ(L) ≤ mµ(L ′),
(ii) ∃ν > µ such that mν(L) < mµ(L ′).

Proposition 3.2. ≤ defines a partial ordering on QV .

Definition 3.3. A minimal affinization of V is a minimal element of QV for the partial
ordering.

Remark 3.4. For g = sln+1, we have evaluation morphisms Uq(Lg) → Uq(g) denoted
by eva and eva (for a ∈ C

∗) and in particular a minimal affinization L of V is isomorphic
to V as a Uq(g)-module.

3.2. Classification The minimal affinizations were classified in [Cha1, CP3, CP4, CP5]
for all types, except for type D, E for a weight orthogonal to the special node. For the
regular cases (i.e. with a linear Dynkin diagram, that is to say types A, B, C , F4, G2),
the classification is complete:

Theorem 3.5. [Cha1, CP3, CP4] Suppose that g is regular and let λ ∈ P+. For i ∈ I let
λi = λ(α∨

i ) and for i < n let

ci (λ) = qri λi +ri+1λi+1+ri+1−Ci+1,i −1 and c′
i (λ) = qri λi +ri+1λi+1+ri −Ci,i+1−1.

Then a simple Uq(Lg)-module L(m) is a minimal affinization of V (λ) if and only if m

is of the form m = ∏
i∈I X (i)

λi ,ai
with (ai )i∈I ∈ (C∗)I satisfying one of two conditions:

(I) For all i < j ∈ I , ai/a j = ∏
i≤s< j cs(λ).

(II) For all i < j ∈ I , a j/ai = ∏
i≤s< j c′

s(λ).

Observe that we have rewritten the defining formulas of cs , c′
s [Cha1, CP3, CP4]

in a slightly different (more homogeneous) way. Observe that for classical types, min-
imal affinizations (called generalized Kirillov-Reshetikhin modules) were also studied
in [GK].

Remark 3.6. As a consequence of Theorem 3.5, for k ≥ 0 and i ∈ I , the minimal affini-
zations of V (k�i ) are the Kirillov-Reshetikhin modules.

For g of type D, and λ ∈ P+, we define with the same formulas ci (λ) for i < n − 1,
and we set cn−1(λ) = qλn−2+λn+1. For a monomial m = ∏

i∈I X (i)
λi ,ai

we have analog
conditions (I) and (II):
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(I) For all i < j ∈ I , ai/a j = (c j−1(λ))ε j
∏

i≤s≤min( j−1,n−3) cs(λ),
(II) For all i < j ∈ I , a j/ai = (c j−1(λ))ε j

∏
i≤s≤min( j−1,n−3) cs(λ),

where ε j = 0 if j ≤ n − 2 and εn−1 = εn = 1. It follows from [CP3, Theorem 6.1]

that if λn−2 
= 0 and m = ∏
i∈I X (i)

λi ,ai
satisfies (I ) or (I I ), then L(m) is a minimal

affinization of V (λ).

3.3. Main results It follows directly from Theorem 2.14 and Remark 3.6 that (see also
Proposition 6.8 for an alternative general proof):

Corollary 3.7. For i ∈ I and k ≥ 0, the minimal affinizations of V (k�i ) are special.

In general a minimal affinization is not special. Let us look at some examples. First
we consider type C . If m satisfies condition (I I ) of Theorem 3.5, L(m) is not necessar-
ily special. For example consider the case g of type C3 and m = Y2,1Y2,q2 Y3,q7 . L(m)

is a minimal affinization of V (2�2 + �3). By the process described in Remark 2.16,
the monomials 11132−1

2 2−1
4 313337, 1−1

3 1−1
5 313337, 1−1

3 1−1
5 22243−1

5 3337, 2−1
6 2−1

4 32
337

and 33 occur in χq(L(m)) and so L(m) is not special. If m satisfies condition (I ) of
Theorem 3.5, L(m) is not necessarily special. For example consider the case g of type
C3 and m = Y1,q3 Y1,q5 Y1,q7 Y2,1. L(m) is a minimal affinization of V (3�1 + �2). By

the process described in Remark 2.16, the monomials 111315172−1
2 31, 11131517243−1

5 ,
111312

5172−1
6 , 111315 occur in χq(L(m)) and so L(m) is not special.

Eventually, let m = Y1,1Y1,q2 Y1,q4 Y2,q7 Y2,q9 Y3,q14 . We can see as for Y2,1Y2,q2 Y3,q7

that L(m) is not special. Moreover L(m) is antispecial if and only if the module
L(Y1,q14 Y1,q12 Y1,q10 Y2,q7 Y2,q5 Y3,1) is special (see Lemma 4.10 and Corollary 4.11
below). But we can check as for Y1,q3 Y1,q5 Y1,q7 Y2,1 that this module is not special.
So L(m) is not special and not antispecial.

For types D, there are minimal affinizations which are not special. For example let
g of type D4 and m = Y1,q3 Y1,q5 Y2,1. Then L(m) is not special (see [H6, Remark 6.8]).

However we prove in this paper:

Theorem 3.8. For g of type A, B, G, all minimal affinizations are special and antispe-
cial.

Theorem 3.9. For g of type C, F4 and λ ∈ P satisfying λn = 0, all minimal affiniza-
tions of V (λ) satisfying (I) (resp. (II)) are antispecial (resp. special). For g of type D
and λ ∈ P satisfying λn−1 = λn, all L(m) satisfying (I) (resp. (II)) and an−1 = an are
antispecial (resp. special).

Note that for type D, the condition an−1 = an is automatically satisfied if λ j 
= 0 for
one j ≤ n − 2.

Theorem 3.10. For g of type A, B, all minimal affinizations are thin.

Theorems 3.8, 3.9 and 3.10 are proved in Sect. 5.
Note for type C , there are minimal affinizations which are not thin: for example

consider g of type C4 and m = Y3,1Y3,q2 . L(m) is a Kirillov-Reshetikhin and a min-
imal affinization of V (2�3). By the process described in Remark 2.16, the following
monomials occur in χq(L(m)): 3132, 21233−1

2 3−1
4 4143, 21234−1

5 43, 14212−1
5 344−1

5 43,
14213−1

6 43, 1421344−1
7 , 1−1

6 2125344−1
7 and 1−1

6 2122
536454−1

7 . And so by Proposition
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2.15 and Proposition 2.9 the monomial 21252−1
7 32

6454−1
7 occurs in χq(L(m)) with mul-

tiplicity larger than 2.
For type G2, there are minimal affinizations which are not thin: for example let

m = Y2,0Y2,2. L(m) is a Kirillov-Reshetikhin and a minimal affinization of V (2�2).
We have 2022, 11132−1

4 2−1
2 , 1−1

7 1−1
9 2422

628 ∈ M(L(m)), and so Y −1
1,9 Y2,4Y2,6 occurs in

χq(L(m)) with multiplicity larger than 2.

4. Preliminary Results

In this section g is an arbitrary semi-simple Lie algebra. We discuss preliminary results
which will be used in the proof of Theorem 3.8, 3.9 and 3.10 in the next section.

First it is well known that:

Lemma 4.1. Let L(m1), L(m2) be two simple modules. Then L(m1m2) is a subquotient
of L(m1) ⊗ L(m2). In particular M(L(m1m2)) ⊂ M(L(m1))M(L(m2)).

4.1. Results of [H6] All results of this subsection are preliminary results of [H6].

Lemma 4.2. Let a ∈ C
∗ and m be a monomial of Z[Yi,aqr ]i∈I,r≥0. Then for m′ ∈

M(L(m)) and b ∈ C
∗, (vi,b(m′m−1) 
= 0 ⇒ b ∈ aqri +N).

Lemma 4.3. Let V ∈ Rep(Uq(Lg)) be a Uq(Lg)-module and m′ ∈M(V ) such that
there is i ∈ I satisfying Min{ui,a(m′)|a ∈ C

∗} ≤ −2. Then there is m′′ > m′ in M(V )

i -dominant such that Max{ui,b(m′′)|b ∈ C
∗} ≥ 2.

We recall [H6] that a monomial m is said to be thin if Maxi∈I,a∈C∗ |ui,a(m)| ≤ 1.

Proposition 4.4. If V is thin then all m ∈M(V ) are thin. If V is special and all m ∈
M(V ) are thin, then V is thin.

Lemma 4.5. Let m dominant and J ⊂ I . Let v be an highest weight vector of L(m)

and L ′ ⊂ L(m) be the Uq(LgJ )-submodule of L(m) generated by v. Then L ′ is an
Uq(Lh)-submodule of L(m) and χq(L ′) = L J (m).

In particular for µ ∈ ω(m) − ∑
j∈J Nα j , we have

dim((L(m))µ) = dim((L J (m→(J )))µ→(J ) ),

where µ→(J ) = ∑
j∈J µ(α∨

j )ω j .

Lemma 4.6. Let V = L(m) be a Uq(Lg)-module simple module and consider a mono-
mial m′ ∈ (M(L(m)) − {m}). Then there is j ∈ I and M ′ ∈ M(V ) j -dominant such
that M ′ > m′, M ′ ∈ m′

Z[A j,b]b∈C∗ and ((Uq(Lg j ).VM ′) ∩ (M)m′) 
= {0}.
We have the following elimination theorem:

Theorem 4.7. Let V = L(m) be a Uq(Lg)-module simple module. Let m′ < m and
i ∈ I satisfying the following conditions:

(i) there is a unique i-dominant M ∈ (M(V ) ∩ m′
Z[Ai,a]a∈C∗) − {m′},

(ii)
∑

r∈Z
x+

i,r (VM ) = {0},
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(iii) m′ is not a monomial of Li (M),
(iv) if m′′ ∈ M(Uq(Lgi ).VM ) is i -dominant, then v(m′′m−1) ≥ v(m′m−1),
(v) for all j 
= i , {m′′ ∈ M(V )|v(m′′m−1) < v(m′m−1)} ∩ m′

Z[A±1
j,a]a∈C∗ = ∅.

Then m′ /∈ M(V ).

Lemma 4.8. Let L(m) be a simple Uq(Lg)-module, and m′ ∈ M(L(m)) such that all
m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin.

1) For i ∈ I such that m′ is not i-dominant, there is a ∈ C
∗ such that ui,a(m′) < 0 and

m′ Ai,aq−1
i

∈ M(L(m)).

2) We suppose that g = sln+1, that there are i ∈ I , a ∈ C
∗ satisfying ui,a(m′) = −1

and m′Yi,a is dominant. Then there is M ∈ M(L(m)) dominant such that M > m′
and vn(m′M−1) ≤ 1, v1(m′M−1) ≤ 1.

3) We suppose that g = sln+1, that there is j ∈ I , such that m′ is (I − { j})-dominant
and if j ≤ n − 1, then for all a ∈ C

∗, (u j,a(m′) < 0 ⇒ u j+1,aq−1(m′) > 0). Then
there is M ∈ M(L(m)) dominant of the form

M = m′ ∏

{a∈C∗|u j,a(m′)<0}
(A j,aq−1 A j−1,aq−3 · · · Aia ,aqia− j−1),

where for a ∈ C
∗, 1 ≤ ia ≤ j .

Observe that we can prove in the same way an analogous result where we replace all
i ∈ I by i = n − i + 1.

4.2. Involution of Uq(Lg) and simple modules For µ an automorphism of Uq(Lg)

and V a Uq(Lg)-module we denote the corresponding twisted module by µ∗V . The
involution of the algebra Y defined by Y ±

i,a �→ Y ∓
i,a−1 is denoted by σ .

For all b ∈ C
∗, let τb be the automorphism of Uq(Lg) defined by x±

i,m �→ b−m x±
i,m ,

hi,r �→ b−r hi,r , k±
i �→ k±

i . For V a Uq(Lg)-module we have χq(τ ∗
b V ) = βb(χq(V )),

where βb : Y → Y is the ring morphism such that βb(Y
±
i,a) = Y ±

i,ab. So τ ∗
b L(m) 


L(βb(m)) and χq(τ ∗
b L(m)) = βb(χq(L(m))).

Lemma 4.9. [Cha1, Proposition 1.6] There is a unique involution σ of the algebra
Uq(Lg) such that for all i ∈ I, r ∈ Z, m ∈ Z − {0}:

σ(x±
i,r ) = x∓

i,−r , σ (hi,m) = −hi,−m, σ (ki ) = k−1
i .

Moreover for m ≥ 0, σ(φ±
i,±m) = φ∓

i,∓m.

(Observe that we could also use σ(x±
i,r ) = −x∓

i,−r to define an involution of Uq(Lg).)

Lemma 4.10. We have χq(σ ∗V ) = σ(χq(V )).
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Proof. For γ = (γ ±
i,±m)i∈I,m≥0, it follows from the relation σ(φ±

i,±m) = φ∓
i,∓m that

Vγ = (σ ∗V )γ ′ , where γ ′ = (γ ±
i,∓m)i∈I,m≥0. Let Qi (u) = ∏

a∈C∗(1 − ua)qi,a and
Ri (u) = ∏

a∈C∗(1 − ua)ri,a such that in C[[u±]] we have:

∑

m≥0
γ ±

i,±mu±m = qdeg(Qi )−deg(Ri )

i

Qi (uq−1
i )Ri (uqi )

Qi (uqi )Ri (uq−1
i )

.

Then in C[[u±]] we have:

∑

m≥0

γ ∓
i,∓mu±m = qdeg(Qi )−deg(Ri )

i

Qi (u−1q−1
i )Ri (u−1qi )

Qi (u−1qi )Ri (u−1q−1
i )

= q
deg(Q′

i )−deg(R′
i )

i

Q′
i (uq−1

i )R′
i (uqi )

Q′
i (uqi )R′

i (uq−1
i )

,

where Q′
i (u) = ∏

a∈C∗(1 − ua)
ri,a−1 and R′

i (u) = ∏
a∈C∗(1 − ua)

qi,a−1 by using the
identities

qi
1 − au−1q−1

i

1 − au−1qi
= q−1

i
1 − a−1uqi

1 − a−1uq−1
i

and q−1
i

1 − au−1qi

1 − au−1q−1
i

= qi
1 − a−1uq−1

i

1 − a−1uqi
.

��
In particular χ(σ ∗V ) = σ(χ(V )), where, σ : E → E is defined by σ(e(λ)) = e(−λ).
Let w0 be the longest element in the Weyl group of g and i �→ i be the unique

bijection of I such that w0(αi ) = −αi . Let h∨ be the dual Coxeter number of g and r∨
the maximal number of edges connecting two vertices of the Dynkin diagram of g.

Corollary 4.11. For m dominant, we have σ ∗L(m) 
 L(m′), where

m′ =
∏

a∈C∗

∏
Y

ui,a(m)

i,a−1q−r∨h∨ .

Proof. A submodule of V is a submodule of σ ∗V , so V simple implies σ ∗V sim-
ple. As it is proved in [FM1, Corollary 6.9] that the lowest monomial of L(m) is
∏

i∈I,a∈C∗ Y
−ui,a(m)

i,aqr∨h∨ , we get the result from Lemma 4.10. ��

Observe that as a by product we get the following symmetry property:

Corollary 4.12. If k = k, then χq(W (i)
k,a) is invariant by (τa2qr∨h∨ ◦ σ).

For example, this symmetry can be observed on the diagrams of q-characters in [Nak2,
Fig. 1] and [H1, Sect. 8].

Let us go back to the main purposes of this paper. First we get a simplification in the
proof of Theorem 3.8:

Corollary 4.13. In Theorem 3.8, it suffices to prove that all minimal affinizations are
special.
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Proof. First suppose that g is of type B or G. Then i = i . If m satisfies condition (I I )
of Theorem 3.5, then m′ of Corollary 4.11 satisfies condition (I ). Moreover if M is
dominant, then σ(M) is antidominant. So we can conclude with Lemma 4.10. If g is of
type A, conditions (I) and (II) are the same up to a different numbering. ��

Exactly in the same way we get :

Corollary 4.14. In Theorem 3.9, it suffices to prove that the considered simple repre-
sentations satisfying the condition (II) are special.

For V a Uq(Lg)-module, denote by V ∗ the dual module of V . As S(ki ) = k−1
i , we have

χ(V ∗) = σ(χ(V )). As a direct consequence of [FM1, Corollary 6.9], we have:

Lemma 4.15. For m dominant, we have (L(m))∗ 
 L(m′′), where

m′′ =
∏

i∈I,a∈C∗Y
ui,a(m)

i,aq−r∨h∨ .

Note that it was proved in [FM1] that we have the following relation between the
q-character of (Vi (a))∗ 
 Vi (aq−r∨h∨

) and Vi (a):

χq((Vi (a))∗) = (τa ◦ σ ◦ τa−1)(χq(Vi (a))).

Proposition 4.16. For m a dominant monomial, we have

χ(L(m)) = χ(L((σ (m))−1)).

Proof. From previous results, we have

χ(σ ∗((L(m))∗)) = σ(χ((L(m))∗)) = χ(L(m)),

and σ ∗((L(m))∗) 
 L(
∏

i∈I,a∈C∗Y
ui,a(m)

i,a−1 ) = L((σ (m))−1). ��

The above proposition can be extended to χ(L(m)) = χ(L(
∏

i∈I,a∈C∗Y
ui,a(m)

i,ba−1 )) for
all b ∈ C

∗.
Observe that we do not have a direct relation between the monomials of the same

weight space: for example for g = sl2 and m = YqY 2
q3 , the term of weight � in χq(L(m))

is 2YqYq3 Y −1
q5 and the term of weight � in χq(L(σ (m))) is Yq−3 + Y 2

q−3 Y −1
q .

4.3. Additional preliminary results

Lemma 4.17. Let m = X (i)
k,a. Let m′ ∈ M(W (i)

k,a) and µ ∈ {k, k − 2, . . . ,−k + 2}. Then

vi,aqµ
i
(m′m−1) ≥ 1 implies

vi,aqk
i
(m′m−1) ≥ 1, vi,aqk−2

i
(m′m−1) ≥ 1, . . . , vi,aqµ

i
(m′m−1) ≥ 1.
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Proof. For µ = k the result is clear. We suppose that µ < k and we prove the result by
induction on k. For k = 1 the result is clear. For general k ≥ 1 and µ < k, suppose that
vi,aqµ

i
(m′m−1) ≥ 1. So m′ 
= m and it follows from Theorem 2.14 that m′ ≤ m A−1

i,aqk
i
.

By Lemma 4.1, m′ = m1m2, where m1 ∈ M(Vi (aqk−1
i )) and m2 ∈ M(W (i)

k−1,aq−1
i

).

From Lemma 4.2, v j,b(m1Y −1
i,aqk−1

i
) 
= 0 implies b = aqri (k−1)+R with R ≥ 1 and so

b = aqµ
i . So we have vi,aqµ

i
(m2(X (i)

k−1,aq−1
i

)−1) ≥ 1. So by the induction hypothesis

vi,aqk−2
i

(m2(X (i)
k−1,aq−1

i
)−1) ≥ 1,vi,aqk−4

i
(m2(X (i)

k−1,aq−1
i

)−1) ≥ 1,

· · · , vi,aqµ
i
(m2(X (i)

k−1,aq−1
i

)−1) ≥ 1.

We can conclude because it follows from Theorem 2.14 that vi,aqk
i
(m′m−1) ≥ 1. ��

Lemma 4.18. Let a ∈ C
∗ and a monomial m ∈ Z[Yi,aqr ]i∈I,r∈Z. Let m′ ∈ M(L(m))

and R ∈ Z such that for all i ∈ I , (ui,aqr (m′) < 0 ⇒ r ≤ R). Then there is a dominant
monomial M ∈ M(L(m)) ∩ (mZ[Ai,aqr ]{(i,r)|i∈I,r≤R−ri }).

Proof. From Lemma 2.15 it suffices to prove the result for Uq( ˆsl2). In this case the result
follows from (3) of Proposition 2.9. ��

To conclude this section, let us prove a refined version of Proposition 2.15. For i ∈ I ,

a ∈ C
∗ and m a monomial denote m→(i,a) = ∏

r∈Z
Y

u
i,aq2r

i
(m)

i,aq2r
i

. Define:

Li,a(m) = mµI
i ((m

→(i,a))−1χ i
q(Li (m→(i,a)))).

Observe that for a′ ∈ aq2Z

i , m→(i,a) = m→(i,a′) and Li,a(m) = Li,a′(m). So the defini-
tion can be given for a ∈ (C∗/q2Z

i ). We have:

Corollary 4.19. For a representation V ∈ Rep(Uq(Lg)), i ∈ I and a ∈ C
∗, there is a

unique decomposition in a finite sum:

χq(V ) =
∑

{m′|(m′)→(i,a) is dominant}λi,a(m′)Li,a(m′).

Moreover for all m′ such that (m′)→(i,a) is dominant, we have λi,a(m′) ≥ 0.

Proof. First we write the decomposition of Lemma 2.15 with J = {i}. Then it follows
from Proposition 2.9 that for m′ an i-dominant monomial we have

Li (m
′) = (m′)→(I−{i}) ∏

b∈(C∗/q2Z

i )

Li,b((m
′)→(i,b)).

��

5. Proof of the Main Results

In this section we prove Theorems 3.8, 3.9 and 3.10. We study successively the different
types.
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5.1. Type A In this Sect. 5.1, g = sln+1.

Lemma 5.1. Let λ ∈ P+ and L(m) be a minimal affinization of V (λ). Suppose that
m satisfies the condition (I I ) (resp. condition (I )) of Theorem 3.5. Let K = max{i ∈
I |λi 
= 0} (resp. K = min{i ∈ I |λi 
= 0}). The following properties are satisfied:

(1) For all m′ ∈ M(L(m)), if vK (m′m−1) ≥ 1, then vK ,aK qλK (m′m−1) ≥ 1.
(2) L(m) is special.
(3) L(m) is thin.
(4) For all m′ ∈ M(L(m)) we have

v j,akqλk +| j−k|(m′m−1) = v j,akqλk +| j−k|−2(m′m−1)

= · · · = v j,akqλk +| j−k|−2R (m′m−1) = 1,

where

j = max{i |vi (m
′m−1) 
= 0} (resp. j = min{i |vi (m

′m−1) 
= 0}),

k = max{i ≤ j |λi 
= 0} (resp. k = min{i ≥ j |λi 
= 0}),
and R = v j (m′m−1) − 1.

Observe that as a consequence of property (4), for b ∈ C
∗, v j,b(m′m−1) 
= 0 implies

b ∈ {akqλk +| j−k|, akqλk +| j−k|−2, . . . , akqλk +| j−k|−2R}.
Lemma 5.1 combined with Corollary 4.13 implies Theorem 3.8 and Theorem 3.10 for
type A.

Proof. We suppose that L(m) satisfies (I I ) (the case (I ) is treated in the same way). We
prove by induction on u(m) ≥ 0 simultaneously that (1), (2), (3) and (4) are satisfied.

For u(m) = 0 the result is clear. Suppose that u(m) ≥ 1.
First we prove (1) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we have

m′ = m and the result is clear. In general suppose that for m′′ such that v(m′′m−1) <

v(m′m−1), the property is satisfied. Suppose thatvK (m′m−1) ≥ 1 andvK ,aK qλK (m′m−1)

= 0. It suffices to prove that the conditions of Proposition 4.7 with i = K are satisfied.
Condition (i) of Proposition 4.7: if M > m′ and M ∈ M(L(m)), we have vK ,aK qλK

(Mm−1)= 0 and so by the induction hypothesis vK (Mm−1)= 0. So if we suppose

moreover that M ∈ m′
Z[AK ,a]a∈C∗ , we have M = m′ ∏

a∈C∗ A
vK ,a(m′m−1)

K ,a , and so we get

the uniqueness. For the existence, it suffices to prove that this M = m′ ∏
a∈C∗ A

vK ,a(m′m−1)

K ,a
is in M(L(m)). By Lemma 4.6, there is j ∈ I , M ′ ∈ M(L(m)) j-dominant such that
M ′ > m′ and M ′ ∈ m′

Z[A j,a]a∈C∗ . By the induction hypothesis on v we have j = K ,
and so by uniqueness M ′ = M .

Condition (ii) of Proposition 4.7: by construction of M we have vK (Mm−1) = 0.
Condition (iii) of Proposition 4.7: first observe that

M ∈ m→(K )M(L(m(m→(K ))−1)).

As u(m(m→(K ))−1) < u(m), we have property (4) for L(m(m→(K ))−1) and we get

(M)→(K ) = YK ,aK qλK −1 YK ,aK qλK −3 · · · YK ,aK q−λK +1−2R′ ,

with R′ ≥ 0. By Lemma 2.9, m′ is not a monomial of M(L K (M)).
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Condition (iv) of Proposition 4.7: let m′′ ∈ M(Uq(LgK ).(L(m))M ) such that
v(m′′m−1) < v(m′m−1). Then we have m′′ ∈ M A−1

K ,aK qλk
Z[A−1

K ,b]b∈C∗ and so (m′′)→(K )

is right negative, so m′′ is not K -dominant.
Condition (v) of Proposition 4.7: clear by the induction property on v.
Now we prove (2). Let J = {i ∈ I |i < K }. By Lemma 4.1, M(L(m)) ⊂ (m→(J )M

(L(m→(K ))))∪ (M(L(m→(J )))m→(K )). From Theorem 2.14, all monomials of m→(J )

(χq(L(m→(K ))) − m→(K )) are lower than m A−1
K ,aK qλK

which is right-negative, and

so are not dominant. Let m′ ∈ (M(L(m→(J )))m→(K ) − {m}). If vK (m′m−1) ≥ 1, it
follows from property (1) that m′ is lower than m A−1

K ,aK qλK
which is right-negative, so m′

is not dominant. If vK (m′m−1) = 0, we have uK ,b(m′(m→(K ))−1) ≥ 0 for all b ∈ C
∗.

We have m′(m→(K ))−1 ∈ M(L(m→(J ))) with u(m→(J )) < u(m), so by the induction
hypothesis on u, m′(m→(K ))−1 is not dominant. So there is i 
= K , b ∈ C

∗, such that
ui,b(m′(m→(K ))−1) < 0. As ui,b(m′(m→(K ))−1) = ui,b(m′), m′ is not dominant. So
L(m) is special.

Now we prove (3). From property (2) and Proposition 4.4, it suffices to prove that all
monomials of M(L(m)) are thin. From Lemma 4.3, we can suppose that there is m′ ∈
M(L(m)) such that there are i ∈ I, a ∈ C

∗ satisfying ui,a(m′) = 2 and such that all m′′
satisfyingv(m′′m−1) < v(m′m−1) is thin. Then m′ is ({1, . . . , i−2}∪{i}∪{i+2, . . . , n})-
dominant and (ui−1,b(m′) < 0 ⇒ b = aq) and (ui+1,b(m′) < 0 ⇒ b = aq). We can
apply (3) of Lemma 4.8 for g{1,...,i−1} and for g{i+1,...,n}. We get M ∈ M(L(m)) domi-
nant satisfying u j1,aq j1−i (M) ≥ 1, u j2,aqi− j2 (M) ≥ 1 with j1 < j2, j1 ≤ i ≤ j2. From
property (2) we have m = M , contradiction with condition (II) of Theorem 3.5.

Now we prove (4) by induction on v(m′m−1) ≥ 0. We can suppose that j = n
(Lemma 4.5). So k = K . For v(m′m−1) = 0 we have m′ = m and the result is clear.
Let be m′ such that the property is satisfied for m′′ with v(m′′m−1) < v(m′m−1). Let
R ≥ 0 be maximal such that

m′ ≤ m A−1
n,akqλk +n−k A−1

n,akqλk +n−k−2 · · · A−1
n,akqλk +n−k−2R+2 .

We suppose moreover that

m′ ≤ m A−1
n,akqλk +n−k A−1

n,akqλk +n−k−2 · · · A−1
n,akqλk +n−k−2R+2 A−1

n,b

with b 
= akqλk +n−k−2R . By the induction property on v, m′ is (I − {n})-dominant,
un,bq(m′) < 0 and (un,c(m′) < 0 ⇒ c = bq). By property (3), un,bq(m′) = −1. m′ is a
monomial of Ln(m′ An,b). By property (3), we can apply (3) of Lemma 4.8 and we get
M ∈ M(L(m)) dominant of the form M = m′ An,b An−1,bq−1 · · · An−r,bq−r with r ≥ 0.
From property (2), we have M = m. So R = 0. So n − r = K , bq−r = aK qλK, that is
to say b = aK qλK +n−K, contradiction. ��

5.2. Type B In this Sect. 5.2, we suppose that g is of type Bn .

5.2.1. Preliminary results for type B.

Lemma 5.2. Let a ∈ C
∗, m ∈ Z[Yi,aqr ]i∈I,r∈Z be a dominant monomial. Consider m′ ∈

M(L(m)) {1, . . . , n−1}-dominant such that all m′′ ∈ M(L(m)) satisfyingv(m′′m−1) <
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v(m′m−1) is thin. Suppose that m′ is not dominant and let R = min{r ∈ Z|un,aqr (m′) <

0}. Then there is M ∈ M(L(m)) {1, . . . , n − 1}-dominant such that m ≥ M > m′,
m′M−1 ∈ Z[Ai,aq R+2(i−n)+4r−1]i∈I,r≤0, un,aq R (M) = 0 and for all r ≤ R, un,aqr (M) ≥ 0
and

∑
l≥0 un,aq R−2−4l (M) > 0.

Proof. For shortness of notations, we suppose that m′Yn,aq R is dominant (the proof is
exactly the same if R 
= max{r ∈ Z|un,aqr (m′) < 0}). First there is

m0 = An,aq R−1 An−1,aq R−3 · · · An−α,aq R−1−2α m′ ∈ M(L(m)),

where α ≥ 0 and m0 is {1, . . . , n − 1}-dominant. If α = 0 we take M = m0. Otherwise,
un,aq R−4(m0) = −1 and un,b(m0) > 0 implies b = aq R−4. We continue and we get
inductively (at each step the involved monomials are thin by assumption):

mr = An,aq R−1−4r An−1,aq R−3−4r · · · An−α+r,aq R−1−2α−2r mr−1 ∈ M(L(m)),

where 1 ≤ r ≤ α and mr is {1, . . . , n − 1}-dominant. We take M = mα and the
properties are satisfied by construction. ��
Lemma 5.3. Let L(m) be a simple Uq(Lg)-module. Let m′ ∈ M(L(m)) be such that
all m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin. Suppose that there are
j ∈ (I −{n}) such that u j,b(m′) < 0 and mY j,b is dominant. Moreover we suppose that
if j 
= 1, then u j−1,bq−2(m′) > 0. Then there is M ∈ M(L(m)) dominant satisfying
one of the following conditions:

(1) M = m′ A j,bq−2 A j+1,bq−4 · · · A j+r,bq−2−2r where 0 ≤ r ≤ n − j ,
(2) M = m′(A j,bq−2 A j+1,bq−4 · · · An−1,bq−2n+2 j )An,bq−2n+2 j M ′ where

M ′ ∈ Z[Ak,bq−2n+2 j+2(k−n)−4l ]k<n,l≥0Z[An,bq−2n+2 j−4l ]l≥1,
(3) M = m′(A j,bq−2 A j+1,bq−4 · · · An,bq−2−2n+2 j )An,aq−2n+2 j ,
(4) M = m′(A j,bq−2 A j+1,bq−4 · · · An,bq−2−2n+2 j )An,bq−2n+2 j An−1,bq−2n−2+2 j .

Moreover
in case (1), we have u

j+r,bq−2−2r−r j+r (M) = 1,

in case (2), we have un−1,bq−2n+2 j−2(M) = 1 and
∑

l≥0 un,bq−2n+2 j−1−4l (M) > 0,
in case (3), we have un,bq−3−2n+2 j (M) = un,bq−1−2n+2 j (M) = 1,
in case (4), we have un−1,bq−2n−4+2 j (M) = 1.

Proof. Thanks to the hypothesis u j−1,bq−2(m′) > 0, we can suppose that j = 1. By
using (3) of Lemma 4.8 with g{1,...,n−1} of type An−1, we get m1 = m′ A1,bq−2 A2,bq−4 · · ·
A1+r,bq−2(r+1) ∈ M(L(m)), {1, . . . , n − 1}-dominant.

If m1 is dominant, then the condition (1) is satisfied, and we set M = m1.
Otherwise we have r = n − 2, un−1,bq−2n (m1) = 1, m1 is not n-dominant and

(un,d(m1) < 0 ⇒ d = bq−2n+3 or d = bq−2n+1).
If un,bq−2n+1(m1) ≥ 0 and un,bq−2n+3(m1) = −1, then we can use Lemma 5.2 and so

condition (2) is satisfied.
If un,bq−2n+1(m1) = −1 and un,bq−2n+3(m1) ≥ 0, M = m1 An,bq−2n ∈ M(L(m)) is

dominant, so condition (1) is satisfied.
If un,bq−2n+1(m1) = −1 and un,bq−2n+3(m1) = −1, m2 = m1 An,bq−2n An,bq−2n+2 ∈

M(L(m)) is n-dominant and (un−1,d(m2) < 0 ⇒ d = bq−2n+2). If m2 is dominant,
condition (3) is satisfied. If un−1,bq−2n+2(m2) = −1, M = m2 An−1,bq−2n ∈ M(L(m))

is dominant as un,bq−2n+1(m2) = un,bq−2n−1(m2) = 1. So condition (4) is satisfied.
The additional properties in the end of the statement are clear by construction of

M . ��
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5.2.2. Kirillov-Reshetikhin modules W (n)
λ,a . Now we consider the case of a Kirillov-

Reshetikhin module in the node n, that is to say a minimal affinization of V (λ�n)

(observe that in this case condition (I) and condition (II) of Theorem 3.5 are satisfied).

Lemma 5.4. Let m = X (n)
λ,a. Then

(1) For all m′ ∈ M(L(m)) and µ ∈ {λ, λ−2, . . . ,−λ+2}, vn,aqµ(m′m−1) ≥ 1 implies
vn,aqλ(m′m−1) ≥ 1, vn,aqλ−2(m′m−1) ≥ 1, . . . , vn,aqµ(m′m−1) ≥ 1.

(2) L(m) is special.
(3) L(m) is thin.
(4) Let m′ ∈ M(L(m)) satisfying

∑
r∈Z,i<n vi,aqλ+2n−2i+4r (m′m−1) ≥ 0. Let j =

min{i < n|∑r∈Z
vi,aqλ+2n−2i+4r (m′m−1) 
= 0}. We have

v j,aqλ+2n−2 j (m′m−1) = v j,aqλ+2n−2 j−4(m′m−1)

= · · · = v j,aqλ+2n−2 j−4R (m′m−1) = 1,

where R = ∑
r∈Z

v j,aqλ+2n−2 j+4r (m′m−1) − 1.

Proof. (1) follows from Lemma 4.17. (2) follows from Theorem 2.14.
Let us prove (3). From property (2) and Proposition 4.4, it suffices to prove that

all monomials of M(L(m)) are thin. From Lemma 4.3, we can suppose that there is
m′ ∈ M(L(m)) such that there are l ∈ I, d ∈ C

∗ satisfying ul,d(m′) = 2 and such that
all m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin. We distinguish three
cases (α), (β), (γ ).

(α) Suppose that there is c ∈ C
∗ such that un,c(m′) ≥ 2. Then one of the two

following conditions is satisfied.
(α.i): There is b ∈ C

∗ such that un−1,b(m′) = −1, (un−1,d(m′) < 0 ⇒ d = b),
(un,bq−1(m′) = 2 or un,bq−3(m′) = 2) and (un,d(m′) = 2 ⇒ (d = bq−1 or d = bq−3)).

(α.i i): There is b ∈ C
∗ such that un−1,b(m′) = un−1,bq2(m′) = −1, un,bq−1(m′) = 2,

(un−1,d(m′) < 0 ⇒ (d = b or d = bq2)) and (un,d(m′) = 2 ⇒ d = bq−1).
Otherwise, by using Proposition 2.15, we would get m′′ ∈ M(L(m)) such thatv(m′′m−1)

< v(m′m−1) and m′′ does not satisfy property (3).
First suppose that the condition (α.i) is satisfied. We have the following subcases:
(α.i.1): un,bq−1(m′) ≥ 1 and un,bq−3(m′) ≥ 1. Then m′ An−1,bq−2 ∈ M(L(m)) is

(I −{n −2})-dominant and by (3) of Lemma 4.8 with g{1,...,n−1} we get M ∈ M(L(m))

dominant such that un−R,bq−2−2R (M) ≥ 1 for an R ≥ 1. By property (2), M = m,
contradiction.

(α.i.2): un,bq−3(m′) = 2 and un,bq−1(m′) = 0. Then m′′ = m′ An−1,bq−2 ∈ M(L(m))

and Yn,bq−3 Y −1
n,bq−1 appears in m′′. So by Lemma 2.15 there is m′′′ ∈ M(L(m)) such

that m′′ < m′′′ and un,bq−3(m′′′) ≥ 2, contradiction.
(α.i.3): un,bq−1(m′) = 2 and un,bq−3(m′) = 0. Then m′′ = m′ An−1,bq−2 ∈ M(L(m))

is (I − {n − 2, n})-dominant and ∀ j ∈ I, (u j,bql (m′′) > 0 ⇒ l ≤ −2). So by
Lemma 4.18 we get M ∈ M(L(m)) dominant such that vn,bq−4(m′′M−1) ≥ 1 and
m′′M−1 ∈ Z[A j,bql ] j∈I,l≤−3. So un,bq−1(M) = un,bq−1(m′′) = 1. By property (2),
M = m. By property (1), we have vn,b(m′′M−1) ≥ 1, contradiction.
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Now we suppose that (α.i i) is satisfied. We have the following subcases:
(α.i i.1): un,bq(m′) = 0. Then m′′ = m′ An−1,bq−2 An−1,b An,b ∈ M(L(m)) and

Yn−1,bq−4 Yn−1,bq−2 Y −1
n−1,bYn,bq−1 appears in m′′. So m′′′ = m′′ An−1,bq−2 ∈ M(L(m))

and un−1,bq−4(m′′′) = 2, contradiction.
(α.i i.2): un,bq(m′)= un,bq−3(m′)= 1. Consider m′′ = m′ An−1,b An−1,bq−2 . Then

m′′ ∈ M(L(m)) is (I −{n − 2})-dominant and by (3) of Lemma 4.8 with g{1,...,n−2} we
get M ∈ M(L(m)) dominant such that

un−r1,bq−2r1 (M) ≥ 1 and un−r2,bq−2−2r2 (M) ≥ 1

with r1, r2 ≥ 1. By property (2), M = m, contradiction.
(α.i i.3): un,bq(m′) = 1 and un,bq−3(m′) = 0. Then

m′′ = m′ An−1,bq−2 An−1,b An,bq−4 ∈ M(L(m))

is (I − {n − 2})-dominant, Yn−1,bq−2 Yn,bq−5 appears in m′′ and ∀ j ∈ I, (u j,d(m′′)
= −1 ⇒ (( j, d) = (n − 2, bq−2) or ( j, d) = (n − 2, b))). So by (3) of Lemma 4.8,
there is m′′′ ∈ M(L(m)) of the form m′′′ = An−2,bq−2 An−3,bq−4 · · · An−R,bq2−2R m′′
with R ≥ 1 such that ∀ j ∈ I, (u j,d(m′′′) = −1 ⇒ ( j, d) = (n − 2, bq−2)). We have
un,bq−5(m′′′) = un−R,bq−2R (m′′′) = 1. If m′′′ is dominant, we have m′′′ = m, contra-
diction. So un−2,bq−2(m′′′) = −1. As moreover un,bq−5(m′′′) = 1, we have a dominant
monomial M ∈ M(L(m)) of the form:

M = m′′′(An−2,bq−4 An−1,bq−6 An,bq−8)(An−3,bq−6 An−2,bq−8 An−1,bq−10 An,bq−12)

· · · (An−r,bq−2r An−r+1,bq−2−2r · · · An,bq−4r )

×(An−r−1,bq−2−2r An−r,bq−4−2r · · · An−r−1+r ′,bq−2−2r−2r ′ ),

where r ≥ 1 and r + 1 ≥ r ′ ≥ 0. By property (1), we have M = m. So we have
un−R,bq−2R (m) = un−R,bq−2R (m′′′) = 1, contradiction.

(β) Suppose that there is b ∈ C
∗ such that un−1,b(m′) ≥ 2. Then we have (un−2,d(m′)

< 0 ⇒ d = bq2) and (un,d(m′) < 0 ⇒ d = bq). By (3) of Lemma 4.8 with J =
{1, . . . , n − 1} and J = {n}, we get a dominant monomial M ∈ M(L(m)) satisfying
one of the two following conditions:

(β.1) u j1,bq2 j1−2n+2(M) = 1, un,bq−1(M) = 1 with j1 ≤ n − 1.
(β.2) u j1,bq2 j1−2n+2(M) = 1, un−1,b(M) = 1 with j1 ≤ n − 2.

From (2) we have m = M , contradiction.
(γ ) Suppose that there is i ≤ n − 2 and b ∈ C

∗ such that ui,b(m′) ≥ 2. Then m′ is
({1, . . . , i −2}∪ {i}∪ {i + 2, . . . , n})-dominant. We have (ui−1,d(m′) < 0 ⇒ d = bq2)

and (ui+1,d(m′) < 0 ⇒ d = bq2). By applying (3) of Lemma 4.8 and Lemma 5.3, we
get M ∈ M(L(m)) dominant such that (M){1,...,n−2} 
= 1. From property (2) we have
m = M , contradiction.

Now we prove property (4) by induction on v(m′m−1) ≥ 0. Let j be as in property (4).
For v(m′m−1) = 0 we have m′ = m and the result is clear. We suppose that property
(4) is satisfied for m′′ satisfying v(m′′m−1) < v(m′m−1). Let R ≥ 0 maximal such that
m′m−1 ≤ A−1

j,aqλ+2n−2 j A−1
j,aqλ+2n−2 j−4 · · · A−1

j,aqλ+2n−2 j+4−4R . We suppose moreover that

m′m−1 ≤ A−1
j,aqλ+2n−2 j A−1

j,aqλ+2n−2 j−4 · · · A−1
j,aqλ+2n−2 j+4−4R A−1

j,b,
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with b = aqλ+2n−2 j−4µ and µ 
= R. If j ≥ 2, we have u j−1,b(m′)= 1. By the induction
hypothesis on v, m′ is (I − { j})-dominant, u j,bq2(m′) = −1 and (u j,d(m′) < 0 ⇒
d = bq2). By property (3), we can apply Lemma 5.3 and we get a dominant monomial
M ∈ M(L(m)). From property (2), we have M = m. As un−1(m) = 0, we are in the
situation (1) or (3) of Lemma 5.3. So

m(m′)−1 = A j,b A j+1,bq−2 · · · An−1,bq−2(n−1− j) An,bq−2(n− j) (An,bq2−2(n− j) )
ε,

where ε ∈ {0, 1}. So b = aqλ+2n−2 j , µ = 0 and R = 0, contradiction. ��

5.2.3. Condition (I). Now we treat the general case of minimal affinization satisfying
condition (I) of Theorem 3.5 (except the Kirillov-Reshetikhin modules W (n)

k,a already
studied in Lemma 5.4).

Lemma 5.5. Let λ ∈ P+ and L(m) be a minimal affinization of V (λ) such that m
satisfies condition (I) of Theorem 3.5. Let K = min{i ∈ I |λi 
= 0}. We suppose that
K ≤ n − 1. Then the following conditions are satisfied:

(1) For all m′ ∈ M(L(m)) satisfying
∑

r∈Z
vK ,aK q2λK +4r (m′m−1) ≥ 1, we have

vK ,aK q2λK (m′m−1) ≥ 1.
(2) L(m) is special.
(3) L(m) is thin.
(4) Let m′ ∈ M(L(m)) satisfying

∑
r∈Z,i<n vi,ai q2λi +4r (m′m−1) ≥ 1. We have

v j,akqrkλk +2k−2 j (m′m−1) = v j,akqrkλk +2k−2 j−4(m′m−1)

= · · · = v j,akqrkλk +2k−2 j−4R (m′m−1) = 1,

where

j = min{i < n|
∑

r∈Z

vi,ai q2i+4r (m′m−1) ≥ 1},

k = min{i ≥ j |λi 
= 0} and R = (
∑

r∈Z
v

j,a j q
2λ j +4r (m′m−1)) − 1.

(5) Let m′ ∈ M(L(m)) such that min{i |∑r∈Z
vi,ai q2λi +4r (m′m−1) ≥ 1} = n. Then

λn 
= 0 and

vn,anqλn (m′m−1) = vn,anqλn−2(m′m−1)

= · · · = vn,anqλn−2R (m′m−1) = 1,

where R = ∑
r∈Z

vn,anq2λn +2r (m′m−1) − 1.

Proof. We prove by induction on u(m) ≥ 0 simultaneously that (1), (2), (3), (4) and (5)
are satisfied.

For u(m) = 0 the result is clear. Suppose that u(m) ≥ 1.
First we prove (1) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we have m′ = m

and the result is clear. In general suppose that for m′′ such that v(m′′m−1) < v(m′m−1)

the property is satisfied, thatvK ,aK q2λK (m′m−1)= 0 and
∑

r∈Z
vK ,aK q2λK +4r (m′m−1)≥ 1.

Observe that it follows from Lemma 2.15 and Corollary 4.19 that m′ is (I − {K })-dom-
inant and (m′)→(K ,aK q2λK ) is dominant.
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If m′ is not dominant, by Corollary 4.19, there is m′′ ∈M(L(m)) K -dominant such
that m′ is a monomial of L K ,aK q2λK −2(m′′). Moreover from Proposition 2.9, there is

b ∈ aK q2λK +4Z such that AK ,bm′ ∈ M(L(m)). By the induction property on v, we have∑
r∈Z

vK ,aK q2λK +4r (m′ AK ,bm−1) = 0. So m′′ = m′ AK ,b. But m′′ ∈ m→(K )M(L(m

(m→(K ))−1)). As u(m(m→(K ))−1)< u(m), we have property (4) for L(m(m→(K ))−1)

and we get

(m′′)→(K ) ∈ YK ,aK q2λK −2 YK ,aK q2λK −6 · · · YK ,aK q−2λK +2−4R′ Z[YK ,aK q4r+2λK ]r∈Z

with R′ ≥ 0. By Lemma 2.9, m′ is not a monomial of M(L K (m′′)), contradiction. So
m′ is dominant.

Let us prove that
∑

r∈Z
vK ,aK q2λK +4r+2(m′m−1) = 0. Observe that

m′Y −1
K ,aK q2λK −2 ∈ M(L(mY −1

K ,aK q2λK −2)).

Moreover u j,a(m′(m→(K ))−1) < 0 implies j = K and a = aK q2λK −2. As we have
u(mY −1

K ,aK q2λK −2) < u(m), properties (2) and (3) are satisfied by L(mY −1
K ,aK q2λK −2). So

we can use (2) of Lemma 4.8 for g{1,...,n−1} of type An−1 and we get a monomial

m′′ ∈ M(L(mY −1
K ,aK q2λK −2)) ∩ (m′Y −1

K ,aK q2λK −2Z[A j,aK q2λK +4r+2(K− j) ] j≤n−1,r∈Z),

which is {1, . . . , n − 1}-dominant and satisfying vn−1(m′Y −1
K ,aK q2λK −2(m

′′)−1) ≤ 1. If

vn−1(m′Y −1
K ,aK q2λK −2(m

′′)−1) = 0, then mY −1
K ,aK q2λK −2 = m′′ and the result is clear.

Otherwise, consider the unique b ∈ aK q2λK +2(n−K )+4Z such that vn−1,b(m′Y −1
K ,aK q2λK −2

(m′′)−1) = 1. We have un,d(m′′) < 0 ⇒ (d = bq or d = bq−1). If un,bq(m′′) = 0 we
use Lemma 5.2 and we get the result. If un,bq(m′′) = −1 and un,bq−1(m′′) = 0, we use
Lemma 5.2, and in particular we get a monomial

(mY −1
K ,aK q2λK −2)A−1

j,d ∈ M(L(mY −1
K ,aK q2λK −2)),

where d /∈ aK q2λK +4Z, contradiction with condition (II). In the same way if we have
un,bq(m′′) = −1 and un,bq−1(m′′) = −1, then we get a contradiction by using Lemma 5.2
twice.

Now it suffices to prove that the conditions of Proposition 4.7 with i = K are satisfied.
Condition (i) of Proposition 4.7: if M > m′ is in M(L(m)), we have necessarily

vK ,aK q2λK (Mm−1) = 0. So by induction hypothesis
∑

r∈Z
vK ,aK q2λK +4r (Mm−1) = 0,

and so vK (Mm−1)= 0. So if we suppose moreover that M ∈ m′
Z[AK ,a]a∈C∗ , we

have necessarily M = m
∏

a∈C∗ A
vK ,a(m′m−1)

K ,a , and so we get the uniqueness. For the

existence, it suffices to prove that this M = m
∏

a∈C∗ A
vK ,a(m′m−1)

K ,a is in M(L(m)).
By Lemma 4.6, there is j ∈ I , M ′ ∈ M(L(m)) j-dominant such that M ′ > m′ and
M ′ ∈ m′

Z[A j,a]a∈C∗ . By induction hypothesis on v we have j = K , and so by unique-
ness M ′ = M .

Condition (ii) of Proposition 4.7: by construction of M we have vK (Mm−1) = 0.
Condition (iii) of Proposition 4.7: first observe that

M ∈ m→(K )M(L(m(m→(K ))−1)).
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As u(m(m→(K ))−1) < u(m), we have property (4) for L(m(m→(K ))−1) and we get

(M)→(K ) ∈ YK ,aK q2λK −2 YK ,aK q2λK −6 · · · YK ,aK q−2λK +2−4R′ Z[YK ,aK q4r+2λK ]r∈Z

with R′ ≥ 0. By Lemma 2.9, m′ is not a monomial of M(L K (M)).
Condition (iv) of Proposition 4.7: consider a monomial m′′ ∈ M(Uq(LgK ).VM )

such that v(m′′m−1)< v(m′m−1). We have m′′ ≤ M A−1
K ,aK q2λk

Z[A−1
K ,d ]d∈C∗ and so

(m′′)→(K ,aK q2λK ) is right negative, so m′′ is not K -dominant.
Condition (v) of Proposition 4.7: clear by the induction property on v.
Now we prove (2). Let J = {i ∈ I |K < i}. From Lemma 4.1,

M(L(m)) ⊂ (m→(J )M(L(m→(K )))) ∪ (M(L(m→(J )))m→(K )).

As all monomials of m→(J )(χq(L(m→(K ))) − m→(K )) are lower than m A−1
K ,aK qλK

(Theorem 2.14) which is right-negative, they are not dominant. Let m′ be a mono-
mial in (M(L(m→(J )))m→(K ) − {m}). As u(m→(J )) < u(m), the induction property
implies that m′(m→(K ))−1 is not dominant. If

∑
l∈Z

vK ,aK q2λK +4l (m′m−1) ≥ 1, it fol-

lows from property (1) that m′ is lower than m A−1
K ,aK q2λK

which is right-negative, so

m′ is not dominant. We suppose that
∑

l∈Z
vK ,aK q2λK +4l (m′m−1)= 0. We have for all

l ∈ Z, uK ,q2K +4l (m′(m→(K ))−1) ≥ 0, and so there is (i, a) ∈ I × C
∗ not of the form

(K , q2K +4l) with l ∈ Z such that ui,a(m′(m→(K ))−1) < 0. So

ui,a(m′) = ui,a(m′(m→(K ))−1) < 0

and m′ is not dominant. So L(m) is special.
Now we prove (3). From property (2) and Proposition 4.4, it suffices to prove that

all monomials of M(L(m)) are thin. From Lemma 4.3, we can suppose that there is
m′ ∈ M(L(m)) such that there are l ∈ I, d ∈ C

∗ satisfying ul,d(m′) = 2 and such
that all m′′ ∈ M(L(m)) satisfying v(m′′m−1) < v(m′m−1) is thin. We consider sub-
cases as in the proof of Lemma 5.4.

If (α.i.1) is satisfied, we get un−R,bq−2−2R (m) ≥ 1 with R ≥ 1 and (un,bq−1(m) ≥ 1
or un,bq−3(m) ≥ 1). As −2 − 2R < −3, we get a contradiction with condition (I) of
Theorem 3.5.

If (α.i.2) is satisfied, we get a contradiction for Lemma 5.4.
If (α.i.3) is satisfied, for Lemma 4.2 we get m′′ ∈ M(L(m)) ∩ mZ[A−1

i,bql ]i∈I,l≤−3

such that un,bq−1(m) = un,bq−1(m′′) = 1, vn,bq−4(m′′m−1) ≥ 1. From Lemma 4.2 and
Lemma 4.1, we have m′′ ∈ m{1,...,n−1}M(L(m→(n))), and we get a contradiction for
Lemma 5.4.

If condition (α.i i.1) is satisfied, we get a contradiction for Lemma 5.4.
If condition (α.i i.2) is satisfied, we get as in the proof of Lemma 5.4 that

un−r1,bq−2r1 (m) ≥ 1 and un−r2,bq−2−2r2 (m) ≥ 1

with r1, r2 ≥ 1. Contradiction with condition (I) of Theorem 3.5.
If condition (α.i i.3) is satisfied: we follow the proof of Lemma 5.4 and we get m′′′.

If m′′′ is dominant, we have un,bq−5(m′′′) = un−R,bq−2R (m′′′) = 1 with −2R − (−5)

≤ 3 < 2(n − (n − R)) + 4, contradiction with condition (I) of Theorem 3.5. So m′′′
is not dominant. Let R, r, r ′ and M be dominant as defined in the proof of Lemma 5.4.



246 D. Hernandez

From the property (2) we have m = M . Observe that r ′ ≤ r + 1. We have un−R,bq−2R

(m) = 1. We study two cases:
If n −r −1+r ′ = n, we have moreover un,bq−3−2r−2r ′ (m) = 1. But (−3−2r −2r ′)−

(−2R) ≤ 2R − 4 < 2(n − (n − R)), contradiction with condition (I) of Theorem 3.5.
If n − r − 1 + r ′ ≤ n − 1, we have moreover un−r−1+r ′,bq−4−2r−2r ′ (m)= 1. Let d =

(n−r −1+r ′−(n−R)) = −1+(R+r ′−r) and D = (−4−2r −2r ′)+2R = 2d−4r ′−2.
If d < 0, condition (I) implies D ≥ −2d + 4, so 0 ≤ D + 2d − 4 = 4d − 4r ′ − 6 < 0,
contradiction.
If d = 0, condition (I) implies D ∈ 4Z, contradiction as D = −4r ′ − 2.
If d > 0, condition (I) implies D ≤ − 4 − 2d, so 0 ≥ D + 4 + 2d = 4d + 2 − 4r ′ = −2 +
4R −4r and n −r −1 < n − R < n − R −1+r ′. So the product An−r−1+r ′,bq−2−2r−2r ′ · · ·
An−r−1,bq−2−2r can not appear in m(m′′′)−1 (for example we may use Theorem 4.7 as
in the proof of Lemma 5.1), contradiction.

Now we suppose that there is b ∈ C
∗ such that un−1,b(m′) ≥ 2. By property (2), we

get as in the proof of Lemma 5.4 that m satisfies property (β.1) or (β.2) of Lemma 5.4.
For (β.1), we have (2 j1 −2n + 2− (−1)) = 2( j1 −n)+ 3 < 2(n − j1)+ 5, contradiction
with condition (I) of Theorem 3.5. For (β.2), we have (2 j1−2n+2−0) = 2( j1−n)+2 <

2(n − 1 − j1) + 6, contradiction with condition (I) of Theorem 3.5.
Finally we suppose that there are i ≤ n−2, b ∈ C

∗ such that ui,b(m′) ≥ 2. Then m′ is
({1, . . . , i −2}∪{i}∪{i +2, . . . , n})-dominant. We have (ui−1,d(m′) < 0 ⇒ d = bq2),
and (ui+1,d(m′) < 0 ⇒ d = bq2). By applying (3) of Lemma 4.8 and Lemma 5.3 (with
bq2 instead of b and i + 1 instead of j), we get a dominant monomial M ∈ M(L(m))

satisfying one of the conditions
(γ.1) (case (1) of Lemma 5.3): u j1,bq2 j1−2i (M) ≥ 1, u

j2,bq
2i−2 j2+2−r j2

(M) ≥ 1 with

j1 < j2, j1 ≤ i ≤ j2 ≤ n,
(γ.2) (case (2) of Lemma 5.3): u j1,bq2 j1−2i (M) ≥ 1 and un−1,bq−2n+2i+2(M) ≥ 1 with

j1 ≤ i ,
(γ.3) (case (3) of Lemma 5.3): u j1,bq2 j1−2i (M)≥ 1 and un,bq1−2n+2i (M)≥ 1, un,bq3−2n+2i

(M) ≥ 1 with j1 ≤ i ,
(γ.4) (case (4) of Lemma 5.3): u j1,bq2 j1−2i (M) ≥ 1 and un−1,bq−2n+2i (M) ≥ 1 with

j1 ≤ i .
From property (2) we have m = M . For (γ.1), we have 2 j1−2i−(2i−2 j2+2−r j2) ≤

2( j1 + j2)−4i ≤ 2( j2 − j1), contradiction with condition (I) of Theorem 3.5. For (γ.2),
we have 2 j1 − 2i − (−2n + 2i + 2) ≤ 2(n − 1 − j1), contradiction with condition (I) of
Theorem 3.5. For (γ.3), we have 2 j1 −2i −(3−2n +2i) ≤ 2(n− j1), contradiction with
condition (I) of Theorem 3.5. For (γ.4), we have 2 j1−2i −(2i −2n) < 2(n−1− j1)+4,
contradiction with condition (I) of Theorem 3.5.

Now we prove property (4) by induction on v(m′m−1) ≥ 0. Let j be as in property (4).
For v(m′m−1) = 0 we have m′ = m and the result is clear. We suppose that property
(4) is satisfied for m′′ such that v(m′′m−1) < v(m′m−1). Let R ≥ 0 maximal such that

m′m−1 ≤ A−1
j,akqrkλk +2(k− j) A−1

j,akqrkλk +2(k− j)−4 · · · A−1
j,akqrkλk +2(k− j)+4−4R.

We suppose moreover that

m′m−1 ≤ A−1
j,akqrkλk +2(k− j) A−1

j,akqrkλk +2(k− j)−4 · · · A−1
j,akqrkλk +2(k− j)+4−4R A−1

j,b

with b = akqrkλk +2(k− j)−4µ and µ 
= R. By the induction hypothesis on v, m′ is (I −
{ j})-dominant, u j,bq2(m′) = −1 and (u j,d(m′) < 0 ⇒ d = bq2). By property (3), we
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can apply Lemma 5.3 and we get a dominant monomial M ∈ M(L(m)). From property
(2), we have M = m. So we have one of the following situations:

Case (1) of Lemma 5.3: m = m′ A j,b A j+1,bq−2 · · · A j+r,bq−2r , where 0 ≤ r ≤ n − j ,
and u

j+r,bq−2r−r j+r (M) = 1. So R = 0, j + r = k, b = akqrkλk +2r = akqrkλk +2(k− j),
contradiction.

Case (2) of Lemma 5.3: m = m′(A j,b A j+1,bq−2 · · · An−1,bq2−2n+2 j )An,bq2−2n+2 j M ′,
where

M ′ ∈ Z[Ap,bq2−2n+2 j+2(p−n)−4l ]p<n,l≥0Z[An,bq2−2n+2 j−4l ]l≥1,

and un−1,bq−2n+2 j (m) = 1, so b ∈ an−1q2λn−1+2( j−n)+2+4Z. There is l ≥ 0 such that

bq−2n+2 j+1−4l = anqλn−1. So b ∈ anqλn−2+2n−2 j+4Z = an−1q2λn−1+2( j−n)+4Z from
condition (I) of Theorem 3.5, contradiction.

Case (3) of Lemma 5.3: un,bq−1−2n+2 j (m) = un,bq1−2n+2 j (m) = 1 and

m = m′(A j,bq A j+1,bq−2 · · · An,bq−2n+2 j )An,bq2−2n+2 j .

So R = 0 and b = anqλn+2n−2 j−2. From condition (I) of Theorem 3.5, anqλn =
akqrkλk +2(k−n)+4r with r ∈ Z. So b = akqrkλk +2(k− j)+4r−2 is not of the form
akqrkλk +2k−2 j−4µ, contradiction.

Case (4) of Lemma 5.3: un−1,bq−2n−2+2 j (m) = 1 and

m = m′(A j,b A j+1,bq−2 · · · An,bq−2n+2 j )An,bq2−2n+2 j An−1,bq−2n+2 j .

So bq−2n+2 j = an−1q2λn−1 , and so b = an−1q2λn−1+2(n− j) ∈ akq2λk +2(k− j)+2+4Z, con-
tradiction.

Now we prove property (5) by induction on v(m′m−1) ≥ 0. For v(m′m−1) = 0 we
have m′ = m and the result is clear. We suppose that property (5) is satisfied for m′′ such
that v(m′′m−1) < v(m′m−1) and we suppose that

min{i |
∑

r∈Z

vi,ai q2λi +4r (m′m−1) ≥ 1} = n.

Let R ≥ 0 be maximal such that

m′m−1 ≤ A−1
n,anqλn A−1

n,anqλn−2 · · · A−1
n,anqλn +2−2R .

We suppose moreover that

m′m−1 ≤ A−1
n,anqλn A−1

n,anqλn−2 · · · A−1
n,anqλn +2−2R A−1

n,b

with b = anqλn−2µ and µ 
= R. By the induction hypothesis on v, m′ is (I − {n})-
dominant, un,bq(m′) = −1 and (un,d(m′) < 0 ⇒ d = bq). So m′′ = An,bm′ ∈
M(L(m)) is (I − {n − 1})-dominant and (un−1,d(m′′) < 0 ⇒ d = b). If un−1,b(m′′)
≥ 0, m′′ is dominant equal to m, so R = 0 and b = anqλn , contradiction. So un−1,b(m′′)
< 0, m′′ An−1,bq−2 ∈ M(L(m)) and vn−1,bq−2(m′m−1) ≥ 1. So bq−2 /∈ an−1q2λn−1+4Z

and b /∈ anqλn+4Z. By Lemma 5.2 there is l ∈ Z such that bq−1−4l = anqλn−1, so
b ∈ anqλn+4Z, contradiction. ��
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5.2.4. Condition (II). We study the general case of condition (II) of Theorem 3.5.

Lemma 5.6. Let λ ∈ P+ and L(m) be a minimal affinization of V (λ) such that m
satisfies condition (II) of Theorem 3.5. Let K = max{i ∈ I |λi 
= 0}. Then

(1) For all m′ ∈ M(L(m)), if vK (m′m−1) ≥ 1, then v
K ,aK q

λK
K

(m′m−1) ≥ 1.

(2) L(m) is special.
(3) L(m) is thin.
(4) For all m′ ∈ M(L(m)) such that vn(m′m−1) = 0 we have

v j,akq2(λk + j−k) (m′m−1) = v j,akq2(λk + j−k−2) (m′m−1)

= · · · = v j,akq2(λk + j−k−2R) (m′m−1) = 1,

where j = max{i |vi (m′m−1) 
= 0}, k = max{i ≤ j |λi 
= 0} and R = v j (m′m−1) − 1.

Observe that Lemma 5.4, Lemma 5.5 and Lemma 5.6 combined with Corollary 4.13
imply Theorem 3.8 and Theorem 3.10 for type B. In this case we do not need to prove
simultaneously the different properties.

Proof. Property (4): As vn(m′m→(−1)) = 0, it follows from Lemma 4.5 that m′ appears
in L{1,···n−1}(m). As gJ is of type An−1, the result is exactly property (4) of Lemma 5.1.

Property (1) and (2): As property (4) is satisfied, we can use the proof of property (1)
and (2) of Lemma 5.1.

Property (3): The monomial M = ∏
i∈I,a∈C∗ Y

ui,a(m)

i,a−1q−r∨h∨ satisfies (I), and so it fol-

lows from Lemma 5.4 and Lemma 5.5 that L(M) is thin. But from Corollary 4.11,
σ ∗L(M) 
 L(m), and so we have property (3) (Lemma 4.10). ��

5.3. Type G2 In this section we suppose that g is of type G2.

Lemma 5.7. Let m be a dominant monomial satisfying condition (I) of Theorem 3.5.
Then L(m) is special.

Proof. From Lemma 4.1, M(L(m))⊂M(L(m→(1))M(L(m→(2))). From Lemma 2.14,
if m′ is in (M(L(m→(1)) − {m→(1)})M(L(m→(2))), then m′ ≤ m A−1

1,a1q3λ1
which is

right-negative, and so m′ is not dominant. Consider m′ = m→(1)m′
2, where m′

2 ∈ (M(L
(m→(2))) − {m→(2)}). It follows from Theorem 2.14 that m′

2 is right-negative. Suppose
that m′ is dominant. In particular m′

2 is 2-dominant and (u1,b(m′
2)< 0 ⇒ (u1,b(m′

2)= −
1 and b ∈ {a1q3−3λ1 , a1q9−3λ1 , . . . , a1q3λ1−3})). From Lemma 4.1, m′

2 ∈ M(V2

(a2q1−λ2))M(V2(a2q3−λ2)) · · · M(V2(a2qλ2−1)). But for b ∈ C
∗, it follows from [H1,

Sect. 8.4.1] (with 1 instead of 2 and 2 instead of 1) that

χq(V2(b)) =Y2,b + Y −1
2,bq2 Y1,bq + Y −1

1,bq7 Y2,bq4 Y2,bq6 + Y2,bq4 Y −1
2,bq8 + Y1,bq5 Y −1

2,bq6 Y −1
2,bq8

+ Y −1
1,bq11 Y2,bq10 + Y −1

2,bq12 .

From condition (I), a1q−3λ1+3 = q7(a2qλ2−1). So one Y −1
1,b can only appear in χq

(V2(a2qλ2−1)), and so (u1,b(m′
2) < 0 ⇒ b = a1q−3λ1+3 = q7(a2qλ2−1)). As a conse-

quence v1,a1q−3λ1 (m
′m−1) ≥ 1. From the above explicit description of the χq(V2(b)),

for all

m′′ ∈ M(L(m→(1))(M(L(m→(2))) − {m→(2)}),
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if v1,a1q−3λ1 (m
′′m−1) = 0 then

∏

l≥0

Y
u

1,a1q−3λ1+3+6l (m′′)

1,a1q−3λ1−3+6l = Y ε

1,a1q−3λ1−3 Y1,a1q3−3λ1 Y1,a1q9−3λ1 · · · Y1,a1q3λ1−3 ,

where ε ∈ {0, 1}. In particular we can prove as for property (2) of Lemma 5.1 that
v1,a1q−3λ1 (m

′m−1) ≥ 1 implies v1,a1q3λ1 (m
′m−1) ≥ 1, contradiction. ��

Lemma 5.8. Let m be a dominant monomial satisfying condition (II) of Theorem 3.5.
Then L(m) is special.

Proof. It follows from Lemma 4.17 that for m′ ∈ M(L(m)), if v2(m′m−1)= 0 then
(m′)→(2) is of the form

(Y2,a2qλ2−1 Y2,a2qλ2−3 · · · Y2,a2q1−λ2 )Y2,a2q1−λ2−2 · · · Y2,a2q1−λ2−2R ,

where R ≥ 0 (from condition (II) we have a2q1−λ2−2 = q5(a1q3λ1−3)). So we can use
the proof of property (2) of Lemma 5.1. ��

Lemma 5.7 and Lemma 5.8 combined with Corollary 4.13 imply Theorem 3.8 for
type G.

5.4. Types C, D and F4 In this subsection we prove Theorem 3.9. From Corollary 4.14,
it suffices to consider condition (II). Type C : As λn = 0 and g{1,...,n−1} is of type
An−1, it follows from (1) of Lemma 5.1 that the monomials m′ ∈ M(L(m)) satisfy-
ing vn(m′m−1) > 0 are right-negative and so not dominant. For the monomials m′ ∈
M(L(m)) satisfying vn(m′m−1) = 0, we can use (2) of Lemma 5.1 and Lemma 4.5.

Type D: as an = an−1 and λn = λn−1, all monomials in the set

m→(I−{n−1,n})M(L(m→(n)))M(L(m→(n−1)))

are right-negative. Moreover we can prove as (1) of Lemma 5.1 that for i = n − 1
or i = n, vi (m′m−1) > 0 implies vi,ai qλi (m

′m−1) > 0, and so m′ is right-negative. For

the monomials m′ ∈ M(L(m)) satisfying vn−1(m′m−1) = vn(m′m−1) = 0, we can
use (2) of Lemma 5.1 and Lemma 4.5.

Type F4: The proof is analogous to type C by using Lemma 5.6 for g{1,2,3} of type
B3. ��

6. Applications and Further Possible Developments

6.1. Jacobi-Trudi determinants and Nakai-Nakanishi conjecture In [NN1, Conjecture
2.2] Nakai-Nakanishi conjectured for classical types that the Jacobi-Trudi determinant is
the q-character of a certain finite dimensional representation of the corresponding quan-
tum affine algebra. This determinant can be expressed in terms of tableaux (see [BR] for
type A, [KOS] for type B, and [NN1, NN2, NN3] for general classical type). The cases
considered in [NN1] include all minimal affinizations for type A, and for type B many
minimal affinizations (but for example not the fundamental representations Vn(a)).

As an application of the present paper, we prove this conjecture for minimal affini-
zations of type A and B considered in [NN1, Conjecture 2.2] (see the introduction for
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previous results). Indeed it can be checked for type A and B that the tableaux expression
is special and canceled by screening operators, and so is given by the Frenkel-Mukhin
algorithm (see the proofs below; this fact was first announced and observed in some
cases in [NN1, Sect. 2.3, Rem. 1]). So from [FM1], Theorem 3.8 proved in the present
paper implies that the q-character of a considered minimal affinization is necessarily
equal to the corresponding expression.

Theorem 6.1. For g of type A, B, the q-character of a minimal affinization considered
in [NN1, Conjecture 2.2] is given by the corresponding Jacobi-Trudi determinant.

This result is coherent with the thin property proved in this paper.
With the same strategy, representations more general than minimal affinizations, and

types C , D, will be discussed in a separate publication.
Let us recall the tableaux expression of the Jacobi-Trudi determinant and give the

proof of Theorem 6.1. We treat the type B (the proof for type A is more simple).
We recall that a partition λ = (λ1, λ2, · · · ) is a sequence of weakly decreasing

non-negative integers with finitely many non-zero terms. The conjugate partition is
denoted by λ′ = (λ′

1, λ
′
2, · · · ). For λ,µ two partitions, we say that µ ⊂ λ if for all

i ≥ 0, λi ≥ µi . For µ ⊂ λ, the corresponding skew diagram is

λ/µ = {(i, j) ∈ N × N|µi + 1 ≤ j ≤ λi } = {(i, j) ∈ N × N|µ′
j + 1 ≤ i ≤ λ′

j }.
We suppose in the following that d(λ/µ) ≤ n, where d(λ/µ) is the length of the longest
column of λ/µ, and that λ/µ is connected (i.e. µi + 1 ≤ λi+1 if λi+1 
= 0).

Let B = {1, . . . , n, 0, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n ≺ · · · ≺ 2 ≺ 1.

As it is a total ordering, we can define the corresponding maps succ and prec. For a ∈ C
∗,

let

1 a = Y1,a,

i a = Y −1
i−1,aq2i Yi,aq2(i−1) (2 ≤ i ≤ n − 1),

n a = Y −1
n−1,aq2n Yn,aq2n−1 Yn,aq2n−3 ,

0 a = Y −1
n,aq2n+1 Yn,aq2n−3 ,

n a = Yn−1,aq2n−2 Y −1
n,aq2n+1 Y −1

n,aq2n−1 ,

i a = Yi−1,aq4n−2i−2 Y −1
i,aq4n−2i (2 ≤ i ≤ n − 1),

1 a = Y −1
1,aq4n−2 .

Observe that we have

χq(V1(a)) = 1 a + 2 a + · · · + n a + 0 a + n a + n−1
a

+ · · · + 1 a .

For T = (Ti, j )(i, j)∈λ/µ a tableaux of shape λ/µ with coefficients in B, let

mT,a =
∏

(i, j)∈λ/µ

Ti, j
aq4( j−i)

∈ Y .

Let Tab(Bn, λ/µ) be the set of tableaux of shape λ/µ with coefficients in B satisfying
the two conditions:
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Ti, j � Ti, j+1 and (Ti, j , Ti, j+1) 
= (0, 0),
Ti, j ≺ Ti+1, j or (Ti, j , Ti+1, j ) = (0, 0).
The tableaux expression of the Jacobi-Trudi determinant [KOS, NN1] is:

χλ/µ,a =
∑

T ∈Tab(Bn ,λ/µ)

mT,a ∈ Y .

For a monomial m, we denote (m)± = ∏
{i∈I,a∈C∗|±ui,a(m)>0} Y

ui,a(m)

i,a the negative
and the positive part of m.

We say that (m)− is partly canceled by (m′)+ if there is i ∈ I and a ∈ C
∗ such that

ui,a((m)−) = −ui,a((m)+) 
= 0.

Lemma 6.2. Let T ∈ Tab(Bn, λ/µ) and a ∈ C
∗. Let (i, j) 
= (i ′, j ′) ∈ λ/µ, α = Ti, j

and β = Ti ′, j ′ . If
(

α aq4( j−i)

)−
is partly canceled by

(
β

aq4( j ′−i ′)

)+
, then (i, j)

= (i ′ + 1, j ′) or ((i, j) = (i ′ + 1, j ′ + 1) and Ti, j = Ti ′, j ′ = n).

Proof. We study different cases:
Case (1): 2 � α � n and 1 � β � n − 1. We have α = β + 1 and q4( j−i)+2α =

q4( j ′−i ′)+2(β−1). So j ′ − i ′ = ( j − i) + 1. If j < j ′, we have i ≤ i ′ and so Ti, j � Ti ′, j ′ ,
contradiction. So j ≥ j ′ and i > i ′. There is ((ir , jr ))1≤r≤R ∈ (λ/µ)R such that
(i0, j0) = (i ′, j ′) and (iR, jR) = (i, j) and ((ir+1, jr+1) = (ir + 1, jr ) or (ir+1, jr+1) =
(ir , jr + 1)). Let Tr = Tir , jr . As (ir+1, jr+1) = (ir + 1, jr ) implies n � Tr+1 � Tr , we
have TR � T1 + (i − i ′), and so (i, j) = (i ′ + 1, j ′).

Case (2): n − 1 � α � 1 and n � β � 2. Analog to case (1).
Case (3): 2 � α � n and n � β � 2. As

α aq4( j−i) ∈ Z[Yk,aq2k−2+4r ]k≤n−1,r∈Z × Z[Yn,aq2r ]r∈Z,

and

β
aq4( j ′−i ′) ∈ Z[Yk,aq2k+4r ]k≤n−1,r∈Z × Z[Yn,aq2r ]r∈Z,

we have a contradiction.
Case (4): n − 1 � α � 1 and 1 � β � n − 1. Analog to case (3).
Case (5): α = 0 and β = n. We have q4( j−i)+2n+1 = q4( j ′−i ′)+2n−3. So j ′ − i ′

= ( j − i) + 1. As in case (1), we have j ≥ j ′. So i > i ′. Consider (ir , jr ), Tr as in
case (1). If i ≥ i ′ + 2, there is r1 < r2 such that ir1+1 = ir1 + 1 and ir2+1 = ir2 + 1.
We have Tr1 = Tr1+1 = 0 or Tr2 = Tr2+1 = 0. So there is (p, q) ∈ λ/µ such that
(p, q + 1), (p + 1, q + 1) ∈ λ/µ and Tp,q+1 = Tp+1,q+1 = 0 and Tp,q = n. So
(p + 1, q) ∈ λ/µ and Tp+1,q = n, contradiction.

Case (6): α = 0 and β = 0. We have q4( j−i)+2n+1 = q4( j ′−i ′)+2n−3 and we can
conclude as in case (5).

Case (7): α = n and β = 0. We have q4( j−i)+2n+1 = q4( j ′−i ′)+2n−3. So j ′ − i ′ =
( j − i) + 1. As in case (1) we have j ≥ j ′. So i > i ′. If j > j ′, as in case (5) we get
(p, q) ∈ λ/µ such that (p + 1, q), (p + 1, q + 1) ∈ λ/µ and Tp,q = Tp+1,q = 0 and
Tp+1,q+1 = n. So (p, q + 1) ∈ λ/µ and Tp,q+1 = n, contradiction.

Case (8): α = n and β = n. We have q4( j−i)+2n+1 = q4( j ′−i ′)+2n−3 or q4( j−i)+2n−1

= q4( j ′−i ′)+2n−1. In the first case j ′−i ′ = ( j −i)+1. As above we have j ≥ j ′. So i > i ′.
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Consider (ir , jr ), Tr as in case (1). If there is r such that ((ir , jr ), (ir+1, jr+1), (ir+2, jr+2))

= ((ir , jr ), (ir , jr +1), (ir +1, jr +1)), we have necessarily (Tr , Tr+1, Tr+2) = (n, 0, n).
So i ′ = ir and i = ir + 1 = i ′ + 1. We can treat in the same way the situation where there
is r such that ((ir , jr ), (ir+1, jr+1), (ir+2, jr+2)) = ((ir , jr ), (ir + 1, jr ), (ir + 1, jr + 1)).
In the second case j ′ − i ′ = ( j − i). As above we have j > j ′ and i = i ′ + 1. ��
Lemma 6.3. Let T0 = (i − µ′

j )(i, j)∈λ/µ. Then T0 ∈ Tab(Bn, λ/µ) and mT0,a is the
unique dominant monomial of χλ/µ,a.

Proof. First it is clear that T0 ∈ Tab(Bn, λ/µ) and that mT0,a is dominant. Consider
T ∈ Tab(Bn, λ/µ) such that T0 
= T . So there is (i, j) ∈ λ/µ satisfying the property

(i = µ′
j + 1 and Ti, j 
= 1) or (i 
= µ′

j + 1 and Ti, j 
= succ(Ti−1, j )). (4)

From Lemma 6.2 the negative part of the box corresponding to (i, j) is not canceled
in mT,a (in case (8) of Lemma 6.2, the negative part of the box can only be partly
canceled). ��
Lemma 6.4. For all T ∈ Tab(Bn, λ/µ), a ∈ C

∗, the monomial mT,a is thin.

Proof. Let (i, j) 
= (i ′, j ′) ∈ λ/µ, α = Ti, j and β = Ti ′, j ′ . We suppose that
(

α aq4( j−i)

)+ =
(

β
aq4( j ′−i ′)

)+ 
= 0. We study different cases (by symmetry we

can suppose α � β):
Case (1): 1 � α � β � n −1. We have α = β and q4( j−i)+2(α−1) = q4( j ′−i ′)+2(β−1).

So j ′ − i ′ = ( j − i). If j < j ′, we have i > i ′ and so Ti, j ≺ Ti ′, j ′ � n−1, contradiction.
In the same way we get a contradiction for j > j ′.

Case (2): n � α � β � 2. Analog to case (1).
Case (3): 1 � α � n − 1 and n � β � 2. Analog to case (3) of Lemma 6.2.
Case (4): α = n and β = 0. We have q4( j−i)+2n−3 = q4( j ′−i ′)+2n−3. So j ′−i ′ = j−i .

As above, we have j < j ′. So i < i ′. We can conclude as in case (5) of Lemma 6.2.
Case (5): α = β = 0. We have q4( j−i)+2n−3 = q4( j ′−i ′)+2n−3. So j ′ − i ′ = j − i .

If j 
= j ′, we get (p, q) ∈ λ/µ such that (p, q + 1) ∈ λ/µ and Tp,q = Tp,q+1 = 0,
contradiction.

Case (6): α = β = n. We have q4( j−i)+2n−3 = q4( j ′−i ′)+2n−3 or q4( j−i)+2n−1 =
q4( j ′−i ′)+2n−1. In both cases j ′ − i ′ = j − i and we get a contradiction as in
case (1). ��

Finally we can conclude the proof of Theorem 6.1:

Lemma 6.5. We have χλ/µ,a ∈ Im(χq).

In the proof we will need the following partial ordering defined on Tab(Bn, λ/µ):for
T, T ′ ∈ Tab(Bn, λ/µ) we set:

T � T ′ ⇔ (∀(i, j) ∈ λ/µ, Ti, j � T ′
i, j ).

Also by convention for any α ∈ B, Ti, j 
= α means ((i, j) ∈ λ/µ ⇒ Ti, j 
= α).

Proof. Let α ∈ I . We want to give a decomposition of χλ/µ as in Proposition 2.15 for
J = {α}. From Lemma 6.4, the Lα(M) that should appear in this decomposition are
thin. It suffices to prove that the set Tab(Bn, λ/µ) is in bijection with a disjoint union
of sets M(Lα(M)) via T �→ mT,a .
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First suppose that α ≤ n − 1. Let Mα be the set of tableaux T ∈ Tab(Bn, λ/µ) such
that for any (i, j) ∈ λ/µ:

Ti, j = α + 1 ⇒ ((i − 1, j) ∈ λ/µ and Ti−1, j = α),

Ti, j = α ⇒ ((i − 1, j) ∈ λ/µ and Ti−1, j = α + 1).

Then by Lemma 6.2, Mα corresponds to all α-dominant monomials appearing in χλ/µ,a .
For T ∈ Mα , let T̃ be the tableaux defined in the following way. For (i, j) ∈ λ/µ:

if Ti, j = α and Ti+1, j 
= α + 1, we set T̃i, j = α + 1,
if Ti, j = α + 1 and Ti+1, j 
= α, we set T̃i, j = α,
otherwise we set T̃i, j = Ti, j .

Then T̃ ∈ Tab(Bn, λ/µ). For T ∈ Mα , we define:

Mα(T ) = {T ′ ∈ Tab(Bn, λ/µ)|T � T ′ � T̃ }.
Then by Lemma 2.9 we have

Lα(mT,a) =
∑

T ′∈Mα(T )

mT ′,a,

and (Mα(T ))T ∈Mα
defines a partition of Tab(Bn, λ/µ).

Now we treat the case α = n. Let Mn be the set of tableaux T ∈ Tab(Bn, λ/µ) such
that for any (i, j) ∈ λ/µ:

Ti, j = 0 ⇒ ((i − 1, j) ∈ λ/µ and Ti−1, j ∈ {0, n}),

Ti, j = n ⇒ ((i − 1, j − 1) ∈ λ/µ and Ti−1, j−1 = n).

By definition of skew diagram, the last condition implies that

(Ti, j = n ⇒ ((i − 1, j), (i, j − 1) ∈ λ/µ and Ti−1, j ∈ {0, n} and Ti, j−1 ∈ {0, n})).
This can be rewritten:

Ti, j = n ⇒
(

Ti−1, j−1 Ti, j−1
Ti−1, j Ti, j

)

∈ {
(

n 0
n n

)

,

(
n 0
0 n

)

,

(
n n
n n

)

,

(
n n
0 n

)

}.

Then by Lemma 6.2, Mn corresponds to all n-dominant monomials appearing in χλ/µ,a .
For T ∈ Mn , let T̃ be the tableaux defined in the following way. For (i, j) ∈ λ/µ:

if Ti, j = n and Ti+1, j+1 
= n and Ti+1, j 
= 0 and Ti+1, j 
= n, we set T̃i, j = n,
if Ti, j = n and Ti+1, j+1 
= n and Ti+1, j ∈ {0, n}, we set T̃i, j = 0,
if Ti, j = 0 and Ti+1, j 
= 0 and Ti+1, j 
= n, we set T̃i, j = n,
otherwise we set T̃i, j = Ti, j .

Then T̃ ∈ Tab (Bn, λ/µ). For T ∈ Mn , we define:

Mα(T ) = {T ′ ∈ Tab(Bn, λ/µ)|T � T ′ � T̃ }.
Then by Lemma 2.9, we have

Ln(mT,a) =
∑

T ′∈Mα(T )

mT ′,a,

and (Mn(T ))T ∈Mn defines a partition of Tab(Bn, λ/µ). ��
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6.2. General quantum affinizations The quantum affinization Uq(ĝ) of a quantum Kac-
Moody algebra Uq(g) is defined with the same generators and relations as the Drinfeld
realization of quantum affine algebras, but by using the generalized symmetrizable Car-
tan matrix of g instead of a Cartan matrix of finite type. The quantum affine algebra,
quantum affinizations of usual quantum groups, are the simplest examples and have
the particular property of being also quantum Kac-Moody algebras. In general these
algebras are not a quantum Kac-Moody algebra. In [Mi, Nak1, H2], the category O of
integrable representations is studied. For regular quantum affinizations (with a linear
Dynkin diagram), one can define analogs of minimal affinizations by using properties
(I) and (II) of Theorem 3.5.

For example let us consider the type Bn,p (n ≥ 2, p ≥ 2) corresponding to the Car-
tan matrix (Ci, j )1≤i, j≤n defined as the Cartan matrix of type Bn except that we replace
Cn,n−1 = −2 by Cn,n−1 = −p. Then one can prove exactly as for Lemma 5.6 that (an
analog of Theorem 4.7 is proved by using [H2, Lemma 5.10]):

Theorem 6.6. Let g be of type Bn,p. Then if m satisfies property (I) (resp. (II)), then
L(m) is antispecial (resp. special).

So the analog of the Frenkel-Mukhin algorithm works for these modules and as an
application it should be possible to get additional results for this class of special modules
(see also Sect. 6.4 below).

6.3. Multiparameter T -systems The special property of Kirillov-Reshetikhin mod-
ules allows to prove a system of induction relations involving q-characters of Kirillov-
Reshetikhin modules called T -system (see [Nak5] for the simply-laced cases and [H4]
for the general case). Indeed for i ∈ I , k ≥ 1, a ∈ C

∗ define the Uq(Lg)-module:

S(i)
r,a = (

⊗

{( j,k)|C j,i <0,1≤k≤−Ci, j }
W ( j)

−C j,i +E(ri (r−k)/r j ),aq
−(2k−1)/Ci, j
j

).

Theorem 6.7 (The T -system). Let a ∈ C
∗, k ≥ 1, i ∈ I . Then we have:

χq(W (i)
k,a)χq(W (i)

k,aq2
i
) = χq(W (i)

k+1,a)χq(W (i)
k−1,aq2

i
) + χq(S(i)

k,a).

By analogy, the results of the present paper (special property of minimal affinizations
of type A, B, G) should lead to systems of induction relations involving q-characters
of minimal affinizations (multiparameter T -systems). Let us look at an example. Let
g = sl3. Then we have the following relation:

χq(L(X (1)

3,q2 X (2)

2,q8))χq(L(X (1)

3,q4 X (2)

2,q10))

= χq(L(X (1)

4,q3 X (2)

2,q10))χq(L(X (1)

2,q3 X (2)

2,q8)) + χq(L(X (2)

6,q6))χq(L(X (2)

1,q9)).

Let us give the idea of the proof for this example: as a q-character is characterized
by the multiplicity of his dominant monomials [FM1], it suffices to compare dominant
monomials of both sides. By using the process described in Remark 2.16, Theorem 4.7
and arguments of [H4], we get the following results:
The dominant monomials of χq(L(X (1)

3,q2 X (2)

2,q8) ⊗ L(X (1)

3,q4 X (2)

2,q10)) are:

1012
214252722

9211, 101223252722
9211, 2123252722

9211, 101212
4161102729,

1012
214110252729, 101211023252729, 1102123252729.



On Minimal Affinizations of Representations of Quantum Groups 255

The dominant monomials of χq(L(X (1)

4,q3 X (2)

2,q10) ⊗ L(X (1)

2,q3 X (2)

2,q8)) are:

1012
214252722

9211, 101223252722
9211, 1012

212
4161102729, 1012

214110252729,
101211023252729.
The dominant monomials of χq(L(X (1)

3,q2 X (2)

2,q8) ⊗ L(X (1)

3,q4 X (2)

2,q10)) are:

2123252722
9211, 1102, q23252729.

We can conclude that the multiplicity of all these monomials is 1.

6.4. Alternative method for the classification of minimal affinizations We explain how
to prove certain classification results (included in Theorem 3.5). The proofs here are writ-
ten in the context of the paper and could be a general uniform strategy for other quantum
affinizations. Moreover we get some new refined results on the involved q-characters.

Proposition 6.8. Let L(m) be a minimal affinization of V (λ). Then for all i ∈ I , there
is ai ∈ C

∗ such that m→(i) = X (i)
ai ,λi

.

Proof. For λi ≤ 1 it is clear. Suppose that λi ≥ 2 and that m→(i) in not of this form.
Note that λ − αi ∈ P+. It follows from Lemma 4.5 with J = {i} and Proposition 2.9
that

dim((L(m))λ−αi ) = dim((Li (m
→(i)))(λi −2)�i ≥ 2.

Let a ∈ C
∗ and M = m((m)→(i))−1 X (i)

λi ,a
. L(M) is an affinization of V (λ). It

follows from Lemma 4.5 with J = {i} that dim((L(M))λ−αi ) = 1 so mλ−αi (L(M))

< mλ−αi (L(m)). Moreover as (m)→(I−{i}) = (M)→(I−{i}), it follows from Lemma 4.5
with J = I − {i} that for µ∈ λ − ∑

j 
=i Nα j we have dim((L(M))µ)= dim((L I−{i}
(m→(I−{i})))µ) = dim((L(m))µ) and so mµ(L(M)) = mµ(L(m)). As µ ≤ λ

implies µ = λ or µ ≤ λ − αi or µ ∈ λ − ∑
j 
=i Nα j , we have [L(M)] < [L(m)],

contradiction. ��
In the following for L(m) a minimal affinization and for i ∈ I such that λi 
= 0,

ai ∈ C
∗ denotes the complex number introduced in Proposition 6.8.

Let g = sln+1 (n ≥ 2) and λ = λ1�1 +λn�n (λ1, λn ≥ 1). For µ = α1 +α2 + · · ·+αn ,
we have dim((V (λ))λ−µ) = n. Let m = X (1)

λ1,a1
X (n)

λn ,an
. If L(m) is a minimal affinization

of V (λ) then dim((L(m))λ−µ) = n. For 0 ≤ h ≤ n denote

mh = m
∏

i=1,...,h

A−1
i,a1qλ1+i−1

∏

i=h+1,...,n

A−1
i,anqλn +n−i .

We have different cases:

(1) a1/an /∈ {q±(λ1+λn+n−1), qλn−λ1+n−1, qλn−λ1+n−3, . . . , qλn−λ1−n+1}.
From Remark 2.16, the n +1 monomials mh for 0 ≤ h ≤ n appear in χq(L(m)) and
are distinct. So dim((L(m))λ−µ) ≥ n + 1 and L(m) is not a minimal affinization
of V (λ).

(2) a1/an = qλn−λ1+n+1−2H with 1 
= H ≤ n. Then m H = m H−1.
From Remark 2.16, the n − 1 distinct monomials mh for h /∈ {H − 1, H} appear
in χq(L(m)) with multiplicity 1 and m H appears in χq(L(m)) with multiplicity 2.
So dim((L(m))λ−µ) ≥ n + 1 and L(m) is not a minimal affinization of V (λ).
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(3) a1/an = qλ1+λn+n−1.
(4) an/a1 = qλ1+λn+n−1.

From Proposition 4.16, the character is the same in cases (3) and (4). So necessarily
these two cases give a minimal affinization with χ(L(m)) = χ(V (λ)). So for λ1, λn > 0,
L(m) is a minimal affinization of V (λ1�1 + λn�n) if and only if m = X (1)

λ1,a1
X (n)

λn ,an

with a1/an = qλ1+λn+n−1 or an/a1 = qλ1+λn+n−1.
Now we suppose that g is general and consider J ⊂ I such that gJ is of type

Ar , 2 ≤ r ≤ n. Denote by i, j ∈ J the two extreme nodes of J . We suppose that we
can decompose I = Ii � J � I j such that Ii ∪ {i} and I j ∪ { j} are connected, and
∀k ∈ Ii , k′ ∈ J − {i}, Ck,k′ = 0 and ∀k ∈ I j , k′ ∈ J − { j}, Ck,k′ = 0. Observe that Ii
or I j may be empty and if J is of type A2 there is always such a decomposition.

Proposition 6.9. Let L(m) be a minimal affinization of V (λ) such that λi , λ j ≥ 1 and
for k ∈ J − {i, j}, λk = 0. Then one of the two following condition holds:

ai

a j
= q

λi +λ j +r−1
i or

a j

ai
= q

λi +λ j +r−1
i .

Proof. We can suppose in the proof that qi = q j = q. Suppose that ai/a j 
= q±(λi +λ j +r+1).
Note that λ−∑

k∈J αk ∈ P+. It follows from Lemma 4.5 with J and the above discussion
that dim((L(m))λ−∑

k∈J αk ) ≥ r + 1. Let us define

M = m→(Ii ∪{i})τ
qλi +λ j +m−1ai a

−1
j

(m→({ j}∪I j )).

L(M) is an affinization of V (λ). Let us prove that [L(M)] < [L(m)] (which is a
contradiction). Let ω ≤ λ. If ω ≤ λ − ∑

k∈J αk it follows from Lemma 4.5 with J that
dim((L(M))λ−∑

k∈J αk ) < dim((L(m))λ−∑
k∈J αk ). As for J ′ ⊂ J , λ − ∑

k∈J ′ αk /∈ P+

except for J ′=J or J=∅, we get mλ−∑
k∈J αk (L(M)) < mλ−∑

k∈J αk (L(m)). Otherwise it

follows from Lemma 4.5 that dim((L(M))µ) = dim((L(m))µ) as (M)→((Ii ∪J )−{ j}) =
(m)→((Ii ∪J )−{ j}) and (M)→((I j ∪J )−{i}) = τ

qλi +λ j +m−1ai a
−1
j

(m→((I j ∪J )−{i})). So mµ(L

(M)) = mµ(L(m)). ��
Let g of type Bn (n ≥ 2), λ = λ1ω1 + λnωn (λ1, λn ≥ 1) and µ = α1 + α2 + · · · + αn .

Let m = X (1)
λ1,a1

X (n)
λn ,an

. For 0 ≤ h ≤ n denote

mh = m
∏

i=1,...,h

A−1
i,a1qλ1+i−1

∏

i=h+1,...,n

A−1
i,anq2λn +1+n−i .

We have (L(m))λ−µ = ⊕
0≤h≤n(L(m))mh . Let us study the different cases:

(1) a1/an /∈ {q±(λ1+2λn+n), q2λn−λ1+n, q2λn−λ1+n−2, . . . , q2λn−λ1−n+2}. From Remark
2.16 the n + 1 monomials mh for 0 ≤ h ≤ n appear in χq(L(m)) and are distinct.
So dim((L(m))λ−µ) ≥ n + 1.

(2) a1/an = q2λn−λ1+n+2−2H with 1 
= H ≤ n. Then m H = m H−1. From
Remark 2.16, the n − 1 distinct monomials mh for h /∈ {H − 1, H} appear in
χq(L(m)) with multiplicity 1 and m H appears in χq(L(m)) with multiplicity 2. So
dim((L(m))λ−µ) ≥ n + 1.
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(3) a1/an = qλ1+2λn+n . Then dim((L(m))λ−µ) = n. Indeed, we see as for the proof
of point (3) of Lemma 5.1 that for m′ ∈ M(L(m)), if v1(m′m−1) ≥ 1 then
v1,a1qλ1 (m

′m−1) ≥ 1. So m0 /∈ M(L(m)) and from Remark 2.16 m1, . . . , m H

appear in χq(L(m)) with multiplicity 1.
(4) an/a1 = qλ1+2λn+n . As in case (3), dim((L(m))λ−µ) = n.

From Proposition 4.16, the character is the same in cases (3) and (4).

Proposition 6.10. For g of type Bn with n ≥ 2 and λ1, λn > 0, L(m) is a minimal aff-
inization of V (λ1�1 + λn�n) if and only if m = X (1)

λ1,a1
X (n)

λn ,an
with a1/an = qλ1+2λn+n

or an/a1 = qλ1+2λn+n.

Proof. If m′ satisfies (1) or (2) and m satisfies (3) or (4), then dim((L(m))λ−µ)

< dim((L(m′))λ−µ) and for λ′ ≤ λ if there is j ∈ I such that v j (λ
′ − λ) = 0 then

dim((L(m))λ′) =dim((L(m′))λ′)

=dim(W (1)
λ1,1

)λ1�1−∑
k< j vk (λ

′−λ)αk )

× dim(W (n)
λn ,1)λn�n−∑

k> j vk (λ
′−λ)αk ).

As we have the same character in situations (3) and (4), they correspond necessarily to
minimal affinizations. ��

Now we suppose that g is general and consider J ⊂ I such that gJ is of type Br ,
2 ≤ r ≤ n. Denote by i, j ∈ J the two extreme nodes of J . We suppose that we
can decompose I = Ii � J � I j such that Ii ∪ {i} and I j ∪ { j} are connected, and
∀k ∈ Ii , k′ ∈ J − {i}, Ck,k′ = 0 and ∀k ∈ I j , k′ ∈ J − { j}, Ck,k′ = 0. Observe that Ii
or I j may be empty and if J is of type B2 there is always such a decomposition.

Proposition 6.11. Let L(m) be a minimal affinization of V (λ) such that λi , λ j ≥ 1 and
for k ∈ J − {i, j}, λk = 0. Then one of the two following condition holds:

ai

a j
= q

λi +2λ j +r
i or

a j

ai
= q

λi +2λ j +r
i .

The proof is analogous to proof of Proposition 6.9.
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