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Abstract: In this paper we study minimal affinizations of representations of quantum
groups (generalizations of Kirillov-Reshetikhin modules of quantum affine algebras
introduced in [Chal]). We prove that all minimal affinizations in types A, B, G are
special in the sense of monomials. Although this property is not satisfied in general, we
also prove an analog property for a large class of minimal affinizations in types C, D,
F. As an application, the Frenkel-Mukhin algorithm [FM1] works for these modules.
For minimal affinizations of type A, B we prove the thin property (the /-weight spaces
are of dimension 1) and a conjecture of [NN1] (already known for type A). The proof
of the special property is extended uniformly for more general quantum affinizations of
quantum Kac-Moody algebras.
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1. Introduction

In this paper g € C* is fixed and is not a root of unity.

Affine Kac-Moody algebras § are infinite dimensional analogs of semi-simple Lie
algebras g, and have remarkable applications (see [Ka]). Their quantizations 4 (g),
called quantum affine algebras, have a very rich representation theory which has been
intensively studied in mathematics and physics (see references in [CP6, DM] and in
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[CP2, FR, Nak1, Nak4] for various approaches). In particular Drinfeld [Dr2] discovered
that they can also be realized as quantum affinizations of usual quantum groups U, (g) C
U, (§). By using this new realization, Chari-Pressley [CP6] classified their finite dimen-
sional representations.

Chari [Chal] introduced the notion of minimal affinizations of representations of
quantum groups: starting from a simple representation V of U, (§), an affinization of V

is a simple representation V of U, (9) such that V is the head in the decomposition of

V in simple U, (g)-representations. Then one can define a partial ordering on the set of
affinizations of V and so a notion of minimal affinization for this ordering. For example
the minimal affinizations of simple ¢/, (g)-modules of highest weight a multiple of a
fundamental weight are the Kirillov-Reshetikhin modules which have been intensively
studied in recent years (for example see [KOS, KNH, KI, HKOTY, KN, Cha2, Nak4,
Nak$5, H4, CM3, FL] and references therein). An (almost) complete classification of
minimal affinizations was done in [Chal, CP3, CP4, CP5].

The motivation to study minimal affinizations comes from physics: the affinizations
of representations of quantum groups are important objects from the physical point of
view, as stressed for example in [FR, Remark 4.2] and in the introduction of [Chal].
For example in the theory of lattice models in statistical mechanics, they are related
to the problem of proving the integrability of the model: the point is to add spectral
parameters to a solution of the related quantum Yang-Baxter equation (see [CP6]). A
second example is related to the quantum particles of the affine Toda field theory (see
[BL, Do]) which correspond to simple finite dimensional representations of quantum
affine algebras.

In the present paper we prove new results on the structure of minimal affinizations,
in particular in the light of recent developments in the representation theory of quantum
affine algebras.

A particular class of finite dimensional representations, called special modules [Nak4],
attracted much attention as Frenkel-Mukhin [FM1] proposed an algorithm which gives
their g-character (analog of the usual character adapted to the Drinfeld realization
and introduced by Frenkel-Reshetikhin [FR]: they encode a certain decomposition of
representations in so called /-weight spaces or pseudo weight spaces). For example
the Kirillov-Reshetikhin modules [Nak4, Nak5, H4] are special (this is the crucial
point of the proof of the Kirillov-Reshetikhin conjecture). A dual class of modules
called antispecial modules is introduced in the present paper (antispecial does not mean
the opposite of special), and an analog of the Frenkel-Mukhin algorithm gives their
g-character.

In the present paper we prove that minimal affinizations in type A, B, G are special
and antispecial. We get counterexamples for other types, but we prove in type C, D,
F that a large class of minimal affinizations are special or antispecial. In particular the
Frenkel-Mukhin algorithm works for these modules. As an application, we prove that
minimal affinizations of type A and B are thin (the /-weight spaces are of dimension 1).
We also get the special property for analog simple modules of quantum affinizations of
some non-necessarily finite quantum Kac-Moody algebras.

In the proofs of the present paper, the crucial steps include techniques developed in
[H4] to prove the Kirillov-Reshetikhin conjecture and in [H6] to solve the Nakajima’s
smallness problem. The general idea is to prove simultaneously the special property and
the thin property by induction on the highest weight of the minimal affinizations. This
allows to use the elimination theorem [H4] which leads to eliminate some monomials
in the g-character of simple modules.
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Nakajima first conjectured the existence of such large classes of special modules for
simply-laced cases (see [Nak4]), and the existence of a large class of special minimal
affinizations was conjectured by Mukhin in a conversation with the author in the confer-
ence “Representations of Kac-Moody Algebras and Combinatorics” at Banff in March
2005.

In some situations, the properties are already known or can be proved directly from
already known explicit formulas. Indeed, for Kirillov-Reshetikhin modules the special
property was proved in [Nak5] (simply-laced case) and in [H4] (non-simply-laced case).
So for Kirillov-Reshetikhin modules in classical types, the explicit formulas in [KOS,
KNH] are satisfied (the formulas for fundamental representations are given in [KS]) and
we can get the properties directly from them. General formulas and the thin proper-
ties were proved for irreducible tame modules, which include minimal affinizations, for
Yangians of type A [Chel, Che2, NT]. (The author was told by Nakajima that the same
results hold for quantum affine algebras of type A by [V].) See also [FM2] for the cases
of minimal affinizations, which are evaluation representations in type A.

Explicit formulas are also available for twisted yangians in classical types [Mo,
Naz1]. But the author did not find in the literature a proof of the correspondence between
quantum affine algebras and twisted (or non-simply laced) yangians.

In general no explicit formulas for g-characters of quantum affine algebras are avail-
able, so our proofs use direct arguments without explicit formulas and are independent
of previous results on yangians. In particular this allows to extend uniformly our argu-
ments to previously unknown situations (like type B, C, D, G», F4), and to more general
quantum affinizations which are not necessarily quantum affine algebras.

For quantum affine algebras in classical types, explicit conjectural formulas [NN1,
NN2, NN3] are available for a large class of representations including many minimal
affinizations (all of them for type A; see [KOS, KNH] for more general formulas). In
types A, B, the results proved in the present paper imply [NN1, Conjecture 2.2] for
these minimal affinizations. The author did not find in the literature a proof of this
result, except for type A as explained above. The main subject of the present paper is
minimal affinizations and so we give a proof of [NN1, Conjecture 2.2] in this case. But
it is possible to prove [NN1, Conjecture 2.2] for more general representations by using
a variation of this proof (this and [NN1, Conjecture 2.2] in types C, D will be discussed
in a separate publication).

The results of [NT, KS, KOS] and of [NN1, Conjecture 2.2] (and the thin property
as their consequence) were explained to the author by Nakajima in an early stage of this
research, June 2005.

Let us describe the organization of the present paper. In Sect. 2 we give some back-
ground on the representation theory of quantum affine algebras. In Sect. 3 we recall the
definition of minimal affinizations and state the main results of the paper. In Sect. 4 we
give preliminary results, including results from [H6] and discussion about an involution
of U, (§). In Sect. 5 we prove the main result of the paper. In Sect. 6 we explain the proof
of [NN1, Conjecture 2.2] for minimal affinizations in types A, B, we state additional
results (Theorem 6.6) for more general quantum affinizations, and we discuss possible
further developments, in particular on generalized induction systems involving minimal
affinizations.

2. Background

2.1. Cartan matrix and quantized Cartan matrix. Let C = (C; j)1<i, j<n be a Cartan
matrix of finite type. We denote I = {1, ..., n}. C is symmetrizable: there is a matrix
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D = diag(ry, ..., r,) (r; € N*) such that B = DC is symmetric. In particular if C is
symmetric then D = I,, (simply-laced case).

We consider a realization (b, IT, 1Y) of C (see [B, Ka]): b is a n dimensional Q-vec-
tor space, IT = {a1, ..., a,} C h* (setof the simpleroots) and ITY = {er)’, ..., )} C b
(set of simple coroots) are set such that for 1 < i,j < n, ozj(oziv) = C; ;. Let
A1, ..., A, €b*(resp. AY, ..., A,Y € b) be the fundamental weights (resp. coweights):
Ai(ajy) = o (A]Y) = §;,, where &;; is 1 if i = j and O otherwise. Denote
P = {\ € b*|Vi € I, A(aiv) € 7} the set of weights and P* = {A € P|Vi €
1, )»(Otiv) > 0} the set of dominant weights. For example we have «y, ..., ®, € P and
At,..., A, € P*.Denote Q = @;_;Za; C P the root lattice and 0% = >, No;; C
Q. For A, u € b* denote A > pwif A —pu € Q*. Let v : h* — b linear such that
for all i € I we have v(;) = r,-(xiv. For A, u € b*, A(v(n)) = u(v(1)). We use the
enumeration of vertices of [Ka].

We denote g; = ¢ and forl € Z,r > 0, m > m’ > 0 we define in Z[qi]:

l —1
q —q [m],!
1y = P [rlg! = [rlglr — g - - [1]g, [Z,L = [ 4

q— m—m’]q![m’]q!'

For a, b € Z, we denote ¢***Z = {¢%**" |r € Z} and ¢***N = {(¢***"|r € Z,r > 0).
Let C(z) be the quantized Cartan matrix defined by (i # j € I):

Cii(x) =2z +z,71, Ci,j(2) =I[Cijl;.

C(z) is invertible (see [FR]). We denote by C (z) the inverse matrix of C(z) and by D(z)
the diagonal matrix such that for i, j € I, D; j(z) = &; j[ri]:.

2.2. Quantum algebras

2.2.1. Quantum groups

Definition 2.1. The quantum group U, (g) is the C-algebra with generators kiil, xE

(i € I) and relations: l

+C
kikj = kjk,', k,'x;-t = qi

ij £
”xj k,’,
ki — k!

+ —
[x[5'xj]=8i,j 1°

qi —9q;

1-GCi; —C; i— L
D e GV [ , "’} ()T TG () = 0 (for i # ).
B " qi

This algebra was introduced independently by Drinfeld [Dr1] and Jimbo [J]. It is remark-
able that one can define a Hopf algebra structure on 4, (g) by:

Atk)) =ki @k,

A =x7 @ 1+k @ xf, A(x]) =x; ®kf1+1®xf

i
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Sti) =k ', S = —xfk; | S(x7) = —kix;

etki) =1, e(xj) = €e(x;) =0.

Let U, (h) be the commutative subalgebra of U4, (g) generated by the kl.il @el).
For V a U, (h)-module and w € P we denote by V,, the weight space of weight w:

Vv
Vo={veVNielkuv=gqg " v).

In particular we have xl.i. Vo C Vita; -
We say that V is U, (h)-diagonalizable if V = @, . p Vi, (in particular V is of type 1).
For V a finite dimensional I/, (h)-diagonalizable module we define the usual character

x (V) = Zwepdim(Vw)e(a)) e =PzZew).

weP

2.2.2. Quantum loop algebras. We will use the second realization (Drinfeld realization)
of the quantum loop algebra U4, (Lg) (subquotient of the quantum affine algebra U4, (9)):

Definition 2.2. I/, (Lg) is the algebra with generators x Lielre Z) k.jEl (i el),
him (i € I,m € Z — {0}) and the following relatlons (1,] el,rnr e Z,m,m/ €

—{0}):
ki, kil = [ki, hjm] = [Rim, hjm] =0,

+Ci,;
kixi, =q; "xiki

ljr i

1
i, X5,) = F—(m By 17

J.m+r?

+ ¢l r+r’ ¢z r+r’
[x[’;w /] = 81 ]—1
qi — 4,
+ + _ _£B;j .+ + _ B j. .+t  * + +
xi,r+1xj,r’ q xj,r’xi,r+1 - q xl rxj r+l j,r’+1xi,r’

k + + + _+ +
Znez Zk =0--- ( D |: i| Yisraay " Kirnao X iy T K =0,

where the last relation holds for alli # j, s = 1 — C; ;, all sequences of integers
rl,...,Ts. X is the symmetric group on s letters. Fori € [ and m € Z, qbfm e U, (Lg)
is determined by the formal power series in U/, (Lg)[[z]] (resp. in U4, (£g)[[z_l]]):

2 oo = ke — DY e,

m'>1

and¢>l m =0 form > 0.
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U, (Lg) has a Hopf algebra structure (from the Hopf algebra structure of U, (@))
For J C I we denote by U, (Lgs) C U,(Lg) the subalgebra generated by the xE
him, kiﬂ fori € J.U,(Lgy) is a quantum loop algebra associated to the semi-sim-
ple Lie algebra g; of Cartan matrix (C; ;); jes. For example for i € I, we denote
Uqg(Lgi) = Uy (Lygyiy) = Uy, (Lsl).
The subalgebra of U4, (Lg) generated by the A; ., k; (resp by the x; ) is denoted
by Uy (Lh) (resp. Uy (L))

im’

2.3. Finite dimensional representations of quantum loop algebras Denote by Rep
(U, (Lg)) the Grothendieck ring of (type 1) finite dimensional representations of I, (Lg).

2.3.1. Monomials and q-characters. Let V be a representation in Rep (i, (Lg)). The
subalgebra U, (Lh) C U,(Lg) is commutative, so we have:

v=Ep 14
y:(yl‘_iim)iel,mzo 4

where: V), ={ve V|3p>0,Viel,m=>0, (q&fim — y;—;m)p.v = 0}.

The y = (yi,iim),-e 1,m>0 are called [-weights (or pseudo-weights) and the V,, # {0} are
called /-weight spaces (or pseudo-weight spaces) of V. One can prove [FR] that y is
necessarily of the form:

dea(0;)—deg(R) Qi (g, IR (ug;)
Z >O,yi:’timu:|:m — q eg(Q) eg( ) ! 1 _i (1)
m= Qi(ugi)Ri (uq, )

where Q;, R; € C(u) satisfy Q;(0) = R;(0) = 1. The Frenkel-Reshetikhin g-charac-
ters morphism x, [FR] encodes the /-weights y (see also [Kn]). It is an injective ring
morphism:

Xq : Rep(Uy (Lg)) — Z[Y alieraeCx
defined by
xg(V) = Zydim(Vy)my,

where:

Gi,a—Vi,a
m, = | I Y '
14 iel,acC* L4 ’

Qi(u) = Hae(C*(l —ua)¥ia, R;(u) = Hae(C*(l — ua)'ia,

The m,, are called monomials (they are analogs of weight). We denote by A the set of
monomials of Z[Yifl]iel,aec*. For an [-weight y, we denote V,, = V,, . We will also
use the notation i/ = Yi{)q, fori e Iandr, p € Z.

ForJ C I, qu is the morphism of g-characters for U, (Lgy) C U, (Lg).
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For a m monomial we denote u;,(m) € Z such that m = [];; ,cc Yf;“(m).

We also denote w(m) = Ziel,aeC*”i,a(m)Ai, ui(m) = 2 ccx tia(m) and u(m) =
Zie, u;(m). m is said to be J-dominant if for all j € J,a € C* we have u; ,(m) > 0.
An [-dominant monomials is said to be dominant.

Observe that yx,, qu can also be defined for finite dimensional U/, (£h)-modules in
the same way.

In the following for V' a finite dimensional I/, (Lh)-module, we denote by M (V) the
set of monomials occurring in x, (V).

Fori € I,a € C* we set:

-1
Ai,a ZY, aq Yl ,aq; H Yj,a
{jICji=—1}

—1 —1 —1 —1 1
x H Yj,aq’l Yj,dq H Y/ aq? YJ a Y/ aqg=?"

{j1Cji=-2} {jICji=-3}

2)

As the A_1 are algebraically independent [FR] (because C(z) is invertible), for M a

productofA we candefine v; (M) > 0by M =];;. acC* A 4 ~Yi.a(m) . We put v; (M)
zaec*v,ya(M) and v(M) =72, vi(M). For A € —Q" we set v(h) = —A(AY +-- -+
A})). For M a product of A;[ll, we have v(M) = v(w())). For m, m’ two monomials,

we write m’ < m if m’m~" is product of Al._a1

Definition 2.3. [FM1] A monomial m € A — {1} is said to be right-negative if for all
aeC* forL=max{l € Z|3i € I,u; ,,.(m) 20} wehaveVj e l,u; ,.(m)<0.

lL,aq jaq

Observe that a right-negative monomial is not dominant. We can also define left-negative
monomials by replacing max by min in the formula of L in Definition 2.3.

Lemma 2.4. [FM1]

1) Foriel,aeC* A is right-negative.
2) A product of rtght—negatlve monomials is right-negative.
3) Ifm is right-negative, then m’ < m implies that m' is right-negative.

We have the same results by replacing right-negative by left-negative.
For J C I and Z € ), we denote Z~/ the element of ) obtained from Z by putting
Y;El = 1forj ¢ J.Let g : Z[Y b]Jel pec+ — & be the ring morphism such that

B(m) = e(w(m)).

Proposition 2.5. [FR, Theorem 3] For V € Rep(U,(Lg)), let Res(V) be the restricted
Uy (g)-module. We have (B o x4)(V) = x (Res(V)).

2.3.2. l-highestweight representations. Theirreducible finite dimensional ¢, (Lg)-mod-
ules have been classified by Chari-Pressley. They are parameterized by dominant mono-
mials:

Definition 2.6. A U/, (Lg)-module V is said to be of /- highest weight m € A if there is
ve Vysuchthat V=U,(Lg)".wandVi e I,r € Z,x},.v=0.

it

For m € A, there is a unique simple module L (m) of [-highest weight m.
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Theorem 2.7. [CP6, Theorem 12.2.6] The dimension of L(m) is finite if and only if m
is dominant.

Fori € I,a € C*, k > 0 we denote X(’) Hk/e{] laqk 21 -

Definition 2.8. The Kirillov-Reshetikhin modules are the W', = L(X)).

We denote by Wéii the trivial representation (it is of dimension 1). Fori € I and

a e C*, W( ) is called a fundamental representation and is denoted by V; (a) (in the case
g=shwe 51mply write Wy , and V (a)). For g = sl>, the monomials m| = Xy, 4,,m2 =

Xt,.a are said to be in special position if the monomial m3 = [, g Yo' ¢ 1) ta(m2)
is of the form m3 = Xy, 4, and m3 # m1, m3 # my. A normal writing of a dominant
monomial i is a product decompositionm = [[;_;  ; Xy, 4 suchthatforl # I, Xy, 4,
Xk, .ay are not in special position. Any dominant monomial has a unique normal writing
up to permuting the monomials (see [CP6, Sect. 12.2]).

It follows from the study of the representations of U4, (Lsl>) in [CP1, CP2, FR] that:

Proposition 2.9. Suppose that g = si».
(1) Wk.q is of dimension k + 1 and:

XgWia) = Xia(L+ AL (L ALL (L (L AL, ).

(2) V@ag" ™" @ V(g ) @ ® V(ag"™") is of g-character:
Xia(l+A- k)(1+A_ ) - --(1+A;qlz,k).

In particular all [-weight spaces of the tensor product are of dimension 1.
(3) For m a dominant monomial and m = X, q, - - - Xx;,q; @ normal writing we have:

Lim) = Wi 0 @ Q Wi q-

2.3.3. Special modules and complementary reminders

Definition 2.10. For m € A let D(m) be the set of monomials m’ € A such that there

are mg =m,my,...,my =m’ € A satisfying forall j € {1,..., N}
1 . ] "
(1) mj=mj_ 1Az, aa, Al/a a, ,whereij e I,r; > landal,...,arj e C*,
2) forl <r < r],u,_/,ar(mj 1) > |{r/ e{l,...,rj}a = a,}|, where r;,i;, a, are

as in condition (1).
For all m" € D(m), m’ < m. Moreover if m’ € D(m), then (D(m') C D(m)).

Theorem 2.11. [H5, Theorem 5.21] For V € Mod(U,(@)) a I-highest weight module of
highest monomial m, we have M(V) C D(m).

In particular for all m’ € M(V), we have m’ < m and the v; o (m'm="), v(m'm=") > 0
are well-defined. As a direct consequence of Theorem 2.11, we also have:

Lemma 2.12. Fori € I,a € C*, we have (x4(Vi(a)) — Y ) € Z[Y:

jl aql]jEI,l>O'
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This result was first proved in [FM1, Lemma 6.1, Remark 6.2].
A monomial m is said to be antidominant if for alli € I, a € C*, u; ,(m) < 0.

Definition 2.13. A U/, (Lg)-module is said to be special (resp. antispecial) if its
g-character has a unique dominant (resp. antidominant) monomial.

The notion of special module was introduced in [Nak4]. It is of particular importance
because an algorithm of Frenkel-Mukhin [FM 1] gives the g-character of special modules.
It is easy to write a similar algorithm for antispecial modules from the Frenkel-Mukhin
algorithm (for example it suffices to use the involution studied in Sect. 4.2).

Observe that a special (resp. antispecial) modules is a simple /-highest weight mod-
ules. But in general all simple /-highest weight modules are not special. The following
result was proved in [Nak4, Nak5] for simply-laced types, and in full generality in [H4]
(see [FM1] for previous results).

Theorem 2.14. [H4, Theorem 4.1, Lemma 4.4] The Kirillov-Re;hetikhin modules are
special. Moreover for m € ./\/l(Wk(l()l), m # X,((’L implies m < X,%Afl ‘-

i,aq;

Define
wh ZHAT )7 PN jesaecr = ZIAT ) jes.acc

the ring morphism such that Mﬁ(( Afa)—%J)) = Afa. For m J-dominant, denote by
L7 (m™ ) the simple Uy (Lgy)-module of [-highest weight m~ ) Define:

Ly(m) = mply (m™ )~ ) S (L m™ D)),
We have:

Proposition 2.15. [H6] For a representation V € Rep(Uy(Lg)) and J C 1, there is
unique decomposition in a finite sum:

Xg(V)= D asmLym). 3)

m’ J-dominant

Moreover for all m’ J-dominant we have \.j(m’) > 0.

Remark 2.16. Let m be a dominant monomial and m’ € M (L (m)) a J-dominant mono-
mial such that there are no m” > m’ satisfying m” € M(m) and m’ appears in L ; (m").
Then from Proposition 2.15 the monomials of L (m”) are in M (L(m)). It gives induc-
tively from m a set of monomials occurring in x, (L(m)).

2.3.4. Thin modules

Definition 2.17. [H6] A U, (Lg)-module V is said to be thin if its /-weight spaces are
of dimension 1.

For example for g of type A, B, C, all fundamental representations are thin (it can
be established directly from the formulas in [KS]; this thin property was observed and
proved with a different method in [H3, Theorem 3.5]; see also [CM2]).

Observe that it follows from [H1, Sect. 8.4] that for g of type G», all fundamental
representations are thin. For g of type Fj, the fundamental representations corresponding
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toi = 1 and i = 4 are thin, but the fundamental representations corresponding toi = 2
or i = 3 are not thin (see [H3]).

For type D, it is known that fundamental representations are not necessarily thin: for
example for g of type Dy, the fundamental representations V> (a) have an /-weight space
of dimension 2. Explicit formulas for the g-character of fundamental representation
in type D are given in [KS] (the thin fundamental representations of type D are also
characterized in [CM2]; see also Remark 2.19 below for a general statement).

Form € Z[Y; 4lie1 aec+ adominant monomial, the standard module M (m) is defined
as the tensor product:

M = Q) & Q) Vilag)® ™) & () Viagh™ ™) @ ).

ae(C*/q?%) iel iel

It is well-defined as for i, j € I and a € C* we have V;(a) ® V;(a) ~ V;(a) ® V;(a)
and for @’ ¢ aq”, we have V; (a) ® Vi(a') ~ V;(a") ® V;(a). Observe that fundamental
representations are particular cases of standard modules.

As a direct corollary of a result of Nakajima, there is the following result for simply-
laced types:

Corollary 2.18. We suppose that g is simply-laced. Letm = [, Y,'waiq% where a € C*,

w; > 0and ¢; € Z satisfies (C;j < 0 = |¢p; — ¢;| = 1). Then the standard module
M (m) is thin if and only if it is simple as a Uy (g)-module.

Proof. It follows from [Nak3, Proposition 3.4] that in this situation the number of mono-
mials in x, (M (m))) is equal to the dimension of the simple U/, (g)-module of highest
weight Zie[ w;A;. O

Observe that this result is false for not simply-laced g (for example there is a thin
fundamental representation for type G, which is not simple as a i/, (g)-module, see [H1,
Sect. 8.4]).

The following remark was communicated to the author by Nakajima:

Remark 2.19. In particular for g simply-laced, a fundamental representation is thin if
and only if the corresponding coefficient of the highest root is 1 (this point is also a
trivial consequence of previously known results, for example the geometric construction
[Nak1]).

We got also the following example:

Proposition 2.20. [H6, Proposition 6.6] Let g = sl,+1 and consider a monomial of the
formm = Yil,aqll Yiz,aql2 ~-Yik’aqu, where R > 0, i1,ip,...,ir € 1, 11,lh,...,Ig €
Z, satisfying forall 1 <r < R — 1, l,41 — I, > iy +ir41. Then L(m) is thin.

3. Minimal Affinizations and Main Results

In this section we recall the definition of minimal affinizations and their classification
in regular cases. Then we state the main results which are proved in other sections.
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3.1. Definitions [Chal]

Definition 3.1. For V a simple finite dimensional I/, (g)-module, a simple finite dimen-
sional U, (Lg)-module L(m) is said to be an affinization of V if w(m) is the highest
weight of V.

For V al{,;(g)-module and A € P*, denote by m; (V) the multiplicity in V of the simple
U, (g)-module of highest weight A. Two affinizations are said to be equivalent if they are
isomorphic as U, (g)-modules. Denote by Qy the equivalence classes of affinizations of
V and for L an affinization of V denote by [L] € Qy its classes. For [L], [L'] € Qy,
we write [L] < [L'] if and only if for all u € P*, either

(1) mu(L) = mp.(L/)a
(i) 3Jv > psuchthatm, (L) < m,(L").

Proposition 3.2. < defines a partial ordering on Qy.

Definition 3.3. A minimal affinization of V is a minimal element of Qy for the partial
ordering.

Remark 3.4. For g = sl,41, we have evaluation morphisms U, (Lg) — U,(g) denoted
by ev, and ev? (fora € C*) and in particular a minimal affinization L of V is isomorphic
to V as a U, (g)-module.

3.2. Classification The minimal affinizations were classified in [Chal, CP3, CP4, CP5]
for all types, except for type D, E for a weight orthogonal to the special node. For the
regular cases (i.e. with a linear Dynkin diagram, that is to say types A, B, C, F1, G»),
the classification is complete:

Theorem 3.5. [Chal, CP3, CP4] Suppose that g is regular and let ). € P*. Fori € I let
Li = AMa;") and fori < n let

riAi+ripi A1 +ri41—Cigr i —1 / ridi+ripi i1 +ri—Ci i1 —1
Ci()") qu [T+ 1A +1TF 41 i+1,i and Ci()\') qu P T i+ 1 A+ 1T ii+1 A

Then a simple U, (Lg)-module L(m) is a minimal affinization of V (1) if and only if m
is of the formm = [[;o; X\

A with (a;)ie; € (C*)! satisfying one of two conditions:

() Foralli < jel, ai/aj = Hi§s<j cs ().
() Foralli < jel, aj/a; = Hi§s<j g (M)

Observe that we have rewritten the defining formulas of c;, cg [Chal, CP3, CP4]
in a slightly different (more homogeneous) way. Observe that for classical types, min-
imal affinizations (called generalized Kirillov-Reshetikhin modules) were also studied
in [GK].

Remark 3.6. As a consequence of Theorem 3.5, for k >0 and i € I, the minimal affini-
zations of V (kA;) are the Kirillov-Reshetikhin modules.

For g of type D, and A € P*, we define with the same formulas ¢; (1) fori <n — 1,

and we set ¢,_1 (L) = g’-2***1_For a monomial m = []

X/(\i,-),a,- we have analog
conditions (I) and (II):

iel
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(D Foralli < jel a/aj=(cj-1())Y [];<s<min(j—1,1—-3) s P)s
(I) Foralli < jel,aj/a; = (cj—1(X)% Hifsfmin(j—l,n—3) cs(A),
where €; = 0if j <n —2and ¢,—1 = ¢, = 1. It follows from [CP3, Theorem 6.1]

that if 2, 2 # 0 and m = [[;o; X"

A satisfies (/) or (I1), then L(m) is a minimal
affinization of V (}).

3.3. Main results It follows directly from Theorem 2.14 and Remark 3.6 that (see also
Proposition 6.8 for an alternative general proof):

Corollary 3.7. Fori € I and k > 0, the minimal affinizations of V (kA ;) are special.

In general a minimal affinization is not special. Let us look at some examples. First
we consider type C. If m satisfies condition (/1) of Theorem 3.5, L(m) is not necessar-
ily special. For example consider the case g of type C3 and m = Y>1Y, 2Y3 ;7. L(m)
is a minimal affinization of V(2A; + A3). By the process described in Remark 2.16,
the monomials 1113252, 1313337, 131151313337, 151157222435 13337, 25 12,1323,
and 33 occur in x4, (L(m)) and so L(m) is not special. If m satisfies condition (/) of
Theorem 3.5, L(m) is not necessarily special. For example consider the case g of type
Czandm = Ylﬁq\a Yl,q5 Yl’q7 Y> 1. L(m) is a minimal affinization of V(3A1 + A»). By
the process described in Remark 2.16, the monomials 11131517253y, 111315172435,
1 131%1726_1, 111315 occur in x4 (L(m)) and so L(m) is not special.

Eventually, letm = Y1 1Y, oY) j4Y, ;1Y) j9Y3 j14. We cansee as for Y2 1Y, 2¥3 7
that L(m) is not special. Moreover L(m) is antispecial if and only if the module
LYy g1aY) g2Yy g10Y5 7Y, 45Y31) is special (see Lemma 4.10 and Corollary 4.11
below). But we can check as for Yy ;3Y; ,s¥; ,7Y2 1 that this module is not special.
So L(m) is not special and not antispecial.

For types D, there are minimal affinizations which are not special. For example let
goftype Dy and m = Yl’qs Yl’qs Y>.1. Then L(m) is not special (see [H6, Remark 6.8]).

However we prove in this paper:

Theorem 3.8. For g of type A, B, G, all minimal affinizations are special and antispe-
cial.

Theorem 3.9. For g of type C, Fy and A € P satisfying 1, = 0, all minimal affiniza-
tions of V(L) satisfying (I) (resp. (Il)) are antispecial (resp. special). For g of type D
and A € P satisfying h,—1 = Ay, all L(m) satisfying (I) (resp. (II)) and a,—1 = a, are
antispecial (resp. special).

Note that for type D, the condition a, | = aj, is automatically satisfied if A ; # O for
one j <n—2.

Theorem 3.10. For g of type A, B, all minimal affinizations are thin.

Theorems 3.8, 3.9 and 3.10 are proved in Sect. 5.

Note for type C, there are minimal affinizations which are not thin: for example
consider g of type C4 and m = Y¥31Y3 ;2. L(m) is a Kirillov-Reshetikhin and a min-
imal affinization of V(2A3). By the process described in Remark 2.16, the following
monomials occur in x, (L(m)): 3132, 212335 '3, 14143, 212345 43, 142125 13445 45,
142135 4, 142134471, 157212534451 and 1512122364545 ". And so by Proposition
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2.15 and Proposition 2.9 the monomial 212525 324545 ! occurs in y, (L(m)) with mul-
tiplicity larger than 2.

For type G», there are minimal affinizations which are not thin: for example let
m = Y 0Y22. L(m) is a Kirillov-Reshetikhin and a minimal affinization of V (2A5).
We have 2025, 111322, 1, 151151242225 € M(L(m)). and so Y; Y2 4¥2 6 occurs in
Xg(L(m)) with multiplicity larger than 2.

4. Preliminary Results

In this section g is an arbitrary semi-simple Lie algebra. We discuss preliminary results
which will be used in the proof of Theorem 3.8, 3.9 and 3.10 in the next section.
First it is well known that:

Lemma 4.1. Let L(m1), L(m3) be two simple modules. Then L(mm») is a subquotient
of L(my) ® L(m2). In particular M(L(mim3)) C M(L(m1))M(L(my)).

4.1. Results of [H6]  All results of this subsection are preliminary results of [H6].

Lemma 4.2. Let a € C* and m be a monomial of Z[Y; ag lic1,r>0. Then for m" €
M(L(m)) and b € C*, (v; p(m'm™") £0 = b € aq"*N),

Lemma 4.3. Let V € Rep(U,;(Lg)) be a Uy (Lg)-module and m' € M(V) such that
there is i € I satisfying Min{u; ,(m')|a € C*} < —2. Then there is m" > m' in M(V)
i-dominant such that Max{u; ,(m")|b € C*} > 2.

We recall [H6] that a monomial m is said to be thin if Max; ¢y gec* Ui o (m)| < 1.

Proposition 4.4. If V is thin then all m € M(V) are thin. If V is special and all m €
M(V) are thin, then V is thin.

Lemma 4.5. Let m dominant and J C 1. Let v be an highest weight vector of L(m)
and L' C L(m) be the Uy (Lgy)-submodule of L(m) generated by v. Then L' is an
Uy (Lb)-submodule of L(m) and x4(L") = Lj(m).

In particular for u € w(m) — ZjeJNaj, we have
dim((L(m)),,) = dim((L7 m~ ")) - 0),

where u~ ) =3, p())w;.

Lemma 4.6. Let V = L(m) be a Uy (Lg)-module simple module and consider a mono-
mial m" € (M(L(m)) — {m}). Then there is j € I and M’ € M(V) j-dominant such
that M' > m', M' € m'Z[ A plpec+ and (Uy(Lg;).Vigr) N (M),) # {0}.

We have the following elimination theorem:

Theorem 4.7. Let V = L(m) be a Uy (Lg)-module simple module. Let m" < m and
i € I satisfying the following conditions:

(i) there is a unique i-dominant M € (M(V) N m'Z[A; 4laec) — {m'},

(i) 3,ez x5, (Vi) = (0},
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(iii) m’ is not a monomial of L; (M),
iv) ifm” € MUy (Lgi).Vm) is i-dominant, then vm" m™Y > vim'm™Y),
W) forall j #1i, {m" € M(V)vm"m™") < vim'm=H} N m’Z[Ajf;]aeC* =0

Thenm' ¢ M(V).

Lemma 4.8. Let L(m) be a simple U, (Lg)-module, and m" € M(L(m)) such that all
m” € M(L(m)) satisfying vim"m~") < v(m'm™") is thin.

1) Fori € I suchthat m’ is not i-dominant, there is a € C* such that u; ,(m’) < 0 and
m’Ai,aqi_l € M(L(m)).

2) We suppose that g = sly41, that there are i € I, a € C* satisfying u; ,(m') = —
and m'Y; 4 is dominant. Then there is M € M(L(m)) dominant such that M > m’
and v,(m'M~Y < 1, viim'M~1) < 1.

3) We suppose that g = sl,41, that there is j € I, such that m’ is (I — {j})-dominant
and if j <n — 1, then foralla € C*, (uj(m") <0 = uj+1’aq_1(m’) > 0). Then
there is M € M(L(m)) dominant of the form

M=m H (A 1A/ 1,ag— 3"'Aia’aqia—j—l),
{aeC*|uj 4(m")<0}

where fora € C*, 1 < i, < j.

Observe that we can prove in the same way an analogous result where we replace all
ielbyi=n—i+1.

4.2. Involution of Uy (Lg) and simple modules For (1 an automorphism of U, (Lg)
and V a U, (Lg)-module we denote the corresponding twisted module by u*V. The

involution of the algebra ) defined by YjE Y ) 1 is denoted by o

For all b € C*, let 1}, be the automorphism of Uy (Lyg) defined by xi’ — b [im,
hiy — b7 "h;,, ki — kjE For V a U, (Lg)-module we have Xq(fb V) = Bp(xq(V)),
where Bp : Y — Yis the ring morphism such that ,Bb(Yi) = Yl ah S0 t;‘L(m) ~

L(Bp(m)) and x4 (t;L(m)) = Bp(xq(L(m))).

Lemma 4.9. [Chal, Proposition 1.6] There is a unique involution o of the algebra
Uy (Lg) such that foralli € I,r € Z,m € Z — {0}:

U('xi:,tr) = XF U(hi,m) = _hi,—m, U(kl') — kl_l

1,—r’
Moreover for m > 0, G(¢,~iim) ;- +m

(Observe that we could also use o(x L) = —x , to define an involution of U, (Lg).)

Lemma 4.10. We have x,(c*V) = o (x4(V)).
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Proof. For y = (yl :I:m)le I.m>0, it follows from the relation 0(¢l ) = 4’; m that

= (c*V),, where y’ (J/,;m)zel,mzo- Let Qi(u) = [[,ec+(1 — ua)¥« and
R;(u) = [[,ec+ (1 — ua)"e such that in C[[u*]] we have:

Sy ko gle(@—dea(R) Qi(ug; ) Ri(ug;)
m=0"hEm Qi (ugi)Ri(ug; ")’

Then in C[[u*]] we have:
ZV m deg(Q,) _deg(R;) Qi w g DR g
mw’” i Qi(u="g)Ri(u='q; ")

deg(Q))—deg(R)) QF (uq; )R (ug;)
’ Q) (ug) R} (ug; ")’

where Q}(u) = [],ec-(1 — ua)'ia™" and R} (u) = [],ec-(1 — ua)?ia by using the
identities
1 - au‘lqi_l 1 1—alug , 1 —au=lq; 1 - a_luql._1

4i———— —=¢ —— _pandg; 1 — 4 = .
" 1—aulg ! 1—a‘1uqi1 l—au_lqi1 " 1—alug

Inparticular x (6*V) = o (x(V)), where,o : £ — Eisdefinedbyo(e(X)) = e(—A).

Let wo be the longest element in the Weyl group of g and i > i be the unique
bijection of / such that wo(e;) = —a;. Let 2" be the dual Coxeter number of g and r
the maximal number of edges connecting two vertices of the Dynkin diagram of g.

Corollary 4.11. For m dominant, we have o*L(m) ~ L(m'), where
i q(m)
H HY[ a~! 7rvh\/'
aeC*

Proof. A submodule of V is a submodule of 6*V, so V simple implies c*V sim-
ple. As it is proved in [FM1, Corollary 6.9] that the lowest monomial of L(m) is

]_Le l.acC* Y s "v(:i), we get the result from Lemma 4.10. O
Observe that as a by product we get the following symmetry property:
Corollary 4.12. If k = k, then Xq(Wk(f;) is invariant by (‘Cazq,vhv 00o).
For example, this symmetry can be observed on the diagrams of g-characters in [Nak2,
Fig. 1] and [H1, Sect. 8].
Let us go back to the main purposes of this paper. First we get a simplification in the

proof of Theorem 3.8:

Corollary 4.13. In Theorem 3.8, it suffices to prove that all minimal affinizations are
special.
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Proof. First suppose that g is of type B or G. Then i = i. If m satisfies condition (/1)
of Theorem 3.5, then m’ of Corollary 4.11 satisfies condition (/). Moreover if M is
dominant, then o (M) is antidominant. So we can conclude with Lemma 4.10. If g is of
type A, conditions (I) and (II) are the same up to a different numbering. O

Exactly in the same way we get:

Corollary 4.14. In Theorem 3.9, it suffices to prove that the considered simple repre-
sentations satisfying the condition (II) are special.

For V ald; (Lg)-module, denote by V* the dual module of V. As S(k;) = k; ], we have
x(V*) = o (x(V)). As a direct consequence of [FM1, Corollary 6.9], we have:

Lemma 4.15. For m dominant, we have (L(m))* >~ L(m"), where

” ujq(m)
m’ = | | Y_r .
iel,aeC* iaq=r"h"

Note that it was proved in [FM1] that we have the following relation between the
q-character of (V;(a))* =~ V;(aq_’vhv) and V;(a):

Xg(Vi(@)") = (ta 0 0 0 7,-1) (xq (Vi (a))).

Proposition 4.16. For m a dominant monomial, we have

X(L(m)) = x (L((o(m)™")).

Proof. From previous results, we have
x (0" ((L(m)™) = o (x (L(m)")) = x(L(m)),
and o* ((Lm)*) = L([Ticf gece Yi") = LA@m) ™. 0

The above proposition can be extended to x (L(m)) = x (L([];. 1accrY i.a (m) )) for

i,ba—!
all b € C*.
Observe that we do not have a direct relation between the monomials of the same
weight space: for example forg = sl andm =Y, Yq%, the term of weight A in y, (L (m))

is 2Y, Y3 Yq_sl and the term of weight A in x, (L (o (m))) is Y -3 + Yqz,3 Yq_l.

4.3. Additional preliminary results

Lemma 4.17. Letm = X\ Letm’ € M(W)) and 11 € {k, k —2,..., —k+2}. Then

w(m'm=Y) > 1 implies

i

vi,aq

—1 —1 —1
vi’aqk(m’m ) > 1, Ul-’aqik—2(m/m )>1,..., l_u(m’m ) > 1.

i

vi,aq
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Proof. For u = k the result is clear. We suppose that & < k and we prove the result by
induction on k. For k = 1 the result is clear. For general k > 1 and u < k, suppose that

Vi aq" (m'm~") > 1. Som’ # m and it follows from Theorem 2.14 that m’ < mAl ;q

By Lemma 4.1, m’ = mymy, where m; € M(Vi(ag~")) and my € M(Wk(l)l agr!)’

From Lemma 4.2, vjb(le 1) # 0 implies b = aq"i*~D*R with R > 1 and so
ag;

b= aql So we have v, ag" (mz(X(’) f‘) 1) > 1. So by the induction hypothesis

Vg2 mX” D=Ly - sma(x RS

Y aq“(mZ(Xlil)l 71) 1) > 1.

We can conclude because it follows from Theorem 2.14 that Vi agh mmYH>1. 0o

Lemma 4.18. Let a € C* and a monomial m € Z[Y; qqr licy rez. Let m" € M(L(m))
and R € Z such that for alli € I, (u; 4 (m') < 0 = r < R). Then there is a dominant
monomial M € M(L(m)) N (MZ[A; aqr 1{G,r)iel,r<R—r})-

Proof. From Lemma 2.15 it suffices to prove the result for 4, (s?z). In this case the result
follows from (3) of Proposition 2.9. O

To conclude this section, let us prove a refined Version of Proposition 2.15. Fori € I,
or (m)

a € C* and m a monomial denote m~ @@ = HreZY, ;m; . Define:

Lig(m) = muf (m= )" i (L m™ E2))).
Observe that for @’ € ag?”, m~ @0 =m0 and L; ,(m) = L; o (m). So the defini-
tion can be given for a € (C*/g; 27y 'We have:

Corollary 4.19. For a representation V. € Rep(Uy(Lg)), i € I and a € C*, there is a
unique decomposition in a finite sum:

Xq(V) = Aia(m')Liq(m").

Z{m’ [(m")= @@ is dominant}
Moreover for all m’ such that (m')™ "9 is dominant, we have }; 4(m') > 0.

Proof. First we write the decomposition of Lemma 2.15 with J = {i}. Then it follows
from Proposition 2.9 that for m’ an i-dominant monomial we have

Lim'y = )= TT  Lip(m)”0P),

be(C*/q?7)

5. Proof of the Main Results

In this section we prove Theorems 3.8, 3.9 and 3.10. We study successively the different
types.
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5.1. Type A In this Sect. 5.1, g = sl,41.

Lemma 5.1. Let A € P* and L(m) be a minimal affinization of V (A). Suppose that
m satisfies the condition (I1) (resp. condition (1)) of Theorem 3.5. Let K = max{i €
I|L; # 0} (resp. K = min{i € I|A; # 0}). The following properties are satisfied:

(1) Forallm' € M(L(m)), if vk (m'm™~") = 1, then vy, rx (m'm™") = 1.
(2) L(m) is special.

(3) L(m) is thin.

(4) Forallm' € M(L(m)) we have

et —k] (m/mfl) = Agetli—kl—2 (m/mfl)

Vi anq = Vjarg

_ _ I N
ce= Uj’akq)\kﬂ]—k\—ZR(m m ) =1,

where

J = max{ilv;(m'm™") # 0} (resp. j = min{i|v;(m'm~") # 0},

k = max{i < j|A; # O} (resp. k = min{i = j[A; # 0}),
and R = Uj(m’mfl) — 1.
Observe that as a consequence of property (4), for b € C*, vj ;(m’ m~1) # 0 implies

A+ j—k| A+ j—k|=2 )Lk+\j—k|—2R}
e .

b € {arq , akq , akq

Lemma 5.1 combined with Corollary 4.13 implies Theorem 3.8 and Theorem 3.10 for
type A.

Proof. We suppose that L(m) satisfies (I I) (the case (I) is treated in the same way). We
prove by induction on u(m) > 0 simultaneously that (1), (2), (3) and (4) are satisfied.

For u(m) = 0 the result is clear. Suppose that u(m) > 1.

First we prove (1) by induction on v(m’m~") > 0. For v(m'm™") = 0 we have
m’ = m and the result is clear. In general suppose that for m” such that v(m”"m=") <
v(m'm~"), the property is satisfied. Suppose that vg (m'm~') > land v ax 'K (m'm~")
= 0. It suffices to prove that the conditions of Proposition 4.7 with i = K are satisfied.

Condition (i) of Proposition 4.7: if M > m’ and M € M(L(m)), we have VK axgK
(Mm~')=0 and so by the induction hypothesis vg (Mm~')=0. So if we suppose

Lo —1
moreover that M € m'Z[A 4luecs, Wehave M =m' [ ,ccv Ag st () and so we get

I —1
the uniqueness. For the existence, it suffices to prove that this M = m’ [ | ,cc+ AUKK . ()

is in M(L(m)). By Lemma 4.6, there is j € I, M’ € M(L(m)) j-dominant such that
M’ > m"and M' € m'Z[A 4]aec+. By the induction hypothesis on v we have j = K,
and so by uniqueness M’ = M.
Condition (ii) of Proposition 4.7: by construction of M we have vx (Mm~!) = 0.
Condition (iii) of Proposition 4.7: first observe that

M e m™ O MLmm™E)~1y).
As u(m(m™ %)=l < u(m), we have property (4) for L(m(m™%))~1) and we get

—(K) _ ) ,
(M) = K’aKqAK—]YK’aKqAK—:i "'YK’aKq—)LKH—ZR’a

with R’ > 0. By Lemma 2.9, m’ is not a monomial of M (L g (M)).



On Minimal Affinizations of Representations of Quantum Groups 239

Condition (iv) of Proposition 4.7: let m” € MU, (Lgk).(L(m))py) such that
v(m"mY) < vm'm~1). Thenwehavem” € MA;Q quZ[Agl;,]be(C* andso (m”)~ K
saAK ’

is right negative, so m” is not K -dominant.

Condition (v) of Proposition 4.7: clear by the induction property on v.

Now we prove (2). Let J ={i € I|i < K}. By Lemma 4.1, M(L(m)) C (m~Y) M
(L(m~ )y U (MLm~)))ym™ &)y, From Theorem 2.14, all monomials of m (/)
(g (L(m=K)))y — m= &) are lower than mAElaKqAK which is right-negative, and

so are not dominant. Let m’ € (M(L(m~Y))ym~>E — (m}). If vg (m'm=") > 1, it
follows from property (1) that m’ is lower than mAElaKq »x Whichis right-negative, so m’

is not dominant. If vg (m'm~"') = 0, we have ug ,(m’(m=%)=1) > 0 for all b € C*.
We have m’(m~ %)~ € M(L@m™Y)) with u(m™)) < u(m), so by the induction
hypothesis on u, m’(m™¥))~! is not dominant. So there is i # K, b € C*, such that
ui p(m' (m=EN= < 0. As u; p(m' (m= KN~ = u; ,(m"), m’ is not dominant. So
L(m) is special.

Now we prove (3). From property (2) and Proposition 4.4, it suffices to prove that all
monomials of M (L (m)) are thin. From Lemma 4.3, we can suppose that there is m’ €
M(L(m)) such that there are i € I, a € C* satisfying u; ,(m’) = 2 and such that all m”
satisfying v(m”m~") < v(m’m~")isthin. Thenm’is ({1, ..., i —2}U{i}U{i+2, ..., n})-
dominant and (#;—1 »(m’) < 0 = b = aq) and (u;+1 ,(m’) < 0 = b = aq). We can
apply (3) of Lemma 4.8 for g1, ;—1) and for gi+1,...»). We get M € M(L(m)) domi-
nant satisfying Uj agh=i M) >1, Ujy aqi=i (M) > 1 with j1 < jo, j1 <i < jp. From
property (2) we have m = M, contradiction with condition (II) of Theorem 3.5.

Now we prove (4) by induction on v(m’m~') > 0. We can suppose that j = n
(Lemma 4.5). So k = K. For v(m’m~') = 0 we have m’ = m and the result is clear.
Let be m’ such that the property is satisfied for m” with v(m”"m=") < v(m’'m="). Let
R > 0 be maximal such that

,,,,,

/ -1 —1 -1

m <mA ; ‘e .
— nyakq)»kﬂ'tfk n,akqu+"7k72 n,akq)‘k”"k’m*z
We suppose moreover that
’ —1 -1 -1 -1
m <mA ; - A 3 A
= n,akq"k”*k n,akq*k”*k*z n’akq)»k+n71\72R+2 n,b

with b # apq***~k=2R By the induction property on v, m’ is (I — {n})-dominant,
Un,pg(m’) < 0and (u, (m") <0 = c = bg).By property (3), u, pq,(m’) = —1.m’isa
monomial of L, (m’A, ;). By property (3), we can apply (3) of Lemma 4.8 and we get
M € M(L(m)) dominant of the form M = m’A, A 1o Ay pg—r Withr > 0.
From property (2), wehave M =m.So R =0.Son —r =K, bqg™" = aKqAK, that is
to say b = agq*¥*" =X contradiction. O

n—1,bg~

5.2. Type B In this Sect. 5.2, we suppose that g is of type Bj,.

5.2.1. Preliminary results for type B.

Lemma 5.2. Leta € C*, m € Z[Y; aqr licr,rez be a dominant monomiall. Considerm’ €
ML) {1, ..., n—1}-dominant such that allm” € M(L(m)) satisfying v(m"m~") <
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v(m'm=") is thin. Suppose that m’ is not dominant and let R = min{r € Llup,agr(m') <
0}. Then there is M € M(L(m)) {1, ..., n — 1}-dominant such thatm > M > m/,
m' MY € ZIA; 4 rei-mssr—1liel.r<0, ty gqr (M) = 0and forallr < R, up aqr (M) = 0
and 3 oo Uy gqr-2-4 (M) > 0.

Proof. For shortness of notations, we suppose that m'Y,, ag® 1s dominant (the proof is
exactly the same if R # max{r € Z|u, 44 (m") < 0}). First there is

R-3---A r-1—2am’ € M(L(m)),
where « > O and mqis {1, ..., n— 1}-dominant. If « = 0 we take M = mg. Otherwise,

Uy qqR—4 (mo) = —1 and u, p(mp) > 0 implies b = aqR_4. We continue and we get
inductively (at each step the involved monomials are thin by assumption):

R-1-4r A R—3—dr - == A R—1=2a—2rM,_1 € M(L(m)),

n—a+r,aq
where 1 < r < « and m, is {1,...,n — 1}-dominant. We take M = m, and the
properties are satisfied by construction. O
Lemma 5.3. Let L(m) be a simple U, (Lg)-module. Let m" € M(L(m)) be such that
allm” € M(L(m)) satisfying vim"m=") < v(m'm~=") is thin. Suppose that there are
Jj € (I —{n}) suchthatu;,(m') < 0andmY;p is dominant. Moreover we suppose that
if j # 1, then Uj_1 bg-2 (m') > 0. Then there is M € M(L(m)) dominant satisfying
one of the following conditions:
(1) M=m'Ajp2Aj1pg4 - Ajprpg—2-2 where0 <r <n—j,
2) M= m/(Aj,bq*ZAjH,hq*“ - A —2n+2_j)An7bq—2n+2j M’ where
M e Z[Ak’bq—2n+2j+2(k—n)74l]k<n,[2()Z[An’bq—2n+2j74l]]21,

(3) M = m/(Aj,bq_zAjH,bq_“ e A
(4) M = m/(Aj,bq_zAj+l,bq_4 e A
Moreover

in case (1), we have U,

mo = An,aqR*IAn—l,aq n—a,aq

my = An,aq n—1l,aq

n—1,bg

n,bg—2-21+2j )An’aq—2n+2j ,

n,bg—2-21+2j )An’bq—2n+2j Anil’bq—Zn—2+2_/’ .

rbq—2—2r—r (M) = 1,
in case (2), we have Uy 1 bg—2n+2j-2 (M) =1and 2120 Upy pg—2n42j-1-41 (M) >0,
in case (3), we have u,, j,,~3-2n+2j (M) = u, p,-1-2002 (M) = 1,

in case (4), we have Up_1 pg-2n—4+2j (M) = 1.

J+r

Proof. Thanks to the hypothesis u;_ ;,— (m") > 0, we can suppose that j = 1. By
using (3) of Lemma4.8 with gy .. ,—1yoftype A,,_1, wegetm| = m’Aqu_zAz’bq_é‘ o
Ay pg20en € M(L(m)), {1, ..., n — 1}-dominant.
If m is dominant, then the condition (1) is satisfied, and we set M = m.
Otherwise we have r = n — 2, u —m(m1) = 1, my is not n-dominant and

n—1,bg
(Un.a(m1) <0 = d =bg="*3 ord = bg—>™*").
If u, pg-2nv1(m1) = 0 and uy, p,-20+3(m1) = —1, then we can use Lemma 5.2 and so
condition (2) is satisfied.
If uy, pg-2ns1(my) = =1 and uy, pg-20s3(m1) = 0, M = m1 A, j,-20 € M(L(m)) is
dominant, so condition (1) is satisfied.
If u, pg-2n1(m1) = —1and u,, p,-2e3(m1) = =1, my = myA, o-2mA, pg-2m2 €

M(L(m)) is n-dominant and (u,_1.4(m2) < 0 = d = bq~?"*?). If m; is dominant,
condition (3) is satisfied. If Up_1 pg—2n+2 (mpy)) = —1,M = mzAnil,bq—Zn e M(L(m))
is dominant as Upy pg—2n+1 (my) = Uy pg—2n-1 (m2) = 1. So condition (4) is satisfied.

The additional properties in the end of the statement are clear by construction of
M. O
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5.2.2. Kirillov-Reshetikhin modules Wx( 3 Now we consider the case of a Kirillov-
Reshetikhin module in the node n, that is to say a minimal affinization of V(AA,)
(observe that in this case condition (I) and condition (IT) of Theorem 3.5 are satisfied).

Lemma 5.4. Let m = X)(:lzl. Then

(1) Forallm’ e M(L(m))andpu € {A,A—2, ..., —A+2}, vn,aqu(m’m_l) > limplies
vn,aqx(m’m_l) >1,v, a2mm™)y>1, ..., vn’aqu(m’m_l) > 1.

(2) L(m) is special.

(3) L(m) is thin.

(4) Let m" € M(L(m)) satisfying ZrEZ,i<n vl"aqk+2n72i+4r(m/m_l) > 0. Let j =
min{i < n| Y.,z V; ggrn-2ivir (m'm=1) # 0}. We have

n,aq

Vi e (m'mTY) = v, seanaja(m'm™Y)

J.aq J.aq

r—1
= =V ggm2jar(mmT) =1,

where R =73, .70} ygiwan—2jear (m'm~") — 1.
Proof. (1) follows from Lemma 4.17. (2) follows from Theorem 2.14.

Let us prove (3). From property (2) and Proposition 4.4, it suffices to prove that
all monomials of M(L(m)) are thin. From Lemma 4.3, we can suppose that there is
m’ € M(L(m)) such that there are [ € I, d € C* satisfying u; 4(m’) = 2 and such that
all m” € M(L(m)) satisfying v(m”"m™") < v(m’m™") is thin. We distinguish three
cases (@), (B), ().

(o) Suppose that there is ¢ € C* such that u, .(m’) > 2. Then one of the two
following conditions is satisfied.

(ov.i): There is b € C* such that u,—1 p(m') = —1, (up—1,4(m’) < 0=d=0>b),
(un,bq_l(m’) =20ru, p,-3 (m") =2)and (u, g(m') =2 = (d = bg~'ord = bg~ .
(a.ii): Thereisbh € C* suchthatu,_; ,(m') = un_l,qu(m’) =—1,u n’bq—l(m ) =2,

(Un—140m") <0 = (d =bord =bg*) and (u, 4 (m’) =2 = d = bqg™").
Otherwise, by using Proposition 2.15, we would getm” € M (L (m)) such that v(m”m~")
< v(m’'m~") and m"” does not satisfy property (3).

First suppose that the condition («.i) is satisfied. We have the following subcases:

(i 1): un,bq_l(m’) > 1 and un’bq—s(m’) > 1. Then m/Anfl,bq—z € M(L(m)) is
(I —{n —2})-dominant and by (3) of Lemma 4.8 with g(1,___,—1y we get M € M (L(m))
dominant such that un_ququsz(M) > 1 for an R > 1. By property 2), M = m,
contradiction.

(@.i.2):uy g3 (m') = 2andu,, py-1 (m’) = 0.Thenm” = m/Anfl,bq_z € M(L(m))
and Y, .3 Yn_;q,l appears in m”. So by Lemma 2.15 there is m"” € M(L(m)) such
that m” < m" and u,, ;,,-3(m"") > 2, contradiction.

(.i.3):uy g 1(m") =2andu, bqfs(m/) =0.Thenm” = m/An_u,qu € M(L(m))
is (I — {n — 2,n})-dominant and Vj € I, (u; hqz(m”) >0 =1 < -=2). So by
Lemma 4.18 we get M € M(L(m)) dominant such that v,, ;,-4 (m"M~") > 1 and
m"M~' € LA pyiljeri<—3. SO U, py—1(M) = u, ,,~1(m") = 1. By property (2),
M = m. By property (1), we have v, ,(m”M~') > 1, contradiction.
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Now we suppose that («.ii) is satisfied. We have the following subcases:

(a.ii.1): up pg(m’) = 0. Then m” = m/An_qu_zA,,_l,hAn,b € M(L(m)) and
Yn_lybq—4Yn_1!bq—2Yn__ll’an!bq—l appears in m”. Som” = m"A, _ ,,-» € M(L(m))
and u,,_ p,-4(m"") = 2, contradiction.

(a.ii.2): un,bq(m’)zun,bqu (m’)=1. Consider m" = m/An—l,bAn_qu
m’” € M(L(m))1is (I —{n — 2})-dominant and by (3) of Lemma 4.8 with gy,
get M € M(L(m)) dominant such that

—>. Then
n—2) We

,,,,,

u —2ry (M) > 1and u 22, (M) > 1

n—ry,bq n—r,bq

with r1, r» > 1. By property (2), M = m, contradiction.
(00.01.3): Up pg(m’) = 1 and Up bg—> (m’) = 0. Then
m" =m'A, | py2An—1bA, pg-+ € M(L(m))

is (I — {n — 2})-dominant, Y,_ 5, Y, ,-s appears in m"” and Vj € I, (ujq(m”)
= 1= ((j,d) = (1 —2,bg~2) or (j,d) = (n — 2,b))). So by (3) of Lemma 4.8,
there is m"”" € M(L(m)) of the form m"”" = A,_, 24,3 pg-4 -+ Ay_g pg2-22m”
with R > 1such thatVj € I, (u; q(m") = —1 = (j,d) = (n — 2,bq~%)). We have
Up pg-5M") = u,_p po-22(m") = 1. 1f m" is dominant, we have m"" = m, contra-
diction. So u,,_ p,2(m") = —1. As moreover u,, ;,,—s(m"") = 1, we have a dominant
monomial M € M(L(m)) of the form:

"
M=m (An—2,bq*4An—l,bq*6An,bq*8)(An—3,bq*6An—2,bq*8An—l,bq*mAn,bq*IZ)

T (An—r,hq‘z’ An—r+1,hq—2—2’ e An,hq—4’)
X(Ap—r—1,bg=2-2 Anypg=4=2r =+ Ay j s pg-2-20-2')s

where r > 1 and r +1 > r’ > 0. By property (1), we have M =m. So we have
Up_R pg—2R(M) = U, _g p,—2r(m") =1, contradiction.

(B) Suppose that thereis b € C* such thatu,_j ,(m’) > 2. Then we have (u,—3 4(m”)
<0=d= qu) and (up q(m’) < 0 = d=bq). By (3) of Lemma 4.8 with J =
{1,...,n — 1} and J = {n}, we get a dominant monomial M € M(L(m)) satisfying
one of the two following conditions:

(B-1) ujl’qu_/l_znu(M) =1, un,bq’l(M) =1withj <n-—1.

(B-2) uj, pgrin-2w2(M) =1, up—1p(M) = 1 with jy <n —2.

From (2) we have m = M, contradiction.

(y) Suppose that there isi < n—2 and b € C* such that u; ,(m’) > 2. Then m’ is
(1, ...,i=2}U{i}uU{i+2,..., n})-dominant. We have (u;_1 4(m’) <0 =d = bg?)
and (i1, 4(m') <0=d = qu). By applying (3) of Lemma 4.8 and Lemma 5.3, we
get M € M(L(m)) dominant such that (M){+-"=2} £ 1. From property (2) we have
m = M, contradiction.

Now we prove property (4) by induction on v(m’m~"') > 0.Let j be as in property (4).
For v(m’m~") = 0 we have m’ = m and the result is clear. We suppose that property
(4) is satisfied for m” satisfying v(m”m™") < v(m'm™"). Let R > 0 maximal such that

1o, —1 -1 -1 —1
mm~" < Aj,an+2n—2.fAj,aqmn—z/'—ct e Aj,aq/\+2n—2f+4—4R' We suppose moreover that

r—1 -1 -1 —1 —1
mm = = Aj’aq)»+2n—2j Aj’aqx+2»172j74 T Aj,aq)»+2n—2j+4—4RAj,b’
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with b = ag’*?"=2/=% and u # R.If j > 2, we have uj_1,,(m") =1.By the induction
hypothesis on v, m’ is (I — {j})-dominant, Ujpgr(m’) = —1and (uja(m') <0 =
d = bg?). By property (3), we can apply Lemma 5.3 and we get a dominant monomial
M € M(L(m)). From property (2), we have M = m. As u,_1(m) = 0, we are in the
situation (1) or (3) of Lemma 5.3. So

n—1 €
m(m") = Aj,bAj+l,bq_2 o An—l,bq*2<"*1*/'>An,bqu("*j) (An,qufz("*j)) )

where € € {0, 1}. So b = ag***~%/, ;x = 0 and R = 0, contradiction. O

5.2.3. Condition (I). Now we treat the general case of minimal affinization satisfying

condition (I) of Theorem 3.5 (except the Kirillov-Reshetikhin modules Wk(”a) already
studied in Lemma 5.4).

Lemma 5.5. Let A € P* and L(m) be a minimal affinization of V(1) such that m
satisfies condition (I) of Theorem 3.5. Let K = min{i € I|A; # 0}. We suppose that
K < n — 1. Then the following conditions are satisfied:

(1) For all m" € M(L(m)) satisfying > ..z VK agg? K+ (m'm™") > 1, we have
Vi aggx (m'm=1) = 1.

(2) L(m) is special.

(3) L(m) is thin.

4) Letm’ € M(L(m)) satisfying >

/. —1
reZ,i<n Vi,a;q?itor (m'm=") > 1. We have

F b +2k—2) (m/mfl) rhgpt2k—2j—4 (m/mfl)

Vjanq = Vjag

Fhg+2k—2j—4R m'm™y =1,

"= Vg

where

J=min{i <n| D" v g (m'm™) = 1),
rel
k= min{i > j|1; # 0} and R = (X, czv; , 2w (m'm=1) — 1.
J.aj
(5) Let m" € M(L(m)) such that min{i| .. Uiy g2+ (m'm=") > 1} = n. Then
An # 0 and

-1 -1
U angin M'M™) =y 4 g2 (m'm™")

—1
== vn,anq}\n*QR (m/m ) = 17

where R =", 7V o g2 (m'm™1) — 1.

n.anq

Proof. We prove by induction on u(m) > 0 simultaneously that (1), (2), (3), (4) and (5)
are satisfied.

For u(m) = 0 the result is clear. Suppose that u(m) > 1.

First we prove (1) by induction on v(m'm~") > 0.Forv(m'm~") = Owehavem’ =m
and the result is clear. In general suppose that for m” such that v(m”m~") < v(m'm=")
the property is satisfied, that VK ax gk (m'm~")y=0and >z VK ag gk (m'm=1y>1.
Observe that it follows from Lemma 2.15 and Corollary 4.19 that m’ is (I — {K})-dom-
inant and (m’)~ (K-@k4**%) is dominant.
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If m’ is not dominant, by Corollary 4.19, there is m” € M(L(m)) K-dominant such
that m’ is a monomial of L 2 —2(m"). Moreover from Proposition 2.9, there is
20k +47,

K,agq
b € akq such that Ag pm’ € M(L(m)). By the induction property on v, we have
>rez vaaquwa(m’AK,bm’l) =0.Som"” = m'Agp. But m” € m~® M(L(m

(m~EN=) As u(m(m™®))~1y < u(m), we have property (4) for L(m(m—E))~1)
and we get

(m//)—>(K) c Y

K.axg? K2 YK,

2g—6--Y *Z}LK+2*4R/Z[YK,aKq4r+2)‘K lrez

agq K.,axq

with R" > 0. By Lemma 2.9, m’ is not a monomial of M (Lg (m")), contradiction. So
m’ is dominant.
Let us prove that >-, .7 Vg o2k +4r+2 (m'm~"') = 0. Observe that

ry—1 -1
m YK’aqufoz € M(L(mYK’aqufoz))'

Moreover uj ,(m'(m~®)~1) < 0 implies j =K and a =axqg®*c~2. As we have
u(mYI;’lakqu,z) < u(m), properties (2) and (3) are satisfied by L(mYIE,lzquZAK*2)‘ So
we can use (2) of Lemma 4.8 for g1, .. ,—1) of type A,,_; and we get a monomial

m" € M(L(mYZ!

/1y —1
Kaggxk- D N Y g 2 llA | g ggriak=i)jsn—1,ren),

K.axq
which is {1, ..., n — 1}-dominant and satisfying v, (m’Ygla K2 m"H™H < 1. 1f
SAK

1

P
Up—1(m YK’aquxK—z

_ -1 .
(m”)~") = 0, then mYK’aquAK_2 = m” and the result is clear.
Otherwise, consider the unique b € ag g?*£+2"=K)+4Z guch that U”—lvb(m/YI;,laKq2Mr2
(m”)~™1) = 1. We have uy, 4(m") < 0= (d = bg ord = bg™"). If uy p,(m") = 0 we
use Lemma 5.2 and we get the result. If u,, p,(m"”) = —1 and u,, ,,—1(m") = 0, we use
Lemma 5.2, and in particular we get a monomial

n,bq

1 1 1
(mYK,aKqZ)‘K_Z)Aj,d € M(L(mYK, Kq”»K—z))’

a

where d ¢ a KqZ)‘K +4Z, contradiction with condition (II). In the same way if we have
Un,bg(m"”) = —landu, j,-1(m") = —1, then we getacontradiction by using Lemma 5.2
twice.

Now it suffices to prove that the conditions of Proposition 4.7 withi = K are satisfied.

Condition (i) of Proposition 4.7: if M > m’ is in M(L(m)), we have necessarily

Vi agqk (Mm~") = 0. So by induction hypothesis 3", .7 Vi 4 2k (Mm™") =0,

and so vg (Mm~')=0. So if we suppose moreover that M € m'Z[Ak 4laecr, We
vk.a(m'm™")

have necessarily M = m [[,cc« Ag , and so we get the uniqueness. For the
/o —1
existence, it suffices to prove that this M = m [],.c- All)f,;’(m ") s in M(L(m)).

By Lemma 4.6, there is j € I, M’ € M(L(m)) j-dominant such that M’ > m’ and
M’ € m'Z[Aj 4laec+. By induction hypothesis on v we have j = K, and so by unique-
ness M = M.
Condition (ii) of Proposition 4.7: by construction of M we have vg (M m~1) =0.
Condition (iii) of Proposition 4.7: first observe that

M e m~ O MLmm™E)H™1y).
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—(K)y-

Asu(m(m 1y < u(m), we have property (4) for L(m (m~ N~y and we get

M)~ e Y pearik—2Yk apqrix—sY

K’akq72AK+274R’Z[YK’aKq“HD»K ]reZ

with R’ > 0. By Lemma 2.9, m’ is not a monomial of M (L g (M)).
Condition (iv) of Proposition 4.7: consider a monomial m” € MU, (Lgk).Vy)

such that v(m”"m~") <v(m'm~"'). We have m” < MA~Z' ., Z[Agld]de(c* and so
K.agq™k ,

(m")~ (K-axa*K) is right negative, so m” is not K -dominant.
Condition (v) of Proposition 4.7: clear by the induction property on v.
Now we prove (2). Let J = {i € I|K < i}. From Lemma 4.1,

M(Lm)) € (m™ D MLm= E)) U MELm™ D yym™E),

As all monomials of m ™) (x,(L(m~5))) — m™ ) are lower than mAEla S
SAK

(Theorem 2.14) which is right-negative, they are not dominant. Let m’ be a mono-
mial in (M(Lm~))ym™>& — {(m}). As u(m™)) < u(m), the induction property
implies that m’(m ™~ ®))~! is not dominant. If Dier VK ag gk (m'm~1) > 1, it fol-

lows from property (1) that m’ is lower than mAEla e which is right-negative, so
»dK

K
m'’ is not dominant. We suppose that >, 7 vy axg? K+ (m'm~1) =0. We have for all

l eZ, uquzmzu(m’(m_’(K))_l) > 0, and so there is (i, a) € I x C* not of the form
(K, ¢*¥*+4) with [ € Z such that u; ,(m’(m~%)~1) < 0. So

wig(m') = uj o(m'(m=EH~1 <0

and m’ is not dominant. So L(m) is special.

Now we prove (3). From property (2) and Proposition 4.4, it suffices to prove that
all monomials of M (L(m)) are thin. From Lemma 4.3, we can suppose that there is
m’ € M(L(m)) such that there are [ € I,d € C* satisfying u; 4(m’) = 2 and such
that all m” € M(L(m)) satisfying v(m”m~") < v(m’m~") is thin. We consider sub-
cases as in the proof of Lemma 5.4.

If («e.i.1) is satisfied, we get Uy R bg—2-2R (m) > 1 with R > 1 and (I/ln)bq—] (m)>1
or Uy pg-3(m) = 1). As =2 — 2R < —3, we geta contradiction with condition (I) of
Theorem 3.5.

If («.i.2) is satisfied, we get a contradiction for Lemma 5.4.

If («.i.3) is satisfied, for Lemma 4.2 we get m” € M(L(m)) N mZ[A;;q,]i61‘15,3
such that u,, p,~1(m) = u, p,~1(m") =1, v, p,~+(m"m~") = 1. From Lemma 4.2 and
Lemma 4.1, we have m” € mil"=UM(L(m™)), and we get a contradiction for
Lemma 5.4.

If condition («.ii.1) is satisfied, we get a contradiction for Lemma 5.4.
If condition («.ii.2) is satisfied, we get as in the proof of Lemma 5.4 that

u —2r, (m) > 1 and u 22, (m) > 1

n—ri,bq n—ra,bq

with ry, rp > 1. Contradiction with condition (I) of Theorem 3.5.

If condition («.ii.3) is satisfied: we follow the proof of Lemma 5.4 and we get m’”.
If m” is dominant, we have Up pg—5 m") = Up_R bg—2R (m"”) = 1 with —2R — (=53)
<3 < 2(n — (n — R)) + 4, contradiction with condition (I) of Theorem 3.5. So m””
is not dominant. Let R, r, ¥’ and M be dominant as defined in the proof of Lemma 5.4.



246 D. Hernandez

From the property (2) we have m = M. Observe that r’ < r+1. We have u,,_g j,-2r
(m) = 1. We study two cases:
If n—r —1+r' = n, we have moreover Uy, pg—3-2-2 (m) = 1. But (=3 —2r — 2r") —
(—2R) < 2R — 4 < 2(n — (n — R)), contradiction with condition (I) of Theorem 3.5.
Ifn —r —1+7 <n—1, we have moreover R N O . Y (m)y=1.Letd =
(n—r—14r'—(n—R)) = —1+(R+r'—r)and D = (—4—2r —=2r")+2R = 2d —4r' 2.
If d < 0, condition (I) implies D > —2d +4,500 < D+2d —4=4d —4r' — 6 < 0,
contradiction.
If d = 0, condition (I) implies D € 47, contradiction as D = —4r’ — 2.
If d > 0, condition (I) implies D < —4 —2d,500>D+4+2d =4d+2 —4r' = -2+
4R—4randn—r—1 <n—R < n—R—1+r".So the product A

A, _,_1 pg—2-2r Can not appear in m(m")~! (for example we may use Theorem 4.7 as
in the proof of Lemma 5.1), contradiction.

Now we suppose that there is b € C* such that u,,_; ,(m") > 2. By property (2), we
get as in the proof of Lemma 5.4 that m satisfies property (8.1) or (8.2) of Lemma 5.4.
For (B.1), we have (2j1 —2n+2—(—1)) = 2(j1 —n)+3 < 2(n — j1) +5, contradiction
with condition (I) of Theorem 3.5. For (8.2), we have (2j; —2n+2—0) = 2(j; —n)+2 <
2(n — 1 — j1) + 6, contradiction with condition (I) of Theorem 3.5.

Finally we suppose that there are i < n—2,b € C* such thatu; ,(m’) > 2. Thenm’ is
(1, ...,i—=2}U{i}U{i+2, ..., n})-dominant. We have (u;—j 4(m') <0=d = bg?),
and (ujy1.4(m') <0=>d = bg?). By applying (3) of Lemma 4.8 and Lemma 5.3 (with
qu instead of b and i + 1 instead of j), we get a dominant monomial M € M (L(m))
satisfying one of the conditions

(y.1) (case (1) of Lemma 5.3): u
Ji<JjniZi<ja=<n,

(y.2) (case (2) of Lemma 5.3): u
J1 =1,

(y.3) (case(3)of Lemma5.3): u
(M) = 1 with j; <1,

(y.4) (case (4) of Lemma 5.3): u
J1 <.

From property (2) wehavem = M.For (y.1), wehave2j1 —2i —(2i =2 jo+2—r},) <
2(j1+ j2) —4i < 2(j» — j1), contradiction with condition (I) of Theorem 3.5. For (y.2),
we have 2j; —2i — (—2n+2i +2) < 2(n — 1 — j), contradiction with condition (I) of
Theorem 3.5. For (y.3), we have 2 j; —2i — (3 —2n+2i) < 2(n— j1), contradiction with
condition (I) of Theorem 3.5. For (y.4), wehave 2 j; —2i — (2i —2n) < 2(n—1— j;)+4,
contradiction with condition (I) of Theorem 3.5.

Now we prove property (4) by induction on v(m’m~") > 0.Let j be as in property (4).
For v(m’m~") = 0 we have m’ = m and the result is clear. We suppose that property
(4) is satisfied for m” such that v(m”’m™') < v(m’m~"). Let R > 0 maximal such that

n—i’—1+i’/,bq*2*2772r/ s

212 (M) > 1, uj 2-2jp 421, (M) > 1 with

Ji:bq 2.bq

1 bg2i =2 (M) = land u,,_y p,—202i+2(M) = 1 with

2j1—2i (M) > 1landu 1—2ns2i (M) > 1,1, p 32042

Jj1.bq n,bg n,bq

g2 (M) = Tand u,_y jo-2ns2i (M) = 1 with

-1 -1

Jarg 2= D=4 Jharq

/ —1
mm -~ = Aj’aqukxkarz(k—j)A rehg+2(k— ) +4—4R"

We suppose moreover that

m'm=! < A~ 1 ~1
J.akq Jj-axq

_ Ail
Jharg A t2(k—j)+4—4R 2 j b

rkkk+2(k—j)A rhg2k—j—4 """ A

with b = apq " *>*=D=4 and . # R. By the induction hypothesis on v, m’ is (I —

{j})-dominant, uj’qu(m’) =—land (ujq(m') <0=d = bg?). By property (3), we
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can apply Lemma 5.3 and we get a dominant monomial M € M (L(m)). From property
(2), we have M = m. So we have one of the following situations:

Case (1) of Lemma 5.3: m = m’Aj,bAjH’bqu o Ajypg-2,Where0 <r <n—j,
and Wy g 2T (M) =1.S0R =0, j+r =k, b = apg"""+" = qpq"++2*=),
contradiction.

Case (2) of Lemma 5.3: m = m'(AjpA i1 pg2 "+ Ap_1 pg2-2002i) Ay pgr-amr2j M,
where

/
M e Z[Ap1bq272n+2j+2(pfn)741]p<n,120Z[An’bq272n+2j741]121 ,

and u,,_j pg-2002j(m) = 1,50 b € an_1q2k’1*1+2(j_”)+2+4z. There is [ > 0 such that
bq—2n+2j+1—4l — anq)»,,—l_ Sob e anqkn—2+2n—2j+4Z — an_lq2kn,1+2(j—n)+4Z from
condition (I) of Theorem 3.5, contradiction.

Case (3) of Lemma 5.3: u,, ;,,—1-2012j (M) = 1, p1-20+2j (m) = 1 and

/
m=m (Aj,bl]Aj+l,bq’2 cee An’bq—2n+2j)An’bq2—2n+2j.

So R = 0and b = a,g**?"~2/=2, From condition (I) of Theorem 3.5, a,g*" =
agq e with e 7. So b = apg"tPK=D+4r=2 ig not of the form
apq k=241 contradiction.

Case (4) of Lemma 5.3: u,,_y ;,,-2n—2+2j(m) = 1and

m = m/(Aj,bAjH’bqu R An,bq_Z’H'zj)An,hqz_z’”'zf An—l,bq_z’”'zj .

Dhp_142(n 2hp+2(k— j)+2+47

So bqg=21%2 = q,_1g* -1, and s0 b = a,_1q D e aq
tradiction.

Now we prove property (5) by induction on v(m’'m~") > 0. For v(m'm™") = 0 we
have m’ = m and the result is clear. We suppose that property (5) is satisfied for m” such
that v(m”m~") < v(m’m~") and we suppose that

con-

min{i| ZUi aigir m'm™ > 1} =n.
reZ

Let R > 0 be maximal such that

7 —1 —1 —1 —1
< .
mm o= An,unq*" n,a,q*n =2 An,anq*"”z’”'

We suppose moreover that

ro—1 -1 —1 -1 -1
mm = = An’anqA,, Anqanqx,,fz e An,a"qxwz—zRAn,b
with b = a,q*~>* and u # R. By the induction hypothesis on v, m’ is (I — {n})-

dominant, u, pg(m’) = —1 and (u,q(m’) < 0 = d = bg). Som” = A, m’" €
M(L(@m)) is (I — {n — 1})-dominant and (u,—1 4(m") < 0 = d = b). If u,,_ p(m")
> 0,m" is dominant equal to m, so R = 0 and b = a,q’", contradiction. So u,_1 »(m")
<0,m"A, | py2 € M(L(m)) and v, p,—2(m'm~") > 1.Sobg =2 ¢ a,_1q*-1*4%
and b ¢ anq}‘"“‘z. By Lemma 5.2 there is [ € Z such that bg~'=* = a,¢**~!, so
be anq)‘"+4z, contradiction. O
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5.2.4. Condition (II). We study the general case of condition (II) of Theorem 3.5.

Lemma 5.6. Let .. € P* and L(m) be a minimal affinization of V(\) such that m
satisfies condition (Il) of Theorem 3.5. Let K = max{i € I|\; # 0}. Then

(1) Forallm' € M(L(m)), if vg(m'm~") > 1, then Uk axg™k (m'm=1) > 1.
’ K

(2) L(m) is special.
(3) L(m) is thin.
(4) Forallm' € M(L(m)) such that v,(m’'m=") = 0 we have

200+i—k) (m’mil) = 204 +j—k—2) (m/mfl)

Vi arq =Vjag

_ X roo—1N
TV 4 g20rik2R) mm™—") =1,

where j = max{i|v;(m'm~") # 0}, k = max{i < j|r; # 0} and R = vj(m’m_l) -1

Observe that Lemma 5.4, Lemma 5.5 and Lemma 5.6 combined with Corollary 4.13
imply Theorem 3.8 and Theorem 3.10 for type B. In this case we do not need to prove
simultaneously the different properties.

Proof. Property (4): As v, (m'm™ D) = 0, it follows from Lemma 4.5 that m’ appears
in Ly ..,—1y(m). As g, is of type A,_1, the result is exactly property (4) of Lemma 5.1.

Property (1) and (2): As property (4) is satisfied, we can use the proof of property (1)
and (2) of Lemma 5.1.

Property (3): The monomial M = Hiel’ae(c* Yl, a-lg
lows from Lemma 5.4 and Lemma 5.5 that L(M ) is thin. But from Corollary 4.11,
o*L(M) >~ L(m), and so we have property (3) (Lemma 4.10). O

”i'“(mi)_vhv satisfies (I), and so it fol-

5.3. Type G, In this section we suppose that g is of type G».

Lemma 5.7. Let m be a dominant monomial satisfying condition (I) of Theorem 3.5.
Then L(m) is special.

Proof. From Lemma4.1, M(L(m))CM(L(m~D)YM(L@m~P)). From Lemma2.14,
if m"is in (M(L(m~D) — m~ DHML(m=?P)), then m’ < mAl—jwMl which is
right-negative, and so m’ is not dominant. Consider m’ = m*(l)m/z, where m’2 e (M(L
(m~ @) — (m~@}). It follows from Theorem 2.14 that m’ is right-negative. Suppose
that " is dominant. In particular m/, is 2-dominant and (u1 5 (m5) <0 = (u1 p(m}y) = —
landb € {a1¢g>*, a1¢”7*, ..., a1¢g**173})). From Lemma 4.1, m), € M(V»
(a2q" 22 M(Va(arg372)) - - - M(Va(azg’>™")). But for b € C*, it follows from [H1,
Sect. 8.4.1] (with 1 instead of 2 and 2 instead of 1) that

-1 —1 -1 -1 —1
Xq(Vz(b)) =Y2,b + Yz,qu Yl,bq + Yl,bq7 Y2,bq4 Y2,bq6 + YZ,bq4 YZ,bq* + Yl’qu Y2,hq6 Yz,hqg

—1 —1
+ Yl’quYz’quO + YZ,bqlz'

From condition (I), ajg—3*1*3

=q"(a2¢*>~"). So one Yl_,I} can only appear in xq
(Va(azg**™1)), and so (u1 p(mb) < 0 = b = aig " = g7 (axg™*")). As a conse-
quence vy , -3 (m'm=1 > 1. From the above explicit description of the x,(V2(b)),
for all

m'" € ML~ DY MLm™P)) - (m= @},
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: —1
iV 4030 (m"m~") = 0 then

Uy gy =134 (m") .
| | Yl,alq_3)‘l_3+6l = Yl,alq*“l*} Y1,a1q3—3kl Yl,a1q9—3’\l e Yl,a1q3*1‘3’

=0

where € € {0, 1}. In particular we can prove as for property (2) of Lemma 5.1 that
Vi arg— (m'm~") > 1 implies Vi arg (m'm=1) > 1, contradiction. O

Lemma 5.8. Let m be a dominant monomial satisfying condition (Il) of Theorem 3.5.
Then L(m) is special.

Proof. Tt follows from Lemma 4.17 that for m’ € M(L(m)), if va(m’m~') =0 then
(m")~ @ is of the form

(Yz’mq)uz—l Yz,aquzﬂ . Yz’aqufxz)Yzyaqufxrz . Yz’a2q1—A2—2R,

1—Xo—

where R > 0 (from condition (II) we have axq 2= q5(a1q3)‘1_3)). So we can use

the proof of property (2) of Lemma 5.1. O

Lemma 5.7 and Lemma 5.8 combined with Corollary 4.13 imply Theorem 3.8 for
type G.

5.4. Types C, D and F4  Inthis subsection we prove Theorem 3.9. From Corollary 4.14,

it suffices to consider condition (II). Type C: As A, = 0 and gy1,... ,—1) is of type

A,_1, it follows from (1) of Lemma 5.1 that the monomials m" € M(L(m)) satisfy-

ing v,(m'm=") > 0 are right-negative and so not dominant. For the monomials m’

M(L(m)) satisfying v, (m'm~1) = 0, we can use (2) of Lemma 5.1 and Lemma 4.5.
Type D: as a, = a,—1 and A, = A,_1, all monomials in the set

m_)([_{n_l’n})M(L(m_)(n)))M(L(m_)(n_l)))

are right-negative. Moreover we can prove as (1) of Lemma 5.1 that fori = n — 1
ori =n,v;(m'm~") > 0 implies Vi aighi (m'm~") > 0, and so m’ is right-negative. For
the monomials m’ € M(L(m)) satisfying v,_1(m'm~") = v,(m'm~") = 0, we can
use (2) of Lemma 5.1 and Lemma 4.5.

Type F4: The proof is analogous to type C by using Lemma 5.6 for gy 2,3 of type

Bz. O

6. Applications and Further Possible Developments

6.1. Jacobi-Trudi determinants and Nakai-Nakanishi conjecture In [NN1, Conjecture
2.2] Nakai-Nakanishi conjectured for classical types that the Jacobi-Trudi determinant is
the g-character of a certain finite dimensional representation of the corresponding quan-
tum affine algebra. This determinant can be expressed in terms of tableaux (see [BR] for
type A, [KOS] for type B, and [NN1, NN2, NN3] for general classical type). The cases
considered in [NN1] include all minimal affinizations for type A, and for type B many
minimal affinizations (but for example not the fundamental representations V,, (a)).

As an application of the present paper, we prove this conjecture for minimal affini-
zations of type A and B considered in [NN1, Conjecture 2.2] (see the introduction for



250 D. Hernandez

previous results). Indeed it can be checked for type A and B that the tableaux expression
is special and canceled by screening operators, and so is given by the Frenkel-Mukhin
algorithm (see the proofs below; this fact was first announced and observed in some
cases in [NN1, Sect. 2.3, Rem. 1]). So from [FM1], Theorem 3.8 proved in the present
paper implies that the g-character of a considered minimal affinization is necessarily
equal to the corresponding expression.

Theorem 6.1. For g of type A, B, the g-character of a minimal affinization considered
in [NN1, Conjecture 2.2] is given by the corresponding Jacobi-Trudi determinant.

This result is coherent with the thin property proved in this paper.

With the same strategy, representations more general than minimal affinizations, and
types C, D, will be discussed in a separate publication.

Let us recall the tableaux expression of the Jacobi-Trudi determinant and give the
proof of Theorem 6.1. We treat the type B (the proof for type A is more simple).

We recall that a partition A = (A1, A2, ---) is a sequence of weakly decreasing
non-negative integers with finitely many non-zero terms. The conjugate partition is
denoted by A" = (A}, A5, ---). For A, u two partitions, we say that u C A if for all
i >0,A; > ui.For u C A, the corresponding skew diagram is

Mu=1{G ) eNxNp+1<j<i)={Gj)eNxNu,+1<i=<n).

We suppose in the following that d(A /) < n, where d (X /) is the length of the longest
column of A/u, and that A /u is connected (i.e. ; + 1 < Ajyp if Aj41 # 0).
LetB={1,...,n,0,n, ..., 1}. We give the ordering < on the set B by

1 <2< <n<0=<a=<---=<2<1.

As itis a total ordering, we can define the corresponding maps succ and prec. Fora € C*,

let
II] = Yl as
Ela _Yzill aqz’Yl ag?i=h C=i=n—1,
a = Yn__ll’aqz,lYn,ann 1Yy ag2n-3,
E a= Yn_’;anH Y, ,ag?=3»
a = Ynfl,aqz” 2Y 2n+lYn7alq2n 1
(7], =Yy g Yl.’alq e 2<i<n—1),
a = Yl_,alqztnfz-
Observe that we have

xoia) =1, +[ 2], +-+[a], +[0], +[7 ], +p=d, +---+[T],.

For T = (T} ), jyexr/n a tableaux of shape A/u with coefficients in B, let
MT.a = H .. a-n €
(G, ))er/n

Let Tab(B,,, 1/) be the set of tableaux of shape A/ with coefficients in B satisfying
the two conditions:
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T;j < T; j+1and (T3 5, T;, j+1) # (0,0),
Tij < Tiy1,j or (T; j, Tiv1,j) = (0, 0).
The tableaux expression of the Jacobi-Trudi determinant [KOS, NN1] is:

Xr/ia = Z mr.q € V.

T €Tab(By, )/ 11)

For a monomial m, we denote (m)* = [Tiieraccs2u; .m0y Yl.";‘“(m)
and the positive part of m.
We say that (m)~ is partly canceled by (m’)* if there is i € I and a € C* such that

Ui a((m)™) = —u; o((m)*) #0.
Lemma 6.2. Let T € Tab(By,, /i) and a € C*. Let (i, j) # (i’, j') € A/, a = T;

- +
and B = Ty j. If (anw,i)) is partly canceled by (aq‘“/"*"’)) , then (i, j)
= (1, ) or (G )= (' +1, j'+ 1) and Ty ; = Ty s = 7).

the negative

Proof. We study different cases:

Case (1:2 <o <nand1 < <n—1.Wehave o = 8+ 1 and q4(j_i)+2“ =
g*'=RB=D S0 j' —i' = (j —i)+ 1.If j < j/, wehavei <i’andso Tj ; < Ty jr,
contradiction. So j > j’ and i > i’. There is ((ir, jr))1<r<rR € (A/m)® such that
(i0, jo) = (', j") and (ig, jr) = (i, j) and ((iy+1, jr+1) = Gr + 1, j) OF (irs1, jre1) =
G, jr+1)). Let T, =T; .. As (ir41, jr+1) = (r + 1, j;) impliesn > T4 > T, we
have Tg > T1 + (i — i), and so (i, j) = (i’ + 1, j").

Case (2):n—1 <a < land7n < B < 2. Analog to case (1).

Case (3):2 <a<nandn < f < 2. As

anzt(j—i) € Z[Yk,gq2k*2+4r]k§n—l,rez X Z[Yn,anr]reZv

and

aq4(j’—i/> € ZIY i agrirsr Iksn—1,rez X LYy ag>r Irezs

we have a contradiction.

Case d):n—1=<a = Tand 1 < B < n — 1. Analog to case (3).

Case (5): @ = 0 and B = n. We have g*(—D+2n+l — f4('=N+2n=3 gq i1 _ i/
= (j — i)+ 1. As in case (1), we have j > j’. Soi > i’. Consider (i, j.), T, as in
case (1). If i > i’ + 2, there is r1 < rp such that iy,4+1 = iy, + 1 and iy41 = ir, + 1.
We have 7, = T, ;41 = O or T,, = T,,41 = 0. So there is (p,q) € A/u such that
(pog+ 1D, (p+1,g+1) € Afpwand Ty 411 = Tpi1,g+1 = Oand T4, = n. So
(p+1,q) € A/uand Tpy1 4 = n, contradiction.

Case (6): @ = 0 and B = 0. We have ¢*(—D+2n+l — 44('=)+2n=3 apd we can
conclude as in case (5).

Case (7): @ = 7 and B = 0. We have g/ —D+2n+1 — (4('=iD42=3 go i/ _ i/ =
(j —i)+ 1. Asin case (1) we have j > j'. Soi > i’. If j > j’, as in case (5) we get
(p.q) € A/usuchthat (p+1,9),(p+1,g+1) € A/uwand Tp 4 = Tpy1,4 = 0 and
Tpi1,941 =7n.S0(p,g+1) € A/pwand Ty 441 = 71, contradiction.

Case (8): @ = 1 and B = n. We have g*(—D+2n+l — (4G =i)+2n=3 o (4G —i)+2n—1
= g*4U'=I"%2n=1 Tn the first case j'—i’ = (j—i)+1. Asabove we have j > j’.Soi > i’.
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Consider (i, jr), T asincase (1). If thereis r such that ((iy, jr), (ir+1, Jr+1), (r+2, Jr+2))
= (G, jr), Gr, jr+1), iy +1, jr +1)), we have necessarily (T, Tr+1, Tr+2) = (n, 0, 7n).
Soi’ =i, andi =i, +1 =i’ +1. We can treat in the same way the situation where there

is r such that ((irv jr)v (ir+1s jr+l)» (ir+2s jr+2)) = ((irs jr), (@i + 1, jr)» (ir +1, jr + ]))
In the second case j' — i’ = (j —i). As above we have j > j'andi =i'+1. O

Lemma 6.3. Let Ty = (i — M/j)(i,j)ek/u- Then Ty € Tab(By, /1) and mr, 4 is the
unique dominant monomial of X /u.a-

Proof. First it is clear that 7o € Tab(B,, A/u) and that my, , is dominant. Consider
T € Tab(By, A/p) such that Tp # T'. So there is (i, j) € A/ satisfying the property

i = ,u/j +landT;; #1)or (i # /L/j +1land T; j # succ(Ti—1 ;). 4)

From Lemma 6.2 the negative part of the box corresponding to (i, j) is not canceled
in mr 4 (in case (8) of Lemma 6.2, the negative part of the box can only be partly
canceled). O

Lemma 6.4. For all T € Tab(B,, A/), a € C*, the monomial mr , is thin.

Proof. Let (i, j) # (i',j) € A/u, « = T;j and B = Ty j. We suppose that
+ + .

(anwﬂ.)) = (aq 4(1_,71.,)) # 0. We study different cases (by symmetry we

can suppose o < f):

Case(1):1 <a < B <n—1.Wehavea = B and g*VU—D+2@=1) — 44('=)+2(6=1)
Soj —i"=(j—i).If j < j/,wehavei > i"andso T; ; < Ty j < n—1, contradiction.
In the same way we get a contradiction for j > j'.

Case (2): 7 < o < B < 2. Analog to case (1).

Case 3): 1 <o =n—1landn < B < 2. Analog to case (3) of Lemma 6.2.

Case(4):a = nand B = 0. We have g4 —D+21=3 — g4 =043 qq j/ i/ = j_j.
As above, we have j < j’. Soi < i’. We can conclude as in case (5) of Lemma 6.2.

Case (5): o = B = 0. We have g —D+2n=3 — (4('=IN42=3 g4 i/ _ i/ = j — .
If j # j', weget(p,q) € A/psuchthat (p,g+1) € A/pand T 4 = Tp 441 = 0,
contradiction.

Case (6): @ = B = n. We have g*U=1+21=3 — 44('=iN+21=3 o L4(j=D+2n=1 _
q4(j/—i’)+2n—1

case (1). O

. In both cases j/ — i’ = j — i and we get a contradiction as in

Finally we can conclude the proof of Theorem 6.1:
Lemma 6.5. We have ;. /,.q € Im(xg).

In the proof we will need the following partial ordering defined on Tab(B,, A/ ):for
T,T' € Tab(B,, A/1t) we set:

T<T & (G, j)er/w,Tij < T/ )).
Also by convention for any o« € B, T; ; # a means ((i, j) € A/u = T; j # o).

Proof. Leta € I. We want to give a decomposition of x; /,, as in Proposition 2.15 for
J = {a}. From Lemma 6.4, the L, (M) that should appear in this decomposition are
thin. It suffices to prove that the set Tab(B,, A /) is in bijection with a disjoint union
of sets M(Ly(M)) viaT + mr 4.
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First suppose that o < n — 1. Let M, be the set of tableaux T € Tab(B,, A/u) such
that for any (i, j) € A/u:

Ti,j =Ol+1:>((l_1’]) G)»//LandT,-,l’j =0[)’

Lij=a=(({—-1,j))er/pand T;_|; =a+1).

Then by Lemma 6.2, M, corresponds to all «-dominant monomials appearing in ), /,.,q-
For T € My, let T be the tableaux defined in the following way. For (i, j) € A/u:

ifl;j=aand Ty j Za+ 1, wesetT; j =a+1,

if T, j =a+1and Tiyy #E,wesetf}‘j =a,

otherwise we set T,/ =T
Then T € Tab(B,, 1/u). For T € M, we define:

M (T) = {T' € Tab(B,, A/w)|T < T' < T}).

Then by Lemma 2.9 we have
La(mT,a) = Z mr’ a,
T'e My (T)

and (Mg (T))7em, defines a partition of Tab(B,, A/ ).
Now we treat the case o = n. Let M,, be the set of tableaux T € Tab(B,,, A/u) such
that for any (i, j) € A/u:

T.j=0= ((i—1.j)€r/uand T;_ j € {0.n}),

Tij=n=(i—1,j—1)er/pand Ti_1j_1 = n).
By definition of skew diagram, the last condition implies that
(Tij=n=((—1,/),G, j—1)er/wand T,_ j € {0,n}and T; j_; € {0, n})).

This can be rewritten:

S Ti1,j-1 T j-1 no0 no0 nn nn
Tl’]_nz><Ti—l,j T, €Wunm) \on) \nn) \or)

Then by Lemma 6.2, M, corresponds to all n-dominant monomials appearing in ) /,,q-
For T € M,, let T be the tableaux defined in the following way. For (i, j) € A/u:

if T, j = nand Tiyy jo1 #7and Ty j # 0and Tiyy j # 71, we set T; j =70,

if 7; j =nand Tjy, j41 #7nand Tiyy ; € {0, 7}, we set T,j =0,

if T; j =0and Ti41,; # 0and T;yq1,; # 1, we set f}] =n,

otherwise we set T,/ =T
Then T € Tab (B, r/w). For T € M, we define:

Me(T) ={T" € Tab(B,, »/w)|T < T' < T}.
Then by Lemma 2.9, we have

Ln(mT,a) = Z mr’ q,
T e My (T)

and (M,,(T))rem, defines a partition of Tab(B,, A/u). O
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6.2. General quantum affinizations ~ The quantum affinization U/, (§) of a quantum Kac-
Moody algebra U4, (g) is defined with the same generators and relations as the Drinfeld
realization of quantum affine algebras, but by using the generalized symmetrizable Car-
tan matrix of g instead of a Cartan matrix of finite type. The quantum affine algebra,
quantum affinizations of usual quantum groups, are the simplest examples and have
the particular property of being also quantum Kac-Moody algebras. In general these
algebras are not a quantum Kac-Moody algebra. In [Mi, Nakl, H2], the category O of
integrable representations is studied. For regular quantum affinizations (with a linear
Dynkin diagram), one can define analogs of minimal affinizations by using properties
(I) and (IT) of Theorem 3.5.

For example let us consider the type By, , (n > 2, p > 2) corresponding to the Car-
tan matrix (C; j)1<;, j<n defined as the Cartan matrix of type B, except that we replace
Cyun—1 = —2by C, n—1 = —p. Then one can prove exactly as for Lemma 5.6 that (an
analog of Theorem 4.7 is proved by using [H2, Lemma 5.10]):

Theorem 6.6. Let g be of type By ;. Then if m satisfies property (1) (resp. (1l)), then
L(m) is antispecial (resp. special).

So the analog of the Frenkel-Mukhin algorithm works for these modules and as an
application it should be possible to get additional results for this class of special modules
(see also Sect. 6.4 below).

6.3. Multiparameter T-systems The special property of Kirillov-Reshetikhin mod-
ules allows to prove a system of induction relations involving g-characters of Kirillov-
Reshetikhin modules called T-system (see [Nak5] for the simply-laced cases and [H4]
for the general case). Indeed for i € I, k > 1, a € C* define the U, (Lg)-module:

W(j )

(ngﬂjkﬂCUJ<lek§7CLﬂ ~akyc;,)

SO —
ra
—Cji+E(ri(r=k)/rj).aq;

Theorem 6.7 (The T-system). Let a € C*, k > 1,i € I. Then we have:
Xa Wi xg W) ) = xg VR Dxg W | o)+ xg (S0

By analogy, the results of the present paper (special property of minimal affinizations
of type A, B, G) should lead to systems of induction relations involving g-characters
of minimal affinizations (multiparameter 7'-systems). Let us look at an example. Let
g = sl3. Then we have the following relation:

2)

1)y ( 2)
Xq(L(X:;’qZXzyq

1
Dt (LX) X o)

2)

1 2 1 2 2
= X (LX) X ) xg (LXS ) X200) + g (LX) xg (LX),

Let us give the idea of the proof for this example: as a g-character is characterized
by the multiplicity of his dominant monomials [FM1], it suffices to compare dominant
monomials of both sides. By using the process described in Remark 2.16, Theorem 4.7
and arguments of [H4], we get the following results:

. . 0 @ M 2 .
The dominant monomials of x, (L(X?”q2 Xz’qg) ® L(X3’q4X2’qm)) are:

1013142527232, 1, 1012232527232, 1, 212325272321 1, 191213 161102729,
101314110252729, 191211023252729, 1102123252729.
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The dominant monomials of x, (L (Xilzf X;Z;IO) ® L(Xél()fo;S)) are:
101314252725211, 101223252725211, 101315 161102720, 10131411025272o,

lol2} 102325272 M @ Oe)

The dominant monomials of x, (L(X3,q2 Xz,qB) ® L(X3’q4 Xz,q
2123252723211, 1102, ¢23252729.

We can conclude that the multiplicity of all these monomials is 1.

10)) are:

6.4. Alternative method for the classification of minimal affinizations We explain how
to prove certain classification results (included in Theorem 3.5). The proofs here are writ-
ten in the context of the paper and could be a general uniform strategy for other quantum
affinizations. Moreover we get some new refined results on the involved g-characters.

Proposition 6.8. Let L(m) be a minimal affinization of V (). Then for all i € 1, there
is a; € C* such thatm=® = Xc(lli)’)\i.

Proof. For A; < 1 itis clear. Suppose that A; > 2 and that m~® in not of this form.
Note that A — o; € P*. It follows from Lemma 4.5 with J = {i} and Proposition 2.9
that

dim((L(m))s—q,) = dim((L; (m ™ D)) 3,—2)a; > 2.

Leta € C* and M = m((m)~@)~'X{"  L(M) is an affinization of V(). It
follows from Lemma 4.5 with J = {i} that aim((L(M))A_ai) = 1 so my_q, (L(M))
< Mj—q; (L(m)). Moreover as (m)~ U= = (pr)= =D it follows from Lemma 4.5
with J =1 — {i} that for pex — Zj#Naj we have dim((L(M)),) =dim((L;_;
(m=U=y) )y = dim((L(m)),) and so m,(L(M)) = m,(L(m)). As u < A
implies u = Aoru <A —a;or it € A — Zj#Naj, we have [L(M)] < [L(m)],
contradiction. O

In the following for L(m) a minimal affinization and for i € I such that A; # 0,
a; € C* denotes the complex number introduced in Proposition 6.8.

Letg =slpe1 (n>2)and X = A A1+A, A, (A, Ay > 1).Forpu = ayj+an+- - -+ay,
we have dim((V(1))3—u) = n.Letm = X;" X" If L(m) is a minimal affinization

of V(1) then dim((L(m));—,) = n.For 0 < h < n denote
_ -1 —1
mp =m H Al’,alqkl”_l H Ai»anqkn-m_i ’
A )

We have different cases:

(1) al/an ¢ {q:t(kl+kn+rz—l)’ qk,l—kl+n—l’ qk,l—kl+n—3’ o qAn—)Ll—n+1}.
From Remark 2.16, the n + 1 monomials m, for O < h < n appearin x, (L(m)) and
are distinct. So dim((L(m));—,) = n + 1 and L(m) is not a minimal affinization
of V().

() ai/a, =g P20 ith 1 £ H <n. Thenmy = mp_1.
From Remark 2.16, the n — 1 distinct monomials my, for h ¢ {H — 1, H} appear
in x4 (L(m)) with multiplicity 1 and m g appears in x4 (L (m)) with multiplicity 2.
So dim((L(m))y—n) = n+ 1 and L(m) is not a minimal affinization of V (&).
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(3) al/a _qkl+k,l+n 1
(4) an/a1 _ qk1+kn+n l

From Proposition 4.16, the character is the same in cases (3) and (4). So necessarily
these two cases give a minimal affinization with x (L(m)) = x (V (1)).Sofor A, A, > O,
L(m) is a minimal affinization of V (A1 A1 + AxA,) if and only if m = X{ x{"
with ay /a, = qA1+An+n—1 oray/a; = q)»1+)»;1+n—1.

Now we suppose that g is general and consider J C [ such that gy is of type
Ay, 2 <r < n.Denote by i, j € J the two extreme nodes of J. We suppose that we
can decompose I = I; U J U I; such that [; U {i} and I; U {j} are connected, and
Vk € I;, k' € J —{i}, Ciw =0and Vk € I}, K e J—{j}, Crx = 0. Observe that I;
or /; may be empty and if J is of type A there is always such a decomposition.

Proposition 6.9. Let L(m) be a minimal affinization of V(X) such that 1;, X; > 1 and
fork € J —{i, j}, Ak = 0. Then one of the two following condition holds:

aj )»i+)»j+r71 aj ).,'+)»j+}’71

— =gq; or — =gq; .
a; a;

Proof. We can suppose in the proof that g; = ¢; = ¢.Suppose thata; /a; # g=*i+hi+r+D,

NotethatA—>"; . ; ax € P*.Itfollows from Lemma4.5 with J and the above discussion

that dim((L(m)))\_zkEJ o) = 7+ 1. Let us define

M = m~ EYiED _)({j}UIj)).

Tqu+)LJ+m 1 aia ;1(1/1/[
L(M) is an affinization of V(X). Let us prove that [L(M)] < [L(m)] (which is a
contradiction). Let w < L. If w < A — Zke 7 a it follows from Lemma 4.5 with J that
dim((L(M));.-3,_, o) < dim((L(m))y—3, _, &) As for J CI A= epar ¢ P*
except for J'=J or J=0, wegetm,_s a (L(M)) < m_y. _, o (L(m)). Otherwise it
follows from Lemma 4.5 that dim((L(M)),,) = dim((L(m)),,) as (M)~ @YD= =
(m) = GUD=UD and (M)~ LYUD=D = ¢ Rjhjhm—] L1 (m~ (YD 50 my, (L
q! aia;

(M)) =m,(L(m)). O

Letg oftype B, (n > 2), A = AMw1+A,wn (A1, Ay, > Dand u = ap +op+-- - + .

Letm = X;ll)alX(") .For 0 < h < n denote

_ —1 —1
mp=m H Ai’aqulﬂ'—] H Ai,a,,qzkn’f”"—’"
A .

We have (L(m))y—, = @OShSn(L(m))mh. Let us study the different cases:

(1) al/an ¢ {qi(kl+2kn+n)’ q2)\n—k1+n’ qZAn—A1+n—2’ o qZAn—Al—n+2}. From Remark
2.16 the n + 1 monomials m, for 0 < h < n appear in x,(L(m)) and are distinct.
So dim((L(m)))—u) = n+1.

) aifa, = g*» M2 2H with 1 % H < n. Then my = mpy_,. From
Remark 2.16, the n — 1 distinct monomials mj, for h ¢ {H — 1, H} appear in
Xg (L (m)) with multiplicity 1 and m g appears in x, (L (m)) with multiplicity 2. So
dim((L(m)))—) = n+1.
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(3) ai/ay = ¢****" Then dim((L(m));—,) = n. Indeed, we see as for the proof
of point (3) of Lemma 5.1 that for m’ € M(L(m)), if vi(m'm~") > 1 then
Vi a1gh m'm=Y > 1. So myg ¢ M(L(m)) and from Remark 2.16 my, ..., mpy
appear in x4 (L (m)) with multiplicity 1.

) ay/ay = g Asin case (3), dim((L(m))i—p) = n.

From Proposition 4.16, the character is the same in cases (3) and (4).

Proposition 6.10. For g of type B,, withn > 2 and ,, 1, > 0, L(m) is a minimal aff-
inization of V(A A1 + A, A,) if and only if m = xH xm A+2hytn

oy X with ay/a, = q
A +2A,+n

oray/a; =q

Proof. If m’ satisfies (1) or (2) and m satisfies (3) or (4), then dim((L(m))r—un)
< dim((L(m"))5—,) and for A" < X if there is j € I such that v; (A" — 1) = 0 then

dim((L(m)),) =dim((L(m"));)
. 1
=dlm(WA(,,)1)A1A1—Zk<j we O —Aa)
X dim(WA(;'?l),\,lAn—zbj v O =R)ag )+

As we have the same character in situations (3) and (4), they correspond necessarily to
minimal affinizations. 0O

Now we suppose that g is general and consider J C I such that g; is of type By,
2 < r < n.Denote by i, j € J the two extreme nodes of J. We suppose that we
can decompose I =1; U J U I such that I; U {i} and I; U {j} are connected, and
Vk e I, k' € J —{i},Cxy =0and Vk € Ij, k' € J —{j}, Crp = 0. Observe that I;
or /; may be empty and if J is of type B> there is always such a decomposition.

Proposition 6.11. Let L(m) be a minimal affinization of V (L) such that A;, ».; > 1 and
fork € J —{i, j}, \x = 0. Then one of the two following condition holds:

a; )»,'+2)\.j+r aj )\i+2)\j+r
— =(: or — = (: .

i i
aj a;

The proof is analogous to proof of Proposition 6.9.
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