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Abstract: The infinite matrix ‘Schwartz’ group G−∞ is a classifying group for odd
K-theory and carries Chern classes in each odd dimension, generating the cohomo-
logy. These classes are closely related to the Fredholm determinant on G−∞. We show
that while the higher (even, Schwartz) loop groups of G−∞, again classifying for odd
K-theory, do not carry multiplicative determinants generating the first Chern class, ‘dres-
sed’ extensions, corresponding to a star product, do carry such functions. We use these
to discuss Bott periodicity for the determinant bundle and the eta invariant. In so doing
we relate two distinct extensions of the eta invariant to self-adjoint elliptic operators and
to elliptic invertible suspended families and show that the corresponding τ invariant is
a determinant in this sense.
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Introduction

The Fredholm determinant is a character for the group of invertible operators of the
form Id +T with T of trace class on a Hilbert space. Transferred to invertible operators
of the form Id +A with A smoothing on the compact fibres of a fibration it induces the
determinant bundle of families of elliptic pseudodifferential operators. For suspended
families of smoothing operators, depending in a Schwartz fashion on an even number of
Euclidean parameters, we introduce an adiabatic determinant with similar topological
properties and use it to prove periodicity properties for the determinant bundle. The
corresponding suspended eta invariants are also discussed and in a subsequent paper
will be used to describe cobordism of the determinant bundle in a pseudodifferential
setting, extending the result of Dai and Freed [6] that the eta invariant in the interior
defines a trivialization of the determinant bundle on the boundary.

The basic notion of determinant is that on finite rank matrices. If M(N ,C) is the
algebra of N × N complex matrices then the determinant is the entire (polynomial)
multiplicative map

det : M(N ,C) −→ C, det(AB) = det(A) det(B),

which is determined by the condition on its derivative at the identity

d

ds
det(Id +s A)

∣
∣
s=0 = Tr(A), A ∈ M(N ,C).
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It has the fundamental property that det(A) �= 0 is equivalent to the invertibility of A,
so

GL(N ,C) = {A ∈ M(N ,C); det(A) �= 0} = det−1(C∗).

As is well-known, such a map into C
∗ determines, through the winding number, an

integral 1-cohomology class:

α(c) = wn(det : c −→ C
∗), α ∈ H1(GL(N ,C);Z). (1)

Conversely for any path-connected space

H1(X;Z) ≡ {α : π1(X) −→ Z; α(c1 ◦ c2) = α(c1) + α(c2)},
so each integral 1-cohomology class may be represented by a continuous function f :
X −→ C

∗ such that α(c) is the winding number of f restricted to a curve representing
c. Even if X is a group and the class is invariant, it may not be possible to choose this
function to be multiplicative.

Each integral 1-cohomology class on X may also be represented as the obstruction to
the triviality of a principal Z bundle over X. Such a bundle, with total space P, always
admits a ‘connection’ in the sense of a map h : P −→ C such that h(np) = h(p) + n
for the action of n ∈ Z. Given appropriate smoothness, the function on X associated to
the connection, f = exp(2π ih), fixes the obstruction 1-class as a deRham form

α = 1

2π i
f −1d f = dh.

In particular the triviality of the Z-bundle is equivalent to the existence of a continuous
(normalized) logarithm for f, that is a function l : X −→ C such that h−φ∗l is locally
constant, where φ : P −→ X is the bundle projection.

Returning to the basic case of the matrix algebra and GL(N ,C), these spaces can be
naturally included in the ‘infinite matrix algebra’ which we denote abstractly�−∞. For
the moment we identify

�−∞ = {a : N
2 −→ C; sup

i, j∈N

(i + j)k |ai j | <∞ ∀ k ∈ N}.

The algebra structure is just the extension of standard matrix multiplication

(ab)i j =
∞
∑

l=1

ailbl j .

Now, although M(N ,C) −→ �−∞ is included as the subalgebra with ai j = 0 for
i, j > N , for the determinant this is not natural, in part because �−∞ is non-unital.
Namely, we consider instead the isomorphic space Id +�−∞ which may be identified
with �−∞ with the product

a ◦ b = a + b + ab.

Then the inclusion

M(N ,C) 
 a �−→ (Id−πN ) + πN aπN
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is multiplicative and the determinant is consistent for all N with the Fredholm determi-
nant which is the entire multiplicative function

detFr : Id +�−∞ −→ C

satisfying the normalization

d

ds
detFr(Id +sa)

∣
∣
s=0 = Tr(a) =

∞
∑

i=1

aii .

Again for a ∈ �−∞ the condition detFr(Id +a) �= 0 is equivalent to the existence of an
inverse Id +b, b ∈ �−∞ and this defines the topological group

G−∞ = {Id +a; a ∈ �−∞, detFr(Id +a) �= 0}
in which the GL(N ,C) are included as subgroups. Since these determinants are consistent
we generally drop the distinction between the finite and Fredholm determinants.

Now, G−∞ is a classifying group for odd K-theory,

K 1(X) = 	0{ f : X −→ G−∞},
where the maps can be taken to be either continuous or smooth. As such,

	l(G
−∞) =

{

{0} l even
Z l odd.

The odd Chern forms (see for example [15]),

β2k−1 = 1

(2π i)k
(k − 1)!
(2k − 1)! Tr[((Id +a)−1da)2k−1], k ∈ N, (2)

give an explicit isomorphism

h2k−1 : 	2k−1(G
−∞) 
 [ f ] �−→

∫

S2k−1
f ∗β2k−1 ∈ Z, (3)

where [ f ] ∈ 	2k−1(G−∞) is represented by a smooth map f : S
2k−1 −→ G−∞. The

cohomology classes [β2k−1] ∈ H2k−1(G−∞);C) generate H∗(G−∞;C) as an exterior
algebra over C,

H∗(G−∞;C) = �C(β1, β3, . . . , β2k−1, . . .).

However, as noted by Bott and Seeley in [5], even though they give integers when
integrated over the corresponding spherical homology class, the classes [β2k−1] are
not all integral. When k = 1, the isomorphism (3) shows that as in the case of the
matrix groups, a loop along which the winding number of the determinant is 1 generates
	1(G−∞) and H1(G−∞) is generated by the deRham class

α = 1

2π i
Tr((Id +a)−1da). (4)

Bott periodicity corresponds to the fact that the (reduced) loop groups of G−∞ are
also classifying spaces for odd or even K-theory. Consistent with the ‘smooth’ structure
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championed here, we consider loop groups of ‘Schwartz’ type. In fact we can first
identify �−∞ above as the expansion of an operator with respect to the eigenvectors of
the harmonic oscillator on R

n to identify

�−∞ ←→ �−∞(Rn) = S(R2n),

where the product on S(R2n) is the operator product

(ab)(x, y) =
∫

Rn
a(x, z)b(z, y)dz.

With this identification the loop groups become

G−∞
sus(p)(R

n) = { f : R
p −→ G−∞(Rn); f = Id +a, a ∈ S(Rp+2n)}.

Thus G−∞
sus(p) is a classifying group for K-theory of the parity opposite to that of p. In

fact we may regard G−∞
sus(p) as classifying for the groups K−p−1 and Bott periodicity as

giving the identification between these for all even and all odd orders.
The analogues of the forms (2) are given by

β
(p)
2k−1−p( f ) =

∫

Rp
f ∗β2k−1, p ≤ 2k − 1, k ∈ N.

For p = 1, this gives the even forms

β
(1)
2k = 1

(2π i)k+1

k!
(2k)!

∫

R

Tr

[

(a−1da)2ka−1 da

dτ

]

dτ, k ∈ N0,

where τ is the suspension parameter (cf.[15]).
It is equally possible to use the eigenbasis of a Laplacian on the sections of a vector

bundle over a compact Riemannian manifold without boundary (or of any self-adjoint
elliptic pseudodifferential operator of positive order) to identify�−∞ with�−∞(X; E),
the space of smoothing operators. Then the loop groups are realized as

G−∞
sus(p)(X; E) =

{ f : R
p −→ G−∞(X; E); f = Id +a, a ∈ S(Rp × X × X;Hom(E))}.

Here, the space of Schwartz sections is defined for any vector bundle which is the pull-
back to R

p × Z of a vector bundle over a compact manifold Z .
Now, the basic issue considered here is the existence of a determinant on the spaces

G−∞
sus(2k). One can simply look for a smooth multiplicative function which generates the

1-dimensional homology through the winding number formula (1). In what is really the
opposite side of the ‘Miracle of the loop group’ of Pressley and Segal [17] there is in fact
no such function as soon as k > 0. As we show below, there is a multiplicative function
closely related to the determinant but which has a global logarithm (if k > 0).However,
as we also show below, there is a determinant function, the ‘adiabatic determinant’
in this sense, provided the group G−∞

sus(2k) is ‘dressed’ by replacing it by an extension

with respect to a star product, of which G−∞
sus(2k) is the principal term. This extension is

homotopically trivial, i.e. still gives a classifying space for K-theory.
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More precisely, consider the space �k
sus(2n)(X; E)[[ε]] of formal power series

∞
∑

µ=0

aµε
µ, aµ ∈ �k

sus(2n)(X; E)

(see (2.9) for the definition) equipped with the star-product

(A ∗ B)(u) =
⎛

⎝

∞
∑

µ=0

aµε
µ

⎞

⎠ ∗
( ∞

∑

ν=0

bνε
ν

)

=
∞
∑

µ=0

∞
∑

ν=0

εµ+ν

⎛

⎝

∞
∑

p=0

iε p

2p p!ω(Dv, Dw)
paµ(v)bν(w)

⎞

⎠

∣
∣
∣
∣
∣
∣
v=w=u

(5)

for A, B ∈ �∗
sus(2n)(X; E)[[ε]], where ω is the standard symplectic form on R

2n . This
gives a corresponding group

G−∞
sus(2n)(X; E)[[ε]] = {Id +Q; Q ∈ �−∞

sus(2n)(X; E)[[ε]],
∃ P ∈ �−∞

sus(2n)(X; E)[[ε]], (Id +Q) ∗ (Id +P) = Id ∈ �0
sus(2n)(X; E)[[ε]]}

with group law given by the star-product (5). Then G−∞
sus(2n)(X; E) is a retraction of

G−∞
sus(2n)(X; E)[[ε]].
Our first main result is the following.

Theorem 1. There is a multiplicative ‘adiabatic’ determinant function

deta : G−∞
sus(2n)(X; E)[[ε]] −→ C

∗,
deta(A ∗ B) = deta(A) deta(B) ∀ A, B ∈ G−∞

sus(2n)(X; E)[[ε]],

which generates H1(G−∞
sus(2n)(X; E)[[ε]]).

This is proven in §3 by considering a corresponding determinant for mixed isotropic
operators and taking the adiabatic limit.

Given a (locally trivial) fibration of compact manifolds

Z M

φ

��
B

(6)

and a family of elliptic 2n-suspended operators

D ∈ �k
sus(2n)(M/B; E, F)

with vanishing numerical index, one can construct an associated determinant line bundle
Deta(D)→ B as described in §3, the definition being in terms of (a slightly extended
notion of) principal bundles; a related construction can be found in [17]. More generally,
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this construction can be extended to a fully elliptic family of product-suspended operators
(see the Appendix and §2 for the definition)

D ∈ �k,k′
psus(2n)(M/B; E, F)

with vanishing numerical index. Our second result is to relate this determinant line
bundle with Quillen’s definition via Bott periodicity. Let D0 ∈ �1(M/B; E, F) be a
family of elliptic operators with vanishing numerical index. Define, by recurrence for
n ∈ N, the fully elliptic product-suspended families by

Dn(t1, . . . , tn, τ1, . . . , τn) =
(

i tn − τn D∗
n−1

Dn−1 i tn + τn

)

∈ �1,1
psus(2n)(M/B; 2n−1(E ⊕ F)),

where 2n−1(E ⊕ F) is the direct sum of 2n−1 copies of E ⊕ F. In §5 we prove

Theorem 2 (Periodicity of the determinant line bundle). For each n ∈ N, there is an
isomorphism Deta(Dn) ∼= Det(D0) as line bundles over B.

In §6, we investigate the counterpart of the eta invariant for the determinant of
Theorem 1. After extending the definition given in [13] to product-suspended opera-
tors, we relate this invariant (denoted here ηsus) to the extension of the original spectral
definition of Atiyah, Patodi and Singer given by Wodzicki [21]. Namely consider

ηz(A) =
∑

j

sgn(a j )|a j |−z, (7)

where the a j are the eigenvalues of A in order of increasing |a j | repeated with multipli-
city.

Theorem 3. If A ∈ �1(X; E) is an invertible self-adjoint elliptic pseudodifferential
operator and A(τ ) = A + iτ ∈ �1,1

psus(X; E) is the corresponding product-suspended
family then

ηsus(A(τ )) = regz=0 ηz(A) = η(A) (8)

is the regularized value at z = 0 of the analytic extension of (7) from its domain of
convergence.

The eta invariant for product-suspended operators is, as in the suspended case dis-
cussed in [13], a log-multiplicative functional

ηsus(AB) = ηsus(A) + ηsus(B), A ∈ �k,k′
psus(X; E), B ∈ �l,l ′

psus(X; E).

Finally, in §7, we show (see Theorem 4) that in the appropriate context, this eta
invariant can be interpreted as the logarithm of the determinant of Theorem 1.

To discuss these results, substantial use is made of various classes of pseudodiffe-
rential operators, in particular product-type suspended operators and mixed isotropic
operators. An overview of the various classes used in this paper is given in §2 and some
of their properties are discussed in the Appendix.
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1. Determinant Line Bundle

Quillen in [18] introduced the determinant line bundle for a family of ∂ operators. Shortly
after, Bismut and Freed in [4] and [3] generalized the definition to Dirac operators. We
will show here that this is induced by the Fredholm determinant, as a representation
of the group G−∞. To do so we need to slightly generalize the standard notion of a
principal bundle.

1.1. Bundles of groups.

Definition 1.1. Let G be a topological group (possibly infinite dimensional). Then a
fibration G → B over a compact manifold B with typical fibre G is called a bundle
of groups with model G if its structure group is contained in Aut(G), the group of
automorphisms of G.

The main example of interest here is the bundle of smoothing groups, with fibre
G−∞(Zb) on the fibres of a fibration (6). In this case the group is smooth and the bundle
inherits a smooth structure.

Definition 1.2. Let φ : G −→ B be a bundle of groups with model G, then a (right)
principal G-bundle is a smooth fibration π : P −→ B with typical fibre G together
with a continuous (or smooth) fibrewise group action

h : Pb × Gb 
 (p, g) �−→ p · g−1 ∈ Pb

which is continuous (or smooth) in all variables, locally trivial and free and transitive on
the fibres. An isomorphism of principal G-bundles is an isomorphism of the total spaces
which intertwines the group actions.

The fibre actions combine to give a continuous map from the fibre product

P ×B G = {(p, g) ∈ P × G;π(p) = φ(g)} −→ P.
Definition 1.2 is a generalization of the usual notion of a principal bundle for a group

G in the sense that a principal G-bundle π : P −→ B is naturally a principal G-bundle
for the trivial bundle of groups G = G× B → B.Any bundle of groups G → B is itself
a principal G-bundle and should be thought of as the trivial principal G-bundle. Thus a
principal G-bundle P → B is trivial, as a principal G-bundle, if it is isomorphic as a
principal G-bundle to G.

1.2. Classifying principal bundles.

Lemma 1.3. If G has a topological classifying sequence of groups

G −→ E G −→ B G (1.1)

(so E G is weakly contractible) which is a Serre fibration, G is a bundle of groups
modelled on G with structure group H ⊂ Aut(EG,G), the group of automorphisms of
EG restricting to automorphisms of G, then, principal G-bundles over compact bases
are classified up to G-isomorphism by homotopy classes of global sections of a bundle
G(B G) of groups with typical fibre B G.
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Proof. The assumption that the structure group of G is a subgroup of Aut(EG,G) allows
the bundle of groups G to be extended to a bundle of groups with model E G. Namely
taking an open cover of X by sets over which G is trivial, the fibres may be extended
to E G, the transition maps then extend to the larger fibres and the cocycle condition
continues to hold. Denote the resulting bundle of groups, G(E G) ⊃ G,with typical fibre
E G. The quotient bundle

G(B G) = G(E G)/G

is a bundle of groups with typical fibre B G and structure group Aut(E G,G) acting on
B G.

Similarly, any (right) principal G-bundle, P, has an extension to a principal G(E G)-
bundle, P(E G),

P(E G)x = Px × G(E G)x/Gx , (p, e) ≡ (pg−1, eg−1).

Since the group E G is, by hypothesis, weakly contractible, and the base is compact, the
extended bundle P(E G) has a continuous global section. As in the case of a traditional
principal bundle, the quotient of this section by the fibrewise action of G gives a section of
G(B G). Since all sections of a bundle with contractible fibre are homotopic, the section
of G(B G) is well-defined up to homotopy. Bundles isomorphic as principal G bundles
give homotopic sections and the construction can be reversed as in the standard case.
Namely, given a continuous section u : B −→ G(B G) we may choose a ‘good’ open
cover, {Ui } of B, so that each of the open sets is contractible and G is trivial over them. By
assumption, the sequence (1.1) is a Serre fibration, and the fibre is weakly contractible,
so it follows that u lifts to a global section ũ : B −→ G(E G). The subbundle, given by
the fibres G ⊂ E G in local trivializations, is well-defined and patches to a principal G
bundle from which the given section can be recovered. ��

1.3. Associated bundles. As in the usual case there is a notion of a vector bundle asso-
ciated to a principal G-bundle. Suppose given a fixed (real or complex) vector space V
and a smooth bundle map r : G × V → B × V which is a family of representations,

rb : Gb × V → V

of the Gb. Then, from P and r, one can form the associated vector bundle P ×r V with
fibre

(P ×r V )b = Pb × V/ ∼b,

where ∼b is the equivalence relation

(pg, rb(g
−1, v)) ∼b (p, v).

1.4. Det(P). Consider again the fibration of closed manifolds (6) and let

D ∈ �m(M/B;E), D : C∞(M; E+)→ C∞(M; E−) (1.2)
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be a family of elliptic operators parameterized by the base B. Then

G−∞(M/B; E+)

��
B

with fibres

G−∞(Zb; E+
b ) =

{

Id +Q; Q ∈ �−∞(Zb; E+(b)), Id +Qb is invertible
}

is a bundle of groups, with model G−∞. To the family D we associate the bundle

G−∞ P(D)

��
B

(1.3)

of invertible perturbations of D by smoothing operators where the fibre at b is

Pb(D) =
{

Db + Qb; Qb ∈ �−∞(Zb; E+, E−), Db + Qb is invertible
}

.

The assumption that the numerical index vanishes implies that Pb(D) is non-empty. In
fact, for each b ∈ B, the group G−∞(Zb; E+(b)) acts freely and transitively on the
right on Pb(D) to give P(D) the structure of a principal G−∞(M/B; E+)-bundle. On
the other hand, the Fredholm determinant gives a smooth map

det : G−∞ −→ C
∗ ∼= GL(1,C)

which restricts to a representation in each fibre.
Thus the construction above gives a line bundle associated to the principal bundle

(1.3); for the moment we denote it Det(P).

1.5. Quillen’s definition.

Proposition 1.4. For an elliptic family of pseudodifferential operators of order m > 0
with vanishing numerical index, the determinant line bundle of Quillen, Det(D), is
naturally isomorphic to the line bundle, Det(P), associated to the bundle (1.3) and the
determinant as a representation of the structure group.

Proof. First we recall Quillen’s definition (following Bismut and Freed [3]). Since it
extends readily we consider a pseudodifferential version rather than the original context
of Dirac operators. So, for a fibration as in (6), let D be the smooth family of elliptic
pseudodifferential operators of (1.2). We also set E±(b) = E

∣
∣

Zb
,E±b = C∞(Zb, E±(b))

and consider the infinite dimensional bundles E± over B.
By assumption, Db has vanishing numerical index. Choosing inner products on E±

and a positive smooth density on the fibres of M allows the adjoint D∗ of D to be defined.
Then, for each b ∈ B, D∗

b Db : E+
b −→ E+

b and Db D∗
b : E−b −→ E−b have a discrete

spectrum with nonnegative eigenvalues. They have the same positive eigenvalues with
Db an isomorphism of the corresponding eigenspaces. Given λ > 0, the sets

Uλ =
{

b ∈ B; λ is not an eigenvalue of D∗
b Db

}
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are open and H+
[0,λ) ⊂ E+ and H−

[0,λ) ⊂ E−, respectively spanned by the eigenfunctions
of D∗

b Db and of Db D∗
b with eigenvalues less than λ, are bundles over Uλ of the same

dimension, k = k(λ). Now, H[0,λ) = H+
[0,λ) ⊕ H−

[0,λ) is a superbundle to which we
associate the local determinant bundle

Det(H[0,λ)) = (∧kH+
[0,λ))

−1 ⊗ (∧kH−
[0,λ)).

A linear map P : H+
[0,λ) → H−

[0,λ) induces a section

det(P) = ∧m P : ∧mH+
[0,λ) −→ ∧mH−

[0,λ) (1.4)

of Det(H[0,λ)).
For 0 < λ < µ,H[0,µ) = H[0,λ) ⊕H(λ,µ) over Uλ ∩ Uµ, where H(λ,µ) = H+

(λ,µ) ⊕
H−
(λ,µ) and H+

(λ,µ) and H−
(λ,µ) are respectively the local vector bundles spanned by the

eigenfunctions of D∗
b Db and Db D∗

b with associated eigenvalues between λ andµ. Thus,
if D(λ,µ) denotes the restriction of D to H+

(λ,µ), then (1.4) leads to transition maps

φλ,µ : Det(H[0,λ)) 
 s �−→ s ⊗ det(D(λ,µ)) ∈ Det(H[0,µ)) over Uλ ∩ Uµ.
The cocycle conditions hold over triple intersections and the resulting bundle, which
is independent of choices made (up to natural isomorphism), is Quillen’s determinant
bundle, Det(D).

Let Qb ∈ �−∞(Zb; E+, E−), for b ∈ U ⊂ B open, be a smooth family of pertur-
bations such that Db + Qb is invertible; it therefore gives a section of P over U . The
associated bundle Det(P) is then also trivial over U with

U 
 b −→ (Db + Qb, 1)

being a non-vanishing section. For λ > 0, let P[0,λ) be the projection onto H[0,λ), and
denote by P+

[0,λ) and P−[0,λ) the projections onto H+
[0,λ) and H−

[0,λ) respectively. Then, on

U ∩ Uλ for λ large enough, P−[0,λ)(Db + Qb)P+
[0,λ) is invertible, and one can associate to

the section Db + Qb of P the isomorphism

FU ,λ : Det(P) 
 [(Db + Qb, c)] �−→
det(P−[0,λ)(Db + Qb)P

+
[0,λ)) det(A(Qb, λ))c ∈ Det(D), (1.5)

where det(P−[0,λ)(Db + Qb)P+
[0,λ)) is defined by (1.4),

A(Qb, λ) = (Db + P−[0,λ)Qb P+
[0,λ))

−1(Db + Qb) ∈ G−∞
b , (1.6)

and det(A(Qb, λ)) ∈ C
∗ is the determinant defined on G−∞

b .

The map FU ,λ induces a global isomorphism of the two notions of determinant bundle
since it is independent of choices. Indeed, it is compatible with the equivalence relation
∼b in the sense that for each g ∈ G−∞(Zb; E+) such that both P−[0,λ)(Db + Qb)P+

[0,λ)
and P−[0,λ)(Db + Qb)g P+

[0,λ) are invertible,

FU ,λ((D + Qb)g, det(g−1)c) = FU ,λ((D + Qb), c).
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It is also compatible with increase of λ to µ in that φλ,µ ◦ FU ,λ = FU ,µ on U ∩Uλ∩Uµ.
This is readily checked

φλ,µ ◦ FU ,λ(Db + Qb, c) = φλ,µ[det(P−[0,λ)(Db + Qb)P
+
[0,λ)) det(A(Qb, λ))c]

= det(A(Qb, λ)) det(P−[0,λ)(Db + Qb)P
+
[0,λ))⊗ det(D+

(λ,µ))c

= det(A(Qb, λ)) det(P−[0,µ)(Db + P−[0,λ)Qb P+
[0,λ))P

+
[0,µ))c

= det(A(Qb, λ)) det(P−[0,µ)(Db + Qb)P
+
[0,µ))×

det((Db + P−[0,µ)Qb P+
[0,µ))

−1(Db + P−[0,λ)Qb P+
[0,λ)))c

= det(A(Qb, µ)) det(P−[0,µ)(Db + Qb)P
+
[0,µ))c

= FU ,µ(Db + Qb, c). (1.7)

��

1.6. Metric on Det(P). The Quillen metric has a rather direct expression in terms of
the definition of the determinant bundle as Det(P). Namely, if (Db + Qb) is a section
of P over the open set U ⊂ B, then

|(Db + Qb, 1)|Q = exp

(

−1

2
ζ ′b(0)

)

, (1.8)

where ζb is the ζ -function associated to the self-adjoint positive elliptic operator (Db +
Qb)

∗(Db + Qb) as constructed by Seeley [19]. When Ab = Id +Rb ∈ G−∞
b with

Rb : H+
[0,λ) → H+

[0,λ) for some λ > 0, Proposition 9.36 of [2], adapted to this context,
shows that

|(Db + Qb)Ab|Q = | det(Ab)| |Db + Qb|Q , (1.9)

but then by continuity the same formula follows in general. Moreover, in the form (1.8),
Quillen’s metric generalizes immediately to the case of an arbitrary family of elliptic
pseudodifferential operators with vanishing numerical index.

1.7. Primitivity.

Lemma 1.5. The determinant bundle is ‘primitive’ in the sense that there is a natural
isomorphism

Det(P Q) � Det(P)⊗ Det(Q) (1.10)

for any elliptic families Q ∈ �m(M/B; E, F), P ∈ �m′
(M/B; F,G) of vanishing

numerical index.

Proof. Let P and Q denote the principal bundles of invertible smoothing perturbations
of P and Q. Let Pb + Rb and Qb + Sb be local smooth sections over some open set U.
Certainly Lb = (Pb + Rb)(Qb + Sb) is a local section of the principal bundle for P Q and
(Lb, 1) as a local section of Det(P Q)may be identified with the product of the sections
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(Pb + Rb, 1) and (Qb, Sb, 1) as a section of Det(P)⊗Det(Q). Changing the section of
P to (Pb + Rb)gb modifies the section Lb to Lbg′b, g′b = (Qb + Sb)

−1gb(Qb + Sb). Since

det(g′b) = det(gb),

the identification is independent of choices of sections and hence is global and natural.
��

Later, it will be convenient to restrict attention to first order elliptic operators. This
is not a strong restriction since for k ∈ Z, let D ∈ �k(M/B; E, F) be a smooth family
of elliptic pseudodifferential operators with vanishing numerical index. Let �M/B ∈
�2(M/B; F) be an associated family of Laplacians, so that �M/B + Id is a family of
invertible operators.

Corollary 1.6. The family D′ = (�M/B + Id)− k−1
2 D ∈ �1(M/B; E, F) has determi-

nant bundle isomorphic to the determinant bundle of D.

2. Classes of Pseudodifferential Operators

Since several different types, and in particular combinations of types, of pseudodiffe-
rential operators are used here it seems appropriate to quickly review the essentials.

2.1. �m(X; E, F). On a compact manifold without boundary the ‘traditional’ algebra
(so consisting of ‘classical’ operators) may be defined in two steps using a quantization
map. The smoothing operators acting between two bundles E and F may be identified
as the space

�−∞(X; E, F) = C∞(X2;Hom(E, F)⊗�R). (2.1)

Here Hom(E, F)x,x ′ = Ex ⊗ F ′
x ′ is the ‘big’ homomorphism bundle and � = π∗R� is

the lift of the density bundle from the right factor under the projection πR : X2 −→ X.
The space �m(X; E, F) may be identified with the conormal sections, with respect to
the diagonal, of the same bundle

�m(X; E, F) = I m
cl (X

2,Diag;Hom(E, F)⊗�R). (2.2)

More explicitly Weyl quantization, given by the inverse fibre Fourier transform from
T ∗X to T X,

qg : ρ−mC∞(T ∗X;π∗ hom(E, F)) 
 a �−→
(2π)−n

∫

T ∗X
χ exp (iv(x, y) · ξ)a(m(x, y), ξ)dξdgy ∈ �m(X; E, F) (2.3)

is surjective modulo�−∞(X; E, F).Here a Riemann metric, g, is chosen on X and used
to determine a small geodesically convex neighbourhood U of the diagonal in X2 which
is identified as a neighbourhood U ′ of the zero section in T X by mapping (x, y) ∈ U to
m(x, y), the mid-point of the geodesic joining them in X and to v(x, y) ∈ Tm(x,y)X, the
tangent vector to the geodesic at that mid-point in terms of the length parameterization
of the geodesic from y to x . The cut-off χ ∈ C∞c (U ′) is taken to be identically equal
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to 1 in a smaller neighbourhood of the diagonal. Connections on E and F are chosen
and used to identify Hom(E, F) over U with the lift of hom(E, F) to U ′, dξ is the
fibre density from g on T ∗X and dgy is the Riemannian density on the right (in the
y variable). The symbol a is a classical symbol of order k on T ∗X realized as ρ−ka′,
where a′ ∈ C∞(T ∗X) with T ∗X the compact manifold with boundary arising from the
radial compactification of the fibres of T ∗X and ρg = |ξ |−1

g outside a compact set in
T ∗X is a boundary defining function for that compactification.

Then qg(a) ∈ �−∞(X; E, F) if and only if a ∈ Ċ∞(T ∗X) is a smooth function
vanishing to all orders on the boundary of T ∗X , i.e. is a symbol of order −∞. This
leads to the short exact ‘full symbol sequence’

�−∞(X; E, F) −→ �∞(X; E, F)
σg−→ C∞(S∗X; hom(E, F))[[ρ, ρ−1]] (2.4)

with values in the Laurent series in ρ (i.e. formal power series in ρ with finite factors of
ρ−1). The leading part of this is the principal symbol

�m−1(X; E, F) −→ �m(X; E, F)
σm−→ C∞(S∗X; hom(E, F)⊗ Rm), (2.5)

where Rm is the trivial bundle with sections which are homogeneous of degree m over
T ∗X \0. Pseudodifferential operators act from C∞(X; E) to C∞(X; F) and composition
gives a filtered product,

�m(X; F,G) ◦�m′
(X; E, F) ⊂ �m+m′

(X; E,G), (2.6)

which induces a star product on the image spaces in (2.4),

a �g b = ab +
∞
∑

j=1

B j (a, b), (2.7)

where the B j are smooth bilinear differential operators with polynomial coefficients on
T ∗X lowering total order, in terms of power series, by j. The leading part gives the
multiplicativity of the principal symbol.

2.2. �m
sus(p)(X; E, F). There is a natural Fréchet topology on �m(X; E, F), corres-

ponding to the C∞ topology on the symbol and the kernel away from the diagonal. Thus,
smoothness of maps into this space is well-defined. The p-fold suspended operators are
a subspace

�m
sus(p)(X; E, F) ⊂ C∞ (

R
p;�m(X; E, F)

)

(2.8)

in which the parameter-dependence is symbolic (and classical). In terms of the identifi-
cation (2.2) this reduces to

�m
sus(p)(X; E, F) =

F−1
Rp

(

I M
cl,S(X

2 × R
p,Diag×{0};Hom(E, F)⊗�R)

)

, M = m +
p

4
. (2.9)

Here we consider conormal distributions on the non-compact space X2 × R
p but with

respect to the compact submanifold Diag×{0}; the suffix S denotes that they are to be
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Schwartz at infinity and then the inverse Fourier transform is taken in the Euclidean
variables R

p giving the ‘symbolic’ parameters. The shift of m to M is purely notational.
These kernels can also be expressed directly as in (2.3) with a replaced by

a ∈ ρ−m
(

T ∗X × Rp;π∗ hom(E, F)
)

. (2.10)

Composition, mapping and symbolic properties are completely analogous to the ‘unsus-
pended’ case. Note that we use the abbreviated notation for suffixes sus(1) = sus .

If D is a first order elliptic differential operator acting on a bundle on X then D + iτ ∈
�1

sus(X; E) is elliptic in this sense and invertible, with inverse in �−1
sus (X; E), if D is

self-adjoint and invertible. However this is not the case for general (elliptic self-adjoint)
D ∈ �1(X; E);we therefore introduce larger spaces which will capture these operators
and their inverses.

2.3. �m,m′
psus(p)(X; E, F). By definition in (2.9), before the inverse Fourier transform is

taken, the singularities of the ‘kernel’ are constrained to Diag×{0} ⊂ X2 × R
p. For

product-type (really partially-product-type corresponding to the fibration of X × R
p

with base R
p) the singularities are allowed to fill out the larger submanifold

X2 × {0} ⊃ Diag×{0}. (2.11)

Of course they are not permitted to have arbitrary singularities but rather to be conormal
with respect to these two, nested, submanifolds

�
m,m′
psus(p)(X; E, F) =

F−1
Rp

(

I M ′M
cl,S (X2 × R

p, X2 × {0},Diag×{0};Hom(E, F)⊗�R)
)

,

M = m +
p

4
, M ′ = m′ +

p

4
− n

2
. (2.12)

The space of classical product-type pseudodifferential operators is discussed succinctly
in an appendix below. Away from Diag×{0} the elements of the space on the right are
just classical conormal distributions at {0} × R

p, so if χ ∈ C∞(X2) vanishes near the
diagonal (or even just to infinite order on it)

K ∈ �m,m′
psus(p)(X; E, F) =⇒ χK ∈ ρ−m′C∞(Rp × X2;Hom(E, F)⊗�R) (2.13)

is just a classical symbol in the parameters depending smoothly on the variables in X2.

Conversely, if χ ′ ∈ C∞(X2) has support sufficiently near the diagonal then the kernel
is given by a formula as in (2.3),

χ ′K = (2π)−n
∫

T ∗X
χ exp (iv(x, y) · ξ)a(m(x, y), ξ, τ )dξdgy,

a ∈ (ρ′′)−m(ρ′)−m′C∞(S;π∗ hom(E, F)), S = [T ∗X × Rp; 0T ∗X × ∂Rp]. (2.14)

Here the space on which the ‘symbols’ are smooth functions (apart from the weight
factors) is the same compactification as in (2.10) but then blown up (in the sense of [11])
at the part of the boundary (i.e. infinity) corresponding to finite points in the cotangent
bundle. Then ρ′′ is a defining function for the ‘old’ part of the boundary and ρ′ for the
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new part, produced by the blow-up. Conversely (2.14) and (2.13) together (for a partition
of unity) define the space of kernels.

From the general properties of blow-up, if ρ ∈ C∞(T ∗X × Rp) is a defining function
for the boundary then ρ = ρ′ρ′′ after blow-up. From this it follows easily that

�m
sus(p)(X; E, F) ⊂ �

m,m
psus(p)(X; E, F). (2.15)

Again these ‘product suspended’ operators act from S(X×R
p; E) to S(X×R

p; F)
and have a doubly-filtered composition

�
m1,m′

1
psus(p)(X; F,G) ◦�m2,m′

2
psus(p)(X; E, F) ⊂ �

m1+m2,m′
1+m′

2
psus(p) (X; E,G). (2.16)

The symbol map remains, but now only corresponds to the part of the amplitude in (2.14)
at ρ′′ = 0,

�
m−1,m′
psus(p) (X; E, F) −→ �

m,m′
psus(p)(X; E, F)

σm−→ Sm,m′
psus(p)(X; E, F) (2.17)

with

Sm,m′
psus(d)(X; E, F) = C∞([S(T ∗ × R

p); 0× S
p−1]; hom(E, F)⊗ Rm,m′)

the space of smooth sections of a bundle over the sphere bundle corresponding to T ∗X×
R

p, blown up at the image of the zero section and with Rm,m′ a trivial bundle capturing
the weight factors.

The other part of the amplitude corresponds to a more global ‘symbol map’ called
here the ‘base family’,

�
m,m′−1
psus(p) (X; E, F) −→ �

m,m′
psus(p)(X; E, F)

βm′−→ C∞(Sp−1;�m(X; E, F)⊗ Rm′),

(2.18)

taking values in pseudodifferential operators on X depending smoothly on the parameters
‘at infinity’, i.e. in S

p−1 with the appropriate homogeneity bundle (over S
p−1).

These two symbol maps are separately surjective and jointly surjective onto pairs
satisfying the natural compatibility condition

σm(βm′(A)) = σm(A)
∣
∣
∂

(2.19)

that the symbol family, restricted to the boundary of the space on which it is defined, is
the symbol family of the base family.

An operator in this product-suspended class is ‘fully elliptic’ if both its symbol and
its base family are invertible. If it is also invertible then its inverse is in the corresponding
space with opposite orders. An elliptic suspended operator is automatically fully elliptic
when considered as a product-suspended operator using (2.15).
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2.4. �m
iso(2n,ε)(R

n). The suspension variables for these product-suspended operators
are purely parameters. However, for the adiabatic limit constructions here, on which the
paper relies heavily, we use products which are non-local in the parameters.

In the trivial case of X = {pt} we are dealing just with symbols above and the cor-
responding non-commutative product is the ‘isotropic’ algebra of operators on symbols
on R

2n, as operators on R
n, for any n. This is variously known as the Weyl algebra or

the Moyal product (although both often are taken to mean slightly different things). The
isotropic pseudodifferential operators of order k act on the Schwartz space S(Rn) and,
using Euclidean Weyl quantization, may be identified with the spaces ρ−kC∞(R2n).

Thus, in terms of their distributional kernels on R
2n, this space of operators is given by

essentially the same formula as (2.3),

qW : ρ−kC∞(R2n) 
 b �−→
qW (b)(t, t ′) = (2π)−n

∫

Rn
ei(t−t ′)·τb

(
t + t ′

2
, τ

)

dτ ∈ �−k
iso (R

n). (2.20)

This map is discussed extensively in [10]. In this case qW , with inverse σW , is an
isomorphism onto the algebra and restricts to an isomorphism of the ‘residual’ algebra
�−∞

iso (Rn) = qW (S(R2n)). The corresponding star product is the Moyal product.
The full product on symbols on R

2n may be written explicitly as

a ◦ω b(ζ ) = π−2n
∫

R8n
eiξ ·ξ ′+iη·η′+2iω(ξ ′,η′)a(ζ + ξ)b(ζ + η)|ωξ |n|ωη|n, (2.21)

where the integrals are not strictly convergent but are well defined as oscillatory integrals.
Here ω is the standard symplectic form on R

2n . By simply using linear changes of
variables, it may be seen that this product and the more general ones in which ω is
replaced by an arbitrary non-degenerate antisymmetric bilinear form on R

2n are all
isomorphic. In fact the product depends smoothly on ω as an antisymmetric bilinear
form, even as it becomes degenerate. When ω ≡ 0 the product reduces to the pointwise,
commutative, product of symbols. In fact it is not necessary to assume that the underlying
Euclidean space is even dimensional for this to be true; of course in the odd-dimensional
case the form cannot be non-degenerate and correspondingly there is always at least one
‘commutative’ variable.

The adiabatic limit here corresponds to replacing the standard symplectic form ω by
εω and allowing ε ↓ 0.As already noted, this gives a family of products on the classical
symbol spaces which is smooth in ε and is the commutative product at ε = 0.We denote
the resulting smooth family of algebras by �m

iso(2n,ε)(R
n).

2.5. �m,m′
iso(2n,ε)(X; E, F). Now, we may replace the parameterized product on the product-

suspended algebra by ‘quantizing it’ as in (2.21), in addition to the composition in X
itself. For the ‘adiabatic’ choice of εω this induces a one parameter family of quantized
products

[0, 1]ε ×�m1,m′
1

psus(2n)(X; F,G)×�m2,m′
2

psus(2n)(X; E, F) −→ �
m1+m2,m′

1+m′
2

psus(2n) (X; E,G).

(2.22)
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The suspended operators still form a subalgebra. The Taylor series as ε ↓ 0 is given by

(A ◦ε B)(u) ∼
∞
∑

k=0

(iε)k

2kk! ω(Dv, Dw)A(v)B(w)

∣
∣
∣
∣
v=w=u

. (2.23)

A more complete discussion of product suspended operators and the mixed isotropic
product may be found in the appendix.

2.6. �m,m′
psus(2n)(X; E, F)[[ε]]. This is the space of formal power series in ε with coeffi-

cients in �m,m′
psus(2n)(X; E, F). The product (2.23) projects to induce a product

�
m1,m′

1
psus(2n)(X; F,G)[[ε]] ×�m2,m′

2
psus(2n)(X; E, F)[[ε]] −→ �

m1+m2,m′
1+m′

2
psus(2n) (X; E,G)[[ε]]

(2.24)

which is consistent with the action on formal power series

�
m,m′
psus(2n)(X; E, F)[[ε]] 
 A : C∞(X; E)[[ε]] −→ C∞(X; F)[[ε]].

3. Adiabatic Determinant

Let E −→ X be a complex vector bundle over a compact manifold X. Consider the
infinite dimensional group

G−∞
sus(2n)(X; E) = {Id +Q; Q ∈ �−∞

sus(2n)(X; E), Id +Q is invertible}
of invertible 2n-suspended smoothing perturbations of the identity. A naive notion of
determinant would be given by using the 1-form

d log d(A) = Trsus(2n)(A
−1d A),

where

Trsus(2n)(B) = 1

(2π)2n

∫

R2n
Tr(B(t, τ ))dtdτ

is the regularized trace for suspended operators as defined in [13]. The putative deter-
minant is then given by

d(A) = exp

(∫ 1

0
Trsus(2n)

(

γ−1 dγ

ds

)

ds

)

, (3.1)

where γ : [0, 1] → G−∞
sus(2n)(X; E) is any smooth path such that γ (0) = Id and

γ (1) = A. Although d(A) is multiplicative, it is topologically trivial, in the sense that
for any smooth loop γ : S

1 → G−∞
sus(2n)(X; E), one has

∫

S1
Trsus(2n)

(

γ−1 dγ

ds

)

ds = 1

(2π)2n

∫

R2n

(∫

S1
Tr

(

γ−1 dγ

ds

)

ds

)

dt dτ = 0. (3.2)

So this is not a topological analogue of the usual determinant.
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3.1. Isotropic determinant. To obtain a determinant which generates the 1-dimensional
cohomology, we instead use the isotropic quantization of § B. At the cost of slightly
deforming the composition law on G−∞

sus(2n)(X; E), this determinant will be multiplica-
tive as well.

Notice first that because of the canonical identification

�
−∞,−∞
psus(2n) (X; E) = �−∞

sus(2n)(X; E)

there is no distinction between G−∞(X; E) and the group

G−∞,−∞
psus(2n) (X; E) = {Id +Q; Q ∈ �−∞,−∞

psus(2n) (X; E), Id +Q is invertible},
so in this context, we can interchangeably think in terms of suspended or product-
suspended operators. For ε ∈ [0, 1], we use the ◦ε-product of Theorem 5 to define the
group

G−∞
iso(2n,ε)(X; E) = {Id +Q; Q ∈ �−∞

sus(2n)(X; E), ∃ P ∈ �0,0
psus(2n)(X; E),

P ◦ε (Id +Q) = (Id +Q) ◦ε P = Id}. (3.3)

For ε = 0, we have the canonical group isomorphism

G−∞
iso(2n,0)(X; E) = G−∞

sus(2n)(X; E).

On the other hand, for ε > 0, the group G−∞
iso(2n,ε)(X; E) is isomorphic to G−∞ so that

it is possible to transfer the Fredholm determinant to it.

Proposition 3.1. For ε > 0, there is a natural multiplicative determinant

detε(A) : G−∞
iso(2n,ε)(X; E)→ C

∗

defined for A ∈ G−∞
iso(2n,ε)(X; E) by

detε(A) = exp

(∫ 1

0
Trε

(

γ−1 ◦ε dγ

ds

)

ds

)

,

where γ : [0, 1] → G−∞
iso(2n,ε)(X; E) is any smooth path with γ (0) = Id and γ (1) = A

so

d log detε(A) = Trε(A
−1 ◦ε d A).

Proof. To show that detε is well-defined and multiplicative, it suffices to show that it
reduces to the Fredholm determinant under a suitable identification of G−∞

iso(2n,ε)(X; E)

with G−∞. From Appendix C it follows that G−∞
iso(2n,ε)(X; E) acts on S(X × R

n; E).

Fix a Riemannian metric g on X and a Hermitian metric h on E . Let� ∈ �2(X; E) be
the corresponding Laplace operator. Then consider the mixed isotropic operator

�ε = � + ε
n

∑

i=1

(

− ∂2

∂t2
i

+ t2
i

)

∈ �2
iso(2n,ε)(X; E),
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where
∑n

i=1

(

− ∂2

∂t2
i

+ t2
i

)

is the harmonic oscillator on R
n . As an operator acting on

S(X × R
n; E), �ε has a positive discrete spectrum. Let {λk}k∈N be the eigenvalues, in

non-decreasing order, with corresponding eigensections

�ε fk = λk fk, fk ∈ S(X × R
n; E)

such that { fk}k∈N is an orthonormal basis of L2(X × R
n; E). This gives an algebra

isomorphism

Fε : �−∞
iso(2n,ε)(X; E) 
 A �−→ 〈 fi , A f j 〉L2 ∈ �−∞,

and a corresponding group isomorphism Fε : G−∞
iso(2n,ε)(X; E) → G−∞. Under these

isomorphisms, one has

Trε(A) = Tr(Fε(A))
and consequently

detε(Id +A) = detFr(Fε(Id +A)). (3.4)

��

3.2. Asymptotics of detε . Now, for any δ > 0 we can consider the group of sections,

G−∞
iso ([0, δ] × R

2n × X; E) = {A ∈ C∞([0, δ]; Id +�−∞(R2n × X));
A(ε) ∈ G−∞

iso,ε(R
2n × X; E) ∀ ε ∈ [0, δ]}. (3.5)

Proposition 3.2. The determinant with respect to the ◦ε product defines

d̃et : G−∞
iso ([0, δ] × R

2n × X; E) −→ C∞((0, δ]) (3.6)

which takes the form

d̃et(A)(ε) = exp

(
n−1
∑

k=0

εk−nak(A)

)

Fε(A) ∀ A ∈ G−∞
iso ([0, δ] × R

2n × X; E) (3.7)

where

F : G−∞
iso ([0, δ] × R

2n × X; E) 
 A �−→ Fε(A) ∈ C∞([0, δ]), (3.8)

and ak : G−∞
iso ([0, δ] × R

2n × X; E) −→ C are C∞ functions and the ak only depend
on the Taylor series of A.

Proof. Since the group is open (for each ε ∈ [0, 1] and also for the whole group)
the tangent space at any point is simply C∞([0, δ];�−∞(R2n × X; E)). With the
usual identifications for a Lie group the form A−1 ◦ε d A therefore takes values in
C∞([0, δ];�−∞(R2n × X; E)). On the other hand, the trace functional is not smooth
down to ε = 0. In fact it is rescaled by a factor of ε−n . Thus,

d log detε(A) = Trε(A
−1 ◦ε d A) ∼

∞
∑

k=0

αkε
k−n (3.9)

is ε−n times a smooth function.
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For any smooth map

f : S
1 → G−∞

iso ([0, δ] × R
2n × X; E),

the integral
∫

S1 f ∗d log detε(A) also has an asymptotic expansion

∫

S1
f ∗d log detε(A) ∼

∞
∑

k=0

ckε
k−n , ck =

∫

S1
αk ∈ C. (3.10)

On the other hand, by (3.4), this is a winding number so cannot depend on ε. Hence

ck =
∫

S1
αk = 0 for k �= n. (3.11)

So, for k �= n, αk is exact and then (3.7) follows directly by integration along any path
γ : [0, 1] → G−∞

iso ([0, δ] × R
2n × X; E) with γ (0) = Id and γ (1) = A. The range

space is path-connected, so

ak(A) =
∫ 1

0
γ ∗αk, k < n

is independent of the path and well-defined. ��

3.3. Star product. The restriction map at ε = 0

R : G−∞
iso ([0, δ] × R

2n × X; E) −→ G−∞
sus(2n)(X; E) (3.12)

is surjective. From this it follows that if we let Ġ−∞
iso ([0, δ] × R

2n × X; E) be the
subgroup of those elements which are equal to the identity to infinite order at ε = 0 then
the quotient

G−∞
iso ([0, δ] × R

2n × X; E)/Ġ−∞
iso ([0, δ] × R

2n × X; E) =
G−∞

sus(2n)(X; E) + ε�−∞(R2n × X; E)[[ε]] (3.13)

is the obvious formal power series group, namely with invertible leading term and arbi-
trary smoothing lower order terms. The composition law is the one induced by the
◦ε-product. Since the higher order terms in ε amount to an affine extension of the lea-
ding part, this formal power series group is also a classifying group for odd K-theory.

Definition 3.3. We denote by �k,k′
psus(2n)(X; E)[[ε]], k, k′ ∈ R ∪ {−∞}, the space of

formal series

∞
∑

µ=0

aµε
µ

with coefficients aµ ∈ �k,k′
psus(2n)(X; E), where ε is a formal parameter.
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For A ∈ �
k,k′
psus(2n)(X; F,G)[[ε]] and B ∈ �

l,l ′
psus(2n)(X; E, F)[[ε]] the ∗-product

A ∗ B ∈ �k+l,k′+l ′
psus(2n) (X; E,G)[[ε]] is

A ∗ B(u) =
⎛

⎝

∞
∑

µ=0

aµε
µ

⎞

⎠ ∗
( ∞

∑

ν=0

bνε
ν

)

=
∞
∑

µ=0

∞
∑

ν=0

εµ+ν

⎛

⎝

∞
∑

p=0

i pε p

2p p!ω(Dv, Dw)
p A(v)B(w)

∣
∣
∣
∣
v=w=u

⎞

⎠ ,

where u, v, w ∈ R
2n .

Since this is based on the asymptotic expansion (C.3) of Appendix B, its associativity
follows immediately from the associativity of the ◦ε-product.

3.4. Adiabatic determinant. This product is consistent with that of the quotient group
in (3.13), so

Lemma 3.4. The quotient group G−∞
sus(2n)(X; E)[[ε]] of (3.13) is canonically isomorphic

to

G−∞
sus(2n)(X; E)[[ε]] = {(Id +Q); Q∈�−∞

sus(2n)(X; E)[[ε]], ∃ P ∈�−∞
sus(2n)(X; E)[[ε]]

such that (Id +Q) ∗ (Id +P) = Id ∈ �0
sus(2n)(X; E)[[ε]]}.

We can now prove Theorem 1 stated in the Introduction.

Theorem 1. The functional

F0(A) : G−∞
iso ([0, δ] × R

2n × X; E)→ C
∗

induces a multiplicative determinant deta on the formal power series group

G−∞
sus(2n)(X; E)[[ε]]

in the sense discussed above, i.e. it is a smooth multiplicative function which
generates H1 .

Proof. From (3.9),

F0(A) = exp

(∫

γ

αn

)

, (3.14)

where γ : [0, 1] → G−∞
sus(2n)(X; E)[[ε]] is any smooth path with γ (0) = Id and γ (1) =

A. In the expansion (3.9), the only non-trivial cohomological contribution comes from
αn . Since detε corresponds to the Fredholm determinant under the identification of
G−∞

iso(2n,ε)(X; E) with G−∞ the integral of αn along a generator of the fundamental
group is ±2π i. Thus, the determinant induced by F0(A) has the desired topological
behavior.
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For the multiplicativity, from (3.9),

Tr((AB)−1d(AB)) = Tr(B−1 A−1d AB + B−1 A−1 Ad B)

= Tr(A−1d A) + Tr(B−1d B), (3.15)

where the ∗-product is used to compose elements and define the inverses. From the
ε-expansion of (3.15),

αn(A ∗ B) = αn(A) + αn(B). (3.16)

As a consequence, the determinant defined in (3.1) is multiplicative. ��
This determinant can be used to define the determinant line bundle of a fully elliptic

family D ∈ �k,k
psus(2n)(M/B; E, F)[[ε]] of fibrewise product 2n-suspended pseudodif-

ferential operators on a fibration (6). Full ellipticity here corresponds to ellipticity of
the leading term D0 and its invertibility for large values of the parameters. Assume
in addition that for each b ∈ B, Db ∈ �

k,k
psus(2n)(Zb; Eb, Fb)[[ε]] can be perturbed

by Qb ∈ �−∞
sus(2n)(Zb; Eb, Fb)[[ε]] to be invertible, where invertibility is equivalent

to invertibility of the leading term. Then over the manifold B, consider the bundle of
invertible smoothing perturbations with fibres

Pb(D) = {Db + Qb; Qb ∈ �−∞
sus(2n)(Zb; Eb, Fb)[[ε]],

∃ P ∈ �−k,−k
psus(2n)(Zb; Fb, Eb)[[ε]], P ∗ (Db + Qb) = (Db + Qb) ∗ P = Id}. (3.17)

Let

G−∞
sus(2n)

�� G−∞
sus(2n)(M/B; E)

φ

��
B

(3.18)

be the bundle of groups with fibre at b ∈ B,

G−∞
sus(2n)(Zb; Eb)[[ε]] = {Id +Q; Q ∈ �−∞

sus(2n)(Zb; Eb)[[ε]],
∃ P ∈ �0,0

psus(2n)(Zb; Eb)[[ε]]P ∗ (Id +Q) = (Id +Q) ∗ P = Id}. (3.19)

Then P(D) is a principal G−∞
sus(2n)(M/B; E)[[ε]]-bundle in the sense of Definition 1.2.

Definition 3.5. The adiabatic determinant line bundle associated to the family D of
product 2n-suspended elliptic pseudodifferential operators is

Deta(D) = P(D)×deta C

induced by the adiabatic determinant as representation of the bundle of groups (3.18).

4. Periodicity of the Numerical Index

In the next section, we establish a relation between the determinant line bundles of a
family of standard elliptic pseudodifferential operators and the determinant line bundle
just defined for families of 2n-suspended operators. Here we consider the corresponding
question for the numerical index.
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4.1. Product-suspended index. A product-suspended operator

P ∈ �m,m′
psus(k)(Z; E, F)

is fully elliptic if both its symbol in the usual sense and its base family are invertible.
Here the base family, elliptic because of the invertibility of the symbol, is parameterized
by S

k−1. As a family of operators over R
k, P has a families index. Since by assumption

the family is invertible at, and hence near, infinity the family defines an index class in
compactly-supported K-theory

ind(P) ∈ K 0(Rk) =
{

Z k even
{0} k odd.

(4.1)

Thus by choosing a generator (i.e. Bott element) in K 0(R2n) a product 2n-suspended
family has a numerical index which we will denote indsus(n) (since it only arises for even
numbers of parameters). The families index of Atiyah and Singer does not apply directly
to this setting although it does apply if the operator is in the ‘suspended’ subspace (and so
in particular m′ = m.) Using the properties of the suspended eta invariant we will show
in §9 that the suspended index can be expressed in terms of the ‘adiabatic’ η invariant
discussed below. Namely, suppose a linear decomposition R

2n = R× R
2n−1 is chosen

in which the variables are written τ and ξ. Then, for some R ∈ R, P(τ, ξ) is invertible
for |τ | ≥ R for all ξ ∈ R

2n−1. Furthermore, by standard index arguments we may find
a family of smoothing operators, A, of compact support in (τ, ξ) such that P ′ = P + A
is invertible for all τ ≤ R. Then

indsus(n)(P) = −1

2

(

ηa(n-1)(P
∣
∣
τ=R)− ηa(n-1)(P

′∣∣
τ=R)

)

. (4.2)

4.2. Periodicity. Here we show that there is a ‘Bott map’ from ordinary pseudodiffe-
rential operators into product-type suspended operators which maps the usual index
to the suspended index (although most of the proof is postponed until later). Thus if
D ∈ �1(Z; E, F) is an elliptic operator then

R
2 
 (t, τ ) �−→ D̂(t, τ ) =

(

i t − τ D∗
D it + τ

)

, D̂ ∈ �1,1
psus(2)(Z; E ⊕ F) (4.3)

is an associated twice-suspended fully elliptic operator. In [14], such a family is realized
explicitly as the indicial family of a product-suspended cusp operator. The ellipticity of
D̂ follows from the fact that

D̂∗ D̂ =
(

D∗D + t2 + τ 2 0
0 DD∗ + t2 + τ 2

)

∈ �2,2
psus(2)(Z; E ⊕ F) (4.4)

is an elliptic family which is invertible for t2 + τ 2 > 0.

Definition 4.1. Given an elliptic operator D ∈ �1(Z; E, F), we define by recurrence
on n ∈ N0, elliptic product-suspended operators Dn ∈ �1,1

psus(2n)(Z; 2n−1(E ⊕ F) by

Dn(t1, . . . , tn, τ1, . . . , τn) =
(

i tn − τn D∗
n−1

Dn−1 i tn + τn

)

with D0 = D.
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Lemma 4.2. If D is elliptic then Dn is a totally elliptic product 2n-suspended operator
for all n and indsus(n)(Dn) = ind(D).

Proof. Both the ordinary index and the n-suspended index (on fully elliptic 2n-suspended
operators) are homotopy invariant. Since the map D �−→ Dn maps invertible operators
to invertible operators it follows that ind(D) = 0 implies indsus(n)(Dn) = 0. Indeed,
ind(D) = 0 means there exists a smoothing operator Q ∈ �−∞(Z; E, F) such that
D + Q is invertible. Then (D + s Q)n is a homotopy of fully elliptic 2n-suspended
operators which is invertible for s = 1 so indsus(n)(Dn) = 0.

The actual equality of the index is proved below in §9, using (4.2). ��

5. Periodicity of the Determinant Line Bundle

5.1. Adiabatic determinant bundle. Returning to the setting of a fibration with com-
pact fibres, φ : M → B, as in (6), let D ∈ �1(M/B; E, F) be a family of elliptic
pseudodifferential operators with vanishing numerical index. From Lemma 4.2 (the
part that is already proved), the suspended index of the fully elliptic family Dn ∈
�

1,1
psus(2n)(M/B; E, F), given by Definition 4.1, also vanishes. Thus the fibres

Ppsus(2n)(Dn)b = {Dn,b + Qb; Qb ∈ �−∞
sus(2n)(Zb; 2n−1(Eb ⊕ Fb))[[ε]],

∃ (D̂n,b + Qb)
−1 ∈ �−1

psus(2n)(Zb; 2n−1(Eb ⊕ Fb))[[ε]]} (5.1)

are non-empty and combine to give a principal-G−∞
sus(2n)(M/B; 2n−1(E ⊕ F))[[ε]]-

bundle as in (3.17). Since we have defined an adiabatic determinant on these groups
we have an associated determinant bundle

Detsus(2n)(D) = Deta(Dn) = Ppsus 2n(D)×deta C. (5.2)

5.2. Isotropic determinant bundle. One can make a different, but similar, construction
using the isotropic quantization of Dn .

Definition 5.1. For ε > 0, let ε D̂n ∈ �1,1
iso(2n,ε)(M/B; 2n−1(E ⊕ F)) be the isotropic

quantization of Dn as in Appendix C, so giving an operator onS(Rn×X; 2n−1(Eb⊕Fb)).

As discussed earlier for families of standard elliptic operators, there are two equivalent
definitions of the determinant line bundle for ε D̂n .Namely, Quillen’s spectral definition
or as an associated bundle to the principal bundle of invertible perturbations. In the latter
case, the principal G−∞

iso(2n,ε)(M/B; 2n−1(E ⊕ F))[[ε]]-bundle has fibre

Piso(2n,ε)(
ε D̂en)b = {ε D̂2n,b + Qb; Qb ∈ �−∞

iso(2n,ε)(Zb; 2n−1(Eb ⊕ Fb)),

∃ (ε D̂2n,b + Qb)
−1 ∈ �−1,−1

iso(2n,ε)(Zb; 2n−1(Eb ⊕ Fb))}. (5.3)

Note that this fibre is non-empty as soon as the original family D has vanishing
numerical index. Indeed, we know that Dn then has vanishing suspended index and
hence has an invertible perturbation by a smoothing operator (in the suspended sense).
The isotropic product is smooth down to ε = 0,where it reduces to the suspended product
(pointwise in the parameters). Thus such a perturbation is invertible with respect to the
isotropic product for small ε > 0. Since these products are all isomorphic for ε > 0, it
follows that perturbations as required in (5.3) do exist.
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Proposition 5.2. Let D ∈ �1(M/B; E, F) be an elliptic family with vanishing nume-
rical index, then for each n ∈ N0 and ε > 0, the determinant line bundle Det(ε D̂n) is
naturally isomorphic to the determinant line bundle Det(D).

Proof. The proof is by induction on n ∈ N0 starting with the trivial case n = 0. We
proceed to show that Det(ε D̂n+1) ∼= Det(ε D̂n). In Quillen’s definition of the determinant
line bundle, only the eigenfunctions of the low eigenvalues are involved and the strategy
is to identify the eigensections of the low eigenvalues of ε D̂n with those of ε D̂n+1.

The isotropic quantization of the polynomial τ 2
n + t2

n , is the harmonic oscillator, H ε
n ,

so

ε D̂∗
n+1,b

ε D̂n+1,b =
(
ε D̂∗

n,b
ε D̂n,b + H ε

n+1 − ε 0
0 ε D̂n,b

ε D̂∗
n,b + H ε

n+1 + ε

)

. (5.4)

The eigenvalues of H ε
n+1 are positive, with the smallest being simple. The eigensections

of ε D̂∗
n+1,b

ε D̂n+1,b and ε D̂n+1,b
ε D̂∗

n+1,b with small eigenvalues are of the form

�+( fb) =
(

ϕn+1 ⊗ f
0

)

, �−( fb) =
(

0
ϕn+1 ⊗ ε D̂n,b f

)

, (5.5)

where f is an eigenfunction of ε D̂∗
n,b

ε D̂n,b with eigenvalue less than 2ε. Note also that

on such an eigenfunction, D̂n+1,b acts as
(

iC∗
n+1

ε D̂∗
n,b

ε D̂n,b iCn+1

)

�+( fb) = �−( fb) (5.6)

since C∗
n+1ϕn+1 = 0. For 0 < λ < 2ε, consider the open set

Uλ = {b ∈ B; λ is not an eigenvalue of D∗
b Db}. (5.7)

Let H+,k
[0,λ) denote the vector bundle over Uλ spanned by the eigenfunctions of ε D̂∗

k,b
ε D̂k,b

with eigenvalues less than λ. Let H−,k
[0,λ) denote the vector bundle over Uλ spanned by

the eigenfunctions of ε D̂k,b
ε D̂∗

k,b with eigenvalues less than λ. Then there are natural
identifications

F±,n
U ,λ : H±,n

[0,λ) 
 fb �−→ �±( fb) ∈ H±,n+1
[0,λ) . (5.8)

Thus, directly from Quillen’s definition of the determinant bundle ε D̂n+1,b and ε D̂n,b
have isomorphic determinant line bundles. ��

5.3. Adiabatic limit of Det(ε D̂n).

Proposition 5.3. If P ∈ �m
psus(2n)(M/B; E, F) is a family of fully elliptic operators

with vanishing numerical index then the bundle over B × [0, 1] with fibre

Pb,ε =
{

Q ∈ �−∞
sus(2n)(Zb, Eb);

∃ (P + Q)−1 ∈ �−m
psus(2n)(Zb; Fb, Eb) for the ε isotropic product

}

(5.9)
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is a principal G-bundle for the bundle of groups with fibre

G−∞sus(2n),ε(Zb, Eb) =
{

Id +A, A ∈ �−∞
sus(2n)(Zb, Eb);

∃ (Id +A)−1 = Id +B, B ∈ �−∞
sus(2n)(Zb, Eb) for the ε isotropic product

}

(5.10)

and the associated determinant bundle defined over ε > 0 extends smoothly down to
ε = 0 and at ε = 0 is induced by the adiabatic determinant.

Proof. This is just the smoothness of the ‘rescaled’ determinant (i.e. with the singular
terms removed) down to ε = 0. ��

We will now complete the proof of Theorem 2 in the Introduction which we slightly
restate as

Theorem 2 (Periodicity of the determinant line bundle). Let D ∈ �1(M/B; E, F)
be an elliptic family with vanishing numerical index, then for n ∈ N and ε > 0,

Deta(Dn) ∼= Det(ε D̂n) ∼= Det(D).

Proof. The existence of the second isomorphism follows from Proposition 5.2. The first
follows from Proposition 5.3. ��

6. Eta Invariant

In [13] a form of the eta invariant was discussed for elliptic and invertible once-suspended
families of pseudodifferential operators. Applied to the spectral family (on the imaginary
axis) of a self-adjoint invertible Dirac operator this new definition was shown to reduce
to the original definition, of Atiyah, Patodi and Singer in [1] of the eta invariant of
a single operator. Here, the definition in [13] is shown to extend to (fully) elliptic,
invertible, product-suspended families. In §9 it is further extended to such product-
suspended families in any odd number of variables. The extension to single-parameter
product-suspended operators allows us to apply the definition to A + iτ, τ ∈ R, for
A ∈ �1(X; E) an invertible elliptic selfadjoint pseudodifferential operator and check
that this reduces to the spectral definition, now as given by Wodzicki ([21]). Again the
extended (and below also the ‘adiabatic’) eta invariant gives a log-multiplicative function
for invertible families

η(AB) = η(A) + η(B) (6.1)

and this allows us to show quite directly that the associated τ invariant is a determinant
in the sense discussed above.

6.1. Product-suspended eta. If B ∈ �
m,m′
psus (X; E) is a product-suspended family it

satisfies

∂N

∂τ N
B(τ ) ∈ �m−N ,m′−N

psus (X; E) ∀ N ∈ N0. (6.2)

This implies that for N large, say N > dim X + m, the differentiated family takes values
in operators of trace class on L2.
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Proposition 6.1. For any m, m′ ∈ Z, if N ∈ N is chosen sufficiently large then,

B ∈ �m,m′
psus (X; E) =⇒ TrE

(
∂N

∂τ N
B(τ )

)

∈ C∞(Rp) (6.3)

has a complete asymptotic expansion (possibly with logarithms) as τ → ±∞ and the
coefficient of T 0 in the expansion as T →∞

Tr(B) = LIM
T→∞ FB,N (T ),

FB,N (T ) =
∫ T

−T

∫ t1

0
. . .

∫ tN

0
TrE

(
∂N

∂s N
B(s)

)

ds dtN . . . dt1
(6.4)

is independent of the choice of N and defines a trace functional

Tr : �Z,Z
psus(X; E) −→ C, Tr([A, B]) = 0 ∀ A, B ∈ �Z,Z

psus(X; E) (6.5)

which reduces to

Tr(B) =
∫

R

TrE (B(τ )) dτ ∀ A ∈ �−∞,−∞
psus (X; E). (6.6)

Proof. As already noted, ∂N
s B(s) is a continuous family of trace class operators as soon

as N > dim X + m. Then (6.3) is a continuous function and further differentiation again
gives a continuous family of trace class operators so the trace is smooth.

To see that this function has a complete asymptotic expansion we appeal to the discus-
sion of the structure of the kernels of such product-suspended families in Appendix B.
It suffices to consider the trace of a general element B ∈ �

−n−1,0
psus (X; E). Since the

kernels form a module over C∞(X2) we can localize in the base variable (not directly
in the suspended variable since that has global properties). Localizing near a point away
from the diagonal gives a classical symbol in the suspending variable with values in
the smoothing operators. Since the trace is the integral over the diagonal this makes no
contribution to (6.3). Thus it suffices to suppose that B is supported in the product of
a coordinate neighbourhood with itself over which the bundle E is trivial. Locally (see
(2.3)) the kernel is given by Weyl quantization of a product-type symbol so the trace
becomes the integral of the sum of the diagonal terms and hence we need only consider

1

(2π)n

∫

a(x, ξ, τ )dxdξ, (6.7)

where a is compactly supported in the base variables x .Now by definition, a is a smooth
function, with compact support, on the product R

n × [R× Rn; ∂(R × {0})]. Thus we
can further localize the support of a on this blown up space. There are three essentially
different regions, corresponding to the part of the boundary which arises from the radial
compactification, the part arising from the blow up and the corner.

The first of these regions corresponds to a true suspended family, as considered in
[13]. In this region the variable |ξ | dominates, and |τ | ≤ C |ξ | on the support so the
integral takes the form

1

(2π)n

∫ 1

0

∫

φ(rτ)rn+1 f (x, ω, r, rτ)r−n−1dxdωdr

=
∫ 1

0

∫

sφ(R) f (x, ω, Rs, R)dxdωd R, s = 1/τ. (6.8)
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Here,φ has compact support and f (with the factor of rn+1 representing the order−n−1)
is smooth. The result is smooth in s = 1/τ,which corresponds to a complete asymptotic
expansion with only non-negative terms.

The second region corresponds to boundedness of the variable ξ with the function
being a classical symbol (by assumption of order at most 0) in τ so integration simply
gives a symbol

1

(2π)n

∫

a(x, ξ, τ )dxdξ. (6.9)

The third region is the most problematic. Here the two boundary faces of the com-
pactification are defined by r = 1/|ξ | and |ξ |/τ and with polar variables ω = ξ/|ξ |.
Thus the integral takes the form

∫

rn+1 f (x, ω, r, s/r)r−n−1dxdωdr ∈ C∞([0, 1)s) + (log s)C∞([0, 1)s), (6.10)

where f is smooth and with compact support near 0 in the last two variables. This is a
simple example of the general theorem on pushforward under b-fibrations in [12], or the
‘singular asymptotics lemma’ of Brüning and Seeley (see also [9]) and is in fact a type
of integral long studied as an orbit integral. In any case the indicated regularity follows
and this proves the existence of a complete asymptotic expansion, possibly with single
logarithmic terms.

It follows that the integral in (6.4) also has a complete asymptotic expansion as
T →∞;where in principle there can be factors of (log T )2 after such integration. Thus
the coefficient of T 0 does exist, and defines Tr(B). Now if N is increased by one in the
definition, the additional integral gives the same formula (6.4) except that a constant of
integration may be added by the first integral. After N additional integrals, this adds
a polynomial, so the result is changed by the integral over [−T, T ] of a polynomial.
This is an odd polynomial, so has no constant term in its expansion at infinity. Thus the
definition of Tr(B) is in fact independent of the choice of N .

The trace identity follows directly from (6.4), since if B = [B1, B2], then any deri-
vative is a sum of commutators between operators with order summing to less than −n
and the trace of such a term vanishes. Thus applied to a commutator (6.4) itself vanishes.
��

Using this trace functional on product-suspended operators we extend the domain of
the eta invariant.

Proposition 6.2. The eta invariant for any fully elliptic, invertible element A ∈
�

m,m
psus (X; E) defined using the regularized trace

η(A) = 1

π i
Tr(A−1 Ȧ), Ȧ = ∂A

∂τ
(6.11)

is a log-multiplicative functional, in the sense of (6.1).

Proof. Certainly (6.11) defines a continuous functional on elliptic and invertible product-
suspended families. The log-multiplicativity, (6.1), follows directly since if B is another
invertible product-suspended family then

(AB)−1 ∂(AB)

∂τ
= B−1 A−1 ȦB + B−1 Ḃ (6.12)

and the trace identity shows that Tr(B−1 A−1 ȦB) = η(A). ��
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6.2. η(A + iτ) = η(A). To relate this functional on product-suspended invertible
operators to the more familiar eta invariant for self-adjoint elliptic pseudodifferential
operators we rewrite the definition in a form closer to traditional zeta regularization,
starting with the regularized trace.

Consider the meromorphic family t−z
+ of tempered distributions with support in

[0,∞). This family has poles only at the positive integers, with residues being deri-
vatives of the delta function at the origin. For Re z sufficiently positive and non-integral,
t−z
+ can be paired with the function FB,N (t) in (6.4), since this is smooth and of finite

growth at infinity. This pairing gives a meromorphic function in Re z > C, with poles
only at the natural numbers since the poles of t−z

+ are associated with the behaviour at
0, where FB,N is smooth. In fact this pairing

g(z) = 〈T−z−1
+ , FB,N (T )〉 (6.13)

extends to be meromorphic in the whole complex plane. Indeed, dividing the pairing
into two using a cut-off ψ ∈ C∞c ([0,∞)) which is identically equal to 1 near 0,

g(z) = 〈T−z−1
+ , ψ(T )FB,N (T )〉 + 〈T−z−1

+ , (1− ψ(T )))FB,N (T )〉, (6.14)

the first term is meromorphic with poles only at z ∈ N and the poles of the second term
arise from the terms in the asymptotic expansion of FB,N (T ). Notice that there is no
pole at z = 0 for the first term since the residue of T−z−1

+ at z = 0 is a multiple of the
delta function and FB,N (0) = 0. The pole at z = 0 for the second term arises exactly
from the coefficient of T 0 in the asymptotic expansion so we see that

Tr(B) = resz=0 g(z). (6.15)

Any terms ak(log T )k for k ∈ N, in the expansion do not contribute to the residue since
they integrate to regular functions at z = 0 plus multiples of z−k .

Proposition 6.3. For B ∈ �m,m′
psus (X; E) and any N > m − dim X − 1, the regularized

trace is the residue at z = 0 of the meromorphic continuation from Re z >> 0, z /∈ Z,

of

(−1)N+1

(N − z) . . . (1− z)(−z)

〈(
(t + i0)N−z

1 + e−π i z
+
(t − i0)N−z

1 + eπ i z

)

,TrE (∂
N
t B(t)

〉

. (6.16)

Proof. Consider the identity

t−z−1
+ = 1

(N − z) . . . (1− z)(−z)

d N+1

dt N+1 t−z+N
+ . (6.17)

After inserting this into (6.14), integration by parts is justified (since (6.17) holds in the
sense of distributions on the whole real line, supported in [0,∞)), and shows that

g(z)= 1

(N−z) . . . (1−z)(−z)
〈t−z+N

+ , (−1)N+1 TrE

(
∂N

∂t N
B

)

(t)−TrE

(
∂N

∂t N
B

)

(−t)〉,
(6.18)

where the pairings are defined, and holomorphic, for Re z large and z non-integral. Using
the identity

t z
+ =

(t + i0)z

1− e2π i z
+
(t − i0)z

1− e−2π i z
,
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(6.18) becomes

g(z) = (−1)N+1

(N − z) . . . (1− z)(−z)
〈D(t, z),TrE

(
∂N

∂t N
B

)

(t)〉,

D(t, z) = (t + i0)N−z

1− e2π i(N−z)
+

(t − i0)N−z

1− e−2π i(N−z)
(6.19)

+ (−1)N (−t + i0)N−z

1− e2π i(N−z)
+ (−1)N (−t − i0)N−z

1− e−2π i(N−z)
.

Now, (−t − i0)−z = eπ i z(t + i0)−z so

D(t, z) =
(

1

1− e−2π i z
+

eπ i z

1− e2π i z

)

(t + i0)N−z

(6.20)

+

(
1

1− e2π i z
+

e−π i z

1− e−2π i z

)

(t − i0)N−z,

which reduces (6.20) to (6.16). ��
This allows us to prove a result of which Theorem 3 in the introduction is an immediate

corollary.

Theorem 3. If A ∈ �1(X; E) is a self-adjoint elliptic and invertible pseudodifferential
operator then η(A + iτ), defined through (6.11) reduces to the (regularized) value at
z = 0 of the analytic continuation from Re z >> 0 of

∑

j

sgn(a j )|a j |−z, (6.21)

where the a j are the eigenvalues of A, in order of increasing |a j | repeated with multi-
plicities.

Proof. With A(τ ) = A + iτ the eta invariant defined by (6.11) reduces to

η(A + iτ) = 1

π
Tr

(

(A + iτ)−1
)

= 1

π
resz=0 h(z), (6.22)

where h(z) is the function (6.16) with B(t) = (A + i t)−1. Computing the N th derivative

∂N

∂τ N

(

(A + iτ)−1
)

= i(−1)N+1 N !(τ − i A)−N−1. (6.23)

The trace is therefore given, for any N > n, by

trE

(
∂N

∂τ N
(A + iτ)−1

)

= i(−1)N+1 N !
∑

j

(τ − ia j )
−N−1. (6.24)

This converges uniformly with its derivatives so can be inserted in the pairing (6.16) and
the order exchanged. Thus

h(z) = aN (z)i(−1)N+1 N !
1 + e−π i z

∑

j

lim
ε↓0

∫

R+iε
τ N−z(τ − ia j )

−N−1dτ

+
aN (z)i(−1)N+1 N !

1 + eπ i z

∑

j

lim
ε↓0

∫

R−iε
τ N−z(τ − ia j )

−N−1dτ, (6.25)
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where

aN (z) = (−1)N+1

(N − z) . . . (1− z)(−z)
.

Each of these contour integrals is actually independent of ε > 0 for ε smaller than the
minimal |a j |. By residue computation, in the first sum by moving the contour to infinity
in the upper half plane and in the second by moving the contour into the lower half plane

∫

R±iε
τ N−z(τ − ia j )

−N−1dτ=
{

±2π i (N−z)···(1−z)
N ! e∓π i z/2|a j |−z ±a j > 0

0 ±a j < 0
. (6.26)

Inserting this into (6.25) shows that η(A + iτ) is the residue at z = 0 of

1

z cos(π z/2)

∑

j

sgn(a j )|a j |−z . (6.27)

By definition, the usual eta invariant, η(A), is the value at z = 0 of the continuation of
the series in (6.27). This series is the analytic continuation of the trace of an entire family
of classical elliptic operators of complex order −z (namely A−z(	+ −	−), where	±
are the projections onto the span of positive and negative eigenvalues) which can have
only a simple pole at z = 0. In fact, here, it is known that there is no singularity, i.e. the
residue vanishes. Even without invoking this we conclude the desired equality, since the
explicit meromorphic factor in (6.27) is odd in z, so a pole in the continuation of the
series would not affect the residue. ��

7. Universal η and τ Invariants

That the differential of the eta invariant of a family of self-adjoint Dirac operators is a
multiple of the first (odd) Chern class of the index, in odd cohomology of the base, of
the family is well-known. In the case of the suspended eta invariant discussed in [13]
and above, we show that the η invariant is, in appropriate circumstances, the logarithm
of a determinant, which is to say a multiplicative function giving the first odd Chern
class. Initially we show this in the context of classifying spaces for K-theory, then in the
geometric context of (2n + 1)-fold suspended odd elliptic families.

Consider again the algebra of once-suspended isotropic pseudodifferential operators
of order 0 on R

n, with values in smoothing operators on a compact manifold X. This
can be identified with the smooth functions on R2n+1 × X2 and the subspace

I+ =
{

A ∈ C∞(R2n+1 × X2); A ∼= 0 in {t ≤ 0} ∩ S
2n × X2

}

, (7.1)

is a subalgebra. Here, t is the suspending parameter and equality is in the sense of Taylor
series at infinity on the compactified Euclidean space. Thus the subalgebra is just the
sum of the smoothing ideal (identified with the functions vanishing to infinite order
everywhere at the boundary) and the subalgebra of functions vanishing in t < 0. In fact
I+ is also an ideal. We consider the corresponding group

G+ = {B = Id +A, A ∈ I+, B−1 = Id +B ′, B ′ ∈ I+}. (7.2)
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Now we may use the suspending variable t to identify the upper half-sphere
{t > 0} ∩ S

2n of the boundary of R2n+1 with R
2n,

{t > 0} ∩ S
2n 
 [(t, x, ξ)] �−→ (X, �) = (x/t, ξ/t) ∈ R

2n . (7.3)

The inverse image under pull-back of S(R2n) is then naturally identified with {a ∈
C∞(S2n); a = 0 in t < 0}, where S

2n is the boundary of the radial compactification of
R

2n+1. This allows the space of formal power series S(R2n)[[t]] to be identified with
the formal power series at the boundary of the subspace of C∞(R2n+1) consisting of the
functions vanishing in t < 0.

The same identifications carry over to the case of functions valued in the smoothing
operators and so gives a short exact sequence of algebras

�−∞
sus (R

n × X) �� I+ �� S(R2n × X2)[[t]] . (7.4)

Lemma 7.1. In (7.4), the product induced on the quotient is the standard � product
(valued in smoothing operators on X) on R

2n (i.e. the ‘Moyal product’).

Proof. Let A, B ∈ I+ be the symbols of two operators Â, B̂ ∈ �0
psus(1)(R

n × X). Then

the asymptotic expansion at infinity of the symbol of Â B̂ is given by the standard �
product

σ( Â B̂) ∼
∞
∑

k=0

1

k!(2i)k
(Dx Dη − Dy Dξ )

k A(t, x, ξ)B(t, y, η)

∣
∣
∣
∣
∣
x=y,η=ξ

. (7.5)

Under the map (7.3), the asymptotic expansion (7.5) becomes an asymptotic expansion
at {t > 0} ∩ S

2n ⊂ R2n+1,

σ( Â B̂) ∼
∞
∑

k=0

1

k!(2i)k
1

t2k
(DX D� − DY D�)

k A(t, t X, t�)B(t, tY, t�)

∣
∣
∣
∣
∣

X=Y,�=�
.(7.6)

Thus, if

A(t, t X, t�) ∼
∞
∑

k

1

tk
ak(X, �), B(t, t X, t�) ∼

∞
∑

k

1

tk
bk(X, �) (7.7)

are the asymptotic expansions of A and B at {t > 0} ∩ S
2n ⊂ R2n+1, then

σ( Â B̂) ∼
∑

k,l,m≥0

1

k!(2i)k
1

t2k+l+m
(DX D� − DY D�)

kal(X, �)bm(Y,�)
∣
∣
∣

X=Y,�=�

(7.8)

is the asymptotic expansion of σ( Â B̂) at {t > 0} ∩ S
2n ⊂ R2n+1. But the right-hand

side is precisely the standard � product on S(R2n × X2)[[ε]] with ε = 1
t2 . ��

Corresponding to this exact sequence of algebras is the exact sequence of groups
consisting of the invertible perturbations of the identity

G−∞
sus (R

n × X) −→ G+ −→ G−∞(Rn × X)[[t]]. (7.9)
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Theorem 4. In this ‘delooping’ sequence, the first group is classifying for even K-theory,
the central group is (weakly) contractible and the quotient is (therefore) a classifying
group for odd K-theory; the eta invariant, defined as in (6.11),

η : G+ −→ C (7.10)

restricts to twice the index on the normal subgroup and eiπη = deta is the adiabatic
determinant on G−∞(Rn × X)[[t]].
Proof. As a first step in the proof we consider the behaviour of the regularized trace.
��
Lemma 7.2. The regularized trace Tr on the central algebra in (7.4) restricts to the
integrated trace on the smoothing subalgebra and

Tr

(
∂b

∂t

)

=
∫

R2n
b2nd Xd� (7.11)

for any b ∈ I+, where bk is the term of order k in the formal power series of the image
in (7.4).

Proof. When the parameter t is fixed, an element b ∈ I+ is actually a smoothing operator,
since the asymptotic behavior on the surface where t is constant is determined by the
equatorial sphere t = 0 at infinity. Thus the definition, from (6.4), of Tr(b) for any
element b ∈ I+ may be modified by dropping all N integrals, i.e. we may take N = 0.
Indeed, taking N > 0 and then integrating results in the case N = 0, plus a polynomial
which, as noted earlier, does not affect the result. Carrying out the last integral by the
fundamental theorem of calculus,

Tr(ḃ) = LIM
T→∞

(∫

R2n
b(T, x, ξ)dxdξ −

∫

R2n
b(−T, x, ξ)dxdξ

)

, (7.12)

where LIM stands for the constant term in the asymptotic expansion. The second term in
(7.12) corresponds to t < 0 where b is rapidly decreasing so does not contribute to the
asymptotic expansion. Now, making the scaling change of variable in (7.3), transforms
(7.12) to

Tr(ḃ) = LIM
T→∞ T−2n

∫

R2n
b̃(T, X, �)d Xd�, (7.13)

where b̃ is the transformed function. Thus (7.13) picks out the term of homogeneity 2n
(in T ) in the formal expansion of b̃. This gives exactly (7.11). ��

Now, by definition, the eta invariant is 1
π i Tr(a−1ȧ). It follows directly that restricted

to the smoothing subgroup this lies in 2Z. Thus D = eiπη does indeed descend to
the quotient group in (7.9). This group is connected, so to check that it reduces to the
‘adiabatic’ determinant defined earlier we only need check the variation formula, both
being 1 on the identity. Along a curve a(s),

d

ds
η(a(s)) = 1

π i
Tr

(

a−1 dȧ

ds
− a−1 da

ds
a−1ȧ

)

= Tr

(
d

dt
(a−1 da

ds
)

)

. (7.14)



Periodicity 175

Thus the identity (7.11) shows that

d

ds
η(a(s)) = Tr

[

(ã(s)
dã

ds
)2n

]

, (7.15)

where ã is the image of a in the third group in (7.9). The identity term in a does not
affect the argument since it is annihilated by d/ds.

Since the right hand side of (7.15) is the variation formula for the logarithm of the
adiabatic determinant this proves the theorem. ��

8. Geometric η and τ Invariants

Returning to the ‘geometric setting’ of a fibration (6) with compact fibres, consider a
totally elliptic family A ∈ �m,m′

psus (M/B; E, F). Although we allow for operators bet-
ween different bundles here, (6.11) is still meaningful as a definition of the eta invariant
if A is invertible. Consider the principal bundle, of the type discussed above,

G−∞
sus (M/B; E) A

ν

��
B

(8.1)

with fibre

Ab=
{

A + Q; Q ∈ �−∞
sus (Zb; Eb, Fb),(A + Q)−1 ∈ �−m,−m′

psus (Zb; Fb, Eb)
}

. (8.2)

Proposition 8.1. The eta invariant, defined by (6.11), is a smooth function on A such
that for the fibre action of the structure group at each point

η(A(Id +L)) = η(A) + 2 ind(Id +L) (8.3)

so projects to

τ = eiπη : B −→ C
∗ (8.4)

which represents the first odd Chern class of the index bundle of the family A.

In particular this result applies to an elliptic, self-adjoint, family of pseudodifferential
operators of order 1 by considering the spectral family.

Proof. That η : A −→ C is well-defined follows from the discussion above as does the
multiplicativity (8.3). Thus, τ is well-defined as a function on B and it only remains to
check the topological interpretation.

Note that the fibre of A is non-empty at each point of the base. In fact it is always
possible to find a global smoothing perturbation to make the family invertible, although
only when the families index vanishes is this possible with a smoothing perturbation of
compact support in the parameter space. Thus, in complete generality, it is possible to
choose a smooth map

Q+ : R −→ �−∞(M/B; E, F) such that

Q+(t) = 0 for t << 0, Q+(t) = Q+(T ) for t ≥ T >> 0,

(A(t) + Q(t))−1 ∈ �−m,−m′
(M/B; E, F) ∀ t ∈ R. (8.5)
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This follows directly from the fact that the index bundle, over R×B, is trivial for t << 0
and so is trivial over R× B, but defines a generally non-trivial index class in K 1(B). In
fact the index class of the family A is represented by the map

(A(T ) + Q+(T ))
−1 A(T ) ∈ G−∞(M/B; E). (8.6)

Namely, if this family is deformable to the identity in this bundle of groups then there
is a perturbation of compact support in t making the original family invertible.

The existence of Q+ may be directly related to a larger principal bundle with bundle
of structure groups G−∞sus,+(M/B; E) with fibre

{

Id +Q; Id +Qb ∈ C∞(R;G−∞(Zb; Eb), ρ(t)Q(t) ∈ S(R;�−∞(Zb; Eb),

∃ Q0 ∈ �−∞(Zb; Eb), (1− ρ(t))(Q(t)− Q0) ∈ S(R;�−∞(Zb; Eb))
}

. (8.7)

Here ρ(t) ∈ C∞(R) is equal to 1 in t < −1 and vanishes in t > 1. Thus the short exact
sequence of groups

G−∞
sus (M/B; E) −→ G−∞

+,sus(M/B; E)
π∞−→ G−∞(M/B; E) (8.8)

is the ‘delooping sequence’ for G−∞(M/B; E). In particular the central group is weakly
contractible and we may consider the enlarged principal bundle

G−∞
+,sus(M/B; E) A+

��
B

(8.9)

defined by replacing G−∞
sus above by G−∞

+,sus.

The existence of Q+ shows that this bundle is trivial, i.e. has a global section

q : B −→ A+

which induces a ‘classifying bundle map’

q̃ : A −→ G−∞+,sus(M/B; E), q̃(Ab + Qb)=(Ab + Q+,b)
−1(Ab + Qb)∈G−∞+,sus(Zb; Eb).

Now, the definition and basic properties of the eta invariant given by (6.11) are quite
insensitive to the enlargement of A to A+ and so still define a smooth function η+ :
A+ −→ C. The same is true for the group G−∞+,sus(M/B; E), defining the corresponding
function η̃ : G−∞+,sus(M/B; E) −→ C and the discussion of multiplicativity shows that

η = η+ ◦ q ◦ ν + η̃ ◦ q̃. (8.10)

From the fundamental theorem of calculus,

iπdη̃ = π∗∞d log det, (8.11)

so we conclude from (8.10) that

τ = eiπη = eiπη+◦q◦π (π∞q̃)∗ det (8.12)

defines the same cohomology class as the determinant on the classifying group, i.e. the
first odd Chern class of the index bundle. ��
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9. Adiabatic η

We may further extend the discussion above by replacing the once-product-suspended
spaces by (2n + 1)-times product-suspended spaces using the isotropic quantization in
2n of the variables, as in Theorem 5 applied to a decomposition R

2n+1 = R × R
2n

with the standard symplectic form used on R
2n . Let A[[ε]] be the principal bundle of

invertible perturbations for the family A with respect to the star product from (C.3).

Proposition 9.1. If A ∈ �m,m′
psus(2n+1)(M/B; E, F) is a fully elliptic family and (6.11) is

used, with the product interpreted as the parameter-dependent product of Theorem 5 for
the symplectic form on R

2n then the resulting eta invariant on the bundle of smoothing
perturbations has an asymptotic expansion as ε ↓ 0 which projects to

ηε : A[[ε]] −→ ε−n
C[[ε]] (9.1)

which has constant term the adiabatic eta invariant

ηa(n) : A[[ε]] −→ C (9.2)

which generates the first odd Chern class of the index bundle.

Proof. This is essentially a notational extension of the results above. ��
In particular (4.2) is a consequence of this result and Bott periodicity. Namely, given

an 2n product-suspended family we may always choose a smoothing family, analogous
to Q+ in (8.5) which is Schwartz in the second 2n − 1 variables and in the first is
Schwartz at −∞ and of the form Q0 + Q′ with Q′ Schwartz at +∞ and Q0 constant in
the first variable (and Schwartz in the remainder). By Bott periodicity, the even index of
the family is the odd K-class on R

2n−1× B given by the product (A(t)+ Q0)A(t)−1 for
t large. Then (4.2) follows by an elementary computation and the proof of Lemma 4.2
follows directly.

Appendix A: Symbols and Products

By choice of a quantization map, spaces of pseudodifferential operators on a compact
manifold can be identified, modulo smoothing operators, with the appropriate spaces
of symbols on the cotangent bundle as in (2.3). It is important to discuss, and carefully
distinguish between, several classes of such symbols and operators. To prepare for this we
describe here classes of product-type symbols for a pair of vector spaces; subsequently
this is extended to the case of vector bundles.

For a real vector space V, the space of classical symbols of order 0 on V is just
C∞(V ), the space of smooth functions on the radial compactification. In terms of any

Euclidean metric on V, ρ(v) = (1 + |v|2)− 1
2 is a defining function for the boundary of

V and the space of symbols of any complex order z on V is

Sz(V ) = ρ−zC∞(V ). (A.1)

If W is a second real vector space then we may consider the radial compactification
V × W and corresponding symbol spaces Sz(V × W ). The natural projection πW :
V × W −→ W does not extend to a map from V × W to W and correspondingly
classical symbols on W do not generally lift to be classical symbols on V × W. Rather
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V ↪→ V × W may be considered as an embedded submanifold, simply the closure (of
the preimage in V × W ) of V × {0}. On the other hand there is certainly a smooth
projection from V × W to W ; the smooth functions,

S0(V ; S0(W )) = S0(W ; S0(V )) = C∞(V × W )) (A.2)

on this space are symbols on V with values in the symbols on W (or vice-versa).
The main space we wish to consider here has some properties between these two

compactifications of V × W. Namely, in terms of radial (real) blow-up (in the sense of
[11]), we set

V V × W = [V × W ; ∂(V × {0})]. (A.3)

This manifold with corners has two boundary faces (unless one or both of the factors is
one-dimensional in which case either or both of the boundary hypersurfaces may have
two components). We use a superscript V to refer to the new boundary hypersurface
produced by the blow-up in (A.3).

Lemma A.1. The projection πW : V × W −→ W extends to a smooth map

πW : V V × W −→ W

which is a fibration (with fibres which are manifolds with boundary) and in terms of
Euclidean metrics on V and W the functions

ρV (v,w) =
(

1 + |w|2
1 + |v|2 + |w|2

) 1
2

and ρr (v,w) = (1 + |w|2)− 1
2

extend from V × W to be smooth functions on V V × W and are defining functions for
the two boundary faces.

Proof. To check the first statement of the lemma, notice that the projection V ×W → V
has a smooth extension

pW : V × W \ ∂(V × {0})→ W

which is a fibration with typical fibre given by V .Blowing up the submanifold ∂(V×{0})
in V × W exactly allows us to extend pW to a fibration

πW : V V × W −→ W

with typical fibre given by V . Indeed, in V × W near the submanifold ∂(V × {0}), we
can consider the generating functions (i.e. everywhere containing a coordinate system)

v̂ = v

|v| , σV = 1

(1 + |v|2) 1
2

, w̃ = w

(1 + |v|2) 1
2

= σVw.

The blow up amounts to introducing polar coordinates

rV = (σ 2
V + w̃2)

1
2 , (ϕ, θ̂) = (

σV

rV
,
w̃

rV
)
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so that the blow-down map is given locally by

V V × W = [V × W ; ∂(V × {0})] 
 (v̂, rV , ϕ, θ̂ ) �−→ (v̂, σV = rVϕ, w̃ = rV θ̂ ).

In these polar coordinates, and for rV > 0, the fibration pW is given by

pW (v̂, rV , ϕ, θ̂ ) =
(

ϕ

(ϕ2 + |θ̂ |2) 1
2

,
θ̂

(ϕ2 + |θ̂ |2) 1
2

)

∈ W , (A.4)

where we have used the identification of W with the upper half-sphere which is the
closure of the image

W 
 w �−→ (
1

(1 + |w|2) 1
2

,
w

(1 + |w|2) 1
2

) ∈ {(a, b) ∈ R× W ; a ≥ 0, a2 + |b|2 = 1}.

Thus, pW extends to rV = 0 to give the desired fibration.

It follows from this that a defining function for the boundary of W such as (1+|w|2)− 1
2

lifts from W to be smooth and to define the ‘old’ boundary hypersurface, the one not

produced by the blow up. Now (1+ |w|2 + |v|2) 1
2 is a smooth boundary defining function

on V × W . It therefore lifts under the blow up in (A.3) to be the product of defining
functions for both boundary hypersurfaces and so

ρV (v,w) =
(

1 + |w|2
1 + |v|2 + |w|2

) 1
2

is a boundary defining function for the new boundary produced by the blow-up. ��

Now we define general spaces of ‘partial-product’ symbols by

Sz,z′(V V × W ) = ρz
r ρ

z′
V C∞(V V × W ). (A.5)

Directly from this definition,

Sz,z′(V V × W ) · Sζ,ζ
′
(V V × W ) = Sz+ζ,z′+ζ ′(V V × W ). (A.6)

Two of the ‘remainder’ classes have simpler characterizations. Namely

S−∞,z′(V V × W ) = Ċ∞(W ; Sz′(V )),

S−∞,−∞(V V × W ) = Ċ∞(V × W ) = S(V × W ).
(A.7)
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Appendix B: Product Suspended Operators

We can now introduce a generalization of the ‘suspended’ algebra considered in [13] and
in [15] (an algebra similar to the suspended algebra was already introduced by Shubin
in [20]).

The d-fold suspended pseudodifferential algebra on a compact manifold X may be
viewed as a space of smooth maps from R

d into �k(X; E, F) in which the parameters
(which we think of as the base variables for a fibration) appear as ‘symbolic variables’.
The inverse Fourier transform identifies the suspended space

�̌k
sus(d)(X; E, F) ⊂ �k(Rd × X; E, F)

directly, as is done in [13], with the elements which are translation-invariant in R
d

and have convolution kernels vanishing rapidly at infinity, with all derivatives, in these
variables; this space may also be defined directly as in (2.3).

The subspace of smoothing operators is

�−∞
sus(d)(X; E, F) = S(Rd × X2;Hom(E, F)⊗�R)

in terms of the Schwartz space. Then the finite-order operators may be specified, up to
smoothing terms, by Weyl quantization as

qg : ρ−kC∞(Rd × T ∗X;π∗ hom(E, F)) 
 a �−→
(2π)−n

∫

T ∗X
χeiv(x,y)·ξa(m(x, y), ζ, ξ)dξdg ∈ �k

sus(d)(X; E, F), (B.1)

where the symbol space is compactified in the joint fibre R
d × T ∗

x X. The resulting full
symbol sequence is as in (2.4) except that the formal power series have coefficients on
the sphere bundle of R

p × T ∗X; the parameters do not affect the operators B j , acting
on T ∗X, appearing in the product.

If A ∈ �1(X; E) is a first order pseudodifferential operator and τ is the suspension
variable for �1

sus(1)(X; E), then A + iτ is not in general an element of �1
sus(1)(X; E).

In fact, A + iτ ∈ �1
sus(1)(X; E) if and only if A is a differential operator. Similarly, for

A ∈ �1(X; E, F), the operator
(

i t + τ A∗
A it − τ

)

(B.2)

is in �1
sus(2)(X; E ⊕ F) if and only if A is a differential operator.

This restriction to differential operators is unfortunate since the operator A+ iτ arises
in the alternative definition of the eta invariant as described in Sect. 6, while in Sect. 5 the
operator (B.2) is used to implement Bott periodicity for determinant line bundles. For
these reasons, and others, we pass to the wider context of product-suspended operators.

We first need to enlarge the space of symbols as in Appendix A. Identifying X with
the zero section of T ∗X , consider the blown-up space

X
Rd × T ∗X = [Rd × T ∗X; ∂Rd × X ], (B.3)

where Rd × T ∗X is the radial compactification of R
d × T ∗X fibre by fibre and

Rd × X ⊂ Rd × T ∗X



Periodicity 181

is the closure of R
d × X in Rd × T ∗X . In terms of a Riemannian metric g and the

Euclidean metric on R
d , Lemma A.1 generalizes directly to

Lemma B.1. The projection R
d × T ∗X → T ∗X extends to a smooth map

πT ∗X : X
Rd × T ∗X −→ T ∗X

which is a fibration with typical fibre Rd , and the smooth functions

ρsus(v,w) = (1 + |w|2) 1
2

(1 + |v|2 + |w|2) 1
2

, ρr (v,w) = (1 + |w|2)− 1
2 , v ∈ R

d , w ∈ T ∗X,

define the two boundary faces.

Proof. This results from the invariance of the construction in Appendix A under those
linear transformations of V ×W which leave V invariant, so Lemma A.1 extends to the
case of a vector bundle. ��

For z, z′ ∈ C, the space of (partially) product-type symbols with values in a vector
bundle over X is then

Sz,z′(X
Rd × T ∗X;U ) = ρ−z

r ρ−z′
sus C∞(X

Rd × T ∗X;U ). (B.4)

On Rd × X × X , consider the boundary defining function ρτ (τ ) = (1 + |τ |2)− 1
2 . Let E

and F be smooth complex vector bundles on X. For z′ ∈ C set

�
−∞,z′
psus(d)(X; E, F) = ρ−z′

τ C∞(Rd × X × X;Hom(E, F)⊗�R X), (B.5)

where �R X = π∗3�X, π3 being the projection on the third factor, and �X being the
bundle of densities on X. This is the space of smoothing operators (defined as usual
through their kernels) on X depending symbolically on d parameters; which we identify
as the product-suspended operators of order −∞ on X.

Definition B.2. The general spaces of product d-suspended pseudodifferential operators
of order k, k′ ∈ Z acting from S(Rd × X; E) to S(Rd × X; F) is

�
k,k′
psus(d)(X; E, F) = qg(Sk,k′(X

Rd × T ∗X; hom(E, F))) +�−∞,k′
psus(d)(X; E, F),

where qg is the Weyl quantization (B.1) applied to these more general symbol spaces.

We limit attention to integral orders here only because it is all that is needed.
Pseudodifferential operators are included in the product-suspended operators

�k(X; E, F) ⊂ �
k,0
psus(d)(X; E, F),

being independent of the parameters. For integers l ≤ k, l ′ ≤ k′, there are inclusions

�
l,l ′
psus(d)(X; E, F) ⊂ �

k,k′
psus(d)(X; E, F).

Furthermore, as we will see below in Theorem 5, product d-suspended operators com-
pose in the expected way

�
k,k′
psus(d)(X; E, F) ◦�l,l ′

psus(d)(X;G, E) ⊂ �
k+l,k′+l ′
psus(d) (X;G, F).
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Suspended operators are particular instances of product suspended operators,

�k
sus(d)(X; E, F) ⊂ �

k,k
psus(d)(X; E, F), k ∈ Z,

and

�−∞
sus(d)(X; E, F) = �

−∞,−∞
psus(d) (X; E, F).

Product d-suspended pseudodifferential operators are intimately related with the
algebra of product-type operators introduced in [16]. More precisely, consider the pro-
jection

φ : R
d × X → R

d (B.6)

as a fibration. If E and F are smooth complex vector bundles on X, then as discussed in
[16], to such a fibration one can associate the space of product-type pseudodifferential
operators of order (k, k′)

�
k,k′
φ−p(R

d × X; E, F)

acting from C∞c (Rd × X; E) to C∞(Rd × X; F). Given τ ∈ R
d , let

Tτ : R
d × X → R

d × X

denote the translation in the first factor Tτ (t, x) = (t − τ, x). We can consider the
product-type pseudodifferential operators which are translation-invariant in the Eucli-
dean variable, that is, satisfying

T ∗
τ (A f ) = AT ∗

τ f,∀ τ ∈ R
d , f ∈ C∞c (Rd × X; E). (B.7)

In terms of the Schwartz kernel K A of A, this means that K A acts by convolution in the
first factor

A f (x, t) =
∫

Rd

∫

X
K A(t − s, x, x ′) f (x ′, s)ds,

where K A is a density in the x ′ variable. Now one can ask in addition that this convolution
kernel decay to all orders at infinity

K A ∈ C−∞c (Rd × X2;Hom(E, F)⊗�R X) + S(Rd × X2;Hom(E, F)⊗�R X).

(B.8)

This leads to the following characterization of product d-suspended operators.

Lemma B.3. Fourier transformation in the suspension variables

( Â(τ ) f )(x) =
∫

X

∫

Rd
e−i tτ K A(t, x, x ′) f (x ′)dt, τ ∈ R

d

is an isomorphism of the space of translation-invariant product-type pseudodifferential
operators satisfying (B.8) onto the d-parameter product-suspended pseudodifferential
operators; it preserves products.
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Proof. Modulo small changes of notation, this is the same as for suspended operators.
��

One advantage of the alternative definition through Lemma B.3 is that the Fredholm
theory for product d-suspended operators follows almost immediately from the corres-
ponding Fredholm theory for product-type operators. Indeed, the principal symbol map
and the base family map for product-type operators gives via the inclusion (using the
inverse Fourier transform) �̌psus(d)(X; E, F) ⊂ �

k,k′
φ−p(R

d × X; E, F) a corresponding
symbol map and base family map for product d-suspended operators. For the conve-
nience of the reader, we will define these directly without referring to product-type
operators.

Of the two boundary faces of X
Rp × T ∗X , the ‘old’ boundary, or really its blow-up,

Bσ = [S(Rd × T ∗X); S(Rd)× X ]
with X being the zero section of T ∗X, carries the replacement for the usual principal
symbol. In terms of a quantization map as above, this is given by the restriction of the
full symbol a ∈ Sm,m′

(Rd
� T ∗X; E, F) of an operator A = qg(a) to this boundary

face,

σm,m′ : �m,m′
psus(d)(X; E, F) −→ Sm,m′

psus(d)(X; E, F) (B.9)

with

Sm,m′
psus(d)(X; E, F) = C∞(Bσ ; hom(E, F)⊗ N−m ⊗ N−m′

ff ),

where N is the normal bundle to Bσ and and Nff is the normal bundle of the ‘new’
boundary, which is canonically identified with the normal bundle to the boundary of Bσ .
Both are trivial bundles. This corresponds to the multiplicative short exact sequence

0 −→�
m−1,m′
psus(d) (X; E, F)−→�

m,m′
psus(d)(X; E, F)

σm,m′−→Sm,m′
psus(d)(X; E, F)→0. (B.10)

A product d-suspended operator A ∈ �
k,k′
psus(d)(X; E, F) is elliptic if its principal

symbol σm,m′(A) is invertible.
Ellipticity alone does imply that the family is Fredholm for each value of the para-

meter but, as for product-type operators, it does not suffice to allow the construction
of a parametrix modulo Schwartz-smoothing errors. There is a second symbol map
which takes into account the behavior of the operator for large values of the suspension
parameters.

Let Bsus ⊂ X
Rd × T ∗X denote the ‘new’ boundary, which is the ‘front face’ produ-

ced by the blow up. The fibration of Lemma B.1 gives a canonical identification of Bsus
with S(Rd)× T ∗X . Thus, the restriction map (using a boundary defining function ρsus
for Bsus) becomes

R : Sk,k′(X
Rd × T ∗X; hom(E, F)) 
 a �−→

ρm′
susa

∣
∣

Bsus
∈ C∞(S(Rd);Sk,k′(T ∗X; hom(E, F))). (B.11)

Given A = qg(a1) + A2 ∈ �
k,k′
psus(d)(X; E, F) with A2 ∈ �

−∞,k′
psus(d)(X; E, F) and

a1 ∈ Sk,k′(X
Rd × T ∗X; hom(E, F)) the base family is defined by

L(A) = qg(R(a1)) + ρk′
sus A2)

∣
∣

Bsus
∈ C∞(S(Rd);�m(X; E, F)). (B.12)
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Proposition B.4. The base family (B.12) is independent of choices and corresponds to
the multiplicative short exact sequence

0−→�
k,k′−1
psus(d)(X; E, F)−→�

k,k′
psus(d)(X; E, F)

L−→ C∞(S(Rd);�k(X; E, F))−→ 0,

(B.13)

so

L(A ◦ B) = L(A) ◦ L(B), A ∈ �m,m′
psus(d)(X; E, F), B ∈ �k,k′

psus(d)(X;G, E).

Proof. The fact that there is a short exact sequence is essentially by definition of L . The
fact that L is a homomorphism follows by very simple ‘oscillatory testing’. Namely, if
u ∈ C∞(X; E) and A ∈ �k,k′

psus(p)(X; E, F) then

Au ∈ ρ−k′
τ C∞(Rp × X; F) and L(A)u = ρk′

τ Au
∣
∣
∂Rp ∈ C∞(Sp−1 × X; F). (B.14)

��
Definition B.5. The joint symbol J (A) of an operator A ∈ �

k,k′
psus(d)(X; E, F) is the

combination of its principal symbol and its base family

J (A) = (σ (A), L(A)) where σ(L(A)) = σ(A)
∣
∣

Bσ
.

An operator A is said to be fully elliptic if its joint symbol is invertible.

The important feature that motivates the introduction of product-suspended operators
(as opposed to suspended operators) is the following lemma.

Lemma B.6. If A ∈ �1(X; E) then the one-parameter family τ �−→ A + iτ ∈ �1,1
psus(1)

(X; E) and if B ∈ �1(X; E, F), then the two-parameter family

(t, τ ) �−→ B̂(t, τ ) =
(

i t + τ B∗
B it − τ

)

∈ �1,1
psus(2)(X; E ⊕ F).

Moreover if A is self-adjoint and elliptic (respectively B is elliptic) then A + iτ (respec-
tively B̂) is fully elliptic.

In fact, it suffices that all the eigenvalues of the symbol of A have a nonvanishing real
part for A + iτ to be fully elliptic.

Proof. Fix a quantization qg. In the first case a ∈ ρ−1C∞(T ∗X;π∗ hom(E)) exists
such that (A − qg(a)) ∈ �−∞(X; E). Then

a + iτ ∈ S1,1(X
R× T ∗X; E) and A + iτ − qg(a + iτ) ∈ �−∞,1

psus(1)(X; E),

which shows that A + iτ ∈ �1,1
psus(1)(X; E). The symbol of A + iτ is invertible if σ(A)

has no eigenvalues in iR and its base family is ±i Id at the two components of ∂Rτ .
Thus A + iτ is fully elliptic.

In the second case, choose b ∈ ρ−1C∞(T ∗X;π∗ hom(E, F)) such that

B − qg(b) ∈ �−∞(X; E).
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Then

b̂ =
(

i t + τ b∗
b it − τ

)

∈ S1,1(X
R2 × T ∗X; E, F)

and B̂ − qg(b̂) ∈ �−∞,1
psus(2)(X; E, F), which shows that B̂ ∈ �1,1

psus(1)(X; E, F). To see

that B̂ is fully elliptic when B is elliptic, consider the invertible operator

Q = B̂∗ B̂ + 1 =
(

B∗B + t2 + τ 2 + 1 0
0 B B∗ + t2 + τ 2 + 1

)

∈ �2,2
psus(2)(X; E ⊕ F).

Then

(Q−1 B̂∗)B̂ − IdE⊕F = −Q−1 ∈ �−2,−2
psus(2)(X; E ⊕ F),

so that J (B̂)−1 = J (Q−1 B̂∗) exists, which shows that B̂ is fully elliptic. ��

Appendix C: Mixed Isotropic Operators

Next we proceed to the ‘parameter quantization’ of these spaces of product suspended
operators. That is, we introduce a new product depending on the choice of an antisymme-
tric form on R

p. These products are used above in the identification of the determinant
bundle, as constructed in the product 2n-suspended case, with the determinant bundle as
introduced by Quillen. To do so we use an adiabatic limit, with a parameter which passes
from the quantized to the unquantized case discussed above; for the isotropic algebra
itself such degenerations are treated in [7] and as shown there implements Bott periodi-
city. So, to introduce these spaces we simply combine (2.3) and its Euclidean analogue
(2.20). Note that the quantization map will be global in the Euclidean variables but can
only be local near the diagonal in the manifold. In defining these spaces we use the
formula for the action of an operator by Weyl quantization in (2.21).

Proposition C.1. Let X be a compact manifold E and F complex bundles over X, then
for any p ∈ N combining (2.21) with the operator product gives a smooth family of
associative products

�2(Rn)×�m1,m′
1

psus(2n)(X; F,G)×�m2,m′
2

psus(2n)(X; E, F) −→ �
m1+m2,m′

1+m′
2

psus(2n) (X; E,G).

(C.1)

This follows by combining essentially standard treatments of the composition of
pseudodifferential operators with those of the ‘isotropic’ operators on R

n .

We are especially interested in the ‘adiabatic limit’ where the general ω is replaced
by εω for a fixed antisymmetric form. The cases which occur above are where p is even
and ω is non-degenerate, or where p is odd and ω has maximal rank. In this case we
state the corresponding corollary of the result above (see also [10] and [7]).

Theorem 5. For any fixed antisymmetric form on R
p, the composition (C.1) induces a

smooth 1-parameter family of quantized products

[0, 1]ε ×�k,k′
psus(p)(X; F,G)×�l,l ′

psus(p)(X; E, F) −→ �
k+l,k′+l ′
psus(p) (X; E,G) (C.2)
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and as ε ↓ 0 there is a Taylor series expansion

A ◦ε B(u) ∼
∞
∑

k=0

(−iε)k

2kk! ω(Dv, Dw)
k A(v)B(w)

∣
∣′
v=w=u, (C.3)

in particular, when ε = 0 the product reduces to the usual parameterized product of
suspended operators.

References

1. Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. II. Math. Proc.
Camb. Phils. Soc. 78(3), 405–432 (1975)

2. Berline, N., Getzler, E., Vergne, M.: Heat kernels and Dirac operators. Springer-Verlag, Berlin (1992)
3. Bismut, J.-M., Freed, D.: The analysis of elliptic families, II. Commun. Math. Phys. 107, 103–163 (1986)
4. Bismut, J.-M., Freed, D.: The analysis of elliptic families: Metrics and connections on determinant

bundles. Commun. Math. Phys. 106, 159–176 (1986)
5. Bott, R., Seeley, R.: Some remarks on the paper of Callias. Commun. Math. Phys. 62, 235–245 (1978)
6. Dai, X., Freed, D.S.: and determinant lines. J. Math. Phys. 35(10), 5155–5194 (1994)
7. Epstein, C.L., Melrose, R.B.: The Heisenberg algebra, index theory and homology. This became [8]

without Mendoza as coauthor
8. Epstein, C.L., Melrose, R.B., Mendoza, G.: The Heisenberg algebra, index theory and homology. In

preparation
9. Grieser, D., Gruber, M.J.: Singular asymptotics lemma and push-forward theorem. In: Approaches to

singular analysis (Berlin, 1999), Oper. Theory Adv. Appl., Vol. 125, Basel: Birkhäuser, 2001, pp. 117–
130

10. Hörmander, L.: The Weyl calculus of pseudo-differential operators. Comm. Pure Appl. Math. 32,
359–443 (1979)

11. Melrose, R.B.: Analysis on manifolds with corners. In preparation
12. Melrose, R.B.: Calculus of conormal distributions on manifolds with corners. Internat. Math. Res.

Notices 1992(3), 51–61 (1992)
13. Melrose, R.B.: The eta invariant and families of pseudodifferential operators. Math. Res. Lett. 2(5),

541–561 (1995)
14. Melrose, R.B., Rochon, F.: Boundaries, eta invariant and the determinant bundle. Preprint, http://arxiv.org/

list/math.DG/0607480, 2006
15. Melrose, R.B., Rochon, F.: Families index for pseudodifferential operators on manifolds with boundary.

IMRN (22), 1115–1141 (2004)
16. Melrose, R.B., Rochon, F.: Index in K-theory for families of fibred cusp operators. K-Theory 37, 25–104

(2006)
17. Pressley, A., Segal, G.: Loop groups. Oxford Science publications, Oxford Univ. Press, Oxford (1986)
18. Quillen, D.: Determinants of Cauchy-Riemann operators over a Riemann surface. Funct. Anal. Appl.

19, 31–34 (1985)
19. Seeley, R.T.: Complex powers of an elliptic operator. Singular Integrals (Proc. Sympos. Pure Math.,

Chicago, Ill., 1966), Providence, R.I.: Amer. Math. Soc., 1967, pp. 288–307
20. Shubin, M.A.: Pseudodifferential operators and spectral theory. Berlin-Heidelberg-New York: Springer-

Verlag, 1987, Moscow, Nauka: 1978
21. Wodzicki, M.: Spectral asymmetry and zeta functions. Invent. Math. 66, 115–135 (1982)

Communicated by L. Takhtajan



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


