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Abstract: We study the nonlinear equation

i∂tψ = (√−∆ + m2 − m
)
ψ − (|x |−1 ∗ |ψ |2)ψ on R

3,

which is known to describe the dynamics of pseudo-relativistic boson stars in the mean-
field limit. For positive mass parameters, m > 0, we prove existence of travelling
solitary waves, ψ(t, x) = eitµϕv(x − vt), for some µ ∈ R and with speed |v| < 1,
where c = 1 corresponds to the speed of light in our units. Due to the lack of Lorentz
covariance, such travelling solitary waves cannot be obtained by applying a Lorentz
boost to a solitary wave at rest (with v = 0). To overcome this difficulty, we introduce
and study an appropriate variational problem that yields the functions ϕv ∈ H1/2(R3) as
minimizers, which we call boosted ground states. Our existence proof makes extensive
use of concentration-compactness-type arguments.

In addition to their existence, we prove orbital stability of travelling solitary waves
ψ(t, x) = eitµϕv(x − vt) and pointwise exponential decay of ϕv(x) in x .

1. Introduction

In this paper and its companion [4], we study solitary wave solutions — and solutions
close to such — of the pseudo-relativistic Hartree equation

i∂tψ = (√−∆ + m2 − m
)
ψ − ( 1

|x | ∗ |ψ |2)ψ on R
3. (1.1)

Here ψ(t, x) is a complex-valued wave field, and the symbol ∗ stands for convolution
on R

3. The operator
√−∆ + m2 − m, which is defined via its symbol

√
k2 + m2 − m

in Fourier space, is the kinetic energy operator of a relativistic particle of mass, m ≥ 0,
and the convolution kernel, |x |−1, represents the Newtonian gravitational potential in
appropriate physical units.
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As recently shown by Elgart and Schlein in [3], Eq. (1.1) arises as an effective dyna-
mical description for an N -body quantum system of relativistic bosons with two-body
interaction given by Newtonian gravity. Such a system is a model system for a pseudo-
relativistic boson star. That is, we consider a regime, where effects of special relativity
(accounted for by the operator

√−∆ + m2 − m) become important, but general relati-
vistic effects can be neglected. The idea of a mathematical model of pseudo-relativistic
boson stars dates back to the works of Lieb and Thirring [10] and of Lieb and Yau [11],
where the corresponding N -body Hamiltonian and its relation to the Hartree energy
functional H(ψ) = 2E(ψ) are discussed, with E(ψ) defined in (1.3), below.

Let us briefly recap the state of affairs concerning Eq. (1.1) itself. With help of the
conserved quantities of charge, N (ψ), and energy, E(ψ), given by

N (ψ) =
∫

R3
|ψ |2 dx, (1.2)

E(ψ) = 1

2

∫

R3
ψ

(√−∆ + m2 − m
)
ψ dx − 1

4

∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx, (1.3)

results derived so far can be summarized as follows (see also Fig. 1 below).

– Well-Posedness: For any initial datumψ0 ∈ H1/2(R3), there exists a unique solution

ψ ∈ C0([0, T ); H1/2(R3)
) ∩ C1([0, T ); H−1/2(R3)

)
, (1.4)

for some T > 0, where Hs(R3) denotes the inhomogeneous Sobolev space of order
s. Moreover, we have global-in-time existences (i. e., T = ∞) whenever the initial
datum satisfies the condition

N (ψ0) < Nc, (1.5)

ground states at rest

III

III

E

E = − 1
2mN

N

N = Nc

0

Fig. 1. Qualitative diagram for the boson star Eq. (1.1) with positive mass parameter m > 0. Here N = N (ψ0)

and E = E(ψ0) denote charge and energy for the initial condition ψ0 ∈ H1/2(R3). In region I, all solutions
are global in time and the (unboosted) ground states are minimizers of E(ψ) subject to fixed N (ψ0) = N
with 0 < N < Nc. If N exceeds Nc, the energy E can attain values below − 1

2 m N . As shown in [5] for

spherically symmetricψ0 ∈ C∞
c (R

3) that belong to region III, we have in fact blow-up ofψ(t)within a finite
time. Finally, the qualitative behavior of solutions with initial conditions in region II seems to be of indefinite
nature
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where Nc > 4/π is some universal constant; see [7] for a detailed study of the Cauchy
problem for (1.1) with initial data in Hs(R3), s ≥ 1/2.

– Solitary Waves: Due to the focusing nature of the nonlinearity in (1.1), there exist
solitary wave solutions, which we refer to as solitary waves, given by

ψ(t, x) = eitµϕ(x), (1.6)

where ϕ ∈ H1/2(R3) is defined as a minimizer of E(ψ) subject to N (ψ) = N
fixed. Any such minimizer, ϕ(x), is called a ground state and it has to satisfy the
corresponding Euler-Lagrange equation

(√−∆ + m2 − m
)
ϕ − ( 1

|x | ∗ |ϕ|2)ϕ = −µϕ, (1.7)

for someµ ∈ R. An existence proof of ground states, for 0 < N (ϕ) < Nc and m > 0,
can be found in [11]. The method used there is based on rearrangement inequalities
that allow one to restrict one’s attention to radial functions, which simplifies the
variational calculus. But in order to extend this existence result to so-called boosted
ground states, i. e., x in (1.6) is replaced by x−vt and Eq. (1.7) acquires the additional
term, i(v · ∇)ϕ, we have to employ concentration-compactness-type methods; see
Theorem 2.1 and its proof, below.

– Blow-Up: Any spherically symmetric initial datum, ψ0 ∈ C∞
c (R

3), with

E(ψ0) < −1

2
mN (ψ0) (1.8)

leads to blow-up of ψ(t) in a finite time, i. e., we have that limt↗T ‖ψ(t)‖H1/2 = ∞
holds, for some T < ∞. We remark that (1.8) implies that the smallness condition
(1.5) cannot hold. See [5] for a proof of this blow-up result.1 In physical terms,
finite-time blow-up of ψ(t) is indicative of “gravitational collapse” of a boson star
modelled by (1.1); the constant Nc appearing in (1.5) may then be regarded as a
“Chandrasekhar limit mass.”

We now come to the main issues of the present paper which focuses on existence and
properties of travelling solitary waves for (1.1). More precisely, we consider solutions
of the form

ψ(t, x) = eitµϕv(x − vt) (1.9)

with someµ ∈ R and travelling velocity, v ∈ R
3, such that |v| < 1 holds (i. e., below the

speed of light in our units). We point out that, since Eq. (1.1) is not Lorentz covariant,
solutions such as (1.9) cannot be directly obtained from solitary waves at rest (i. e., we
set v = 0) and then applying a Lorentz boost. To circumvent this difficulty, we plug the
ansatz (1.9) into (1.1). This yields

(√−∆ + m2 − m
)
ϕv + i(v · ∇)ϕv − ( 1

|x | ∗ |ϕv|2
)
ϕv = −µϕv, (1.10)

which is an Euler-Lagrange equation for the following minimization problem

Ev(ψ) := E(ψ) +
i

2

∫

R3
ψ(v · ∇)ψ dx = min! subject to N (ψ) = N . (1.11)

1 In [5] the energy functional, E(ψ), is shifted by + 1
2 mN (ψ). Thus, condition (1.8) reads E(ψ0) < 0 in

[5].
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We refer to such minimizers, ϕv ∈ H1/2(R3), as boosted ground states throughout this
paper. Indeed, we will prove existence of boosted ground states when |v| < 1 and
0 < N < Nc(v) holds, as well as non-existence when N ≥ Nc(v); see Theorem 2.1,
below. Our existence proof rests on concentration-compactness arguments which for
our problem need some technical modifications, due to the pseudo-differential operator√−∆ + m2.

Apart from existence of boosted ground states, we are also concerned with properties
such as “orbital stability” and exponential decay of ϕv(x) in x ; see Theorems 3.1 and
4.1, below. We remark that both properties rely crucially on the positivity of the mass
parameter, i. e., we have m > 0 in (1.1). By contrast, it is shown, for instance, in [5] that
(resting) solitary waves become unstable when m = 0, due to nearby initial data leading
to blow-up solutions.

In a companion paper [4], we will explore the effective dynamics of (slowly) travelling
solitary waves in an external potential; see also Sect. 5 for a short summary of these result.

The plan of this paper is as follows:

– In Sect. 2, we set-up the variational calculus for problem (1.11) and we prove existence
of boosted ground states, ϕv ∈ H1/2(R3), for 0 < N (ϕv) < Nc(v) and |v| < 1, as
well as their nonexistence if N (ϕv) ≥ Nc(v); see Theorem 2.1, below.

– Section. 3 addresses “orbital stability” of travelling solitary waves ψ(t, x) = eitµϕv
(x − vt); see Theorem 3.1, below.

– In Sect. 4, we derive pointwise exponential decay and regularity of boosted ground
states; see Theorem 4.1, below.

– In Sect. 5, we sketch the main result of [4] describing the effective dynamics of
travelling solitary waves in an external potential.

– In App. A–C, we collect and prove several technical statements which we refer to
throughout this text.

Notation. Lebesgue spaces of complex-valued functions on R
3 will be denoted by

Lp(R3), with norm ‖ · ‖p and 1 ≤ p ≤ ∞. We define the Fourier transform for
f ∈ S(R3) (i. e., Schwartz functions) according to

(F f )(k) = f̂ (k) = 1

(2π)3/2

∫

R3
f (x)e−ik·x dx, (1.12)

where F extends to S ′(R3) (i. e., the space of tempered distributions) by duality.
For s ∈ R, we introduce the operator (1 −∆)s via its multiplier (1 + |k|2)s in Fourier

space, i. e., we set (1 −∆)s f = F−1[(1 + |k|2)sF f ]. Likewise, we define the operator√−∆ + m2 through its multiplier
√|k|2 + m2 in Fourier space.

We employ Sobolev spaces, Hs(R3), of fractional order s ∈ R defined by

Hs(R3) := {
f ∈ S ′(R3) : (1 −∆)s/2 f ∈ L2(R3)

}
(1.13)

and equipped with the norm ‖ f ‖Hs := ‖(1 −∆)s/2 f ‖2.
Since we exclusively deal with R

3, we often write Lp and Hs instead of Lp(R3) and
Hs(R3) in what follows. A further abbreviation we use is given by

∫

R3
f dx :=

∫

R3
f (x) dx . (1.14)
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We equip L2(R3) with a complex inner product, 〈·, ·〉, defined as

〈 f, g〉 :=
∫

R3
f̄ g dx . (1.15)

Operator inequalities (in the sense of quadratic forms) are denoted by A ≤ B, which
means that 〈ψ, Aψ〉 ≤ 〈ψ, Bψ〉 holds for all ψ ∈ D(|A|1/2) ⊆ D(|B|1/2), where A
and B are self-adjoint operators on L2(R3) with domains D(A) and D(B), respectively.
Finally, we remark that we employ the notation v · ∇ = ∑3

k=1 vk∂xk , where v ∈ R
3 is

some fixed vector.

2. Existence of Boosted Ground States

We consider the following minimization problem:

Ev(N ) := inf
{
Ev(ψ) : ψ ∈ H1/2(R3), N (ψ) = N

}
, (2.1)

where N (ψ) is defined in (1.2), and N > 0, v ∈ R
3, with |v| < 1, denote given

parameters. Furthermore, we set

Ev(ψ) := 1

2

〈
ψ,

(√−∆ + m2 − m
)
ψ

〉
+

i

2

〈
ψ, (v · ∇)ψ 〉

−1

4

∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx . (2.2)

Any minimizer,ϕv ∈ H1/2(R3), for (2.1) has to satisfy the corresponding Euler-Lagrange
equation given by

(√−∆ + m2 − m
)
ϕv + i(v · ∇)ϕv − ( 1

|x | ∗ |ϕv|2
)
ϕv = −µϕv, (2.3)

with some Lagrange multiplier, −µ ∈ R, where this sign convention turns out to be
convenient for our analysis. In what follows, we refer to such minimizers, ϕv , for (2.1)
as boosted ground states, since they give rise to moving solitary waves

ψ(t, x) = eitµϕv(x − vt), (2.4)

for (1.1) with travelling speed v ∈ R
3 with |v| < 1.

Concerning existence of boosted ground states, we have the following theorem which
generalizes a result derived in [11] for minimizers of (2.1) with v = 0.

Theorem 2.1. Suppose that m > 0, v ∈ R
3, and |v| < 1. Then there exists a positive

constant Nc(v) depending only on v such that the following holds.

i) For 0 < N < Nc(v), problem (2.1) has a minimizer, ϕv ∈ H1/2(R3), and it satisfies
(2.3), for some µ ∈ R. Moreover, every minimizing sequence, (ψn), for (2.1) with
0 < N < Nc(v) is relatively compact in H1/2(R3) up to translations, i. e., there
exists a sequence, (yk), in R

3 and a subsequence, (ψnk ), such that ψnk (· + yk) → ϕv
strongly in H1/2(R3) as k → ∞, where ϕv is some minimizer for (2.1).

ii) For N ≥ Nc(v), no minimizer exists for problem (2.1), even though Ev(N ) is finite
for N = Nc(v).



6 J. Fröhlich, B. L. G. Jonsson, E. Lenzmann

Remarks. 1) It has been proved in [11] that (2.1) with v = 0 has a spherically symmetric
minimizer, which can be chosen to be real-valued and nonnegative. But the proof
given in [11] crucially relies on symmetric rearrangement arguments that allow to
restrict to radial functions in this special case. For v �= 0, such methods cannot
be used and a general discussion of (2.1) needs a fundamental change of methods.
Fortunately, it turns out that the concentration-compactness method introduced by
P.-L. Lions in [12] is tailor-made for studying (2.1). To prove Theorem 2.1, we shall
therefore proceed along the lines of [12]. But — due to the presence of the pseudo-
differential operator

√−∆ + m2 in (2.2) — some technical modifications have to be
taken into account and they are worked out in detail in App. A.

2) A corresponding existence result for boosted ground states can also be derived when
−1/|x | in (2.2) is replaced by some other attractive two-body potential, e. g., a Yu-
kawa type potential Φ(x) = −e−µ|x |/|x | with µ > 0. But then minimal L2-norm
of minimizers may also arise, i. e., the condition N > N∗(v;Φ) enters for some
N∗(v;Φ) > 0.

3) We do not know whether we have uniqueness of minimizers (up to phase and trans-
lation) for problem (2.1). Even the simpler case, where one assumes v = 0, has not
been settled yet.

2.1. Setting up the Variational Calculus. Before we turn to the proof of Theorem 2.1,
we collect and prove some preliminary results.

First one easily verifies that Ev(ψ) is real-valued (by using, for instance, Plancherel’s
theorem for the first two terms in (2.2)). Moreover, the inequality

∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx ≤ Sv
〈
ψ, (

√−∆ + iv · ∇)ψ 〉〈
ψ,ψ

〉
, (2.5)

which is proven in App. B, ensures that Ev(ψ) is well-defined on H1/2(R3). As stated
in Lemma B.1, inequality (2.5), with |v| < 1, has an optimizer, Qv �≡ 0, which satisfies

√−∆ Qv + i(v · ∇)Qv − ( 1

|x | ∗ |Qv|2
)
Qv = −Qv (2.6)

and yields the best constant, Sv , in terms of

Sv = 2

〈Qv, Qv〉 . (2.7)

Correspondingly, we introduce the constant, Nc(v), by

Nc(v) := 2

Sv
. (2.8)

By Lemma B.1, we also have the bounds

Nc ≥ Nc(v) ≥ (1 − |v|)Nc, (2.9)

where Nc(v = 0) = Nc > 4/π is, of course, the same constant that appeared in Sect. 1.
We now state our first auxiliary result for (2.1).
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Lemma 2.1. Suppose that m ≥ 0, v ∈ R
3, and |v| < 1. Then the following inequality

holds:

2Ev(ψ) ≥ (
1 − N

Nc(v)

)〈
ψ,

(√−∆ + iv · ∇)
ψ

〉 − m N (2.10)

for all ψ ∈ H1/2(R3) with N (ψ) = N. Here Nc(v) is the constant introduced in (2.8)
above.

Moreover, we have that Ev(N ) ≥ − 1
2 m N for 0 < N ≤ Nc(v) and Ev(N ) = −∞ for

N > Nc(v). Finally, any minimizing sequence for problem (2.1) is bounded in H1/2(R3)

whenever 0 < N < Nc(v).

Proof (of Lemma 2.1). Let the assumption on m and v stated above be satisfied. Estimate
(2.10) is derived by noting that

√−∆ + m2 ≥ √−∆ and using inequality (2.5) together
with the definition of Nc(v) in (2.8). Furthermore, that Ev(N ) ≥ − 1

2 m N for N ≤ Nc(v)

is a consequence of (2.10) itself. To see that Ev(N ) = −∞ when N > Nc(v), we
recall from Lemma B.1 that there exists an optimizer, Qv ∈ H1/2(R3), with N (Qv) =
Nc(v), for inequality (2.5). Using that Qv turns (2.5) into an equality and noticing that√−∆ + m2 − m ≤ √−∆ holds, a short calculation yields

Ev(N ) ≤ Ev(λQv)

∣∣∣
m=0

= −λ
2(λ2 − 1)

4

∫

R3

( 1

|x | ∗ |Qv|2
)|Qv|2 dx . (2.11)

For N > Nc(v), we can choose λ > 1 which implies that the right-hand side is strictly
negative and, in addition, by L2-norm preserving rescalings, Qv(x) �→ a3/2 Qv(ax)
with a > 0, we find that

Ev(N ) ≤ Ev(λa3/2 Qv(a·))
∣∣∣
m=0

= aEv(λQv)

∣∣∣
m=0

→ −∞, (2.12)

with λ > 1 fixed and as a → ∞. Thus, we deduce that Ev(N ) = −∞ when N > Nc(v).
To see the H1/2(R3)-boundedness of any minimizing sequence, (ψn), with 0 <

N < Nc(v), we note that
√−∆ + iv · ∇ ≥ (1 − |v|)√−∆ holds. Hence we see that

supn〈ψn,
√−∆ψn〉 ≤ C < ∞, thanks to (2.10). This completes the proof of Lemma

2.1. ��
As a next step, we derive an upper bound for Ev(N ), which is given by the nonre-

lativistic ground state energy, Enr
v (N ), defined below. Here the positivity of the mass

parameter, m > 0, is essential for deriving the following estimate.

Lemma 2.2. Suppose that m > 0, v ∈ R
3, and |v| < 1. Then we have that

Ev(N ) ≤ −1

2

(
1 −

√
1 − v2

)
m N + Enr

v (N ), (2.13)

where Enr
v (N ) is given by

Enr
v (N ) := inf

{
Enr
v (ψ) : ψ ∈ H1(R3), N (ψ) = N

}
, (2.14)

Enr
v (ψ) :=

√
1 − v2

4m

∫

R3
|∇ψ |2 dx − 1

4

∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx . (2.15)
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Proof (of Lemma 2.2). To prove (2.13), we pick a spherically symmetric function, φ ∈
H1(R3) with N (φ) = N , and we introduce the one-parameter family

φλ(x) := eiλv·xφ(x) = eiλ|v|zφ(x), with λ > 0. (2.16)

Here and in what follows, we assume (without loss of generality) that v is parallel to the
z-axis, i. e., v = |v|ez . One checks that

i

2

〈
φλ, (v · ∇)φλ

〉 = −λv
2

2
N , (2.17)

using the fact that 〈φ,∇φ〉 = 0 holds, by spherical symmetry of φ(x). Hence, we find
that

Ev(φλ) = 1

2

〈
φλ,

(√−∆ + m2 − m
)
φλ

〉
+

i |v|
2

〈
φλ, ∂zφλ

〉

−1

4

∫

R3

( 1

|x | ∗ |φλ|2
)|φλ|2 dx

= 1

2

(〈
φλ,

(√−∆ + m2 − m
)
φλ

〉 − v2λN
)

− 1

4

∫

R3

( 1

|x | ∗ |φ|2)|φ|2 dx

=: A + B. (2.18)

To estimate A in (2.18), we recall the operator inequality

√
−∆ + m2 ≤ 1

2λ
(−∆ + m2 + λ2), (2.19)

which follows from the elementary inequality 2ab ≤ a2 + b2. Thus, we are led to

A ≤ 1

4λ

〈
φλ, (−∆ + m2 + λ2)φλ

〉 − 1

2
m N − 1

2
v2λN

= 1

4λ

(
λ2v2 N + 〈φ,−∆φ〉 + (m2 + λ2)N

) − 1

2
m N − 1

2
v2λN . (2.20)

By minimizing the upper bound (2.20) with respect to λ > 0, which is a matter of
elementary calculations, we obtain with λ∗ = m/

√
1 − v2 the estimate

Ev(φλ∗) ≤ −1

2

(
1 −

√
1 − v2

)
m N

+

√
1 − v2

4m
〈φ,−∆φ〉 − 1

4

∫

R3

( 1

|x | ∗ |φ|2)|φ|2 dx

= −1

2

(
1 −

√
1 − v2

)
m N + Enr

v (φ). (2.21)

Next, we remark that Enr
v (ψ) is the energy functional for the non-relativistic boson star

problem with mass parameter mv = m/
√

1 − v2. Indeed, it is known from [8] that
Enr
v (ψ) subject to N (ψ) = N has a spherically symmetric minimizer, φ∗ ∈ H1(R3),

with
Enr
v (N ) = Enr

v (φ∗) < 0, (2.22)

which completes the proof of Lemma 2.2. ��
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By making use of Lemma 2.2, we show that the function Ev(N ) satisfies a strict sub-
additivity condition. This is essential to the discussion of (2.1) when using concentration-
compactness-type methods.

Lemma 2.3. Suppose that m > 0, v ∈ R
3, and |v| < 1. Then Ev(N ) satisfies the strict

subadditivity condition
Ev(N ) < Ev(α) + Ev(N − α) (2.23)

whenever 0 < N < Nc(v) and 0 < α < N. Here Nc(v) is the constant of Lemma 2.1.
Moreover, the function Ev(N ) is strictly decreasing and strictly concave in N, where

0 < N < Nc(v).

Remarks. 1) Condition m > 0 is necessary for (2.23) to hold. To see this, note that if
m = 0 then Ev(ψλ) = λEv(ψ) holds, where ψλ = λ3/2ψ(λx) and λ > 0. This leads
to the conclusion that Ev(N ) is either 0 or −∞ when m = 0.

2) The fact that Ev(N ) is strictly concave will be needed in our companion paper [4]
when making use of the symplectic structure associated with the Hamiltonian PDE
(1.1). More precisely, the strict concavity of Ev(N ) will enable us to prove the
nondegeneracy of the symplectic form restricted to the manifold of solitary waves.

Proof (of Lemma 2.3). By Lemma 2.2 and the fact that Enr
v (N ) ≤ Enr

v=0(N ) < 0 holds,
by (2.22), we deduce that

Ev(N ) < −1

2

(
1 −

√
1 − v2

)
m N . (2.24)

Next, we notice the following scaling behavior:

Ev(N ) = Nev(N ), (2.25)

where

ev(N ) := inf
ψ∈H1/2,‖ψ‖2

2=1

{1

2

〈
ψ,

(√−∆ + m2 − m
)
ψ

〉
+

i

2

〈
ψ, (v · ∇)ψ 〉

− N

4

∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx
}
. (2.26)

This shows that ev(N ) is strictly decreasing, provided that we know that we may restrict
the infimum to elements such that

∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx ≥ c > 0 (2.27)

holds for some c. Suppose now that (2.27) were not true. Then there exists a minimizing
sequence, (ψn), such that

∫

R3

( 1

|x | ∗ |ψn|2)|ψn|2 dx → 0, as n → ∞. (2.28)

But on account of the fact that (cf. App. C)

〈
ψ,

(√−∆ + m2 − m
)
ψ

〉
+ i

〈
ψ, (v · ∇)ψ 〉 ≥ −(

1 −
√

1 − v2
)
m N , (2.29)
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we conclude that

Ev(N ) = Nev(N ) ≥ −1

2

(
1 −

√
1 − v2

)
m N , (2.30)

which contradicts (2.24). Thus ev(N ) is strictly decreasing. Returning to (2.25) and
noting that ev(N ) < 0 holds, by (2.24), we deduce that

Ev(ϑN ) < ϑEv(N ), for ϑ > 1 and 0 < N < Nc(v). (2.31)

By an argument presented in [12], this inequality leads to the strict subadditivity condition
(2.23).

Finally, we show that Ev(N ) is strictly decreasing and strictly concave on the in-
terval (0, Nc(v)). To see that Ev(N ) = Nev(N ) is strictly decreasing, we notice
that ev(N ) is strictly decreasing and negative. Furthermore, we remark that ev(N ) =
inf{linear functions in N }has to be a concave function. Therefore it follows that Ev(N ) =
Nev(N ) is strictly concave, since the left- and right-derivatives, D±Ev(N ), exist and are
found to be strictly decreasing, by using that ev(N ) is concave and strictly decreasing.
��

2.2. Proof of Theorem 2.1. We now come to the proof of Theorem 2.1 and we suppose
that m > 0, v ∈ R

3, and |v| < 1 holds.

Proof of Part i) Let us assume that

0 < N < Nc(v), (2.32)

where Nc(v) is the constant defined in (2.8). Furthermore, let (ψn) be a minimizing
sequence for (2.1), i. e.,

lim
n→∞ Ev(ψn) = Ev(N ), with ψn ∈ H1/2(R3) and N (ψn) = N for all n ≥ 0. (2.33)

By Lemma 2.1, we have that Ev(N ) > −∞ and that (ψn) is a bounded sequence in
H1/2(R3). We now apply the following concentration-compactness lemma.

Lemma 2.4. Let (ψn) be a bounded sequence in H1/2(R3) such that N (ψn) = ∫
R3 |ψn|2

dx = N for all n ≥ 0. Then there exists a subsequence, (ψnk ), satisfying one of the three
following properties:

i) Compactness: There exists a sequence, (yk), in R
3 such that, for every ε > 0, there

exists 0 < R < ∞ with
∫

|x−yk |<R
|ψnk |2 dx ≥ N − ε. (2.34)

ii) Vanishing:

lim
k→∞ sup

y∈R3

∫

|x−y|<R
|ψnk |2 dx = 0, for all R > 0.



Boson Stars as Solitary Waves 11

iii) Dichotomy: There exists α ∈ (0, N ) such that, for every ε > 0, there exist two

bounded sequences, (ψ1
k ) and (ψ2

k ), in H1/2(R3) and k0 ≥ 0 such that, for all
k ≥ k0, the following properties hold:

∥∥ψnk − (ψ1
k + ψ2

k )
∥∥

p ≤ δp(ε), for 2 ≤ p < 3, (2.35)

with δp(ε) → 0 as ε → 0, and

∣∣∣
∫

R3
|ψ1

k |2 dx − α

∣∣∣ ≤ ε and
∣∣∣
∫

R3
|ψ2

k |2 dx − (N − α)

∣∣∣ ≤ ε, (2.36)

dist (suppψ1
k , suppψ2

k ) → ∞, as k → ∞. (2.37)

Moreover, we have that

lim inf
k→∞

(
〈ψnk , Tψnk 〉 − 〈

ψ1
k , Tψ1

k

〉 − 〈
ψ2

k , Tψ2
k

〉) ≥ −C(ε), (2.38)

where C(ε) → 0 as ε → 0 and T := (√−∆ + m2 − m
)

+ i(v · ∇) with m ≥ 0 and
v ∈ R

3, |v| < 1.

Remark. We refer to App. A for the proof of Lemma 2.4. Part i) and ii) are standard, but
part iii) requires some technical arguments, due to the presence of the pseudo-differential
operator T .

Invoking Lemma 2.4, we conclude that a suitable subsequence, (ψnk ), satisfies either
i), ii), or iii). We rule out ii) and iii) as follows.

Suppose that (ψnk ) exhibits property ii). Then we conclude that

lim
k→∞

∫

R3

( 1

|x | ∗ |ψnk |2
)|ψnk |2 dx = 0, (2.39)

by Lemma A.1. But as shown in the proof of Lemma 2.3, this implies

Ev(N ) ≥ −1

2

(
1 −

√
1 − v2

)
m N , (2.40)

which contradicts (2.24). Hence ii) cannot occur.
Let us suppose that iii) is true for (ψnk ). Then there exists α ∈ (0, N ) such that, for

every ε > 0, there are two bounded sequences, (ψ1
k ) and (ψ2

k ), with

α − ε ≤ N (ψ1
k ) ≤ α + ε, (N − α)− ε ≤ N (ψ2

k ) ≤ (N − α) + ε, (2.41)

for k sufficiently large. Moreover, inequality (2.38) and Lemma A.2 allow us to deduce
that

Ev(N ) = lim
k→∞ Ev(ψnk ) ≥ lim inf

k→∞ Ev(ψ1
k ) + lim inf

k→∞ Ev(ψ2
k )− r(ε), (2.42)

where r(ε) → 0 as ε → 0. Since (ψ1
k ) and (ψ2

k ) satisfy (2.41), we infer

Ev(N ) ≥ Ev(α + ε) + Ev(N − α + ε)− r(ε), (2.43)
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using that Ev(N ) is decreasing in N . Passing to the limit ε → 0 and by continuity of
Ev(N ) in N (recall that Ev(N ) is a concave function on an open set), we deduce that

Ev(N ) ≥ Ev(α) + Ev(N − α) (2.44)

holds for some 0 < α < N . This contradicts the strict subadditivity condition (2.23)
stated in Lemma 2.3. Therefore iii) is ruled out.

By the discussion so far, we conclude that there exists a subsequence, (ψnk ), such that
i) of Lemma 2.4 is true for some sequence (yk) in R

3. Let us now define the sequence

ψ̃k := ψnk (· + yk). (2.45)

Since (ψ̃k) is a bounded sequence in H1/2(R3), we can pass to a subsequence, still
denoted by (ψ̃k), such that (ψ̃k) converges weakly in H1/2(R3) to some ϕv ∈ H1/2(R3)

as k → ∞. Moreover, we have that ψ̃k → ϕv strongly in Lp
loc(R

3) as k → ∞, for
2 ≤ p < 3, thanks to a Rellich-type theorem for H1/2(R3) (see, e. g., [9, Theorem 8.6]
for this). But on account of the fact

∫

|x |<R
|ψ̃k |2 dx ≥ N − ε, (2.46)

for every ε > 0 and suitable R = R(ε) < ∞, we conclude that

ψ̃k → ϕv strongly in Lp(R3) as k → ∞, for 2 ≤ p < 3. (2.47)

Next, by the Hardy–Littlewood–Sobolev and Hölder’s inequality, we deduce that
∣∣
∣
∫

R3

( 1

|x | ∗ |ψ̃k |2
)|ψ̃k |2 dx −

∫

R3

( 1

|x | ∗ |ϕv|2
)|ϕv|2 dx

∣∣
∣

≤ C
(‖ψ̃k‖3

12/5 + ‖ϕv‖3
12/5

)‖ψ̃k − ϕv‖12/5. (2.48)

From (2.47), we have that ψ̃k converges strongly to ϕv in L12/5(R3), as k → ∞, and
therefore

lim
k→∞

∫

R3

( 1

|x | ∗ |ψ̃k |2
)|ψ̃k |2 dx =

∫

R3

( 1

|x | ∗ |ϕv|2
)|ϕv|2 dx . (2.49)

Moreover, we have that

Ev(N ) = lim
k→∞ Ev(ψ̃k) ≥ Ev(ϕv) ≥ Ev(N ), (2.50)

since the functional

T (ψ) := 〈
ψ,

√
−∆ + m2ψ

〉
+ i

〈
ψ, (v · ∇)ψ 〉

, (2.51)

is weakly lower semicontinuous on H1/2(R3), see Lemma A.4 in App. A. Thus, we have
proved that ϕv ∈ H1/2(R3) is a minimizer for (2.1), i. e., we have Ev(N ) = Ev(ϕv) and
N (ϕv) = N .

To prove the relative compactness of minimizing sequences in H1/2(R3) (up to trans-
lations), we notice that there has to be equality in (2.50), which leads to limk→∞ T (ψ̃k) =
T (ϕv). By Lemma A.4, this fact implies a posteriori that

ψ̃k → ϕv strongly in H1/2(R3) as k → ∞, (2.52)

which completes the proof of part i) of Theorem 2.1.
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Proof of Part ii) To complete the proof of Theorem 2.1, we address its part ii). Clearly,
no minimizer exists if N > Nc(v), since in this case we have that Ev(N ) = −∞, by
Lemma 2.1.

Next, we show that Ev(N ) = − 1
2 m N holds if N = Nc(v), which can be seen as

follows. We take an optimizer, Qv ∈ H1/2(R3), for inequality (2.5); see Lemma B.1 and
recall that N (Qv) = Nc(v). Then

Ev(N ) ≤ Ev(Q(λ)
v ) = 1

2

〈
Q(λ)
v ,

(√−∆ + m2 − √−∆)
Q(λ)
v

〉 − 1

2
m N , (2.53)

for N = Nc(v), where Q(λ)
v (x) := λ3/2 Qv(λx) with λ > 0, so that N (Q(λ)

v ) =
N (Qv) = Nc(v). Using Plancherel’s theorem and by dominated convergence, we
deduce that

〈
Q(λ)
v ,

(√−∆ + m2 − √−∆)
Q(λ)
v

〉 =
∫

R3
|Q̂v(k)|2

(√
λ2k2 + m2 − λ|k|) dk

→ 0 as λ → ∞. (2.54)

Thus, we conclude that Ev(N ) ≤ − 1
2 m N for N = Nc(v). In combination with the

estimate Ev(N ) ≥ − 1
2 m N for N ≤ Nc(v) taken from Lemma 2.1, this shows that

Ev(N ) = −1

2
m N for N = Nc(v). (2.55)

Finally, we prove that there does not exist a minimizer for (2.1) with N = Nc(v). We
argue by contradiction as follows. Suppose that ϕv ∈ H1/2(R3) is a minimizer for (2.1)
with N = Nc(v). For ϕv ∈ H1/2(R3), ϕv �≡ 0, and m > 0, we use 〈ϕv,

√−∆ + m2ϕv〉 >
〈ϕv,

√−∆ϕv〉 to obtain

−1

2
m N = Ev(ϕv)

∣
∣
m>0 > Ev(ϕv)

∣
∣
m=0 − 1

2
m N ≥ −1

2
m N , (2.56)

which is a contradiction. Here we use Lemma 2.1 to estimate Ev(ϕv)|m=0 ≥ 0 for
N (ϕv) = Nc(v). Hence no minimizer exists for (2.1) if N ≥ Nc(v). This completes the
proof of Theorem 2.1. ��

3. Orbital Stability

The purpose of this section is to address “orbital stability” of travelling solitary waves

ψ(t, x) = eitµϕv(x − vt), (3.1)

where ϕv ∈ H1/2(R3) is a boosted ground state. By the relative compactness of minimi-
zing sequences (see Theorem 2.1) and by using a general idea presented in [2], we are
able to prove the following abstract stability result.

Theorem 3.1. Suppose that m > 0, v ∈ R
3, |v| < 1, and 0 < N < Nc(v). Let Sv,N

denote the corresponding set of boosted ground states, i. e.,

Sv,N := {
ϕv ∈ H1/2(R3) : Ev(ϕv) = Ev(N ), N (ϕv) = N

}
,

which is non-empty by Theorem 2.1.
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Then the solitary waves given in (3.1), with ϕv ∈ Sv,N , are stable in the following
sense. For every ε > 0, there exists δ > 0 such that

inf
ϕv∈Sv,N

‖ψ0 − ϕv‖H1/2 ≤ δ implies that sup
t≥0

inf
ϕv∈Sv,N

‖ψ(t)− ϕv‖H1/2 ≤ ε.

Here ψ(t) denotes the solution of (1.1) with initial condition ψ0 ∈ H1/2(R3).

Remark. It is an interesting and open question whether uniqueness (modulo phase
and translation) of boosted ground states holds, i. e., we have that Sv,N is of the form
{eiγ ϕv(· − y) : γ ∈ R, y ∈ R

3}, for some fixed ϕv ∈ Sv,N .

Proof (of Theorem 3.1). Let m and v satisfy the given assumptions. Since we have
N < Nc(v) ≤ Nc, we can choose δ > 0 sufficiently small such that infφ∈Sv,N ‖ψ0 −
φ‖H1/2 ≤ δ guarantees that N (ψ0) < Nc. By the global well-posedness result for (1.1)
derived in [7], we have that the corresponding solution, ψ(t), exists for all times t ≥ 0.
Thus, taking supt≥0 is well-defined.

Let us now assume that orbital stability (in the sense defined above) does not hold.
Then there exists a sequence on initial data, (ψn(0)), in H1/2(R3) with

inf
ϕ∈Sv,N

‖ψn(0)− ϕ‖H1/2 → 0, as n → ∞, (3.2)

and some ε > 0 such that

inf
ϕ∈Sv,N

‖ψn(tn)− ϕ‖H1/2 > ε, for all n ≥ 0, (3.3)

for a suitable sequence of times (tn). Note that (3.2) implies that N (ψn(0)) → N as
n → ∞. Since N < Nc by assumption, we can assume — without loss of generality
— that N (ψn(0)) < Nc holds for all n ≥ 0, which guarantees (see above) that the
corresponding solution, ψn(t), exists globally in time.

Next, we consider the sequence, (βn), in H1/2(R3) that is given by

βn := ψn(tn). (3.4)

By conservation of N (ψ(t)) and of Ev(ψ(t)), whose proof can be done along the lines
of [7] for the conservation of E(ψ(t)), we have that N (βn) = N (ψn(0)) and Ev(βn) =
Ev(ψn(0)), which, by (3.2), implies

lim
n→∞ Ev(βn) = Ev(N ) and lim

n→∞ N (βn) = N . (3.5)

Defining the rescaled sequence

β̃n := anβn, where an := √
N/N (βn), (3.6)

and using the fact (βn) has to be bounded in H1/2(R3), by virtue of Lemma 2.1, we infer
that

‖βn − β̃n‖H1/2 ≤ C |1 − an| → 0, as n → ∞. (3.7)
By continuity of Ev : H1/2(R3) → R, we deduce that

lim
n→∞ Ev(β̃n) = Ev(N ) and N (β̃n) = N , for all n ≥ 0. (3.8)

Therefore (β̃n) is a minimizing sequence for (2.1) which, by Theorem 2.1 part i), has to
contain a subsequence, (β̃nk ), that strongly converges in H1/2(R3) (up to translations) to
some minimizer ϕ ∈ Sv,N . In particular, inequality (3.3) cannot hold when βn = ψn(tn)
is replaced by β̃n . But in view of (3.7), this conclusion is easily extended to the sequence
(βn) itself. Thus, we are led to a contradiction and the proof of Theorem 3.1 is complete.
��
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4. Properties of Boosted Ground States

Concerning fundamental properties of boosted ground states given by Theorem 2.1, we
have the following result.

Theorem 4.1. Let m > 0, v ∈ R
3, |v| < 1, and 0 < N < Nc(v). Then every boosted

ground state, ϕv ∈ H1/2(R3), of problem (2.1) satisfies the following properties.

i) ϕv ∈ Hs(R3) for all s ≥ 1/2.
ii) The corresponding Lagrange multiplier satisfies µ > (1 − √

1 − v2)m. Moreover,
we have pointwise exponential decay, i. e.,

|ϕv(x)| ≤ Ce−δ|x | (4.1)

holds for all x ∈ R
3, where δ > 0 and C > 0 are suitable constants.

iii) For v = 0, the function ϕv(x) can be chosen to be radial, real-valued, and strictly
positive.

Remarks. 1) By part i) and Sobolev embeddings, any boosted ground state is smooth:
ϕv ∈ C∞(R3). Moreover, we have that ϕv ∈ L1 ∩ L∞, due to part ii).

2) Part iii) follows from the discussion presented in [11], except for the strict positivity
which we will show below.

3) For a more precise exponential decay estimate for ϕv(x), see Lemma C.1 in App. C.

Proof (of Theorem 4.1). Part i): We rewrite the Euler-Lagrange equation (3.1) for ϕv as

(H0 + λ)ϕv = F(ϕv) + (λ− µ)ϕv, (4.2)

for any λ ∈ R, where

H0 := (√−∆ + m2 − m
)

+ i(v · ∇), F(ϕv) := ( 1

|x | ∗ |ϕv|2
)
ϕv. (4.3)

By [7, Lemma 3], we have that F : Hs(R3) → Hs(R3) for all s ≥ 1/2 (F is indeed
locally Lipschitz). Thus, the right-hand side in (4.2) belongs to H1/2(R3). Since H0 is
bounded from below, we can choose λ > 0 sufficiently large such that (H0 +λ)−1 exists.
This leads to

ϕv = (H0 + λ)−1[F(ϕv) + (λ− µ)ϕv
]
. (4.4)

Noting that (H0 +λ)−1 : Hs(R3) → Hs+1(R3), we see that ϕv ∈ H3/2(R3). By repeating
the argument, we conclude that ϕv ∈ Hs(R3) for all s ≥ 1/2. This proves part i).

Part ii): The exponential decay follows from Lemma C.1, provided that the Lagrange
multiplier, −µ, satisfies

−µ < −(
1 −

√
1 − v2

)
m, (4.5)

which means that −µ lies strictly below the essential spectrum of H0; see App. C. To
prove (4.5), we multiply the Euler-Lagrange equation by ϕv and integrate to obtain

2Ev(N )− 1

2

∫

R3

( 1

|x | ∗ |ϕv|2
)|ϕv|2 dx = −µN . (4.6)

Using the upper bound (2.24) for Ev(N ), we conclude that

−µN < −(
1 −

√
1 − v2

)
m N , (4.7)
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which proves (4.5).
Part iii): For the sake of brevity, we write ϕ(x) := ϕv=0(x). By [11] problem (2.1),

with v = 0, has a minimizer that equals its symmetric-decreasing rearrangement, i. e.,
ϕ(x) = ϕ∗(x). In particular, ϕ(x) is a spherically symmetric, real-valued, nonincreasing
function with ϕ(x) ≥ 0. It remains to show that ϕ(x) > 0 holds. To see this, we put
λ = µ in (4.4), which is possible by the proof of ii), and we obtain

ϕ = ((√−∆ + m2 − m
)

+ µ
)−1

F(ϕ). (4.8)

By using functional calculus for the self-adjoint operator
√−∆ + m2 on L2(R3) with

domain H1(R3), we find that

((√−∆ + m2 − m
)

+ µ
)−1 =

∫ ∞

0
e−tµe−t (

√−∆+m2−m) dt. (4.9)

Referring to the explicit formula (C.10) for v = 0, we see that the integral kernel,

e−t (
√−∆+m2−m)(x, y), is strictly positive. In view of (4.8), (4.9), and the fact that

F(ϕ) ≥ 0, we conclude that ϕ(x) > 0 holds for almost every x ∈ R
3. But since

ϕ(x) is a nonincreasing and continuous function, we deduce that ϕ(x) > 0 has to be
true for all x ∈ R

3. This completes the proof of Theorem 4.1. ��

5. Outlook

Our analysis presented so far serves as a basis for the upcoming work in [4] which
explores the effective motion of travelling solitary waves in an external potential. More
precisely, we consider

i∂tψ = (√−∆ + m2 − m
)
ψ + Vψ − ( 1

|x | ∗ |ψ |2)ψ on R
3. (5.1)

Here the external potential V : R
3 → R is assumed to be a smooth, bounded function

with bounded derivatives. Note that its spatial variation introduces the length scale

�ext = ‖∇V ‖−1∞ . (5.2)

In addition, another length scale, �sol, enters through the exponential decay of ϕv(x),
i. e., we have that

�sol = δ−1, (5.3)

where δ > 0 is the constant taken from Theorem 4.1. On intuitive grounds, one expects
that if we have that

�sol � �ext (5.4)

holds, then solutions, ψ(t, x), of (5.1) that are initially close to some ϕv(x) should
approximately behave like point-particles, at least on a large (but possibly finite) interval
of time.

We now briefly sketch how this heuristic picture of point-particle behavior of solitary
waves is addressed by rigorous analysis in [4]. There we introduce a nondegeneracy
assumption on the linearized operator

L :=
(

L1 0
0 L2

)
(5.5)
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acting on L2(R3; R
2) with domain H1(R3; R

2), where

L1ξ := (√−∆ + m2 − m + µ0
)
ξ − ( 1

|x | ∗ ϕ2)ξ − 2
( 1

|x | ∗ (ϕξ))ϕ, (5.6)

L2ξ := (√−∆ + m2 − m + µ0
)
ξ − ( 1

|x | ∗ ϕ2)ξ. (5.7)

Here ϕ(x) = ϕv=0(x) is some ground state at rest, whose corresponding Lagrange
multiplier we denote by µ0 ∈ R. Note that we can assume that ϕv=0(x) is spherically
symmetric and real-valued, see Theorem 4.1.

The nondegeneracy condition introduced in [4] now reads

ker(L) = span

{(
0

ϕ

)
,

(
∂x1ϕ

0

)
,

(
∂x2ϕ

0

)
,

(
∂x3ϕ

0

)}
. (5.8)

Under this kernel assumption, we then construct in [4] (by an implicit-function-type
argument) a map (v, µ) �→ ϕv,µ, so that ϕv,µ ∈ H1/2 solves Eq. (1.7) and (v, µ)
belongs to the small neighborhood around (0, µ0).

The main result proven in [4] can now be sketched as follows. We consider suitable
external potentials of the form

V (x) := W (εx). (5.9)

Furthermore, let ϕv0,µ0 with |v0| � 1 be given and choose ε � 1 so that (5.4) holds.
Then for any initial datum, ψ0(x), such that

|||ψ0 − eiϑ0ϕv0,µ0(· − a0)||| ≤ ε, for some ϑ0 ∈ R and a0 ∈ R
3, (5.10)

where ||| · ||| is some weighted Sobolev norm, the corresponding solution, ψ(t, x), of
(5.1) can be uniquely written as

ψ(t, x) = eiϑ [ϕv,µ(x − a) + ξ(t, x − a)], for 0 ≤ t < Cε−1. (5.11)

Here |||ξ ||| = O(ε)holds and the time-dependent functions {ϑ, a, v, µ} satisfy equations
of the following form:

{
Ṅ = O(ε2), ϑ̇ = µ− V (a) + O(ε2),

ȧ = v + O(ε2), γ (µ, v)v̇ = −∇V (a) + O(ε2),
(5.12)

where N = N (ϕv,µ). The term γ (µ, v) can be viewed as an “effective mass” which
takes relativistic effects into account.

Finally, we remark that the proof of (5.11) and (5.12) makes extensive use of the
Hamiltonian formulation of (5.1) and its associated symplectic structure restricted to the
manifold of solitary waves. Moreover, assumption (5.8) enables us to derive additional
properties of ϕv(x), for |v| � 1, such as cylindrical symmetry with respect to the v-axis,
which is of crucial importance in the analysis presented in [4].

A. Variational and Pseudo-Differential Calculus

In this section of the appendix, we collect and prove results needed for our variational
and pseudo-differential calculus.
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A.1. Proof of Lemma 2.4. Let (ψn) be a bounded sequence in H1/2(R3)with ‖ψn‖2
2 = N

for all n. Along the lines of [12], we define the sequence, (Qn), of Lévy concentration
functions by

Qn(R) := sup
y∈R3

∫

|x−y|<R
|ψn|2 dx, for R ≥ 0. (A.1)

As stated in [12], there exists a subsequence, (Qnk ), such that

Qnk (R) → Q(R) as k → ∞ for all R ≥ 0, (A.2)

where Q(R) is a nonnegative, nondecreasing function. Clearly, we have that

α := lim
R→∞ Q(R) ∈ [0, N ]. (A.3)

If α = 0, then situation ii) of Lemma 2.4 arises as a direct consequence of definition
(A.1). If α = N , then i) follows, see [12] for details.

Assume that α ∈ (0, N ) holds, and let ε > 0 be given. Suppose that ξ, φ ∈ C∞(R3)

with 0 ≤ φ, ξ ≤ 1 such that

ξ(x) ≡ 1 for 0 ≤ |x | ≤ 1, ξ(x) ≡ 0 for |x | ≥ 2, (A.4)

φ(x) ≡ 0 for 0 ≤ |x | ≤ 1, φ(x) ≡ 1 for |x | ≥ 2. (A.5)

Furthermore, we put ξR(x) := ξ(x/R) and φR(x) := φ(x/R), for R > 0, and we
introduce

ψ1
k := ξR1(· − yk)ψnk and ψ2

k := φRk (· − yk)ψnk . (A.6)

As shown in [12, Proof of Lemma III.1], there exists

R1(ε) → ∞, as ε → 0, (A.7)

and a sequence, (Rk), with
Rk → ∞, as k → ∞, (A.8)

such that (ψ1
k ) and (ψ2

k ) satisfy (2.36) and (2.37) in Lemma 2.4. Moreover, we have that
∫

R3
|ψnk − (ψ1

k + ψ2
k )|2 dx ≤ 4ε, (A.9)

for k sufficiently large.
By [9, Theorem 7.16], we see that ψ1

k and ψ2
k defined in (A.6) are bounded in

H1/2(R3). More precisely, using the technique of the proof given there and the explicit
formula

〈 f,
√−∆ f 〉 = (const.)

∫

R3×R3

| f (x)− f (y)|2
|x − y|4 dx dy, for f ∈ H1/2(R3), (A.10)

we deduce that
‖g f ‖H1/2 ≤ C

(‖g‖∞ + ‖∇g‖∞
)‖ f ‖H1/2 . (A.11)

Thus, we find that

‖ψ1
k ‖H1/2 ≤ C

(
1 +

1

R1

)
and ‖ψ2

k ‖H1/2 ≤ C
(
1 +

1

Rk

)
, (A.12)
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for some constant C = C(M), where M = supk≥0 ‖ψnk ‖H1/2 < ∞. Thus, (ψ1
k ) and

(ψ2
k ) are bounded sequences in H1/2(R3). This fact together with Hölder’s and Sobolev’s

inequalities leads to

∥
∥ψnk − (ψ1

k + ψ2
k )

∥
∥

p ≤ δp(ε), for 2 ≤ p < 3, (A.13)

where δp(ε) → 0 as ε → 0. This proves (2.35) in Lemma 2.4.
It remains to show property (2.38) in Lemma 2.4. Since

lim inf
k→∞

(
〈ψnk , (−m)ψnk 〉 − 〈ψ1

k , (−m)ψ1
k 〉 − 〈ψ2, (−m)ψ2

k 〉
)

(A.14)

≥ −m N + m(α − ε) + m(N − α − ε) ≥ −2mε → 0, as ε → 0, (A.15)

we observe that it suffices to prove the claim

lim inf
k→∞

(
〈ψnk , Aψnk 〉 − 〈ψ1

k , Aψ1
k 〉 − 〈ψ2

k , Aψ2
k 〉

)
≥ −C(ε), (A.16)

for some constant C(ε) → 0 as ε → 0, where

A :=
√

−∆ + m2 + i(v · ∇) + λ, (A.17)

with m ≥ 0, v ∈ R
3, |v| < 1, and λ > 0 is some constant so that

A ≥ (1 − |v|)√−∆ + λ ≥ λ > 0. (A.18)

In view of (A.14), adding any fixed λ can be done without loss of generality.
Next, we recall definition (A.6) and rewrite the left-hand side in (A.16) as follows

lim inf
k→∞

〈
ψnk , (A − ξk Aξk − φk Aφk)ψnk

〉
, (A.19)

where

ξk(x) := ξR1(x − yk) and φk(x) := φRk (x − yk). (A.20)

Using commutators [X,Y ] := XY − Y X , we find that

A − ξk Aξk − φk Aφk = A(1 − ξ2
k − φ2

k )− [ξk, A]ξk − [φk, A]φk

= √
A(1 − ξ2

k − φ2
k )

√
A − √

A[√A, (ξ2
k + φ2

k )]
−[ξk, A]ξk − [φk, A]φk . (A.21)

Note that
√

A > 0 holds, due to A > 0. By applying Lemma A.3, we obtain

∥∥[ξk, A]∥∥L2→L2 ≤ C‖∇ξk‖∞ ≤ C

R1
, (A.22)

∥∥[φk, A]∥∥L2→L2 ≤ C‖∇φk‖∞ ≤ C

Rk
. (A.23)
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To estimate the remaining commutator in (A.21), we use (A.58) in the proof of Lemma
A.3 to find that

∥∥[√A, (ξ2
k + φ2

k )]
∥∥

L2→L2 ≤ C

(
1

R1
+

1

Rk

)∫ ∞

0

√
s
∥∥ 1

(s + A)

∥∥2
L2→L2 ds (A.24)

≤ C

(
1

R1
+

1

Rk

)∫ ∞

0

√
s

(s + λ)2
ds (A.25)

≤ C

(
1

R1
+

1

Rk

)
. (A.26)

Returning to (A.19) and using that ‖ψnk ‖H1/2 ≤ C , we conclude, for k large, that

〈ψnk , (A − ξk Aξk − φk Aφk)ψnk 〉 ≥ 〈√Aψnk , (1 − ξ2
k − φ2

k )
√

Aψnk 〉
−C

(
1

R1
+

1

Rk

)
(A.27)

≥ −C

(
1

R1
+

1

Rk

)
, (A.28)

since (1 − ξ2
k − φ2

k )(x) ≥ 0 when k is sufficiently large. Finally, we note that Rk → ∞
as k → ∞ as well as R1(ε) → ∞ as ε → 0 holds, which leads to

lim inf
k→∞

〈
ψnk , (A − ξk Aξk − φk Aφk)ψnk

〉 ≥ −C(ε) → 0, as ε → 0. (A.29)

The proof of Lemma 2.4 is now complete. ��

A.2. Technical Details for the Proof of Theorem 2.1.

Lemma A.1. Let (ψn) satisfy the assumptions of Lemma 2.4. Furthermore, suppose that
there exists a subsequence, (ψnk ), that satisfies part ii) of Lemma 2.4. Then

lim
k→∞

∫

R3

( 1

|x | ∗ |ψnk |2
)|ψnk |2 dx = 0.

Remark. A similar statement can be found in [12] in the context of other variational
problems. For the sake of completeness, we present its proof for the situation at hand.

Proof (of Lemma A.1). Let (ψnk ) be a bounded sequence in H1/2(R3) such that
∫

R3
|ψnk |2 dx = N , for all k ≥ 0, (A.30)

and assume that (ψnk ) satisfies part ii) in Lemma 2.4, i. e.,

lim
k→∞ sup

y∈R3

∫

|x−y|<R
|ψnk |2 dx = 0, for all R > 0. (A.31)

For simplicity, let ψk := ψnk .
We introduce

fδ(x) := |x |−1χ(x){|x |−1≥δ}, with δ > 0, (A.32)
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where χA denotes the characteristic function of the set A ⊂ R
3. This definition leads to

∫

R3

( 1

|x | ∗ |ψk |2
)|ψk |2 dx ≤ δC +

∫

R3×R3
|ψk(x)|2|ψk(y)|2 fδ(x − y) dx dy, (A.33)

where C is some constant. For R > 0 and δ > 0, let

gR
δ (x) := min{ fδ(x), R}, (A.34)

f R
δ (x) := max{ fδ(x)− R, 0}χ(x){|x |≤R} + fδ(x)χ(x){|x |>R}. (A.35)

Notice that fδ ≤ gR
δ χ{|x |≤R} + f R

δ holds. In view of (A.33), this leads to

∫

R3

( 1

|x | ∗ |ψk |2
)|ψk |2 dx ≤ δC +

∫

R3×R3

(|ψk(x)|2|ψk(y)|2

× gR
δ (x − y)χ(x − y){|x−y|≤R}

)
dx dy

+‖ψk‖4
8/3‖ f R

δ ‖2

=: δC + I + I I, (A.36)

using Young’s inequality and that f R
δ ∈ L2(R3). By our assumption on (ψk), we find

that

I ≤ R
∫

R3
|ψk(x)|2 dx

∫

|x−y|≤R
|ψk(y)|2 dy → 0, as k → ∞.

Furthermore, we have that

I I ≤ C‖ f R
δ ‖2, (A.37)

by Sobolev’s inequalities and the fact that (ψk) is bounded in H1/2(R3). Thus, we obtain

0 ≤
∫

R3

( 1

|x | ∗ |ψk |2
)|ψk |2 dx ≤ δC + C‖ f R

δ ‖2 + r(k), for all δ, R > 0, (A.38)

where r(k) → 0 as k → ∞. Since
∥
∥ f R
δ

∥
∥

2 → 0 as R → ∞, for each fixed δ > 0, the
assertion of Lemma A.1 follows by letting R → ∞ and then sending δ to 0. ��
Lemma A.2. Suppose that ε > 0. Let (ψn) satisfy the assumptions of Lemma 2.4 and
let (ψnk ) be a subsequence that satisfies part iii) with sequences (ψ1

k ) and (ψ2
k ). Then,

for k sufficiently large,

−
∫

R3

( 1

|x | ∗ |ψnk |2
)|ψnk |2 dx ≥ −

∫

R3

( 1

|x | ∗ |ψ1
k |2)|ψ1

k |2 dx

−
∫

R3

( 1

|x | ∗ |ψ2
k |2)|ψ2

k |2 dx − r1(k)− r2(ε),

where r1(k) → 0 as k → ∞ and r2(ε) → 0 as ε → 0.
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Proof (of Lemma A.2). Let ε > 0 and suppose that (ψnk ), (ψ
1
k ), and (ψ2

k ) satisfy the
assumptions stated above. Introducing

βk := ψnk − (ψ1
k + ψ2

k ) (A.39)

and expanding the squares, we find that
∫

R3

( 1

|x | ∗ |ψnk |2
)|ψnk |2 dx =

∫

R3

( 1

|x | ∗ |ψ1
k |2)|ψ1

k |2 dx

+
∫

R3

( 1

|x | ∗ |ψ2
k |2)|ψ2

k |2 dx +
4∑

n=0

In, (A.40)

where

I0 = 2
∫

R3

( 1

|x | ∗ |ψ1
k |2)|ψ2

k |2 dx + 4
∫

R3

( 1

|x | ∗ (Re ψ̄1
kψ

2
k )

)
(Re ψ̄1

kψ
2
k ) dx

+4
∫

R3

( 1

|x | ∗ |ψ1
k |2)(Re ψ̄1

kψ
2
k ) dx

+4
∫

R3

( 1

|x | ∗ |ψ2
k |2)(Re ψ̄1

kψ
2
k ) dx, (A.41)

I1 = 4
∫

R3

( 1

|x | ∗ |ψ1
k + ψ2

k |2)(Re β̄k(ψ
1
k + ψ2

k )) dx, (A.42)

I2 = 4
∫

R3

( 1

|x | ∗ (Re β̄k(ψ
1
k + ψ2

k ))
)
(Re β̄k(ψ

1
k + ψ2

k )) dx

+2
∫

R3

( 1

|x | ∗ |ψ1
k + ψ2

k |2)|βk |2 dx, (A.43)

I3 = 4
∫

R3

( 1

|x | ∗ |βk |2
)
(Re β̄k(ψ

1
k + ψ2

k )) dx, (A.44)

I4 =
∫

R3

( 1

|x | ∗ |βk |2
)|βk |2 dx . (A.45)

To estimate I0, we notice that if k is sufficiently large then ψ1
k and ψ2

k have disjoint
supports receding from each other, i. e.,

dk := dist (suppψ1
k , suppψ2

k ) → ∞, as k → ∞; (A.46)

see the proof of Lemma 2.4 in Sect. A.1. Thus, the last three terms of the right-hand
side in (A.41) equal 0 if k is large, since ψ̄1

kψ
2
k = 0 a. e. if k is sufficiently large. Also

by (A.46), we infer

∣
∣∣
∫

R3×R3
|ψ1

k (x)|2
1

|x − y| |ψ
2
k (y)|2 dx dy

∣
∣∣

=
∣∣∣
∫

R3×R3
|ψ1

k (x)|2
χ{|x−y|≥dk }(x − y)

|x − y| |ψ2
k (y)|2 dx dy

∣∣∣

≤ ∥∥ψ1
k

∥∥2
2

∥∥ψ2
k

∥∥2
2

∥∥|x |−1χ{|x |≥dk }(x)
∥∥∞ ≤ C

dk
→ 0, as k → ∞, (A.47)
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using Young’s inequality. Thus we have shown that

|I0| ≤ r1(k) → 0, as k → ∞. (A.48)

The remaining terms I1–I4 are controlled by the Hardy-Littlewood-Sobolev inequa-
lity and Hölder’s inequality as follows:

|I1| ≤ C(‖ψ1
k ‖3

12/5 + ‖ψ2
k ‖3

12/5)‖βk‖12/5, (A.49)

|I2| ≤ C(‖ψ1
k ‖2

12/5 + ‖ψ2
k ‖2

12/5)‖βk‖2
12/5, (A.50)

|I3| ≤ C(‖ψ1
k ‖12/5 + ‖ψ2

k ‖12/5)‖βk‖3
12/5, (A.51)

|I4| ≤ C‖β‖4
12/5. (A.52)

We notice that ‖ψ1
k ‖12/5 and ‖ψ2

k ‖12/5 are uniformly bounded, by Sobolev’s inequality
and the H1/2-boundedness of these sequences. Furthermore, we have that

‖βk‖12/5 ≤ r2(ε) → 0, as ε → 0, (A.53)

by part iii) of Lemma 2.4. Hence we conclude that

|I1 + · · · + I4| ≤ r2(ε) → 0, as ε → 0, (A.54)

which proves Lemma A.2. ��

A.3. Commutator Estimate. An almost identical result is needed in [5], but we provide
its proof again.

Lemma A.3. Let m ≥ 0, v ∈ R
3, and define Av := √−∆ + m2 + i(v ·∇). Furthermore,

suppose that f (x) is a locally integrable and that its distributional gradient, ∇ f , is an
L∞(R3) vector-valued function. Then we have that

‖[Av, f ]‖L2→L2 ≤ Cv‖∇ f ‖∞,

for some constant Cv that only depends on v.

Remark. This result can be deduced by means of Calderón–Zygmund theory for singular
integral operators and its consequences for pseudo-differential operators (see, e. g., [13,
Sect. VII.3]). We give an elementary proof which makes good use of the spectral theorem,
enabling us to write the commutator in a convenient way.

Proof (of Lemma A.3). Since [i(v · ∇), f ] = iv · ∇ f holds, we have that

‖[i(v · ∇), f ]‖L2→L2 ≤ |v|‖∇ f ‖∞. (A.55)

Thus, it suffices to prove our assertion for A := Av=0, i. e.,

A :=
√

p2 + m2, where p = −i∇. (A.56)

Since A is a self-adjoint operator on L2(R3) (with domain H1(R3)), functional cal-
culus (for measurable functions) yields the formula

A−1 = 1

π

∫ ∞

0

1√
s

ds

A2 + s
. (A.57)



24 J. Fröhlich, B. L. G. Jonsson, E. Lenzmann

Due to this fact and A = A2 A−1, we obtain the formula

[A, f ] = 1

π

∫ ∞

0

√
s

A2 + s
[A2, f ] ds

A2 + s
. (A.58)

Clearly, we have that [A2, f ] = [p2, f ] = p · [p, f ] + [p, f ] · p, which leads to

[A, f ] = 1

π

∫ ∞

0

√
s

p2 + m2 + s

(
p · [p, f ] + [p, f ] · p

) ds

p2 + m2 + s
. (A.59)

Moreover, since [p, f ] = −i∇ f holds, we have that
∥
∥[ 1

p2 + m2 + s
, [p, f ]]∥∥L2→L2 ≤ 2

s
‖∇ f ‖∞. (A.60)

Hence we find, for arbitrary test functions ξ, η ∈ C∞
c (R

3), that
∣∣∣
〈
ξ,

∫ ∞

0

√
s

p2 + m2 + s

([p, f ] · p
) ds

p2 + m2 + s
η
〉∣∣∣

≤
∣∣∣
〈[p, f ]ξ, p

∫ ∞

0

√
s ds

(p2 + m2 + s)2
η
〉∣∣∣

+
∣∣∣
〈
ξ,

∫ ∞

0

[ 1

p2 + m2 + s
, [p, f ]] · p

√
s ds

p2 + m2 + s
η
〉∣∣∣

≤ ∥∥[p, f ]ξ∥∥2

∥∥
∫ ∞

0

p
√

s ds

(p2 + m2 + s)2
η
∥∥

2

+2‖ξ‖2‖∇ f ‖∞
∥∥

∫ ∞

0

p ds√
s(p2 + m2 + s)

η
∥∥

2. (A.61)

Evaluation of the s-integrals yields

(A.61) ≤ C
∥∥∇ f ‖∞‖ξ∥∥2

∥∥ p√
p2+m2

η
∥∥

2 ≤ C‖∇ f ‖∞‖ξ‖2‖η‖2. (A.62)

The same estimate holds if [p, f ] · p is replaced by p · [p, f ] in (A.61). Thus, we have
found that

∣∣〈ξ, [A, f ]η〉∣∣ ≤ C‖∇ f ‖∞‖ξ‖2‖η‖2, for ξ, η ∈ C∞
c (R

3), (A.63)

with some constant C independent of m. Since C∞
c (R

3) is dense in L2(R3), the assertion
for the L2-boundedness of [A, f ] now follows. This completes the proof of Lemma A.3.
��

A.4. Lower Semicontinuity.

Lemma A.4. Suppose that m > 0, v ∈ R
3, with |v| < 1. Then the functional

T (ψ) := 〈
ψ,

(√−∆ + m2
)
ψ

〉
+

〈
ψ, i(v · ∇)ψ 〉

is weakly lower semicontinuous on H1/2(R3), i. e., if ψk ⇀ ψ weakly in H1/2(R3) as
k → ∞, then

lim inf
k→∞ T (ψk) ≥ T (ψ).

Moreover, if limk→∞ T (ψk) = T (ψ) holds, then ψk → ψ strongly in H1/2(R3) as
k → ∞.



Boson Stars as Solitary Waves 25

Proof (of Lemma A.4). Assume that m > 0, v ∈ R
3, with |v| < 1 holds. By Fourier

transform and Plancherel’s theorem, we have that

T (ψ) =
∫

R3
|ψ̂(k)|2

(√
k2 + m2 − (v · k)

)
dk. (A.64)

We notice that
c1(|k| + m) ≤

√
k2 + m2 − (v · k) ≤ c2(|k| + m), (A.65)

for some suitable constants c1, c2 > 0, where the lower bound follows from the inequality√
k2 + m2 ≥ (1 − δ)|k| + δm, with 0 < δ < 1, and the fact that |v| < 1 holds. Thus,

‖ψ‖T := √
T (ψ) (A.66)

defines a norm that is equivalent to ‖·‖H1/2 . Consequently, the notion of weak and strong
convergence for these norms coincide. Finally, by (A.64), we identify ‖ψ‖T with the
L2-norm of ψ̂ taken with respect to the integration measure

dµ =
(√

k2 + m2 − (v · k)
)

dk. (A.67)

The assertion of Lemma A.4 now follows from corresponding properties of the
L2(R3, µ)-norm; see, e. g., [9, Theorem 2.11] for Lp(�,µ)-norms, where� is a measure
space with positive measure, µ, and 1 < p < ∞. ��

B. Best Constant and Optimizers for Inequality (2.5)

Lemma B.1. For any v ∈ R
3 with |v| < 1, there exists an optimal constant, Sv , such

that ∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx ≤ Sv
〈
ψ,

(√−∆ + iv · ∇)
ψ

〉〈
ψ,ψ

〉
(B.1)

holds for all ψ ∈ H1/2(R3). Moreover, we have that

Sv = 2

〈Qv, Qv〉 , (B.2)

where Qv ∈ H1/2(R3), Qv �≡ 0, is an optimizer for (B.1) and it satisfies

√−∆ Qv + i(v · ∇)Qv − ( 1

|x | ∗ |Qv|2
)
Qv = −Qv. (B.3)

In addition, the following estimates hold:

Sv=0 <
π

2
and Sv=0 ≤ Sv ≤ (1 − |v|)−1Sv=0. (B.4)

Proof (of Lemma B.1). Let v ∈ R
3 with |v| < 1 be fixed and consider the unconstrained

minimization problem

1

Sv
:= inf

ψ∈H1/2(R3),ψ �≡0

〈ψ, (√−∆ + iv · ∇)ψ〉〈ψ,ψ〉
∫
R3(|x |−1 ∗ |ψ |2)|ψ |2 dx

. (B.5)

For v = 0, a variational problem equivalent to (B.5) is studied in [11, App. B] by using
strict rearrangement inequalities that allow restriction to radial functions. For v �= 0, we
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have to depart this line of argumentation and we employ (similarly to the discussion of
(2.1) in Sect. 2) concentration-compactness-type methods.

By scaling properties of (B.5), it suffices to prove the existence of a minimizer with
〈ψ, (√−∆+iv·∇)ψ〉 and 〈ψ,ψ〉 fixed. Thus, we introduce the constrained minimization
problem, which is equivalent to (B.5), as follows:

Iv(α, β) := inf
{ −

∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx : 〈ψ,ψ〉 = α,

〈ψ, (√−∆ + iv · ∇)ψ〉 = β
}
, (B.6)

where α > 0 and β > 0. In particular, it is sufficient to show that Iv(α = 1, β = 1) is
finite and attained so that

Sv = −Iv(1, 1). (B.7)

In fact, we will show that all minimizing sequences for I (1, 1) are relatively compact
in H1/2(R3) up to translations. In turn, this relative compactness implies that all minimi-
zing sequences for problem (B.5) are relatively compact in H1/2(R3) up to translations
and rescalings: For any minimizing sequence, (ψn), for (B.5), there exist sequences,
{(yk), (ak), (bk)}, with yk ∈ R

3, 0 �= ak ∈ C, 0 �= bk ∈ R, such that

akψnk

(
bk(· + yk)

) → Qv strongly in H1/2(R3) as k → ∞, (B.8)

along a suitable subsequence, (ψnk ), and Qv minimizes (B.5).
First we show that I (α, β) is indeed finite. The Hardy–Littlewood–Sobolev inequality

implies
∫

R3

( 1

|x | ∗ |ψ |2)|ψ |2 dx ≤ C‖|ψ |2‖2
6/5 = C‖ψ‖4

12/5 ≤ C〈ψ,√−∆ψ〉〈ψ,ψ〉, (B.9)

where we use Sobolev’s inequality ‖ψ‖2
3 ≤ C〈ψ,√−∆ψ〉 in R

3 and Hölder’s inequa-
lity. Since 〈ψ,√−∆ψ〉 ≤ (1 − |v|)−1〈ψ, (√−∆ + iv · ∇)ψ〉, we deduce that

I (α, β) ≥ −Cαβ > −∞, (B.10)

for some constant C . On the other hand, we have that

I (α, β) < 0, (B.11)

since
∫
R3(|x |−1 ∗ |ψ |2)|ψ |2 dx �= 0 when ψ �≡ 0.

Next, we show that Iv(1, 1) is attained. Let (ψn) be a minimizing sequence for
Iv(1, 1). In order to invoke Lemma 2.4, we notice that

∫
R3 |ψn|2 dx = 1 and that (ψn) is

bounded in H1/2(R3), since 〈ψ, (√−∆ + iv · ∇)ψ〉 is equivalent to 〈ψ,√−∆ψ〉 when
|v| < 1, by (A.65) with m = 0.

Let us suppose now that case ii) of Lemma 2.4 occurs. Referring to Lemma A.1,
we conclude that I (1, 1) = 0 holds, which contradicts (B.11). Next, let us assume that
dichotomy occurs for a subsequence of (ψn), i. e., property iii) of Lemma 2.4 holds.
Using Lemma A.2 and the lim inf-estimate stated in iii) of Lemma 2.4 and by taking the
limit ε → 0, we conclude that

Iv(1, 1) ≥ Iv(α, β) + Iv(1 − α, 1 − β), (B.12)

for some α ∈ (0, 1) and β ∈ [0, 1]. On the other hand, we have the scaling behaviour

Iv(α, β) = αβ Iv(1, 1) < 0, (B.13)
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which follows from (B.6) and rescaling ψ(x) �→ aψ(bx) with a, b > 0. Combining
(B.12) with (B.13) we get a contradiction. Therefore dichotomy for minimizing se-
quences is ruled out.

In summary, we see that any minimizing sequence, (ψn), for Iv(1, 1) contains a sub-
sequence, (ψnk ), with a sequence of translations, (yk), satisfying property i) of Lemma
2.4. Similarly to the proof of Theorem 2.1, we conclude that ψnk (·+ yk) → Q̃v strongly
in H1/2(R3) as k → ∞, where Q̃v ∈ H1/2(R3) is a minimizer for Iv(1, 1).

To show that the best constant, Sv , is given by (B.2) with Qv minimizing (B.5) and
satisfying (B.3), let us denote the minimizer constructed above for I (1, 1) by Q̃v . Since
Q̃v also minimizes the unconstrained problem (B.5), it has to satisfy the corresponding
Euler-Lagrange equation which reads as follows:

√−∆ Q̃v + iv · ∇ Q̃v − 2

Sv

( 1

|x | ∗ |Q̃v|2
)
Q̃v + Q̃v = 0, (B.14)

where we use that 〈Q̃v, (
√−∆ + iv · ∇)Q̃v〉 = 1 and 〈Q̃v, Q̃v〉 = 1 holds. By putting

Qv = √
2S−1/2
v Q̃v , we see that Qv minimizes (B.5) and satisfies (B.2). Moreover, we

have that 〈Qv, Qv〉 = 2/Sv holds.
Finally, we turn to the estimates for Sv stated in Lemma B.1. That Sv=0 < π/2 holds

follows from the appendices in [11, 7]. To see that Sv ≤ (1 − |v|)−1Sv=0 is true, we
use the estimate

√−∆ ≤ (1 − |v|)−1(
√−∆ + iv · ∇). Moreover, it is known from the

discussion in [7] that if v = 0 the minimizer, Qv=0, for (2.2) can be chosen to be radial
(by symmetric rearrangement). This implies that 〈Qv=0,∇Qv=0〉 = 0, which leads to
Sv=0 ≤ Sv . ��

C. Exponential Decay

In this section, we prove pointwise exponential decay for solutions, ϕ ∈ H1/2(R3), of
the nonlinear equation

(√−∆ + m2 − m
)
ϕ + i(v · ∇)ϕ − ( 1

|x | ∗ |ϕ|2)ϕ = −µϕ. (C.1)

Clearly, ϕ(x) is an eigenfunction for the Schrödinger type operator

H = H0 + V, (C.2)

where

H0 := (√−∆ + m2 − m
)

+ i(v · ∇) and V := −( 1

|x | ∗ |ϕ|2). (C.3)

By using the bootstrap argument for regularity (presented in the proof of Theorem 4.1)),
we have that ϕ ∈ Hs(R3) for all s ≥ 1/2, which shows in particular that ϕ is smooth.
Investigating the spectrum of H0 we find that

σ(H0) = σess(H0) = [Σv,∞), (C.4)

where the bottom of the spectrum is given by

Σv = (
√

1 − v2 − 1)m. (C.5)
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To see this, we remark that the function

f (k) = (k2 + m2)1/2 − m − v · k (C.6)

obeys f (k) ≥ (
√

1 − v2)m − m with equality for k = (mv/
√

1 − v2).
We have the following result.

Lemma C.1. Suppose that m > 0, v ∈ R
3, and |v| < 1. Furthermore, let ϕ ∈ H1/2(R3)

be a solution of (C.1) with −µ < Σv . Then, for every 0 < δ < min
{
m, Σv+µ√

1−v2

}
, there

exists 0 < C(δ) < ∞ such that

|ϕ(x)| ≤ Ce−δ|x |

holds for all x ∈ R
3.

Proof (of Lemma C.1). We rewrite (C.1) as follows :

ϕ = −(H0 + µ)−1Vϕ, (C.7)

where H0 and V are defined in (C.3). Note that (H0 + µ)−1 exists, since we have that
µ �∈ σ(H0) holds, by the assumption that −µ < Σv . We consider the Green’s function,
Gµ(x − y), given by

Gµ(x − y) = F−1
[ 1√

k2 + m2 − m − v · k + µ

]
(x − y), (C.8)

where F : S ′ → S ′ denotes the Fourier transform. Since 1/
√

k2 + m2 . . . does not be-
long to L1(R3), we cannot use Payley–Wiener type theorems directly to deduce pointwise
exponential decay for Gµ(z) in |z|. To overcome this difficulty, we first notice that

(H0 + µ)−1 =
∫ ∞

0
e−tµe−t H0 dt =

∫ ∞

0
e−t (µ−m)e−t (

√
p2+m2−v·p) dt, (C.9)

by self-adjointness of H0 and functional calculus. Here and in what follows, we put
p = −i∇ for convenience. By using the explicit formula for the Fourier transform of
exp{−t

√
k2 + m2} (see e. g., [9]) in R

3 and by analytic continuation, we obtain from
(C.9) the formula

Gµ(z) = Am

∫ ∞

0
e−t (µ−m) t

t2 + (z + i tv)2
K2

(
m

√
t2 + (z + i tv)2

)
dt. (C.10)

Here K2(z) stands for the modified Bessel function of the third kind, and Am > 0
denotes some constant. Notice that

w = t2 + (z + i tv)2 = (1 − v2)t2 + z2 + 2i tv · z (C.11)

is a complex number with |argw| < π/2.
Next we analyze Gµ(z) for |z| ≤ 1/m and for |z| > 1/m separately. From [1] we

recall the estimate

|K2(mw)| ≤ C

|w|2 , for |argw| < π/2, (C.12)
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which implies that Gµ(z) with |z| ≤ 1/m satisfies the bound

|Gµ(z)| ≤ C
∫ ∞

0
e−t (µ−m)

∣
∣∣

t

(1 − v2)t2 + |z|2 + 2i tv · z

K2
(
m

√
(1 − v2)t2 + |z|2 + 2i tv · z

)∣∣∣ dt

≤ C
∫ ∞

0
e−t (µ−m) t

[(1 − v2)t2 + |z|2]2 dt. (C.13)

Since µ− m ≥ 0, the t-integral is finite for z �= 0 and we obtain

|Gµ(z)| ≤ C

|z|2 , for |z| ≤ 1/m, (C.14)

where we use that |a + ib| ≥ |a| and |√a + ib| ≥ √|a| holds for a, b ∈ R.
To estimate Gµ(z) for |z| > 1/m, we use the bound

|K2(mw)| ≤ C
∣∣∣
e−mw

|w|2
∣∣∣ ≤ C

e−m|Rew|

|w|2 , for |argw| < π/2 and |w| > 1, (C.15)

taken from [1]. By means of the inequality
√

a2 + b2 ≥ (1 − ε)|a| + ε|b|, for any
0 < ε ≤ 1, we proceed to find that

|Gµ(z)| ≤ Ce−εm|z|
∫ ∞

0
e−t (µ−m+(1−ε)√1−v2m) t

[(1 − v2)t2 + |z|2]2 dt, (C.16)

for |z| > 1/m. The assumption on µ allows us to choose ε ∈ (0, 1] such that the
exponent in the t-integral is nonpositive. The best ε is given by

ε = min

{
1,

Σv + µ

m
√

1 − v2

}
∈ (0, 1], (C.17)

and hence

|Gµ(z)| ≤ Ce−εm|z|
∫ ∞

0

t

[(1 − v2)t2 + |z|2]2 dt

≤ C
e−εm|z|

|z|2 , for |z| > 1/m. (C.18)

Combining now (C.14) and (C.18), we see that

|Gµ(z)| ≤ C
e−mε|z|

|z|2 , for z ∈ R
3, (C.19)

where ε is given by (C.17) and C is some constant. This shows that Gµ(z) exhibits
exponential decay; in particular, we have that Gµ ∈ Lp(R3) if 1 ≤ p < 3/2.

Returning to (C.7), we notice that

ϕ(x) = −
∫

R3
Gµ(x − y)V (y)ϕ(y) dy. (C.20)
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Moreover, the function V (x) = −(|x |−1 ∗ |ϕ|2)(x) obeys

V ∈ C0(R3) and lim|x |→∞ V (x) = 0, (C.21)

since f ∗ g is a continuous function vanishing at infinity, provided that f ∈ Lp and
g ∈ Lp′

with 1/p + 1/p′ = 1 and p > 1; see, e. g., [9]. Here we note that, e. g.,
|x |−1 ∈ L2(R3)+ L4(R3) and in particular |ϕ|2 ∈ L4/3(R3)∩L2(R3) since ϕ ∈ Hs(R3)

for all s ≥ 1/2 (cf. beginning of App. C).
Using (C.20), (C.19) and (C.21), the claimed pointwise exponential decay of ϕ(x)

follows from a direct adaptation of an argument by Slaggie and Wichmann for exponen-
tial decay of eigenfunctions for Schrödinger operators; see, e. g., [6] for a convenient
exposition of this method. This completes the proof of Lemma C.1. ��
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