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Abstract: We prove that there exists no self-similar finite time blowing up solution to the
3D incompressible Euler equations if the vorticity decays sufficiently fast near infinity in
R

3. By a similar method we also show nonexistence of self-similar blowing up solutions
to the divergence-free transport equation in R

n . This result has direct applications to the
density dependent Euler equations, the Boussinesq system, and the quasi-geostrophic
equations, for which we also show nonexistence of self-similar blowing up solutions.

1. The Incompressible Euler Equations

We are concerned here with the following Euler equations for the homogeneous incom-
pressible fluid flows in R

3:

(E)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂v

∂t
+ (v · ∇)v = −∇ p, (x, t) ∈ R

3 × (0,∞)

div v = 0, (x, t) ∈ R
3 × (0,∞)

v(x, 0) = v0(x), x ∈ R
3

,

where v = (v1, v2, v3), v j = v j (x, t), j = 1, 2, 3, is the velocity of the flow, p = p(x, t)
is the scalar pressure, and v0 is the given initial velocity, satisfying div v0 = 0. There are
well-known results on the local existence of classical solutions (see e.g. [23, 18, 8] and
references therein). The problem of finite time blow-up of the local classical solution
is one of the most challenging open problems in mathematical fluid mechanics. On this
direction there is a celebrated result on the blow-up criterion by Beale, Kato and Majda
([2]). By geometric type of consideration some of the possible scenarios to the possible
singularity have been excluded (see [9, 13, 15]. One of the main purposes of this paper
is to exclude the possibility of a self-similar type of singularities for the Euler system.
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The system (E) has scaling property that if (v, p) is a solution of the system (E), then
for any λ > 0 and α ∈ R the functions

vλ,α(x, t) = λαv(λx, λα+1t), pλ,α(x, t) = λ2α p(λx, λα+1t) (1.1)

are also solutions of (E) with the initial data v
λ,α
0 (x) = λαv0(λx). In view of the scaling

properties in (1.1), the self-similar blowing up solution v(x, t) of (E) should be of the
form,

v(x, t) = 1

(T∗ − t)
α

α+1
V

(
x

(T∗ − t)
1

α+1

)

(1.2)

for α �= −1 and t sufficiently close to T∗. Substituting (1.2) into (E), we find that V
should be a solution of the system

(SE)

⎧
⎨

⎩

α

α + 1
V +

1

α + 1
(x · ∇)V + (V · ∇)V = −∇ P,

div V = 0

for some scalar function P , which could be regarded as the Euler version of the Leray
equations introduced in [20]. The question of existence of a nontrivial solution to (SE)
is equivalent to that of existence of a nontrivial self-similar finite time blowing up solu-
tion to the Euler system of the form (1.2). A similar question for the 3D Navier-Stokes
equations was raised by J. Leray in [20], and answered negatively by the authors of [24],
the result of which was refined later in [28]. Combining the energy conservation with a
simple scaling argument, the author of this article showed that if there exists a nontrivial
self-similar finite time blowing up solution, then its helicity should be zero ([3], see also
[26] for other related discussion). To the author’s knowledge, however, the possibility of
self-similar blow-up of the form (1.2) has never been excluded previously. In particular,
due to lack of the laplacian term in the right hand side of the first equations of (SE), we
cannot apply the argument of the maximum principle, which was crucial in the works
in [24] and [28] for the 3D Navier-Stokes equations. Using a completely different argu-
ment from those used in [3], or [24], we prove here that there cannot be a self-similar
blowing up solution to (E) of the form (1.2), if the vorticity decays sufficiently fast near
infinity. Before stating our main theorem we recall the notions of particle trajectory and
the back-to-label map, which are used importantly in the recent work of [7]. Given a
smooth velocity field v(x, t), the particle trajectory mapping a �→ X (a, t) is defined by
the solution of the system of ordinary differential equations,

∂ X (a, t)

∂t
= v(X (a, t), t) ; X (a, 0) = a.

The inverse A(x, t) := X−1(x, t) is called the back to label map, which satisfies
A(X (a, t), t) = a, and X (A(x, t), t) = x .

Theorem 1.1. There exists no finite time blowing up self-similar solution v(x, t) to the
3D Euler equations of the form (1.2) for t ∈ (0, T∗) with α �= −1, if v and V satisfy the
following conditions:

(i) For all t ∈ (0, T∗) the particle trajectory mapping X (·, t) generated by the clas-
sical solution v ∈ C([0, T∗); C1(R3; R

3)) is a C1 diffeomorphism from R
3 onto

itself.
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(ii) The vorticity satisfies � =curl V �= 0, and there exists p1 > 0 such that
� ∈ L p(R3) for all p ∈ (0, p1).

Remark 1.1. The condition (i), which is equivalent to the existence of the back-to-label
map A(·, t) for our smooth velocity v(x, t) for t ∈ (0, T∗), is guaranteed if we assume
a uniform decay of V (x) near infinity, independent of the decay rate ([6]).

Remark 1.2. Regarding the condition (ii), for example, if � ∈ L1
loc(R

3; R
3) and there

exist constants R, K and ε1, ε2 > 0 such that |�(x)| ≤ K e−ε1|x |ε2 for |x | > R, then we
have � ∈ L p(R3; R

3) for all p ∈ (0, 1). Indeed, for all p ∈ (0, 1), we have
∫

R3
|�(x)|pdx =

∫

|x |≤R
|�(x)|pdx +

∫

|x |>R
|�(x)|p dx

≤ |BR |1−p
(∫

|x |≤R
|�(x)|dx

)p

+ K p
∫

R3
e−pε1|x |ε2 dx < ∞,

where |BR | is the volume of the ball BR of radius R.

Remark 1.3. In the zero vorticity case � = 0, from div V = 0 and curl V = 0, we have
V = ∇h, where h(x) is a harmonic function in R

3. Hence, we have an easy example of
self-similar blow-up,

v(x, t) = 1

(T∗ − t)
α

α+1
∇h

(
x

(T∗ − t)
1

α+1

)

,

in R
3, which is also the case for the 3D Navier-Stokes with α = 1. We do not consider

this case in the theorem.

Remark 1.4. If we assume that initial vorticity ω0 has compact support, then the non-
existence of self-similar blow-up of the form given by (1.2) is immediate from the
well-known formula, ω(X (a, t), t) = ∇a X (a, t)ω0(a)(see e.g. [23]).

The proof of Theorem 1.1 will follow as a corollary of the following more general
theorem.

Theorem 1.2. Let v ∈ C([0, T ); C1(R3; R
3)) be a classical solution to the 3D Euler

equations generating the particle trajectory mapping X (·, t) which is a C1 diffeomor-
phism from R

3 onto itself for all t ∈ (0, T ). Suppose we have representation of the
vorticity of the solution, by

ω(x, t) = �(t)�(	(t)x) ∀t ∈ [0, T ), (1.3)

where �(·) ∈ C([0, T ); (0,∞)), 	(·) ∈ C([0, T ); R
3×3) with det(	(t)) �= 0 on

[0, T ); � = curl V for some V , and there exists p1 > 0 such that � ∈ L p(R3) for all
p ∈ (0, p1). Then, necessarily either det(	(t)) ≡ det(	(0)) on [0, T ), or � = 0.

Proof. By consistency with the initial condition, ω0(x) = �(0)�(	(0)x), and hence
�(x) = �(0)−1ω0([	(0)]−1x) for all x ∈ R

3. We can rewrite the representation (1.3)
in the form,

ω(x, t) = G(t)ω0(F(t)x) ∀t ∈ [0, T ), (1.4)
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where G(t) = �(t)/�(0), F(t) = [	(0)]−1	(t). In order to prove the theorem it
suffices to show that either det(F(t)) = 1 for all t ∈ [0, T ), or ω0 = 0, since det(F(t))=
det(	(t))/det(	(0)).

Taking the curl of the first equation of (E), we obtain the vorticity evolution equation,

∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v.

This, taking the dot product with ω, leads to

∂|ω|
∂t

+ (v · ∇)|ω| = α|ω|, (1.5)

where α(x, t) is defined as

α(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

3∑

i, j=1

Si j (x, t)ξi (x, t)ξ j (x, t) if ω(x, t) �= 0

0 if ω(x, t) = 0

with

Si j = 1

2

(
∂v j

∂xi
+

∂vi

∂x j

)

, and ξ(x, t) = ω(x, t)

|ω(x, t)| .

In terms of the particle trajectory mapping defined by v(x, t), we can rewrite (1.5) as

∂

∂t
|ω(X (a, t), t)| = α(X (a, t), t)|ω(X (a, t), t)|. (1.6)

Integrating (1.6) along the particle trajectories {X (a, t)}, we have

|ω(X (a, t), t)| = |ω0(a)| exp

[∫ t

0
α(X (a, s), s)ds

]

. (1.7)

Taking into account the simple estimates

−‖∇v(·, t)‖L∞ ≤ α(x, t) ≤ ‖∇v(·, t)‖L∞ ∀x ∈ R
3,

we obtain from (1.7) that

|ω0(a)| exp

[

−
∫ t

0
‖∇v(·, s)‖L∞ds

]

≤ |ω(X (a, t), t)|

≤ |ω0(a)| exp

[∫ t

0
‖∇v(·, s)‖L∞ds

]

,

which, using the back to label map, can be rewritten as

|ω0(A(x, t))| exp

[

−
∫ t

0
‖∇v(·, s)‖L∞ds

]

≤ |ω(x, t)|

≤ |ω0(A(x, t))| exp

[∫ t

0
‖∇v(·, s)‖L∞ds

]

. (1.8)
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Combining this with the self-similar representation formula in (1.4), we have

|ω0(A(x, t))| exp

[

−
∫ t

0
‖∇v(·, s)‖L∞ds

]

≤ G(t)|ω0(F(t)x)|

≤ |ω0(A(x, t))| exp

[∫ t

0
‖∇v(·, s)‖L∞ds

]

. (1.9)

Given p ∈ (0, p1), computing the L p(R3) norm of each side of (1.9), we derive

‖ω0‖L p exp

[

−
∫ t

0
‖∇v(·, s)‖L∞ds

]

≤ G(t)[det(F(t))]− 1
p ‖ω0‖L p

≤ ‖ω0‖L p exp

[∫ t

0
‖∇v(·, s)‖L∞ds

]

, (1.10)

where we used the fact det(∇ A(x, t)) ≡ 1. Now, suppose � �= 0, which is equivalent
to assuming that ω0 �= 0, then we divide (1.10) by ‖ω0‖L p to obtain

exp

[

−
∫ t

0
‖∇v(·, s)‖L∞ds

]

≤ G(t)[det(F(t))]− 1
p

≤ exp

[∫ t

0
‖∇v(·, s)‖L∞ds

]

. (1.11)

If there exists t1 ∈ (0, T ) such that det(F(t1)) �= 1, then either det(F(t1)) > 1 or
det(F(t1)) < 1. In either case, setting t = t1 and passing p ↘ 0 in (1.11), we deduce
that

∫ t1

0
‖∇v(·, s)‖L∞ds = ∞.

This contradicts the assumption that the flow is smooth on (0, T ), i.e v ∈ C([0, T );
C1(R3; R

3)). 
�

Proof of Theorem 1.1. We apply Theorem 1.2 with

	(t) = (T∗ − t)−
1

α+1 I, and �(t) = (T∗ − t)−1,

where I is the unit matrix in R
3×3. If α �= −1 and t �= 0, then

det(	(t)) = (T∗ − t)−
3

α+1 �= T
− 3

α+1∗ = det(	(0)).

Hence, we conclude that � = 0 by Theorem 1.2. In this case, there is no finite time
blow-up for v(x, t), since the vorticity is zero. 
�
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2. Divergence-Free Transport Equation

The previous argument in the proof of Theorem 1.1 can also be applied to the following
transport equations by a divergence-free vector field in R

n , n ≥ 2:

(T E)

⎧
⎪⎪⎨

⎪⎪⎩

∂θ

∂t
+ (v · ∇)θ = 0,

div v = 0,

θ(x, 0) = θ0(x),

where v = (v1, · · · , vn) = v(x, t), and θ = θ(x, t). In view of the invariance of the
transport equation under the scaling transform,

v(x, t) �→ vλ,α(x, t) = λαv(λx, λα+1t),

θ(x, t) �→ θλ,α,β(x, t) = λβθ(λx, λα+1t)

for all α, β ∈ R and λ > 0, the self-similar blowing up solution is of the form,

v(x, t) = 1

(T∗ − t)
α

α+1
V

(
x

(T∗ − t)
1

α+1

)

, (2.1)

θ(x, t) = 1

(T∗ − t)β



(
x

(T∗ − t)
1

α+1

)

(2.2)

for α �= −1 and t sufficiently close to T∗. Substituting (2.1) and (2.2) into the above
transport equation, we obtain

(ST )

⎧
⎨

⎩

β
 +
1

α + 1
(x · ∇)
 + (V · ∇)
 = 0,

div V = 0.

The question of existence of a suitable nontrivial solution to (ST) is equivalent to that
of a existence of nontrivial self-similar finite time blowing up solution to the transport
equation. We will establish the following theorem.

Theorem 2.1. Let v ∈ C([0, T∗); C1(Rn; R
n)) generate a C1 diffeomorphism from R

n

onto itself. Suppose there exist α �= −1, β ∈ R and solution (V,
) to the system (ST)
with 
 ∈ L p1(Rn) ∩ L p2(Rn) for some p1, p2 such that 0 < p1 < p2 ≤ ∞. Then,

 = 0.

This theorem is a corollary of the following one.

Theorem 2.2. Suppose there exists T > 0 such that there exists a representation of the
solution θ(x, t) to the system (TE) by

θ(x, t) = �(t)
(	(t)x) ∀t ∈ [0, T ), (2.3)

where �(·) ∈ C([0, T ); (0,∞)), 	(·) ∈ C([0, T ); R
n×n) with det(	(t)) �= 0 on

[0, T ); there exists p1 < p2 with p1, p2 ∈ (0,∞] such that 
 ∈ L p1(Rn) ∩ L p2(Rn).
Then, necessarily either det(	(t)) ≡ det(	(0)) and �(t) ≡ �(0) on [0, T ), or 
 = 0.
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Proof. Similarly to the proof of Theorem 1.2 the representation (2.3) reduces to the
form,

θ(x, t) = G(t)θ0(F(t)x), (2.4)

where G(t) = �(t)/�(0), F(t) = 	(t)[	(0)]−1. By standard L p-interpolation and
the relation between θ0 and 
 by θ0(x) = �(0)
(	(0)x), we have that 
 ∈ L p1(Rn)∩
L p2(Rn) implies θ0 ∈ L p(Rn) for all p ∈ [p1, p2]. As in the proof of Theorem 1.2 we
denote by {X (a, t)} and {A(x, t)} the particle trajectory map and the back to label map
respectively, each one of which is defined by v(x, t). As the solution of the first equation
of (TE) we have θ(X (a, t), t) = θ0(a), which can be rewritten as θ(x, t) = θ0(A(x, t))
in terms of the back to label map. This, combined with (2.4), provides us with the relation

θ0(A(x, t)) = G(t)θ0(F(t)x). (2.5)

Using the fact det(∇ A(x, t)) = 1, we compute the L p(Rn) norm of (2.5) to have

‖θ0‖L p = |G(t)||det(F(t))|− 1
p

(∫

Rn
|θ(F(t)x)|p|det(F(t))|dx

) 1
p

= |G(t)||det(F(t))|− 1
p ‖θ0‖L p (2.6)

for all t ∈ [0, T ) and p ∈ [p1, p2]. Suppose θ0 �= 0, which is equivalent to 
 �= 0,
then we divide (2.6) by ‖θ0‖L p to obtain |G(t)|p = det(F(t)) for all t ∈ [0, T ) and
p ∈ [p1, p2], which is possible only if G(t) = det(F(t)) = 1 for all t ∈ [0, T ). Hence,
�(t) ≡ �(0), and det(	(t)) ≡ det(	(0)). 
�
Proof of Theorem 2.1. We apply Theorem 2.2 with

	(t) = (T∗ − t)−
1

α+1 I and �(t) = (T∗ − t)−β,

where I is the unit matrix in R
n×n . Then,

det(	(t)) = (T∗ − t)−
n

(α+1) �= det(	(0)) = T
− n

(α+1)∗ if α �= −1, t �= 0.

Hence, by Theorem 2.2 we have 
 = 0. 
�
Below we present some examples of fluid mechanics, where we can apply a simi-

lar argument to the above to prove nonexistence of nontrivial self-similar blowing up
solutions.
A. The density-dependent Euler equations. The density-dependent Euler equations in
R

n , n ≥ 2, are the following system:

(E1)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ρv

∂t
+ div (ρv ⊗ v) = −∇ p,

∂ρ

∂t
+ v · ∇ρ = 0,

div v = 0,

v(x, 0) = v0(x), ρ(x, 0) = ρ0(x),

where v = (v1, · · · , vn) = v(x, t) is the velocity, ρ = ρ(x, t) ≥ 0 is the scalar density
of the fluid, and p = p(x, t) is the pressure. We refer to Sect. 4.5 in [21] for a more
detailed introduction of this system. Here we just note that this system reduces to the
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homogeneous Euler system of the previous section when ρ ≡ 1. The question of finite
time blow-up for the system is wide open even in the case of n = 2, although we have
local in time existence result of the classical solution and its finite time blow-up criterion
(see e.g. [1, 4]). The system (E1) has the scaling property that if (v, ρ, p) is a solution
of the system (E1), then for any λ > 0 and α ∈ R the functions

vλ,α(x, t) = λαv(λx, λα+1t), ρλ,α,β(x, t) = λβρ(λx, λα+1t), (2.7)

pλ,α,β(x, t) = λ2α+β p(λx, λα+1t) (2.8)

are also solutions of (E1) with the initial data

v
λ,α
0 (x) = λαv0(λx), ρ

λ,α,β
0 (x) = λβρ0(λx).

In view of the scaling properties in (2.7), we should check if there exists a nontrivial
solution (v(x, t), ρ(x, t)) of (E1) of the form,

v(x, t) = 1

(T∗ − t)
α

α+1
V

(
x

(T∗ − t)
1

α+1

)

, (2.9)

ρ(x, t) = 1

(T∗ − t)β
R

(
x

(T∗ − t)
1

α+1

)

(2.10)

for α �= −1 and t sufficiently close to T∗. The solution (v, ρ) of the form (2.9)–(2.10)
is called the self-similar blowing up solution of the system (E1). The following theo-
rem establishes the nonexistence of a nontrivial self-similar blowing up solution of the
system (E1), which is immediate from Theorem 2.2.

Theorem 2.3. Letv generate a particle trajectory, which is a C1 diffeomorphism from R
n

onto itself for all t ∈ (0, T∗). Suppose there exist α �= −1 and a solution (v, ρ) to the sys-
tem (E1) of the form (2.9)–(2.10), for which there exists p1, p2 with 0 < p1 < p2 ≤ ∞
such that R ∈ L p1(Rn) ∩ L p2(Rn). Then, R = 0.

B. The 2D Boussinesq system. The Boussinesq system for the inviscid fluid flows in R
2

is given by

(B)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
+ (v · ∇)v = −∇ p + θe1,

∂θ

∂t
+ (v · ∇)θ = 0,

div v = 0,

v(x, 0) = v0(x), θ(x, 0) = θ0(x),

where v = (v1, v2) = v(x, t) is the velocity, e1 = (1, 0), and p = p(x, t) is the pressure,
while θ = θ(x, t) is the temperature function. The local in time existence of the solution
and the blow-up criterion of the Beale-Kato-Majda type has been well known (see e.g.
[16, 5]). The question of finite time blow-up has been open until now. Here, we exclude
the possibility of a self-similar finite time blow-up for the system. The system (B) has
scaling property that if (v, θ, p) is a solution of the system (B), then for any λ > 0 and
α ∈ R the functions

vλ,α(x, t) = λαv(λx, λα+1t), θλ,α(x, t) = λ2α+1θ(λx, λα+1t), (2.11)
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pλ,α(x, t) = λ2α p(λx, λα+1t) (2.12)

are also solutions of (B) with the initial data

v
λ,α
0 (x) = λαv0(λx), θ

λ,α
0 (x) = λ2α+1θ0(λx).

In view of the scaling properties in (2.11), the self-similar blowing-up solution (v(x, t),
θ(x, t)) of (B) should of the form,

v(x, t) = 1

(T∗ − t)
α

α+1
V

(
x

(T∗ − t)
1

α+1

)

, (2.13)

θ(x, t) = 1

(T∗ − t)2α+1 


(
x

(T∗ − t)
1

α+1

)

, (2.14)

where α �= −1. We have the following nonexistence result of such type of solution.

Theorem 2.4. Let v generate a particle trajectory, which is a C1 diffeomorphism from
R

2 onto itself for all t ∈ (0, T∗). There exists no nontrivial solution (v, θ) of the sys-
tem (B) of the form (2.13)–(2.14), if there exists p1, p2 ∈ (0,∞], p1 < p2, such that

 ∈ L p1(R2) ∩ L p2(R2), and V ∈ Hm(R2), m > 2.

Proof. Similarly to the proof of Theorem 2.1, we first conclude 
 = 0, and hence
θ(·, t) ≡ 0 on [0, T∗). Then, the system (B) reduces to the 2D incompressible Euler
equations, for which we have a global in time regular solution for v0 ∈ Hm(R2), m > 2
(see e.g. [19]). Hence, we should have v(·, t) ≡ 0 on [0, T∗). 
�
Note added to the proof. A similar proof to the one above leads to the nonexistence of a
self-similar blowing up solution to the axisymmetric 3D Euler equations with swirl of the
form, (1.2), if 
 = r V θ satisfies the condition of Theorem 2.4, and curl V ∈ Hm(R3),

m > 5/2, where r =
√

x2
1 + x2

2 , and V θ is the angular component of V . Indeed, applying

Theorem 2.2 to the θ -component of the Euler equations, D
Dt (rvθ ) = 0, we show that

vθ = 0 as in the above proof, and then we use the global regularity result for the 3D
axisymmetric Euler equations without swirl ([22, 27]) to conclude that (vr , v3) is also
zero.
C. The 2D quasi-geostrophic equation. The following 2D quasi-geostrophic equation
(QG) models the dynamics of the mixture of cold and hot air, and the fronts between
them,

(QG)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂θ

∂t
+ (v · ∇)θ = 0,

v = −∇⊥(−�)−
1
2 θ

(

= ∇⊥
∫

R2

θ(y, t)

|x − y|dy

)

,

θ(x, 0) = θ0(x),

where ∇⊥ = (−∂2, ∂1). Besides its physical significance, mainly due to its similar struc-
ture to the 3D Euler equations, there have been many recent studies on this system (see
e.g. [10–12] and references therein). Although the question of finite time singularities
is still open, some type of scenarios of singularities have been excluded ([11, 12, 14]).
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Here we exclude the scenario of self-similar singularity. The system (QG) has the scaling
property that if θ is a solution of the system, then for any λ > 0 and α ∈ R the functions

θλ,α(x, t) = λαθ(λx, λα+1t) (2.15)

are also solutions of (QG) with the initial data θ
λ,α
0 (x) = λαθ0(λx). Hence, the self-

similar blowing up solution should be of the form,

θ(x, t) = 1

(T∗ − t)
α

α+1



(
x

(T∗ − t)
1

α+1

)

(2.16)

for t sufficiently close to T∗ and α �= −1. Applying the same argument as in the proof
of Theorem 2.1, we have the following theorem.

Theorem 2.5. Let v generate a particle trajectory, which is a C1 diffeomorphism from
R

2 onto itself for all t ∈ (0, T∗). There exists no nontrivial solution θ to the sys-
tem (QG) of the form (2.16), if there exists p1, p2 ∈ (0,∞], p1 < p2, such that

 ∈ L p1(R2) ∩ L p2(R2).

3. Remarks on the Locally Self-Similar Blow-up

The notion of self-similar solutions considered in the previous sections are apparently
‘global’ in the sense that the self-similar representation of the solution in (1.2) should
hold for all space points in R

3. For convenience we call the self-similar solutions consid-
ered above global self-similar solutions. On the other hand, many physicists have been
trying to seek a ‘locally self-similar’ solution of the 3D Euler equations (see e.g. [17,
25] and the references therein). Our aim in this section is to show that the nonexistence
of the global self-similar solution as proved in the previous sections implies the nonex-
istence of the locally self-similar solutions. Thus we exclude the most popular scenario
(at least among the physicists) leading to the singularities of the 3D Euler equations. We
first formulate the precise definition of the locally self-similar solution of the 3D Euler
equations. A similar definition applies obviously to the locally self-similar solutions to
the other equations.

Definition 1. A solution v(x, t) of the solution to (E) is called a locally self-similar blow-
ing up solution near a space-time point (x∗, T∗) ∈ R

3 × (−∞, +∞) if there exist r > 0,
α > −1 and a solenoidal vector field V defined on R

3 such that the representation

v(x, t) = 1

(T∗ − t)
α

α+1
V

(
x − x∗

(T∗ − t)
1

α+1

)

∀(x, t) ∈ B(x∗, r) × (T∗ − rα+1, T∗)

(3.1)

holds true, where B(x∗, r) = {x ∈ R
3 | |x − x∗| < r}.

The following is our main result in this section.

Theorem 3.1. The nonexistence of the globally self-similar solution of the 3D Euler
equations implies the nonexistence of the locally self-similar solution.

Combining Theorem 3.1 with Theorem 1.1, we have the following corollary.
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Corollary 3.1. Suppose there exists a locally self-similar blowing up solution v of the
3D Euler equations in the form (3.1), which generates a C1 diffeomorphism on R

3 for
all time before the blow-up. If there exists p1 > 0 such that � = curl V ∈ L p(R3) for all
p ∈ (0, p1), then necessarily � = 0. In other words, there exists no nontrivial locally
self-similar solution to the 3D Euler equation if the vorticity � �= 0 satisfies such an
integrability condition.

Proof of Theorem 3.1. We assume there exists a locally self-similar solution v(x, t)
in the sense of Definition 1. The proof of Theorem 3.1 follows if we prove the existence
of the global self-similar solution. By translation in space-time variables, we can rewrite
the velocity in (3.1) as

v(x, t) = 1

t
α

α+1
V

(
x

t
1

α+1

)

for (x,−t) ∈ B(0, r) × (−rα+1, 0). (3.2)

We observe that, under the scaling transform (1.1), we have the invariance of the repre-
sentation,

v(x, t) �→ vλ,α(x, t) = λαv(λx, λα+1t) = 1

t
α

α+1
V

(
x

t
1

α+1

)

(= v(x, t)),

while the region of space-time, where the self-similar form of solution is valid, trans-
forms according to

B(0, r) × (−rα+1, 0) �→ B(0, r/λ) ×
(
−(r/λ)α+1, 0

)
.

We set λ = 1/n, and define the sequence of locally self-similar solutions {vn(x, t)}
by vn(x, t) := v

1
n ,α(x, t) with v1(x, t) := v(x, t). In the above we find that

vn(x, t) = 1

t
α

α+1
V

(
x

t
1

α+1

)

for (x,−t) ∈ B(0, nr) × (−(nr)α+1, 0),

and each vn(x, t) is a solution of the Euler equations for all (x, t) ∈ R
3 × (−∞, 0). Let

us define v∞(x, t) by

v∞(x, t) = 1

t
α

α+1
V

(
x

t
1

α+1

)

for (x,−t) ∈ R
3 × (−∞, 0).

Given a compact set K ⊂ R
3 × (−∞, 0), we observe that vn → v∞ as n → ∞

on K in any strongest possible topology of convergence. Indeed, for sufficiently large
N = N (K ), vn(x, t) ≡ v∞(x, t) for all (x, t) ∈ K , if n > N . Hence, we find that
v∞(x, t) is a solution of the Euler equations for all (x, t) ∈ R

3 × (−∞, 0), which is a
global self-similar blowing up solution, after translation in space and time. 
�

We note that the above proof does not depend on the specific form of the Euler equa-
tions, and hence obviously works also for the self-similar solutions of the other equations,
e.g. for the Leray type of self-similar solutions of the Navier-Stokes equations. We state
the result more precisely below.
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Corollary 3.2. Let v be a weak solution of the 3D Navier-Stokes equations. Suppose
there exist r > 0, (x∗, T∗) ∈ R

3 × (−∞,∞), and V ∈ L p(R3) ∩ L2
loc(R

3) for some
p ∈ [3,∞) such that

v(x, t) = 1√
T∗ − t

V

(
x − x∗√
T∗ − t

)

∀(x, t) ∈ B(x∗, r) × (T∗ − r2, T∗)

holds true, then V = 0.

The proof is similar to the previous one, where we use the result in [24] for the nonexis-
tence of a weak solution to the Leray system in L3(R3), while we use the corresponding
result in [28] for the case of a weak solution of the Leray system in L p(R3), p ∈ (3,∞).
A similar type of nonexistence theorems hold true also for the other equations considered
in Sect. 2 with the appropriate integrability conditions.
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