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Abstract: Given two observers, we define the “relative velocity” of one observer with
respect to the other in four different ways. All four definitions are given intrinsically,
i.e. independently of any coordinate system. Two of them are given in the framework
of spacelike simultaneity and, analogously, the other two are given in the framework of
observed (lightlike) simultaneity. Properties and physical interpretations are discussed.
Finally, we study relations between them in special relativity, and we give some examples
in Schwarzschild and Robertson-Walker spacetimes.

1. Introduction

The need for a strict definition of “radial velocity” was treated at the General Assem-
bly of the International Astronomical Union (IAU), held in 2000 (see [15, 10]), due to
the ambiguity of the classic concepts in general relativity. As a result, they obtained
three different concepts of radial velocity: kinematic (which corresponds most closely
to the line-of-sight component of space velocity), astrometric (which can be derived
from astrometric observations) and spectroscopic (also called barycentric, which can
be derived from spectroscopic measurements). The kinematic and astrometric radial
velocities were defined using a particular reference system, called Barycentric Celestial
Reference System (BCRS). The BCRS is suitable for accurate modelling of motions
and events within the solar system, but it has not taken into account the effects produced
by gravitational fields outside the solar system, since it describes an asymptotically flat
metric at large distances from the Sun. Moreover, from a more theoretical point of view,
these concepts can not be defined in an arbitrary space-time since they are not intrinsic,
i.e. they only have sense in the framework of the BCRS. So, in this work we are going
to define them intrinsically. In fact, we obtain in a natural way four intrinsic definitions
of relative velocity (and consequently, radial velocity) of one observer β ′ with respect
to another observer β, following the original ideas of the IAU.
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This paper has two big parts:

– The first one is formed by Sect. 3 and 4, where all the concepts are defined, trying
to make the paper as self-contained as possible. In Sect. 3, we define the kinematic
and Fermi relative velocities in the framework of spacelike simultaneity (also called
Fermi simultaneity), obtaining some general properties and interpretations. The kine-
matic relative velocity generalizes the usual concept of relative velocity when the two
observers β, β ′ are at the same event. On the other hand, the Fermi relative velocity
does not generalize this concept, but it is physically interpreted as the variation of the
relative position of β ′ with respect to β along the world line of β. Analogously, in
Sect. 4, we define and study the spectroscopic and astrometric relative velocities in
the framework of observed (lightlike) simultaneity.

– In the second one (Sect. 5 and 6) we give some relations between these concepts in
special and general relativity. In Sect. 5 we find general expressions, in special rela-
tivity, for the relation between kinematic and Fermi relative velocities, and between
spectroscopic and astrometric relative velocities. Finally, in Sect. 6 we show some
fundamental examples in Schwarzschild and Robertson-Walker space-times.

2. Preliminaries

We work in a 4-dimensional lorentzian space-time manifold (M, g), with c = 1 and ∇
the Levi-Civita connection, using the Landau-Lifshitz Spacelike Convention (LLSC).
We suppose that M is a convex normal neighborhood [8]. Thus, given two events p and
q in M, there exists a unique geodesic joining p and q and there are not caustics. The
parallel transport from p to q along this geodesic will be denoted by τpq . If β : I → M
is a curve with I ⊂ R a real interval, we will identify β with the image β I (that is a
subset in M), in order to simplify the notation. If u is a vector, then u⊥ denotes the
orthogonal space of u. The projection of a vector v onto u⊥ is the projection parallel to
u. Moreover, if x is a spacelike vector, then ‖x‖ denotes the modulus of x . Given a pair
of vectors u, v, we use g (u, v) instead of uαvα . If X is a vector field, X p will denote
the unique vector of X in TpM.

In general, we will say that a timelike world line β is an observer. Nevertheless,
we will say that a future-pointing timelike unit vector u in TpM is an observer at p,
identifying it with its 4-velocity.

The relative velocity of an observer with respect to another observer is completely
well defined only when these observers are at the same event: given two observers u and
u′ at the same event p, there exists a unique vector v ∈ u⊥ and a unique positive real
number γ such that

u′ = γ (u + v) . (1)

As consequences, we have 0 ≤ ‖v‖ < 1 and γ := −g
(
u′, u

) = 1√
1−‖v‖2

. We will say

that v is the relative velocity of u′ observed by u, and γ is the gamma factor correspond-
ing to the velocity ‖v‖. From (1), we have

v = 1

−g (u′, u)
u′ − u. (2)

We will extend this definition of relative velocity in two different ways (kinematic and
spectroscopic) for observers at different events. Moreover, we will define another two
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concepts of relative velocity (Fermi and astrometric) that do not extend (2) in general,
but they have clear physical sense as the variation of the relative position.

A light ray is given by a lightlike geodesic λ and a future-pointing lightlike vector
field F defined in λ, tangent to λ and parallelly transported along λ (i.e. ∇F F = 0),
called frequency vector field of λ. Given p ∈ λ and u an observer at p, there exists a
unique vector w ∈ u⊥ and a unique positive real number ν such that

Fp = ν (u + w) . (3)

As consequences, we have ‖w‖ = 1 and ν = −g
(
Fp, u

)
. We will say that w is the

relative velocity of λ observed by u, and ν is the frequency of λ observed by u. In other
words, ν is the modulus of the projection of Fp onto u⊥. A light ray from q to p is a
light ray λ such that q, p ∈ λ and exp−1

q p is future-pointing.

3. Relative Velocity in the Framework of Spacelike Simultaneity

The spacelike simultaneity was introduced by E. Fermi (see [7]), and it was used to
define the Fermi coordinates. So, some concepts given in this section are very related
to the work of Fermi, as the Fermi surfaces, the Fermi derivative or the Fermi distance.
The original Fermi paper and most of the modern discussions of this notion (see [11, 2])
use a coordinate language (Fermi coordinates). On the other hand, in the present work
we use a coordinate-free notation that allows us to get a better understanding of the basic
concepts of the Fermi work, studying them from an intrinsic point of view and, in the
next section, extending them to the framework of lightlike simultaneity.

Let u be an observer at p ∈ M and � : M → R defined by �(q) := g
(

exp−1
p q, u

)
.

Then, it is a submersion and the set L p,u := �−1 (0) is a regular 3-dimensional subman-
ifold, called Landau submanifold of (p, u) (see [13, 3]), also known as Fermi surface.
In other words, L p,u = expp u⊥. An event q is in L p,u if and only if q is simultaneous
with p in the local inertial proper system of u.

Definition 1. Given u an observer at p, and a simultaneous event q ∈ L p,u, the relative
position of q with respect to u is s := exp−1

p q (see Fig. 1).

We can generalize this definition for two observers β and β ′.

Fig. 1. Scheme in TpM of the relative position s of q with respect to u
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Fig. 2. Scheme in M of the elements that involve the definition of the kinematic relative velocity of u′ with
respect to u

Definition 2. Let β, β ′ be two observers and let U be the 4-velocity of β. The relative
position of β ′ with respect to β is the vector field S defined on β such that Sp is the
relative position of q with respect to Up, where p ∈ β and q is the unique event of
β ′ ∩ L p,Up .

3.1. Kinematic relative velocity. We are going to introduce the concept of “kinematic
relative velocity” of one observer u′ with respect to another observer u generalizing the
concept of relative velocity given by (2), when the two observers are at different events.

Definition 3. Let u, u′ be two observers at p, q respectively such that q ∈ L p,u. The
kinematic relative velocity of u′ with respect to u is the unique vector vkin ∈ u⊥ such
that τqpu′ = γ (u + vkin), where γ is the gamma factor corresponding to the velocity
‖vkin‖ (see Fig. 2). So, it is given by

vkin := 1

−g
(
τqpu′, u

)τqpu′ − u. (4)

Let s be the relative position of q with respect to p, the kinematic radial velocity of u′

with respect to u is the component of vkin parallel to s, i.e. vrad
kin := g

(
vkin,

s
‖s‖

)
s

‖s‖ . If

s = 0 (i.e. p = q) then vrad
kin := vkin. On the other hand, the kinematic tangential velocity

of u′ with respect to u is the component of vkin orthogonal to s, i.e. v
tng
kin := vkin − vrad

kin .

So, the kinematic relative velocity of u′ with respect to u is the relative velocity of
τqpu′ observed by u, in the sense of expression (2). Note that ‖vkin‖ < 1, since the
parallel transported observer τqpu′ defines an observer at p.

We can generalize these definitions for two observers β and β ′.

Definition 4. Let β, β ′ be two observers, and let U, U ′ be the 4-velocities of β, β ′
respectively. The kinematic relative velocity of β ′ with respect to β is the vector field
Vkin defined on β such that Vkin p is the kinematic relative velocity of U ′

q observed by
Up (in the sense of Definition 3), where p ∈ β and q is the unique event of β ′ ∩ L p,Up .
In the same way, we define the kinematic radial velocity of β ′ with respect to β, denoted
by V rad

kin , and the kinematic tangential velocity of β ′ with respect to β, denoted by V tng
kin .

We will say that β is kinematically comoving with β ′ if Vkin = 0.
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Let V ′
kin be the kinematic relative velocity of β with respect to β ′. Then, Vkin = 0 if

and only if V ′
kin = 0, i.e. the relation “to be kinematically comoving with” is symmetric

and so, we can say that β and β ′ are kinematically comoving (each one with respect to
the other). Note that it is not transitive in general.

3.2. Fermi relative velocity. We are going to define the “Fermi relative velocity” as the
variation of the relative position.

Definition 5. Let β, β ′ be two observers, let U be the 4-velocity of β, and let S be the
relative position of β ′ with respect to β. The Fermi relative velocity of β ′ with respect
to β is the projection of ∇U S onto U⊥, i.e. it is the vector field

VFermi := ∇U S + g (∇U S, U ) U (5)

defined on β. The right-hand side of (5) is known as the Fermi derivative. The Fermi
radial velocity of β ′ with respect to β is the component of VFermi parallel to S, i.e.

V rad
Fermi := g

(
VFermi,

S
‖S‖

)
S

‖S‖ if S �= 0; if Sp = 0 (i.e. β and β ′ intersect at p) then

V rad
Fermi p := VFermi p. On the other hand, the Fermi tangential velocity of β ′ with respect

to β is the component of VFermi orthogonal to S, i.e. V tng
Fermi := VFermi − V rad

Fermi.
We will say that β is Fermi-comoving with β ′ if VFermi = 0.

It is important to remark that the modulus of the vectors of VFermi is not necessarily
smaller than one.

Since g (VFermi, S) = g (∇U S, S), if S �= 0 we have

V rad
Fermi = g

(
∇U S,

S

‖S‖
)

S

‖S‖ . (6)

The relation “to be Fermi-comoving with” is not symmetric in general.
An expression similar to (5) is given by the next proposition, that can be proved

easily.

Proposition 1. Let β, β ′ be two observers, let U be the 4-velocity of β, let S be the
relative position of β ′ with respect to β, and let VFermi be the Fermi relative velocity of
β ′ with respect to β. Then VFermi = ∇U S − g (S,∇U U ) U. Note that if β is geodesic,
then ∇U U = 0, and hence VFermi = ∇U S .

If Sp = 0, i.e. β and β ′ intersect at p, then VFermi p = (∇U S)p. So, it does not
coincide in general with the concept of relative velocity given in expression (2).

We are going to introduce a concept of distance from the concept of relative position
given in Definition 2. This concept of distance was previously introduced by Fermi.

Definition 6. Let u be an observer at an event p. Given q, q ′ ∈ L p,u, and s, s′ the
relative positions of q, q ′ with respect to u respectively, the Fermi distance from q to q ′
with respect to u is the modulus of s − s′, i.e. dFermi

u

(
q, q ′) := ∥∥s − s′∥∥.

We have that dFermi
u is symmetric, positive-definite and satisfies the triangular inequal-

ity. So, it has all the properties that must verify a topological distance defined on L p,u .
As a particular case, if q ′ = p we have

dFermi
u (q, p) = ‖s‖ =

(
g

(
exp−1

p q, exp−1
p q

))1/2
. (7)
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The next proposition shows that the concept of Fermi distance is the arclength param-
eter of a spacelike geodesic, and it can be proved taking into account the properties of
the exponential map (see [8]).

Proposition 2. Let u be an observer at an event p. Given q ∈ L p,u and α the unique
geodesic from p to q, if we parameterize α by its arclength such that α (0) = p, then
α

(
dFermi

u (q, p)
) = q.

Definition 7. Let β, β ′ be two observers and let S be the relative position of β ′ with
respect to β. The Fermi distance from β ′ to β with respect to β is the scalar field ‖S‖
defined in β.

We are going to characterize the Fermi radial velocity in terms of the Fermi distance.

Proposition 3. Let β, β ′ be two observers, let S be the relative position of β ′ with respect
to β, and let U be the 4-velocity of β. If S �= 0, the Fermi radial velocity of β ′ with
respect to β reads V rad

Fermi = U (‖S‖) S
‖S‖ .

By Definition 7 and Proposition 3, the Fermi radial velocity of β ′ with respect to β

is the rate of change of the Fermi distance from β ′ to β with respect to β. So, if we
parameterize β by its proper time τ , the Fermi radial velocity of β ′ with respect to β at
p = β (τ0) is given by V rad

Fermi p = d(‖S‖◦β)
dτ

(τ0)
Sp‖Sp‖ .

4. Relative Velocity in the Framework of Lightlike Simultaneity

The lightlike (or observed) simultaneity is based on “what an observer is really observing”
and it provides an appropriate framework to study optical phenomena and observational
cosmology (see [6]).

Let p ∈ M and ϕ : M → R defined by ϕ (q) := g
(

exp−1
p q, exp−1

p q
)

. Then, it is

a submersion and the set

E p := ϕ−1 (0) − {p} (8)

is a regular 3-dimensional submanifold, called horismos submanifold of p (see [3, 1]).
An event q is in E p if and only if q �= p and there exists a lightlike geodesic join-
ing p and q. E p has two connected components, E−

p and E+
p [14]; E−

p (respectively
E+

p) is the past-pointing (respectively future-pointing) horismos submanifold of p, and
it is the connected component of (8) in which, for each event q ∈ E−

p (respectively
q ∈ E+

p), the preimage exp−1
p q is a past-pointing (respectively future-pointing) light-

like vector. In other words, E−
p = expp C−

p , and E+
p = expp C+

p, where C−
p and C+

p are
the past-pointing and the future-pointing light cones of TpM respectively.

This section is analogous to Sect. 3, but using E−
p instead of L p,u .

Definition 8. Given u an observer at p, and an observed event q ∈ E−
p ∪{p}, the relative

position of q observed by u (or the observed relative position of q with respect to u) is

the projection of exp−1
p q onto u⊥ (see Fig. 3), i.e. sobs := exp−1

p q + g
(

exp−1
p q, u

)
u.

We can generalize this definition for two observers β and β ′.
Definition 9. Let β, β ′ be two observers and let U be the 4-velocity of β. The relative
position of β ′ observed by β is the vector field Sobs defined in β such that Sobs p is the
relative position of q observed by Up, where p ∈ β and q is the unique event of β ′ ∩ E−

p .
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Fig. 3. Scheme in TpM of the relative position sobs of q observed by u

4.1. Spectroscopic relative velocity. In a previous work (see [4]), we defined a concept
of relative velocity of an observer observed by another observer in the framework of
lightlike simultaneity. We are going to rename this concept as “spectroscopic relative
velocity”, and to review its properties in the context of this work.

Definition 10. Let u, u′ be two observers at p, q respectively such that q ∈ E−
p and let

λ be a light ray from q to p. The spectroscopic relative velocity of u′ observed by u is
the unique vector vspec ∈ u⊥ such that τqpu′ = γ

(
u + vspec

)
, where γ is the gamma

factor corresponding to the velocity ‖vspec‖ (see Fig. 4). So, it is given by

vspec := 1

−g
(
τqpu′, u

)τqpu′ − u. (9)

We define the spectroscopic radial and tangential velocity of u′ observed by u anal-
ogously to Definition 3, using sobs (see Definition 8) instead of s.

So, the spectroscopic relative velocity of u′ observed by u is the relative velocity of
τqpu′ observed by u, in the sense of expression (2), and ‖vspec‖ < 1.

Fig. 4. Scheme in M of the elements that involve the definition of the spectroscopic relative velocity of u′
observed by u
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Note that if w is the relative velocity of λ observed by u (see (3)), then w = − sobs‖sobs‖ ,
and so

vrad
spec = g

(
vspec, w

)
w. (10)

We can generalize these definitions for two observers β and β ′.

Definition 11. Let β, β ′ be two observers, we define Vspec (the spectroscopic relative
velocity of β ′ observed by β) and its radial and tangential components analogously to
Definition 4, using E−

p instead of L p,Up .
We will say that β is spectroscopically comoving with β ′ if Vspec = 0.

The relation “to be spectroscopically comoving with” is not symmetric in general.
The following result can be found in [4].

Proposition 4. Let λ be a light ray from q to p and let u, u′ be two observers at p, q
respectively. Then

ν′ = γ
(
1 − g

(
vspec, w

))
ν, (11)

where ν, ν′ are the frequencies of λ observed by u, u′ respectively, vspec is the spectro-
scopic relative velocity of u′ observed by u, w is the relative velocity of λ observed by
u, and γ is the gamma factor corresponding to the velocity ‖vspec‖.

Expression (11) is the general expression for Doppler effect (that includes gravita-
tional redshift, see [4]). Therefore, if β is spectroscopically comoving with β ′, and λ is
a light ray from β ′ to β, then, by (11), we have that β and β ′ observe λ with the same
frequency. So, if β ′ emits n light rays in a unit of its proper time, then β observes also n
light rays in a unit of its proper time. Hence, β observes that β ′ uses the “same clock”
as it does.

Taking into account (10), expression (11) can be written in the form

ν′ = 1 ± ‖vrad
spec‖√

1 − ‖vspec‖2
ν, (12)

where we choose “+” if g
(
vspec, w

)
< 0 (i.e. if u′ is moving away from u), and we

choose “−” if g
(
vspec, w

)
> 0 (i.e. if u′ is getting closer to u).

Remark 1. We can not deduce vspec from the shift, ν′/ν, unless we make some assump-
tions (like considering negligible the tangential component of vspec, as we will see in
Remark 2). For instance, if ν′/ν = 1 then vspec is not necessarily zero. Let us study this
particular case: by (11) we have

1 = ν′

ν
= 1 − g

(
vspec, w

)

√
1 − ‖vspec‖2

−→ g
(
vspec, w

) = 1 −
√

1 − ‖vspec‖2.

Since
(

1 −
√

1 − ‖vspec‖2
)

≥ 0, it is necessary that g
(
vspec, w

) ≥ 0, i.e. the observed

object has to be getting closer to the observer. In this case, by (12) we have ‖vrad
spec‖ =

1 −
√

1 − ‖vspec‖2. So, it is possible that ν′/ν = 1 and vspec �= 0 if the observed object
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is getting closer to the observer. On the other hand, if the observed object is moving
away from the observer then ν′/ν = 1 if and only if vspec = 0. That is, for objects
moving away, the shift is always redshift; and for objects getting closer, the shift can be
blueshift, 1, or redshift.

Remark 2. If we suppose that v
tng
spec = 0, i.e. vspec = vrad

spec = kw with k ∈ ]−1, 1[, then
we can deduce vspec from the shift ν′/ν:

ν′

ν
= 1 − g

(
vspec, w

)

√
1 − ‖vspec‖2

= 1 − k√
1 − k2

=
√

1 − k√
1 + k

−→ k =
1 −

(
ν′
ν

)2

1 +
(

ν′
ν

)2 ,

and hence

vspec =
⎛

⎜
⎝

1 −
(

ν′
ν

)2

1 +
(

ν′
ν

)2

⎞

⎟
⎠ w = −

⎛

⎜
⎝

1 −
(

ν′
ν

)2

1 +
(

ν′
ν

)2

⎞

⎟
⎠

sobs

‖sobs‖ . (13)

4.2. Astrometric relative velocity. We are going to define the “astrometric relative veloc-
ity” as the variation of the observed relative position.

Definition 12. Letβ,β ′ be two observers, we define Vast (the astrometric relative velocity
of β ′ observed by β) and its radial and tangential components analogously to Definition
5, using Sobs (see Definition 9) instead of S. So,

Vast := ∇U Sobs + g (∇U Sobs, U ) U, (14)

where U is the 4-velocity of β.
We will say that β is astrometrically comoving with β ′ if Vast = 0.

It is important to remark that the modulus of the vectors of Vast is not necessarily
smaller than one.

Analogously to (6), since g (Vast, Sobs) = g (∇U Sobs, Sobs), if Sobs �= 0 we have

V rad
ast = g

(
∇U Sobs,

Sobs

‖Sobs‖
)

Sobs

‖Sobs‖ . (15)

The relation “to be astrometrically comoving with” is not symmetric in general.
An expression similar to (14) is given by the next proposition, which proof is analo-

gous to the proof of Proposition 1.

Proposition 5. Let β, β ′ be two observers, let U be the 4-velocity of β, let Sobs be the
relative position of β ′ observed by β, and let Vast be the astrometric relative velocity of
β ′ observed by β. Then Vast = ∇U Sobs − g (Sobs,∇U U ) U. Note that if β is geodesic,
then ∇U U = 0, and hence Vast = ∇U Sobs.

If Sobs p = 0, i.e. β and β ′ intersect at p, then Vast p = (∇U Sobs)p. So, it does not
coincide in general with the concept of relative velocity given in (2).

We are going to introduce another concept of distance from the concept of observed
relative position given in Definition 8. This distance was previously introduced in [9]
and studied in [4], and it plays a basic role for the construction of optical coordinates
whose relevance for cosmology was stressed in many articles by G. Ellis and his school
(see [6]).
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Definition 13. Let u be an observer at an event p. Given q, q ′ ∈ E−
p ∪ {p}, and sobs,

s′
obs the relative positions of q, q ′ observed by u respectively, the affine distance from

q to q ′ observed by u is the modulus of sobs − s′
obs, i.e. daffine

u

(
q, q ′) := ∥∥sobs − s′

obs

∥∥.

We have that daffine
u is symmetric, positive-definite and satisfies the triangular inequal-

ity. So, it has all the properties that must verify a topological distance defined on E−
p ∪{p}.

As a particular case, if q ′ = p we have

daffine
u (q, p) = ‖sobs‖ = g

(
exp−1

p q, u
)

. (16)

The next proposition shows that the concept of affine distance is according to the
concept of “length” (or “time”) parameter of a lightlike geodesic for an observer, and it
is proved in [4].

Proposition 6. Let λ be a light ray from q to p, let u be an observer at p, and let w be the
relative velocity of λ observed by u. If we parameterize λ affinely (i.e. the vector field tan-
gent to λ is parallelly transported along λ) such that λ (0) = p and

.

λ (0) = − (u + w),
then λ

(
daffine

u (q, p)
) = q.

Definition 14. Let β, β ′ be two observers and let Sobs be the relative position of β ′
observed by β. The affine distance from β ′ to β observed by β is the scalar field ‖Sobs‖
defined in β.

We are going to characterize the astrometric radial velocity in terms of the affine
distance. The proof of the next proposition is analogous to the proof of Proposition 3,
taking into account expression (15).

Proposition 7. Let β, β ′ be two observers, let Sobs be the relative position of β ′ observed
by β, and let U be the 4-velocity of β. If Sobs �= 0, the astrometric radial velocity of β ′
observed by β reads V rad

ast = U (‖Sobs‖) Sobs‖Sobs‖ .

By Definition 14 and Proposition 7, the astrometric radial velocity of β ′ observed
by β is the rate of change of the affine distance from β ′ to β observed by β. So, if we
parameterize β by its proper time τ , the astrometric radial velocity of β ′ observed by β

at p = β (τ0) is given by V rad
ast p = d(‖Sobs‖◦β)

dτ
(τ0)

Sobs p‖Sobs p‖ .

5. Special Relativity

In this section, we are going to work in the Minkowski space-time, with β, β ′ two
observers, and U the 4-velocity of β.

Proposition 8. Let S be the relative position of β ′ with respect to β, and let Vkin, VFermi
be the kinematic and Fermi relative velocities of β ′ with respect to β respectively. Then

VFermi = (1 + g (S,∇U U )) Vkin. (17)
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Fig. 5. Scheme of the proof of Proposition 8

Proof. We are going to consider the observers parameterized by their proper times. Let
p = β (τ) be an event of β, let u (τ ) be the 4-velocity of β at p, and let q = β ′ (τ ′) be
the event of β ′ such that g (u (τ ) , q − p) = 0 (note that the Minkowski space-time has
an affine structure, and q − p denotes the vector which joins p and q). So, q − p is the
relative position of q with respect to u (τ ), denoted by s (τ ). Considering the differential
diagram given in Fig. 5, where u′ (τ ′) is the 4-velocity of β ′ at q, it is easy to check that

δ = 1 + g
(
s (τ ) ,

.
u (τ )

)

−g (u′ (τ ′) , u (τ + dτ))
dτ (18)

for an infinitesimally small dτ (i.e. it holds in quadratic approximation in dτ ). Since
s (τ + dτ) = s (τ ) + u′ (τ ′) δ − u (τ ) dτ , from (18) we have

.
s (τ ) = lim

dτ→0

s (τ + dτ) − s (τ )

dτ
= 1 + g

(
s (τ ) ,

.
u (τ )

)

−g (u′ (τ ′) , u (τ ))
u′ (τ ′) − u (τ ) . (19)

Let U , U ′ be the 4-velocities of β and β ′ respectively, and let S be the relative position
of β ′ with respect to β. Then, from (19) we have

(∇U S)p = 1 + g
(
Sp, (∇U U )p

)

−g
(

Up, U ′
q

) U ′
q − Up. (20)

So, by Proposition 1 and expression (20), the Fermi relative velocity VFermi p of β ′ with
respect to β at p is given by

VFermi p = (∇U S)p − g
(
Sp, (∇U U )p

)
Up

= (
1 + g

(
Sp, (∇U U )p

))
⎛

⎝ 1

−g
(

Up, U ′
q

)U ′
q − Up

⎞

⎠ . (21)

On the other hand, the kinematic relative velocity Vkin p of β ′ with respect to β at p
reads

Vkin p = 1

−g
(

U ′
q , Up

)U ′
q − Up. (22)

Hence, from (21) and (22) we obtain (17), concluding the proof.
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Fig. 6. Scheme of the proof of Proposition 9

So, Vkin and VFermi are proportional. Moreover, if β is geodesic, then VFermi = Vkin.
The proof of the next proposition is similar to the proof of Proposition 8 (but a bit

more complicated), considering the differential diagram given in Fig. 6.

Proposition 9. Let Sobs be the relative position of β ′ observed by β, and let Vspec, Vast
be the spectroscopic and astrometric relative velocities of β ′ observed by β respectively.
If Sobs �= 0 then

Vast = ‖Sobs‖ ∇U U +
1

1 + g
(

Vspec,
Sobs‖Sobs‖

) Vspec. (23)

So, Vspec and Vast are not proportional unless β is geodesic.
If β ′ is geodesic then it is clear that Vspec = Vkin. Moreover, if β is also geodesic

then Vspec = Vkin = VFermi.

Remark 3. Let us suppose that β and β ′ intersect at p, let u, u′ be the 4-velocities of β,
β ′ at p respectively, and let v be the relative velocity of u′ observed by u, in the sense of
expression (2). Let us study the relations between v, Vkin p, VFermi p, Vspec p and Vast p.

It is clear that Vkin p = Vspec p = v, even in general relativity. Moreover, since
Sp = 0, by (17) we have VFermi p = v. On the other hand, since Sobs p = 0, it is easy
to prove that Vast p = 1

1±‖v‖v, where we choose “+” if we consider that β ′ is leaving
from β, and we choose “−” if we consider that β ′ is arriving at β. Therefore, if β and
β ′ intersect at p, then it is not possible to write Vast p in a unique way in terms of v.

Example 1. Using rectangular coordinates (t, x, y, z), let us consider the following
observers parameterized by their proper times: β (τ) := (τ, 0, 0, 0), and β ′ (τ ′) :=⎧
⎨

⎩

(
γ τ ′, vγ τ ′, 0, 0

)
if τ ′ ∈

[
0, 1

γ v

]

(
γ τ ′, 2 − vγ τ ′, 0, 0

)
if τ ′ ∈

]
1

γ v
, 2

γ v

] , where v ∈ ]0, 1[ and γ := 1√
1−v2 . That is,
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Fig. 7. Scheme of the observers of Example 1

β is a stationary observer with x = 0, y = 0, z = 0 and β ′ is an observer moving from
x = 0, y = 0, z = 0 to x = 1, y = 0, z = 0 with velocity of modulus v and returning
(see Fig. 7). It is satisfied that

Vkin β(τ) =
{

v ∂
∂x

∣∣
β(τ)

if τ ∈ [
0, 1

v

]

−v ∂
∂x

∣∣
β(τ)

if τ ∈ ] 1
v
, 2

v

] ,

Vspec β(τ) =
{

v ∂
∂x

∣∣
β(τ)

if τ ∈ [
0, 1+v

v

]

−v ∂
∂x

∣∣
β(τ)

if τ ∈ ] 1+v
v

, 2
v

] .

Applying (17), we obtain VFermi β(τ) = Vkin β(τ). Moreover

Sobs β(τ) =
{

vτ
1+v

∂
∂x

∣∣
β(τ)

if τ ∈ [
0, 1+v

v

]

2−vτ
1−v

∂
∂x

∣∣
β(τ)

if τ ∈ ] 1+v
v

, 2
v

] .

Hence, by (23) we have

Vast β(τ) =
{

v
1+v

∂
∂x

∣∣
β(τ)

if τ ∈ [
0, 1+v

v

]

− v
1−v

∂
∂x

∣∣
β(τ)

if τ ∈ ] 1+v
v

, 2
v

] .

Consequently,
∥∥Vast β(τ)

∥∥ ∈ ]0, 1/2[ if τ ∈ [
0, 1+v

v

]
, i.e. if β ′ is moving away radially.

On the other hand,
∥∥Vast β(τ)

∥∥ ∈ ]0, +∞[ if τ ∈ ] 1+v
v

, 2
v

]
, i.e. if β ′ is getting closer

radially. This corresponds to what β observes.
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6. Examples in General Relativity

6.1. Stationary observers in Schwarzschild. In the Schwarzschild metric with spherical
coordinates

ds2 = −a2 (r) dt2 +
1

a2 (r)
dr2 + r2

(
dθ2 + sin2 θdϕ2

)
,

where a (r) =
√

1 − 2m
r and r > 2m, let us consider two equatorial stationary observers,

β1 (τ ) =
(

1
a1

τ, r1, π/2, 0
)

and β2 (τ ) =
(

1
a2

τ, r2, π/2, 0
)

with τ ∈ R, r2 > r1 > 2m,

a1 := a (r1) and a2 := a (r2), and let U be the 4-velocity of β2, i.e. U := 1
a2

∂
∂t . We are

going to study the relative velocities of β1 with respect to and observed by β2.

6.1.1. Kinematic and Fermi relative velocities Let us consider the vector field X :=
a (r) ∂

∂r . This vector field is spacelike, unit, geodesic, and orthogonal to U . Since

∇X

(
1

a(r)
∂
∂t

)
= 0, we have that the kinematic relative velocity Vkin of β1 with respect

to β2 is given by Vkin = 0.
Let α (σ) = (t0, αr (σ ) , π/2, 0) be an integral curve of X such that q := α (σ1) ∈ β1

and p := α (σ2) ∈ β2, with σ2 > σ1 (i.e. α (σ) is a spacelike geodesic from q to p,
parameterized by its arclength, and its tangent vector at p is X p). Then, by Proposition
2, the Fermi distance dFermi

Up
(q, p) from q to p with respect to Up is σ2−σ1. Since α is an

integral curve of X , we have
.
α

r
(σ ) =

√
1 − 2m

αr (σ )
. So,

∫ r2
r1

(
1 − 2m

αr (σ )

)−1/2 .
α

r
(σ ) dσ =

σ2 − σ1, and then

dFermi
Up

(q, p) = 2m ln

(
(1 − a1)

√
r1

(1 − a2)
√

r2

)
+ r2a2 − r1a1. (24)

Since (24) does not depend on t0, the Fermi distance from β1 to β2 with respect to β2 is
also given by expression (24). Hence, by (7), the relative position S of β1 with respect
to β2 is given by

S =
(

2m ln

(
(1 − a2)

√
r2

(1 − a1)
√

r1

)
+ r1a1 − r2a2

)
a2

∂

∂r
.

It is easy to prove that ∇U S is proportional to U . Therefore, the Fermi relative velocity
VFermi of β1 with respect to β2 reads VFermi = 0.

6.1.2. Spectroscopic and astrometric relative velocities It is easy to prove that the spec-
troscopic relative velocity Vspec of β1 observed by β2 is radial. Since the gravitational
redshift is given by a2

a1
(see [4]), by (13) we obtain

Vspec = −a2
a2

2 − a2
1

a2
2 + a2

1

∂

∂r
. (25)

Expression (25) is also obtained in [4]. We have limr1→2m
∥∥Vspec

∥∥ = 1.
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On the other hand, in [4] it is also proved (by using Proposition 6) that the affine
distance from β1 to β2 observed by β2 is r2−r1

a2
. Hence, by (16), the relative position Sobs

of β1 observed by β2 is given by

Sobs = (r1 − r2)
∂

∂r
. (26)

It is easy to prove that ∇U Sobs is proportional to U . Therefore, the astrometric relative
velocity Vast of β1 observed by β2 reads Vast = 0.

6.2. Free-falling observers in Schwarzschild. Let us consider a radial free-falling ob-
server β1 parameterized by the coordinate time t , β1 (t) = (

t, βr
1 (t) , π/2, 0

)
. Given an

event q = (t1, r1, π/2, 0) ∈ β1, the 4-velocity of β1 at q is given by

u1 = E

a2
1

∂

∂t

∣∣
∣∣
q

−
√

E2 − a2
1

∂

∂r

∣∣
∣∣
q
, (27)

where E is a constant of motion given by E :=
(

1−2m/r0

1−v2
0

)1/2

, r0 is the radial coordinate

at which the fall begins, v0 is the initial velocity (see [5]), and a1 := a (r1). Moreover,

let us consider an equatorial stationary observer β2 (τ ) =
(

1
a2

τ, r2, π/2, 0
)

with τ ∈ R,

r2 > r1 > 2m, a2 := a (r2), and U := 1
a2

∂
∂t its 4-velocity. We are going to study the

relative velocities of β1 with respect to and observed by β2 at p, where p will be a
determined event of β2.

6.2.1. Kinematic and Fermi relative velocities Let p = (t1, r2, π/2, 0). This is the
unique event of β2 such that q ∈ L p,Up , i.e. there exists a spacelike geodesic α (σ) from
q = α (σ1) to p = α (σ2) such that the tangent vector

.
α (σ2) is orthogonal to Up. We can

consider α (σ) parameterized by its arclength and σ2 > σ1. So, α (σ) is an integral curve
of the vector field X = a (r) ∂

∂r . If we parallelly transport u1 from q to p along α we

obtain τqpu1 = E
a1a2

∂
∂t

∣
∣

p − a2
a1

√
E2 − a2

1
∂
∂r

∣
∣

p. By (4), the kinematic relative velocity
Vkin p of β1 with respect to β2 at p reads

Vkin p = −a2

E

√
E2 − a2

1
∂

∂r

∣∣∣
∣

p
.

So, it is satisfied that limr1→2m
∥∥Vkin p

∥∥ = 1.
On the other hand, by (24), the relative position S of β1 with respect to β2 is given

by

S =
(

2m ln

(
(1 − a2)

√
r2(

1 − a
(
βr

1 (t)
)) √

βr
1 (t)

)

+ βr
1 (t) a

(
βr

1 (t)
) − r2a2

)

a2
∂

∂r
.

By (5), the Fermi relative velocity VFermi of β1 with respect to β2 reads

VFermi = (∇U S)r ∂

∂r
= 1

a2

∂Sr

∂t

∂

∂r
= 1

a2

.

β
r
1 (t)

a
(
βr

1 (t)
)

∂

∂r
.
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Taking into account (27), we have
.

β
r
1 (t1) = − a2

1
E

√
E2 − a2

1 . Hence

VFermi p = − a1

a2 E

√
E2 − a2

1
∂

∂r

∣∣∣∣
p
.

So, it is satisfied that limr1→2m
∥
∥VFermi p

∥
∥ = 0.

6.2.2. Spectroscopic and astrometric relative velocities Let p be the unique event of β2
such that there exists a light ray λ from q to p, and let us suppose that p = (t2, r2, π/2, 0).
In [4] it is shown that the spectroscopic relative velocity Vspec p of β1 observed by β2 at
p is given by

Vspec p = −a2

(
a2

2 + a2
1

)√
E2 − a2

1 + E
(
a2

2 − a2
1

)

(
a2

2 − a2
1

) √
E2 − a2

1 + E
(
a2

2 + a2
1

)
∂

∂r

∣∣∣
∣

p
. (28)

So, it follows that limr1→2m
∥∥Vspec p

∥∥ = 1.
On the other hand, it can be checked that

λ (r) :=
(

t1 + r − r1 + 2m ln

(
r − 2m

r1 − 2m

)
, r, π/2, 0

)
, r ∈ [r1, r2]

is a light ray from q = λ (r1) to p = λ (r2). So,

t2 = λt (r2) = t1 + r2 − r1 + 2m ln

(
r2 − 2m

r1 − 2m

)
. (29)

Let us define implicitly the function f (t) by the expression

f (t) := t −
(

r2 − βr
1 ( f (t)) + 2m ln

(
r2 − 2m

βr
1 ( f (t)) − 2m

))
. (30)

Taking into account (29), f (t) is the coordinate time at which β1 emits a light ray that
arrives at β2 at coordinate time t . Applying (26), the relative position Sobs of β1 observed
by β2 reads

Sobs = (
βr

1 ( f (t)) − r2
) ∂

∂r
.

By (14), the astrometric relative velocity Vast of β1 observed by β2 is given by

Vast = (∇U Sobs)
r ∂

∂r
= 1

a2

∂Sr
obs

∂t

∂

∂r
= 1

a2

.

β
r
1 ( f (t))

.

f (t)
∂

∂r
.

From (30), we have
.

f (t2) = a2
1

a2
1−(

a2
1−1

) .
β

r
1(t1)

. Moreover, taking into account (27), we

have
.

β
r
1 (t1) = − a2

1
E

√
E2 − a2

1 . Hence

Vast p = −a2
1

a2

√
E2 − a2

1

E +
(
a2

1 − 1
) √

E2 − a2
1

∂

∂r

∣∣∣∣
p
, (31)

and, in consequence, limr1→2m
∥∥Vast p

∥∥ = 1
a2

2

2E2

1+2E2 ∈ ]0, +∞[.
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6.3. Comoving observers in Robertson-Walker. In a Robertson-Walker metric with
cartesian coordinates

ds2 = −dt2 +
a2 (t)

(
1 + 1

4 kr2
)2

(
dx2 + dy2 + dz2

)
,

where a (t) is the scale factor, k = −1, 0, 1 and r := √
x2 + y2 + z2, we consider two

comoving (in the classical sense, see [14]) observers β0 (τ ) = (τ, 0, 0, 0) and β1 (τ ) =
(τ, x1, 0, 0) with τ ∈ R and x1 > 0. Let t0 ∈ R, p := β0 (t0) and u := .

β0 (t0) = ∂
∂t

∣
∣

p
(i.e. the 4-velocity of β0 at p). We are going to study the relative velocities of β1 with
respect to and observed by β0 at p.

6.3.1. Kinematic and Fermi relative velocities. The vector field

X := −
√

a2
0

a2 (t)
− 1

∂

∂t
+

a0

a2 (t)

(
1 +

1

4
kx2

)
∂

∂x

is geodesic, spacelike, unit, and X p is orthogonal to u, i.e. it is tangent to the Lan-
dau submanifold L p,u . Let β1 (t1) =: q be the unique event of β1 ∩ L p,u . We can
find t1 for concrete scale factors a (t) taking into account the expression of X , but
we can not find an explicit expression in the general case. If u′ := .

β1 (t1) = ∂
∂t

∣∣
q ,

then τqpu′ = a0
a1

∂
∂t

∣∣
p +

√
1

a2
1

− 1
a2

0

∂
∂x

∣∣
p, where a1 := a (t1) (it is well defined because

a0 ≥ a1 > 0). So, by (4), the kinematic relative velocity Vkin p of β1 with respect to β0
at p is given by

Vkin p = 1

a2
0

√
a2

0 − a2
1

∂

∂x

∣∣∣∣
p
.

Given a concrete scale factor a (t), the Fermi distance dFermi from β1 to β0 with
respect to β0 can be also found, taking into account the expression of X . So, the relative
position S of β1 with respect to β0 reads

S = dFermi

(
1 + 1

4 kr2
)

a (t)

∂

∂x
,

because dFermi = ‖S‖. Hence, the Fermi relative velocity VFermi p of β1 with respect to
β0 at p is given by

VFermi p =
(

d

dt

(
dFermi

a (t)

)∣∣
∣∣
t=t0

+
dFermi

p
.
a (t0)

a2
0

)
∂

∂x

∣∣
∣∣

p
.
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6.3.2. Spectroscopic and astrometric relative velocities Let λ be a light ray received by
β0 at p and emitted from β1 at β1 (t1). Note that t1 can be found from x1 and t0 taking
into account that

∫ x1
0

dx
1+ 1

4 kx2 = ∫ t0
t1

dt
a(t) . It can be easily proved that the spectroscopic

relative velocity Vspec p of β1 observed by β0 at p is radial (by isotropy). So, by (13)
taking into account that the cosmological shift is given by a0

a1
(see [4]), where a0 := a (t0)

and a1 := a (t1), we have

Vspec p = 1

a0

a2
0 − a2

1

a2
0 + a2

1

∂

∂x

∣
∣∣∣

p
. (32)

Given a concrete scale factor a (t), the affine distance daffine from β1 to β0 observed
by β0 can be found. So, the relative position Sobs of β1 observed by β0 is given by

Sobs = daffine

(
1 + 1

4 kr2
)

a (t)

∂

∂x
,

because daffine = ‖Sobs‖. Hence, the astrometric relative velocity Vast p of β1 observed
by β0 at p reads

Vast p =
(

d

dt

(
daffine

a (t)

)∣∣∣
∣
t=t0

+
daffine

p
.
a (t0)

a2
0

)
∂

∂x

∣∣∣
∣

p
. (33)

Let us study these relative velocities in more detail. In cosmology it is usual to con-
sider the scale factor in the form

a (t) = a0

(
1 + H0 (t − t0) − 1

2
q0 H2

0 (t − t0)
2
)

+ O
(

H3
0 (t − t0)

3
)

,

where t0 ∈ R, a0 = a (t0) > 0, H (t) = .
a (t) /a (t) is the Hubble “constant”, H0 =

H (t0) > 0, q (t) = −a (t)
..
a (t) /

.
a (t)2 is the deceleration coefficient, and q0 = q (t0),

with |H0 (t − t0)| � 1 (see [12]). This corresponds to a universe in decelerated expan-
sion and the time scales that we are going to use are relatively small. Let us define
p := β0 (t0) and u := .

β0 (t0) = ∂
∂t

∣∣
p.

We are going to express the spectroscopic and the astrometric relative velocity of β1
observed by β0 at p in terms of the redshift parameter at t = t0, defined as z0 := a0

a1
−1,

where a1 := a (t1). This parameter is very usual in cosmology since it can be measured
by spectroscopic observations. By (32), the spectroscopic relative velocity Vspec p of β1
observed by β0 at p is given by

Vspec p = 1

a0

a4
0 − (z0 + 1)2

a4
0 + (z0 + 1)2

∂

∂x

∣∣∣
∣

p
. (34)

In [4] it is shown that the affine distance daffine from β1 to β0 observed by β0 reads

daffine (t) = z (t)

H (t)

(
1 − 1

2
(3 + q (t)) z (t)

)
+ O

(
z3 (t)

)
,
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where z (t) is the redshift function. So, by (33), the astrometric relative velocity Vast p
of β1 observed by β0 at p is given by

Vast p =
( .

z (t0)

a0 H0
+

z0

a0

(
q0 + 1 −

.
z (t0)

H0
(3 + q0)

)
+ O

(
z2

0

))
∂

∂x

∣∣
∣∣

p
.

Hence, if we suppose that
.
z (t0) ≈ 0 (i.e., the redshift is constant in our time scale), then

Vast p ≈
(

z0

a0
(q0 + 1) + O

(
z2

0

))
∂

∂x

∣∣
∣∣

p
. (35)

7. Discussion and Comments

It is usual to consider the spectroscopic relative velocity as a non-acceptable “physical
velocity”. However, in this paper we have defined it in a geometric way, showing that it
is, in fact, a very plausible physical velocity.

– Firstly, in other works (see [3, 4]), we have discussed pros and cons of spacelike and
lightlike simultaneities, coming to the conclusion that lightlike simultaneity is phys-
ically and mathematically more suitable. Since the spectroscopic relative velocity is
the natural generalization (in the framework of lightlike simultaneity) of the usual
concept of relative velocity (given by (2)), it might have a lot of importance.

– Secondly, there are some good properties suggesting that the spectroscopic relative
velocity has a lot of physical sense. For instance, if we work with the spectroscopic
relative velocity, it is shown in [4] that gravitational redshift is just a particular case
of a generalized Doppler effect.

Nevertheless, all four concepts of relative velocity have full physical sense and they
must be studied equally.

Finally, one can wonder whether the discussed concepts of relative velocity can be
actually determined experimentally. A priori, only the spectroscopic and astrometric
relative velocities can be measured by direct observation. The shift allows us to find
relations between the modulus of the spectroscopic relative velocity and its tangential
component, as we show in (12). But, in general, it is not enough information to deter-
mine it completely (as we discuss in Remark 1), unless we make some assumptions (see
Remark 2) or we use a model for the space-time and apply some expressions like (25),
(28), or (34). Finding the astrometric relative velocity is basically the same problem
as finding the optical coordinates. It is non-trivial and it has been widely treated, for
instance, in [6]. Nevertheless, expressions like (31) or (35) could be very useful in par-
ticular situations. Since the measure of these velocities is rather difficult, any expression
relating them can be very helpful in order to determine them, as, for example, expression
(23) in special relativity.
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