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Abstract: We introduce a local version of the Shannon entropy in order to describe
information transport in spatially extended dynamical systems, and to explore to what
extent information can be viewed as a local quantity. Using an appropriately defined
information current, this quantity is shown to obey a local conservation law in the case
of one-dimensional reversible cellular automata with arbitrary initial measures. The
result is also shown to apply to one-dimensional surjective cellular automata in the case
of shift-invariant measures. Bounds on the information flow are also shown.

1. Introduction

A number of authors have suggested that information should be viewed as a fundamental
physical quantity, starting with the vision of “It from Bit” of Wheeler [27] and the fun-
damental work on the thermodynamics of computation by Landauer [14] and Bennett
[1].

Information theory also has a close relation to the foundations of statistical mechan-
ics, e.g., through the information theoretic formulation introduced by Jaynes [11], where
entropy is viewed as a measure of the ignorance of the actual microstate of the system.
Information theory and computation theory can also be used to define an entropy for
individual microstates in spatially extended systems [17, 28].

In a microscopic view, information or entropy quantified in terms of the Gibbs
H-function is a globally conserved quantity due to Liouville’s theorem. A natural ques-
tion to consider is to what extent this statement has a local analogue in spatially extended
dynamical systems. This article explores this question for one-dimensional reversible or
surjective cellular automata. Precise statements of the notion of conservation of informa-
tion, and possible extensions of this formalism to other systems, could provide a more
solid foundation for the use of information based concepts in different physical systems.

We first introduce a local version of the Shannon entropy. In a one-dimensional sys-
tem, the local information is defined in terms of the conditional probability of a local
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state given its left or right infinite context. Information can only be completely localized
in a system without correlations. Thus, the measure we introduce is localized to the
extent that correlations allow, and reduces to a completely local quantity when corre-
lations vanish. However, even with correlations present, this quantity does obey a local
continuity equation with an appropriately defined information current.

For cellular automata, local conservation of information was first proposed by Toffoli
[23], who derived a continuity equation for information transport in the case of small
perturbations around the uncorrelated equlibrium states of particle conserving revers-
ible cellular automata, such as lattice gases. Here we investigate how these concepts can
be applied to a wider class of dynamical systems and to arbitrary measures, and how
they can be given a rigorous formulation. We only consider one-dimensional systems;
generalizations to systems in higher dimensions will be addressed in future work.

We first consider reversible cellular automata, where the cellular automaton mapping
has an inverse. Reversible cellular automata have been used to simulate physical systems,
e.g., for microcanonical simulations of spin systems (e.g., [25]), and simulations of fluid
dynamics [4, 7], and chemical reactions [2]. They have also been used as illustrative
examples of fundamental issues in statistical mechanics [21, 22]. For one-dimensional
reversible cellular automata, we show local conservation of information for any initial
measure, including measures without shift-invariance.

We also consider the more complicated case of surjective cellular automata, where
the global mapping is finite-to-one [8]. In this case, local conservation of information is
shown for all shift-invariant measures. For the simple case of permutative rules, we are
able to describe the information flow in more detail.

The aim of the article is to explore exactly to what extent information can be viewed
as a local quantity in spatially extended systems. The main results show that impor-
tant aspects of locality remain also in systems with correlations. We also give examples
which illustrate the limits of locality in the formalism.

The rest of this article is organized as follows. Section 2 contains background mate-
rial on shift spaces and cellular automata. In Sect. 3 we introduce a local measure of
information and show that it is well-defined. Section 4 contains the main results of the
paper. We first define the information current, and prove that information is locally con-
served for one-dimensional reversible cellular automata. We then extend this result to
surjective cellular automata. In Sect. 5, we give an information theoretic interpretation
of the current, and provide bounds on the information flow. We also characterize the
information flow in permutative cellular automata, and study some examples illustrating
the limits of locality. Section 6 contains conclusions and a discussion.

2. Preliminaries

2.1. The shift space. We study dynamical systems on the space AZ of all bi-infinite
symbol sequences over a finite set A. For x ∈ AZ we write x = (xi )i∈Z. The length
j − i + 1 block (xi , xi+1, . . . , x j ) of symbols from A will be written as x j

i . Likewise,
xi−∞ = (. . . , xi−1, xi ). The shift map σ is defined on AZ by σ(x)i = xi+1.

A probability measure µ on (AZ,B), where B is the Borel σ -algebra, is defined
by assigning a probability µ(Cyl(ai+n

i )) to each cylinder set Cyl(ai+n
i ) = {x ∈ AZ :

xi+n
i = ai+n

i } in a consistent way, see [26, §0.2]. We will usually write this probability
µ(ai+n

i ), thus letting ai+n
i represent both the symbol block of length n+1 and the cylinder

set. It is often convenient to consider the measure µ as defining a discrete, stochastic
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process (Xn)
∞
n=−∞, Xn ∈ A, with joint distributions given by Prob(X j

i = a j
i ) = µ(a j

i ).
A measure is said to be Bernoulli if the coordinate random variables Xi are all indepen-

dent and identically distributed. The conditional probability µ(a0|a−1−n) = µ(a0−n)

µ(a−1−n)
is the

probability that X0 = a0 given that X−1−n = a−1−n .
The measure µ is shift-invariant if it satisfies µ(σ−1(B)) = µ(B) for all cylinder

sets B. Whenµ is shift-invariant, the expectation E[ f ] of any measurable function f on
AZ satisfies E[ f ] = E[ f ◦ σ ]. The Shannon entropy h(µ) of a shift-invariant measure
µ can be written as

h(µ) = − lim
n→∞

∑

a0−n∈An+1

µ(a0−n) logµ(a0|a−1−n). (1)

2.2. Cellular automata. One-dimensional cellular automata (CA) are discrete dynami-
cal systems on AZ that commute with the shift σ .

Definition 1. A cellular automaton F : AZ → AZ is a dynamical system that can be
defined by non-negative integers l, r and a map f : Al+r+1 → A, such that

(Fx)i = f (xi−l , xi−l+1, . . . , xi+r ) ∀ i ∈ Z. (2)

The left and right radii of F are the smallest such integers l and r for which there is
a block map f (CA rule) that generates F .

Example 1. Let A = {0, 1}, and denote by F1 the simple CA on AZ defined by the
radii l = 0 and r = 1 and the block map f : A2 → A given by f (x0, x1) = x0 + x1
(mod 2). The global map F1 can be written as F1(x) = x + σ(x), where addition is
coordinate-wise and modulo 2.

For any n ≥ 1, the block map f can be extended in a natural way to a map
fn : Al+r+n+1 → An+1 by putting

fn(x
r+n−l ) = ( f (xr−l), f (xr+1−l+1), . . . , f (xr+n

n−l)). (3)

We will omit the subscript n and write f for the block map applied to a block of any
length.

For reversible CA, F has an inverse map, so that each bi-infinite sequence y ∈ AZ

has exactly one preimage under F . The inverse map of a reversible CA is always itself
a CA [20], but the inverse CA does not necessarily have the same radii as F (see, e.g.,
[24]).

Example 2. Denote by F2 the reversible CA on {0, 1, 2}Z having radii l = 0, r = 1 and
block map given by f (10) = f (11) = f (12) = 0, f (01) = f (20) = f (22) = 1
and f (00) = f (02) = f (21) = 2. The preimage x of a given y ∈ AZ is found by
the following procedure. If yi = 0 we must have xi = 1. If yi = 1 then xi = 2 unless
yi+1 = 0, in which case xi = 0. Finally, if yi = 2 then xi = 0 unless yi+1 = 0, in which
case xi = 2. The inverse CA F̃2 also has l = 0 and r = 1, but a different block map f̃ .
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A more general class of CA are the surjective ones, where all y ∈ AZ have at least one
preimage. The class of surjective CA includes all linear CA [10] and other permutative
CA [8].

It is well known that a one-dimensional CA F is surjective if and only if all finite
blocks have the same number of pre-images under f [8]. That is, if for all n ≥ 1 and
yn

1 ∈ An there are exactly |A|l+r blocks zn+r
1−l ∈ Al+r+n that satisfy f (zn+r

1−l) = yn
1 .

Furthermore, there is a constant M(F) ≤ |A|l+r such that each bi-transitive x ∈ AZ has
exactly M(F) preimages.

For surjective CA one can define Welch coefficients. Let xn
1 ∈ An with n ≥ l + r .

A compatible right extension of xn
1 of length m is a collection B ⊂ Am such that for

each zm
1 ∈ B, the (n+m−l−r)-block f (xn

1 zm
1 ) is the same. Define the integer R(F) as the

maximal number of elements in any compatible right extension of any length m and of
any block xn

1 . Define compatible left extensions and L(F) in the same way. The coeffi-
cients L(F) and R(F) are finite, and satisfy the relation L(F) · M(F) · R(F) = |A|l+r

[8, Th. 14.9].

3. Local Information

The intent of introducing a local information quantity is to measure how much informa-
tion that is located at each position of an infinite symbol sequence generated by some
stochastic process. However, the correlations in such symbol sequences can in general
be arbitrarily long, and it is impossible for information to be completely localized. The
natural approach is therefore to define the local information as a limit which converges
to a local analogue of the Shannon entropy as more and more distant neighbours are
taken into account. While the Shannon entropy is limited to shift-invariant measures, we
can define left local information for any measure.

Definition 2. Let µ be a measure on AZ. The left local information at coordinate i of
x ∈ AZ with respect to µ is given by

SL(x; i;µ) = − lim
n→∞ logµ(xi |xi−1

i−n). (4)

The quantity − logµ(xi |xi−1
i−n) is the information gained from the symbol at position i

when only knowledge of the n left symbols is assumed. If, and only if,µ is Markov there
is a fixed n such that SL(x; i;µ) = − logµ(xi |xi−1

i−n). We will often use the intuitive

notation − logµ(xi |xi−1−∞) for SL(x; i;µ).
The following theorem ensures that the left local information with respect to µ is a

well-defined function on the probability space (AZ,B, µ).
Theorem 1. For each i ∈ Z, − logµ(xi |xi−1

i−n) converges µ-almost everywhere and in
L1(µ). Consequently, for each fixed measure µ, SL(x; i;µ) ∈ L1(µ).

The validity of the theorem follows from the martingale convergence theorem, see, e.g.,
[12, Th. 3.1.10]. Note that from L1-convergence and (1) it follows that E[SL(x; i;µ)] =
h(µ) for all i in the shift-invariant case.

The local information SL(x; i;µ) depends on the measure µ. However, for a shift-
invariant measure µ the left local information at position i of x can be recovered with
probability one from xi−∞ only by considering the empirical measure νx obtained from
the frequencies of finite blocks in xi−∞,
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νx (a
n
1 ) = lim

N→∞
1

N

N−1∑

k=0

1Cyl(an
1 )
(σ i−n−k x). (5)

If µ is ergodic, then νx = µ a.e. However, even when µ is only shift-invariant it suffices
to look at the local information with respect to νx .

Theorem 2. Let µ be a shift-invariant measure on AZ and νx the empirical measure
generated by xi−∞. Then SL(x; i;µ) = SL(x; i; νx ) µ-a.e.

Proof. The result follows since the infinite history determines with probability one which
ergodic component of µ x is generated by, see Lemma 8.6.2. in [6]. 	


We can also define the right local information at coordinate i of x with respect to µ
as

SR(x; i;µ) = − lim
n→∞ logµ(xi |xi+n

i+1 ). (6)

All results we show for the left information will have corresponding results for the right
information. However, although the left and right information have the same expectation
for all shift-invariant measures, they are not equal nor do they in general have the same
probability distribution. This is exemplified by the Markov measure on {0, 1, 2}Z defined
by the following non-zero transition probabilities: p(0|0) = p(1|0) = 1

2 ; p(0|1) =
p(2|1) = 1

2 ; p(0|2) = p(1|2) = 1
2 .

4. Information Transport

In this section we investigate the transport of local information in the time-evolution of
a one-dimensional surjective cellular automaton. We show that the left local informa-
tion satisfies a continuity equation involving an information current JL, and supply an
expression for this current.

Let µ0 be a measure on AZ. The measure F(µ0) = µ0 ◦ F−1 gives the joint dis-
tributions of the stochastic process (Yi )i∈Z with Yi = f (Xi+r

i−l) when (Xi )i∈Z has joint
distributions given byµ0. Denoteµ0◦F−1 byµ1 and, more generally, setµt = µ0◦F−t .
The block probabilities of µ1 can be calculated from

µ1(yn
0 ) =

∑

zn+r−l ∈ f −1(yn
0 )

µ0(zn+r
−l ). (7)

It is well known that h(µ1) = h(µ0) whenever F is surjective and µ0 is shift-
invariant (if F is non-surjective, this relation is replaced by h(µ1) ≤ h(µ0)), see, e.g.,
[16]. Our goal is to prove the much stronger result that the local information obeys a
local continuity equation under the time evolution of the CA. This is an equation of the
form

�t SL +�i JL = 0, (8)

where JL(x; i;µ) is the information current. The operator � is the forward difference
operator, so that

�t SL(x; i;µt ) = SL(F(x); i;µt+1)− SL(x; i;µt ),

�i JL(x; i;µt ) = JL(x; i + 1;µt )− JL(x; i;µt ).
(9)
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Fig. 1. An illustration of Z = Z(xi+r−1−∞ ) and τ = τ(xi+r−1−∞ ). In this case r = 2, |Z | = 4 and τ = i − 4. The
circles represent symbols in A. These are connected by lines to semi-infinite sequences which all map to the
same yi−1−∞ and coincide with x at all j ≤ τ .

With these definitions, JL(x; i;µt ) can be interpreted as the information flow from
position i − 1 to position i generated by applying the CA. Note that the local informa-
tion of F(x) is taken with respect to a different measure than x , unless µt happens to be
invariant for the CA.

For a semi-infinite sequence xi−∞, define Z(xi−∞) as the set of all semi-infinite
sequences that have the same image and the same tail as xi−∞ (see Fig. 1):

Definition 3. For x ∈ AZ and a surjective CA F, define the sets Z(xi−∞) as

Z(xi−∞) = {zi−∞ : f (zi−∞) = f (xi−∞) and ∃ j ≤ i such that z j
−∞ = x j

−∞}.
Note that |Z(xi−∞)| ≤ R(F) for all x by the definition of the Welch coefficient R(F).
Define τ(xi−∞) as the largest index less than i − r for which all sequences in Z(xi−∞)
coincide (recall that r is the right radius of F):

Definition 4. For x ∈ AZ, define τ(xi−∞) ∈ Z as

τ(xi−∞) = max
j

{ j : j < i − r, and z j
−∞ = x j

−∞ ∀ zi−∞ ∈ Z(xi−∞)}.

We are now ready to define the information current.

Definition 5. Let F be a surjective one-dimensional CA with right radius r , and µ a
measure on AZ. Put Z = Z(xi+r−1−∞ ) and τ = τ(xi+r−1−∞ ). Define the left information
current at coordinate i of x with respect to µ and F as

JL(x; i;µ) = − logµ(xi−1
τ+1 |xτ−∞) + log

∑

Z

µ(zi+r−1
τ+1 |xτ−∞). (10)

The quantities µ(zi−1
τ+1|xτ−∞) are defined as limn→∞ µ(zi−1

τ+1|xττ−n). Since JL is con-
structed entirely from conditional probabilities of this type, an analogue to Theorem 2
yields

JL(x; i;µ) = JL(x; i; νx ) µ-a.e. (11)

Note that τ < i − 1, by the requirement that τ(xi−∞) < i − r included in Def. 4. In the
case of a reversible CA, the existence of an inverse CA ensures that τ is bounded below.
Let r̃ be the right radius of the inverse CA. Then τ ≥ i − 1 − r̃ unless r̃ = 0, in which
case τ = i − 2. For non-reversible CA, τ is in general unbounded but always finite.

It remains to show that JL(x; i;µ) is well defined as a function on (X,B, µ). This is
ascertained by the following lemma, whose proof follows from the martingale conver-
gence theorem.
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Lemma 1. For any measure µ on AZ,

µ({x : lim
n→∞µ(a

−1
−k |x−k−1−n ) exists for all k ≥ 0 and all a−1

−k ∈ Ak}) = 1.

It is furthermore the case that JL(x; i;µ) ∈ L1(µ), see Theorem 5 in Sect. 5.3.
We now proceed to present Theorems 3 and 4, which are the main results of the paper.

The first theorem states that for reversible CA the continuity equation is valid for all
initial measures.

Theorem 3. Let F be a reversible one-dimensional CA, and µ a measure on AZ. Then
�t SL(x; i;µ) +�i JL(x; i;µ) = 0 for all i ∈ Z µ-a.e.

For a general surjective CA, the requirement of µ being shift-invariant is necessary
to ensure the validity of the continuity equation.

Theorem 4. Let F be a surjective one-dimensional CA, andµ a shift-invariant measure
on AZ. Then �t SL(x; i;µ) +�i JL(x; i;µ) = 0 for all i ∈ Z µ-a.e.

Example 3 in Sect. 5 shows that the continuity equation as defined above can fail to
be valid if µ is not shift-invariant and F is surjective without being reversible.

Note that if one of the theorems is valid for a CA F together with an initial measure
µ0, then the continuity equation will be satisfied at all time steps of the iteration by F .

Proof (of Theorem 3). We first show that it is sufficient to consider the case r = 0. Here,
and in the rest of the proof, we look at the initial measure µ0 and its image µ1.

Assume that Theorem 3 is valid for CA with r = 0, and let F have right radius
r . There exist a CA G with r = 0 such that F = σ r ◦ G. We have SL(Fx; i;µ1) =
SL(Gx; i + r;µ1), since F(µ0) = G(µ0) = µ1. Write τ1 = τ(xi+r−1−∞ ), τ2 = τ(xi+r−∞),
Z1 = Z(xi+r−1−∞ ) and Z2 = Z(xi+r−∞). Using the formula for JL, we obtain

SL(Gx; i + r;µ1) = − logµ0(xi+r |xi+r−1−∞ )

− logµ0(xi+r−1
τ1+1 |xτ1−∞) + log

∑

Z1

µ0(zi+r−1
τ1+1 |xτ1−∞)

+ logµ0(xi+r
τ2+1|xτ2−∞)− log

∑

Z2

µ0(zi+r
τ2+1|xτ2−∞). (12)

Since τ1 ≤ i − 2 and τ2 ≤ i − 1 by definition, we can write

logµ0(xi+r
τ2+1|xτ2−∞) = logµ0(xi

τ2+1|xτ2−∞) + logµ0(xi+r
i+1 |xi−∞), (13)

and
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− logµ0(xi+r |xi+r−1−∞ )− logµ0(xi+r−1
τ1+1 |xτ1−∞)

= − logµ0(xi−1
τ1+1|xτ1−∞)− logµ0(xi |xi−1−∞)− logµ0(xi+r

i+1 |xi−∞). (14)

Substituting (13) and (14) into (12) gives the correct continuity equation for F .
For the rest of the proof we assume that F has right radius r = 0, and left radius

l ≥ 0. We look only at coordinate i = 0. This leads to no loss of generality. Call the
inverse CA F̃ , and let F̃ have left radius l̃ and right radius r̃ . Sequences at time t = 0
are denoted by x or z and sequences at time t = 1 by y.

We first define the joint measure ν of two consecutive time steps. Let ν be the measure
on (A × A)Z defined by the block probabilities

ν(x j
i , y j

i ) = µ0({z j
i−l ∈ A j−i+l+1|z j

i = x j
i and f (z j

i−l) = y j
i }). (15)

It is easy to show that ν actually is a measure and that ν is shift-invariant if µ0 is shift-
invariant. By summing over all possible y j

i or x j
i we obtain from the definition that

ν(x j
i ) = µ0(x j

i ) and ν(y j
i ) = µ1(y j

i ).
We will need the following lemma, which follows from the martingale convergence

theorem.

Lemma 2. Let ν be a measure on AZ

1 × AZ

2 , where each Ai is a finite set. Let (x, y) ∈
AZ

1 × AZ

2 . Then there is a g ∈ L1(ν) such that for any k ∈ Z,

lim
n→∞ ν(x0, y0|x−1

−n−k, y−1−n) = g ν-a.e. (16)

Let y = F(x). From the definition of local information we have

SL(x; 0;µ0) = − lim
n→∞ logµ0(x0|x−1−n)

= lim
n→∞

(
log

ν(x0, y0|x−1−n , y−1
−n+l)

µ0(x0|x−1−n)
− log ν(x0, y0|x−1−n , y−1

−n+l)

)

= lim
n→∞ log

ν(y0−n+l |x0−n)

ν(y−1
−n+l |x−1−n)

− lim
n→∞ log ν(x0, y0|x−1−n , y−1

−n+l)

= − log ν(x0, y0|x−1−∞, y−1−∞)

(17)

by virtue of Lemma 2 and the fact that ν(y0−n+l |x0−n) = ν(y−1
−n+l |x−1−n) = 1 for all n > l,

since y0−n+l in this case is uniquely determined by x0−n through the local map f and

likewise for y−1
−n+l and x−1−n . A similar treatment of SL(y; 0;µ1) yields

SL(y; 0;µ1) = lim
n→∞ log

ν(x0
−n+l̃

|y0−n)

ν(x−1
−n+l̃

|y−1−n)
− log ν(x0, y0|x−1−∞, y−1−∞). (18)

When taking the difference �t SL, the last term is canceled out, so

�t SL(x; 0;µ0) = lim
n→∞ log ν(x0

−n+l̃
|y0−n)− lim

n→∞ log ν(x−1
−n+l̃

|y−1−n).

To conclude the proof, we show that

− lim
n→∞ log ν(x−1

−n+l̃
|y−1−n) = JL(x; 0;µ0) (19)
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through a sequence of transformations. Firstly,

log ν(x−1
−n+l̃

|y−1−n) = log ν(x−r̃−1
−n+l̃

|y−1−n) + log ν(x−1
−r̃ |x−r̃−1

−n+l̃
, y−1−n). (20)

The first term on the right hand side is zero, since x−r̃−1
−n+l̃

is uniquely determined by y−1−n

through the local map f̃ of the inverse CA. For the second term, a generalization of
Lemma 2 gives

lim
n→∞ log ν(x−1

−r̃ |x−r̃−1
−n+l̃

, y−1−n) = lim
n→∞ log ν(x−1

−r̃ |x−r̃−1
−n−l , y−1−n). (21)

Furthermore, for any events A, B and C in a probability space it is true that ν(A|BC) =
ν(C|AB)ν(A|B)

ν(C|B) . Let A = x−1
−r̃ , B = x−r̃−1

−n−l and C = y−1−n . Then ν(C |AB) = 1. Thus,

log ν(x−1
−r̃ |x−r̃−1

−n−l , y−1−n) = logµ0(x−1
−r̃ |x−r̃−1

−n−l )− log ν(y−1−n |x−r̃−1
−n−l ). (22)

By the definition of ν, the last term can be written as

− log ν(y−1−n |x−r̃−1
−n−l ) = − log

∑

Z(x−1−∞)

µ0(z−1
−r̃ |x−r̃−1

−n−l ). (23)

Substituting (23) into (22) and taking the limit n → ∞ we arrive at the equation for
JL(x; 0;µ0) presented in Def. 5. 	


For general surjective CA, there is no inverse CA and in general several possible
preimages. As a consequence, the proof of Theorem 4 requires a different approach.

Proof (of Theorem 4). By the same argument as in the proof of Theorem 3 it suffices to
consider right radius r = 0. As before, we only look at coordinate i = 0 and consider
the initial measure µ0 and its image µ1.

Let y = F(x), and define

q(x) = SL(y; 0;µ1)− SL(x; 0;µ0) + JL(x; 1;µ0)− JL(x; 0;µ0). (24)

Our goal is to prove that q(x) = 0 µ0-a.e, or equivalently that E[|q|] = 0. To prove
this we will introduce a sequence qk of approximations to q which are measurable with
respect to finite parts of the history.

First, define the following equivalence relation on Al+n+1 for n ≥ 0:

xn
−l ∼ zn

−l iff f (xn
−l) = f (zn

−l) and x−1
−l = z−1

−l . (25)

That is, two blocks in Al+n+1 are equivalent if they have the same image under f and
agree on the first l coordinates. Denote the equivalence class containing zn

−l by [zn
−l ].

For an x ∈ AZ we will in particular look at the equivalence classes [x−1
−k−l ] for k ≥ 1.

For each k ≥ 1 we have the inclusion

Z(x−1−∞) ⊇ {x−l−k−1−∞ z−1
−l−k : z−1

−l−k ∈ [x−1
−l−k]}. (26)

Recall that τ(x−1−∞) is largest index such that all sequences in Z(x−1−∞) agree on and to
the left of τ(x−1−∞). Therefore, for all k ≥ −τ(x−1−∞)− 1 Eq. (26) is an equality.
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Define τ k(x) for k ≥ 1 as the analogue of τ obtained when considering [x−1
−k−l ]

rather than Z(x−1−∞),

τ k(x) = max
j

{ j ≤ −2, and z−1
−k−l ∈ [x−1

−k−l ] ⇒ z j
−k−l = x j

−k−l}. (27)

Note that τ k(x) = τ(x−1−∞) iff k ≥ −τ(x−1−∞)− 1.
We now define finite versions of the current JL(x; 0;µ0) and of q(x). Write τ k for

τ k(x) and put for k ≥ 1,

J k
L(x) = − logµ0(x−1

τ k +1
|xτ k

−k−l) + log
∑

z−1
−k−l∈[x−1

−k−l ]
µ0(z−1

τ k +1
|xτ k

−k−l), (28)

and

qk(x) = − logµ1(y0|y−1
−k ) + logµ0(x0|x−1

−k−l) + J k+1
L (σ x)− J k

L(x). (29)

It is straightforward to check that qk(x) → q(x) a.e. by using the properties of [x−1
−k−l ]

and τ k discussed above.
Proceeding, we can write

∫
|q|dµ0 ≤

∫
|qk |dµ0 +

∫
|q − qk |dµ0. (30)

The theorem will follow if we can prove that both integrals on the right-hand side con-
verge to zero. In order to do this we investigate the stochastic process (gn)n≥0 on AZ

defined by

gn(x) = µ1(yn
0 )

µ0([xn
−l ])

, where yn
0 = f (xn

−l). (31)

Here, µ0([xn
−l ]) means

∑
zn−l∈[xn−l ] µ

0(zn
−l). The interest in this process is due to the

relationship

log gn−1(x)− log gn(x) = qn(σ
n x). (32)

We will prove that the process (gn)n≥0 is a supermartingale with respect to a filtration
that we now will describe.

Let Pn be the partition of AZ defined by the equivalence relation (25) on Al+n+1.
That is, the elements of Pn are the sets P[u] = {x : xn

−l ∈ [u]} for all equivalence classes
[u] of Al+n+1. Let Fn = σ(Pn). Then, Fn is the σ -algebra generated by gn . We have to
show that Fn ⊆ Fn+1 for all n. This follows if we can show that the partition Pn+1 is a
refinement of Pn . Consider a general element P[wn−l ] of Pn . We claim that

P[wn−l ] =
⋃

zn−l∈[wn−l ]

(
⋃

a∈A
P[zn−l a]

)
. (33)

If x ∈ P[wn−l ], then P[xn+1−l ] clearly is a member of the double union. Conversely, if x is

in some P[zn−l a] in the union, then x−1
−l = z−1

−l = w−1
−l and f (xn

−l) = f (zn
−l) = f (wn

−l).
Thus, x ∈ P[wn−l ]. The claim follows, and (Fn : n ≥ 0) is a filtration.
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To prove that gn is a supermartingale with respect to this filtration we show that
E[gn+1|Fn] ≤ gn . Since each sub-σ -algebra Fn is finite it suffices to show

∫
gn+1dµ0 ≤∫

gndµ0 over any P[u] ∈ Pn . We find that

∫

P[u]
gn dµ0 =

∑

xn−l∈[u]
µ0(xn

−l)
µ1(yn

0 )

µ0([xn
−l ])

= µ1(yn
0 ). (34)

For gn+1, we split the integral into cylinder sets where gn+1 is constant:

∫

P[u]
gn+1 dµ0 =

∑

xn−l∈[u]

∑

a∈A

∫

Cyl(xn−l a)
gn+1(x)dµ

0

=
∑

xn−l∈[u]

∑

a∈A
µ0(xn

−la)
µ1(yn

0 f (xn
n−l+1a))

µ0([xn
−la])

=
∑

b∈A
ψb · µ1(yn

0 b),

(35)

where

ψb =
∑

xn−l∈[u]

∑

a∈A

µ0(xn
−la)

µ0([xn
−la]) · 1{ f (xn

n−l+1a)=b}(x). (36)

We claim that for each b, the quantity ψb is equal either to 0 or to 1. Fix a b. First
note that all blocks xn

−la in the double sum in (36) that satisfy f (xn
n−l+1a) = b must

generate the same equivalence class [xn
−la] = [v]. Conversely, each block zn+1

−l ∈ [v]
is an element of the double sum, since it will satisfy zn

−l ∈ [xn
−l ] = [u]. Consequently,

ψb = 1 by summation of the fractions and cancelation. The exception is the case where
no xn

−l ∈ [u] can be extended with one symbol to the right such that the new block maps
to yn

0 b under f . For such b, ψb = 0. We can conclude that

∫

P[u]
gn+1 dµ0 ≤

∑

b∈A
µ1(yn

0 b) = µ1(yn
0 ) =

∫

P[u]
gn dµ0. (37)

Finally, it is easy to prove that E[|g0|] ≤ |A|l+1 < ∞. This finalizes the proof that gn
is a supermartingale, so by the martingale convergence theorem gn converges a.e. to a
g ∈ L1(µ0).

We now proceed to show L1-convergence of log gn . A family ( fn)n≥0 of measurable
functions is uniformly integrable if ([5, Sect. 1.14])

lim
M→∞ sup

n

∫
(| fn| − M)+dµ = 0. (38)

We claim that (log gn)n≥0 is an uniformly integrable family. Note first that

log gn(x) > t ⇔ µ0([xn
−l ]) < 2−t · µ1(yn

0 ). (39)



64 T. Helvik, K. Lindgren, M. G. Nordahl

Define An,t ⊂ Al+n+1 as An,t = {xn
−l : µ0([xn

−l ]) < 2−t · µ1( f (xn
−l))}. We obtain

µ0({log gn > t}) =
∑

An,t

µ0(xn
−l) ≤

∑

An,t

2−tµ1( f (xn
−l))

≤
∑

Al+n+1

2−tµ1( f (xn
−l)) = 2−t · |A|l , (40)

for all n. A simple application of Fubini’s theorem yields

sup
n

∫
(| log gn| − M)+dµ0 = sup

n

∫ ∞

M
µ0({log gn > t}) dt

≤ |A|l
∫ ∞

M
2−t dt = 2−M · |A|l

ln 2
. (41)

Thus, uniform integrability is satisfied and limn→∞ E[| log g − log gn|] = 0. From (32)
and shift-invariance,

lim
n→∞ E[|qn|] = lim

n→∞ E[|qn| ◦ σ n] = lim
n→∞ E[| log gn−1 − log gn|] = 0. (42)

Hence, the first integral on the right-hand side in (30) converges to zero. Regarding the
second integral on the right-hand side, we know that limn→∞ qn = q a.e. Thus, if we
can prove that (qn)n≥0 is itself a uniformly integrable family then we are done. From
(32) and the fact that log gn ≥ 0 for all n it follows that

{|qn| ◦ σ n > M} ⊆ {log gn−1 > M}
⋃

{log gn > M}. (43)

We can conclude that

sup
n

∫
(|qn| − M)+dµ0 = sup

n

∫
(|qn ◦ σ n| − M)+dµ0 ≤ 2−M+1 · |A|l

ln 2
, (44)

and the result follows. 	

A corresponding continuity equation can also be written for right local information.

The right variants of the set Z and variable τ are defined by

Z(x∞
i ) = {z∞

i : f (z∞
i ) = f (x∞

i ) and ∃ j ≥ i such that z∞
j = x∞

j },
τ (x∞

i ) = min
j

{ j : j > i − l, and z∞
j = x∞

j ∀ z∞
i ∈ Z(x∞

i )}.

Put Z = Z(x∞
i−l) and τ = τ(x∞

i−l), and define the right information current at coordinate
i of x with respect to µ and F by

JR(x; i;µ) = logµ(xτ−1
i |x∞

τ )− log
∑

Z

µ(zτ−1
i−l |x∞

τ ). (45)

Then, JR(x; i;µ) satisfies the continuity equation �t SR(x; i;µ) + �i JR(x; i;µ) = 0
at all i ∈ Zµ-a.e., under the same conditions as in Theorem 3 or Theorem 4.
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5. Further Aspects of Information Transport

5.1. Information Theoretic Interpretation. We now describe a way of decomposing
JL(x; i) into

JL(x; i) = J +
L (x; i)− J−

L (x; i), (46)

with J +
L , J−

L ≥ 0, such that J +
L has a natural interpretation in terms of information flow-

ing to the right between coordinates i − 1 and i , and J−
L in terms of information flowing

to the left. Here, and in the rest of the section, we omit µ from the notation in JL and
SL when considering some fixed measure µ.

First recall the definition of Z(xi−∞) and define

Z0(x
i−∞) =

{
zi−∞ ∈ Z(xi−∞) : zi−r−∞ = xi−r−∞

}
. (47)

We will consider the set Z0(x
i+r−1−∞ ), which consists of the semi-infinite sequences which

have the same image as xi+r−1−∞ and coincide with xi+r−1−∞ up to index i − 1. Define J +
L

and J−
L at coordinate i = 0, with τ = τ(xr−1−∞), Z = Z(xr−1−∞) and Z0 = Z0(x

r−1−∞), as

J−
L (x; 0) = − log

∑

Z0

µ(zr−1
0 |x−1−∞), (48)

J +
L (x; 0) = − log

∑
Z0
µ(zr−1

τ+1 |xτ−∞)∑
Z µ(z

r−1
τ+1 |xτ−∞)

. (49)

It is straightforward to confirm that J−
L (x; 0) and J +

L (x; 0) are non-negative and satisfy
(46).

We first examine J−
L . Using the joint measure ν defined in (15) we can write

J−
L (x; 0) = − lim

n→∞ log
ν(x−1−n , y−1−r )

ν(x−1−n)
= − log ν(y−1−r |x−1−∞). (50)

The equation states that J−
L (x; 0) is the information gained by observing y−1−r when

having knowledge of x−1−∞. This is what one should expect. Indeed, since x−1−∞ is known,
the semi-infinite sequence y−r−1−∞ is uniquely determined by the CA map. Hence, all
uncertainty about y−1−∞ is with respect to y−1−r , and this uncertainty comes from lack of
knowledge about the continuation x∞

0 of x−1−∞. The quantity − log ν(y−1−r |x−1−∞) is thus
the further information about the continuation x∞

0 found in y−1−∞ but not in x−1−∞. This
information has been transported from x∞

0 , and adds a negative contribution J−
L to the

information current.
Considering J +

L , we can write

J +
L (x; 0) = − lim

n→∞ log

∑
Z0
µ(zr−1−n )∑

Z µ(z
r−1−n )

= − lim
n→∞ log

ν(x−1−n , y−1
−n+l)

ν(xτ−n, y−1
−n+l)

= − log ν(x−1
τ+1|xτ−∞, y−1−∞). (51)
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Thus, J +
L (x; 0) is the information gained from observing x−1

τ+1 when xτ−∞ as well as y−1−∞
is known. Since y−1−∞ is known, the preimage xr−1∞ is determined up to the set Z(xr−1−∞).
This is illustrated by Fig. 1, where xr−1

τ+1 must be one of the “branches” to the right, but
it is not decidable from y−1−∞ which one. However, which member of Z(xr−1−∞) that xr−1−∞
actually is will, with probability one, be determined by the continuation y∞

0 of y−1−∞.
Therefore, the information − log ν(x−1

τ+1|xτ−∞, y−1−∞) flows to the right and is found to
the right of coordinate −1 in y.

5.2. Permutative Cellular Automata. For the class of permutative CA the information
dynamics has a particularly simple form. A CA F is called right permutative if R(F) = 1
or, equivalently, if |Z(xi−∞)| = 1 for all pairs x and i . Thus, for right permutative CA
(48) gives J−

L (x; i;µ) = − logµ(xi+r−1
i |xi−1−∞) and (49) gives J +

L ≡ 0. This gives the
following corollary to Theorem 4.

Corollary 1. Let µ be any shift-invariant measure on AZ and F : AZ → AZ a right
permutative CA with right radius r . Then, µ-almost everywhere,

SL(Fx; i;µ ◦ F−1) = SL(x; i + r;µ). (52)

In particular, if r = 0, then SL(Ft x; i;µt ) = SL(x; i;µ0) for all t ≥ 0 so that the
local information is locally constant. As a result of Corollary 1, the distribution of local
information will also remain unchanged.

Corollary 2. Let µ0 be any ergodic measure on AZ and F : AZ → AZ a right permu-
tative CA. Then, for all measures ν being a weighted sum of the measures µt , t ≥ 0, the
random variables SL(x; i; ν) have the same distribution.

Note that even though the behaviour of the local information is very simple in the
case of permutative CA, the sequence µt of measures generated by a linear CA under
iteration is quite complicated. Block probabilities and the structure of correlations in the
system varies widely with t [16]. On the other hand, for many bipermutative CA large
classes of initial measures weak∗ converge in Cesàro mean to the uniform Bernoulli
measure. That is,

lim
n→∞

1

n

n−1∑

t=0

µt (ak
1) = 1

|A|k (53)

for all k ≥ 1 and finite blocks ak
1∈Ak . This was first proved for the linear CA F = σ+σ−1

on {0, 1}Z with µ0 a Bernoulli measure by Lind [15]. It has later been extended to a
larger subclass of the permutative CA and classes of measures [3, 9, 18, 19].

For the uniform Bernoulli measure µ̄ the local information has a uniform distribution,
i.e., SL(x; i; µ̄) = log |A| for all x and i . We can use the result on Cesàro convergence
to demonstrate that convergence of a sequence (µn)n≥0 of measures to a limit measure
µ in the weak∗-topology does not, in any sense, mean that SL(x; i;µn) converges to
SL(x; i;µ). Indeed, let F and µ0 be any combination of a CA and an ergodic measure
such that (53) is valid, and put µn = 1

n

∑n−1
t=0 µ

t . Then µn converges to the uniform
Bernoulli measure, but by Corollary 2 all SL(x; 0;µn) have the same non-uniform prob-
ability distribution on R. The reason that the distribution of SL(x; i;µn) can remain
unchanged even though µn → µ̄, with µ̄ uniform Bernoulli, is that local information
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takes all correlations in the system into account while the weak∗ topology only considers
finite blocks. In this sense local information yields a different, more microscopic, view
of the system than the weak∗ topology does.

We now use Corollary 1 to demonstrate the necessity of the shift invariance condition
on the measure in Theorem 4.

Example 3. Let F be the CA σ−1 ◦ F1, with F1 from Example 1. Let µ0 be the uniform
Bernoulli measure on {0, 1}Z, except that x0 always is zero. Then, for all x ∈ AZ

we have SL(x; i, µ0) = 1 for i �= 0 and SL(x; 0, µ0) = 0. However, we claim that
SL(y; i, µ1) = 1 for all i .

Each sequence y ∈ AZ has two preimages under f , call them z and w. These have
the property that zi and wi always are different, zi = 1 − wi . Assume that z0 = 0. We
obtain

µ0(zk
j ) =

{
2 j−k if j ≤ 0 ≤ k
2 j−k−1 otherwise

, µ0(wk
j ) =

{
0 if j ≤ 0 ≤ k
2 j−k−1 otherwise

. (54)

The local information SL(y; i, µ1) is the limit n → ∞ of

− logµ1(yi |yi−1
i−n) = − log

µ0(zi
i−n−1) + µ0(wi

i−n−1)

µ0(zi−1
i−n−1) + µ0(wi−1

i−n−1)
. (55)

In all three cases: i < 0, i = 0 and i > 0, inserting the probabilities from (54) gives
− logµ1(yi |yi−1

i−n) = 1 for all n.
Now assume that �t SL +�i JL = 0 at all iµ0-a.e. Since F is right permutative and

has r = 0, Corollary 1 states that JL = 0µ0-a.e. However, this makes SL(y; 0, µ1) = 0,
which is not satisfied for the image of any x ∈ AZ.

An alternative way to appreciate that SL(y; 0, µ1) = 1 for the system in the example
is to realize that y−1−∞ does not give any information about x−1. Therefore, even though
x0 = 0 with certainty, µ1(y0|y−1−∞) = 1

2 . Note that once y0 is observed, we will have
perfect knowledge of x−1−∞. Thus, information about the preimage that is not contained
in the tail of y is made available at some position in the sequence. In similar constructs
the information need not appear at a single position as it did in Example 3. A case illus-
trating this would be to let µ0(Xi = 1) = 1

4 for all i ≥ 0 and µ0(Xi = 1) = 1
2 for

i ≤ 0. Then the correct preimage will be learnt gradually from observing y0, y1, y2, . . . ,

since the fraction of 1’s in the preimage block xn
0 will converge either to 1

4 or 3
4 . In this

case, the continuity equation will in general not be satisfied at any i ≥ 0, but will be an
increasingly better approximation as i increases.

Finally in this section, we use a left and right permutative CA to illustrate the differ-
ence between SL and SR, and the effect of the choice of a frame of reference on the
distribution of information in the system. We consider the CA on {0, 1}Z defined by the
radii l = r = 1 and local rule

f (x−1, x0, x1) = x−1 + x0 + x1 (mod 2). (56)

Let the initial measure µ0 be Bernoulli with a very small probability for a 1, say
µ(1) = 2−10. Assume that i = 0 is the only coordinate in the interval −100 ≤ i ≤ 100
initially having xi = 1. Figure 2 shows the configurations of the interval −50 ≤ i ≤ 50
for all iteration up to time t = 50. Coordinate i = 0 initially has 10 bits of left and right
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Coordinate i

T
im

e 
t

0 50

0

10

20

30

40

50

White: 0
Black: 1

Fig. 2. The evolution of the symbol sequence with a single 1 located at i = 0 under the CA rule defined in
(56). The left local information from the initial 1 is located at the left boundary of the expanding pattern while
the right local information is located at the right boundary.

local information, SL(x; 0;µ0) = SR(x; 0;µ0) = 10. Let y = Ft (x). An observer
which knows the left history will by observing y−t = 1 learn that x0 = 1 and gain 10
bits of information. However, from each of the subsequent symbols the observer will
gain only − log(1−2−10) bits of information. This is in agreement with Corollary 1. On
the other hand, an observer knowing the right history will gain the 10 bits of information
by observing that yt = 1. Thus, the question about where in the pattern the information
generated by the unlikely event {x0 = 1} is located at time t cannot be answered without
also taking into account which frame of reference an observer has.

5.3. Bounds on the Current. We first consider bounds for the local information flow.
Let τ = τ(xi+r−1−∞ ). Then, from (46), (48), and monotonicity of log x ,

−
i+r−1∑

k=i

SL(x; k) ≤ JL(x; i) ≤
i−1∑

k=τ+1

SL(x; k). (57)

Thus, the amount of information that flows from coordinate i − 1 to i is limited by the
amount of information available in the intervals [τ + 1, i − 1] and [i, i + r − 1]. The
appearance of τ + 1 rather than i − l in the first interval warrants a closer examination,
because a perturbation of one symbol in the initial configuration only can propagate a
distance l per time step.

For reversible CA the existence of an inverse CA ensures that τ + 1 ≥ i − r̃ , where
r̃ is the right radius of the inverse CA. Therefore, the distance over which information
can flow in a single iteration is uniformly bounded for a given reversible CA.

For surjective non-reversible CA, τ is in general unbounded. In the following discus-
sion, assume that r = 0, since this case gives the maximal flow of left local information
to the right. We look at coordinate i = 0. The appearance of τ + 1 in (57) is related to the
interpretation of J +

L as the information gained by observing x−1
τ+1 when the image y−1−∞ as

well as the history xτ−∞ is known. The second inequality in (57) is an equality if and only
if the additional knowledge of y−1−∞ leads to no reduction in information gain compared
to knowledge of only xτ−∞. From (49) this is equivalent to having

∑
Z µ(z

−1
τ+1|xτ−∞) = 1.

However, since |Z | ≤ R(F) the sum is rarely close to this magnitude, particularly when
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Fig. 3. An illustration of the sets (a) Z(x−1−∞) and (b) Z(x1−∞) for the CA in Example 4 when x−1−n = 22 . . . 2
and x−n−2 = x−n−1 = x0 = x1 = 0.

|τ | is large. A further argument that large information flows are improbable is the obser-
vation that JL(x; i;µ) > s requires µ(x−1

τ+1|xτ−∞)/
∑

Z µ(z
−1
τ+1|xτ−∞) < 2−s , so x−1

τ+1
must be a very unlikely continuation of xτ−∞ to generate a large current s. We illustrate
these considerations with the following example.

Example 4. Let the surjective CA F on {0, 1, 2}Z be defined by the radii l = 1, r = 0 and
local function f given by f (10) = f (11) = f (22) = 0, f (12) = f (20) = f (21) = 1
and f (00) = f (01) = f (02) = 2. Unlikely events in this system can generate infor-
mation flows over large distances in a single iteration.

Let µ be Bernoulli with a low probability p = µ(2) for the symbol 2 occurring, and
q = µ(0) = µ(1) = 1−p

2 . Although p is small, long blocks of successive 2’s will occur
at some points. Assume that x−1−n = 22 . . . 2 while x−n−2

−n−1 = 00 and x3
0 = 0000. The set

Z(x−1−∞) is illustrated to the left in Fig. 3 using the representation introduced in Fig. 1.
For p small, the quantity

∑
Z µ(z

−1
τ+1|xτ−∞) is much larger than µ(x−1

τ+1|xτ−∞), since the
two other elements in Z(x−1−∞) consist entirely of 0’s and 1’s. It follows from (49) that
J +

L is large and an increasing function of the number n of 2’s. Equation (10) yields for
1 ≤ k ≤ n,

JL(x;−n + k;µ) = log

(
1 + 2

(
q

p

)k
)

≈ 1 + k log

(
q

p

)
. (58)

Only approximately − log q bits of information remain at each coordinate −n ≤ i ≤ −1,
while the surplus information is transported to the right of i = −1, see Fig. 4. Most of
the information is accumulated at position i = 1. The reason is that observing the value
y1 = 2 while knowing y0−∞ establishes that the actual preimage was the one containing
the large block of 2’s, see the right part of Fig. 3. This preimage was highly improbable,
and a high local information results.

Finally, note that since F is left permutative, the transport of right local information
is simply given by JR(x; i;µ) = SL(x; i − 1;µ).

The possibility that JL(x; i) > − logµ(xi−1
i−l |xi−l−1−∞ ) can be better appreciated by

recalling that local information SL is defined with respect to an infinite frame of ref-
erence. Therefore, a permutation arbitrary far to the left of i can alter the conditional
probability µ(xi |xi−1−∞) and hence SL(x; i). Contrary to this, the propagation of a per-
turbation in the initial configuration consists of the symbols at an increasing number of
coordinates deviating from some reference symbols. Clearly, no frame of reference is
needed to detect these deviations.

We can compare the results above to a situation that involves communication between
two parts of the lattice. Consider an observer A who knows the initial configuration x0−∞
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Fig. 4. The distribution of local information SL and the corresponding information currents JL(x; i;µ) for
the situation in Example 4 with n = 7 and p = 0.1. The information is accumulated at coordinates i = 0 and
i = 1 at time t = 1.

of the negative part of the lattice. How much information about the continuation x∞
1 can

A gain by observing the configurations (Fk x)0−∞ for 0 < k ≤ t? This question can be
answered by using the concept of relative entropy, or Kullback Liebler distance [13]. The
relative entropy of a posterior measure µ with respect to a prior measure µ0 satisfying
µ � µ0 is defined as

D(µ||µ0) =
∫

X
log

dµ

dµ0
dµ, (59)

where dµ
dµ0

is the Radon-Nikodym derivative. The quantity D(µ||µ0) is interpreted as
the Shannon information gained by going to the posterior.

The posterior is in our case expressed in terms of the joint measure νt of all times
0 ≤ k ≤ t obtained as a straightforward generalization of ν defined in (15). For x ∈ AZ,
define the measure µt

x on σ(Xi : i > 0) as

µt
x (z

n
1) = νt (zn

1 |x0−∞, (Fx)0−∞, . . . , (Ft x)0−∞), n ≥ 1. (60)

The information the observer A gains by time t is given by the relative entropy D(µt
x ||µ0

x ).
The following relations are valid

Proposition 1. The measures defined in Eq. (60) satisfy

D(µt
x ||µ0

x ) ≤
r t∑

i=1

SL(x; i;µ), (61)

D(µ1
x ||µ0

x ) = J−
L (x; 1;µ). (62)

This means that A during the first t iterations of F cannot gain more information about
x0−∞ than the left local information initially located within the interval [1, r t]. Similarly,
if B is an observer knowing x∞

0 and observing the symbols at i ≥ 0 for times 1 ≤ k ≤ t ,
his information gain about x−1−∞ would be bounded by

∑−1
i=−lt SR(x; i;µ0).
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Proof. Define Bx ⊆ Ar t as Bx = {zrt
1 : f k(x0−kr zkr

1 ) = f (xkr
−kr ) for 1 ≤ k ≤ t}. Both

results follow from

D(µt
x ||µ0

x ) = lim
n→∞

∑

zn
1

µt
x (z

n
1) log

µt
x (z

n
1)

µ0
x (z

n
1)

= lim
n→∞

∑

zn
1

µ(zn
1 |x0−∞, zrt

1 ∈ Bx ) log
µ(zn

1 |x0−∞, zrt
1 ∈ Bx )

µ(zn
1 |x0−∞)

= − logµ({zrt
1 ∈ Bx }|x0−∞) ≤ − logµ(xrt

1 |x0−∞).

	

We now move on to determine bounds on the average information flow generated by

a surjective one-dimensional CA.

Theorem 5. Let JL(x; i;µ) be the information current with respect to a surjective CA
F and a measure µ. Then, for each i ∈ Z, JL(x; i;µ) ∈ L1(µ). Furthermore, if µ is
shift-invariant, then E[JL] satisfies the relationship

−rh(µ) ≤E[JL] ≤ log R(F)− rh(µ). (63)

The term log R(F)on the right hand-side in (63) is related to the interpretation of J +
L as

the information about which member of Z(xr−1−∞) that xr−1−∞ is. Since |Z(xr−1−∞)| ≤ R(F),
the average of this information cannot exceed log R(F). The term −rh(µ) is related to
J−

L .

Proof. We look at coordinate i = 0. The current can be written as

JL(x; 0;µ) = − log
µ(xr−1

τ+1 |xτ−∞)∑
Z µ(x

r−1
τ+1 |xτ−∞)

+ logµ(xr−1
0 |x−1−∞), (64)

where the first term is non-negative and the second term is non-positive. To bound the
integral of the first term we divide AZ into the sets Tk = {x : τ(xr−1−∞) = k} for k ≤ −2.
Furthermore, we wish to subdivide each Tk through an equivalence relation similar to
that defined in (25). Define the following relation on A|k|+2r+l−1:

xr−1
k+1−l−r ∼ zr−1

k+1−l−r iff f (r−1
k+1−l−r ) = f (r−1

k+1−l−r ) and xk
k+1−l−r = zk

k+1−l−r .

Then, transfer the equivalence relation to Tk through

x ∼ z iff xr−1
k+1−l−r ∼ zr−1

k+1−l−r .

We denote the equivalence classes of Tk by Pk, j with j in some finite index set. Further-
more, for each Pk, j denote the corresponding equivalence class of A|k|+2r+l−1 by P̄k, j .
Each P̄k, j has at most R(F) members.

For each j there is a set P−
k, j ∈ σ(Xi : i ≤ k − l − r) of histories xk−l−r−∞ such that

Pk, j = P−
k, j

⋂ ⋃

P̄k, j

Cyl(zk
k+1−l−r ). (65)
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If |P̄k, j | = R(F) then P−
k, j = AZ, but otherwise P−

k, j can be a subset of AZ. For instance,

let F be the CA from Example 4 and x have xi = 1 for all i . Then τ(x−1−∞) = −2,
|P̄−2, j | = 2, and P−

−2, j = {z : zi �= 0 for i ≤ −3}.
Using the subdivision, we can write

−
∫

AZ

log
µ(xr−1

τ+1 |xτ−∞)∑
Z µ(x

r−1
τ+1 |xτ−∞)

dµ

=
−2∑

k=−∞

∑

Pk, j ∈Tk

∫

P−
k, j

�k, j (x
k−l−r−∞ )

⎛

⎜⎝
∑

P̄k, j

µ(zr−1
k+1−l−r |xk−l−r−∞ )

⎞

⎟⎠ dµ(xk−l−r−∞ ), (66)

where

�k, j (x
k−l−r−∞ ) = −

∑

P̄k, j

µ(zr−1
k+1 |xk−∞)∑

P̄k, j
µ(zr−1

k+1 |xk−∞)
log

µ(zr−1
k+1 |xk−∞)∑

P̄k, j
µ(zr−1

k+1 |xk−∞)
. (67)

The function �k, j (x
k−l−r−∞ ) is for each xk−l−r−∞ the entropy of a discrete random vari-

able with at most R(F) outcomes. Therefore, �k, j (x
τ−l−r−∞ ) ≤ log R(F). By using this

inequality, we obtain from (66) that

−
∫

AZ

log
µ(xr−1

τ+1 |xτ−∞)∑
Z µ(x

r−1
τ+1 |xτ−∞)

dµ ≤ log R(F)
−2∑

k=−∞

∑

Tk

µ(Pk, j ) = log R(F). (68)

Considering the second term in (64),
∫

AZ

logµ(xr−1
0 |x−1−∞)dµ ≥ −r log |A|.

Therefore,

E[|JL(x; 0;µ)|] ≤ r log |A| + log R(F) < ∞,

so JL(x; 0;µ) ∈ L1(µ). The second statement follows since for µ shift-invariant,
∫

AZ

logµ(xr−1
0 |x−1−∞)dµ = −rh(µ).

	

From Theorem 5 it follows that for any surjective CA and any measure µ, the fol-

lowing uniform bound is valid:

|E[JL(x; i;µ)]|
(l + r) log |A| ≤ 1. (69)

When µ is the uniform Bernoulli measure µ̄, the inequality is sharp for all CA with
r = 0 and maximal R. We close this section by looking briefly at information transport
for µ̄, which is invariant for all surjective CA.

With µ̄ there are no correlations in the system, so SL(x; i; µ̄) ≡ SR(x; i; µ̄) ≡
log |A|. The information currents JL and JR are consequently also constant, but these
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depend on the radii and the Welch coefficients L(F), M(F) and R(F). Using (10) and
(45) we obtain

JL(x; i; µ̄) ≡ log R − r log |A|, (70)

JR(x; i; µ̄) ≡ − log L + l log |A|. (71)

By using the relation L · M · R = |A|l+r , we obtain

JR − JL ≡ log M. (72)

Thus, the sum of the velocity of left information to the left and right information
to the right only depends on M(F), the number of preimages that almost all bi-infinite
sequences possess. The higher M is, the higher the potential for information transport.
The choice of radii decides how the potential is allocated to transport of information to
the right and to the left.

6. Conclusions and Discussion

The main concern of the paper has been to investigate transport of local information
in the time evolution of a cellular automaton F . In particular, we have introduced an
information current JL(x; i;µ) such that the continuity equation�t SL +�i JL = 0 holds
under very general conditions. This is expressed in our main results, Theorems 3 and 4
in Sect. 4. We have also given an information theoretic interpretation of the current, and
shown bounds for the information flow.

The fact that the local information is a locally conserved quantity for all measures
under iteration of any reversible CA is a clear indication that the function SL is an appro-
priate local information measure in a spatially extended system. However, we still need
to consider the fact that information is not a strictly local quantity when correlations
are present, and that it depends on the choice of context. In one dimension, this is illus-
trated by the fact that both the left and right local information are locally conserved,
and in general different (as seen, e.g., for bipermutative CA). We have also given other
examples which illustrate the limits of locality when correlations are present.

We are currently investigating how the continuity equation can be extended to other
classes of cellular automata. In particular this includes non-surjective and probabilistic
CA in dimension one as well as CA in dimension two and higher. For non-surjective
or non-deterministic systems a continuity equation must take loss and production of
information into account. One can also look at local information and transport of local
information for other types of spatially extended dynamical systems, in particular cou-
pled map lattices. Extensions of the formalism to other systems will also bring us closer
to addressing fundamental issues relating to information transport and conservation in
physical systems.

The continuity equation is a fundamental property of information transport in revers-
ible systems. But we expect local information in cellular automata to have further interest-
ing properties. In particular, a continuity equation is a constraint, rather than an equation
that determines the dynamics of the system. One may expect information flow to have
different dynamic characteristics in different cellular automata. In particular it should
be investigated whether some systems allow a description of the dynamics of informa-
tion separate from the underlying dynamical system, which would provide an additional
argument for viewing information as a fundamental physical quantity.
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