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Abstract: We consider the time evolution of a disk under the action of a constant force
and interacting with a free gas in the mean-field approximation. Letting V0 > 0 be the
initial velocity of the disk and V∞ > 0 its equilibrium velocity, namely the one for which
the external field is balanced by the friction force exerted by the background, we show
that, if V∞ − V0 is positive and sufficiently small, then the disk reaches V∞ with the
power law t−(d+2), d = 1, 2, 3 being the dimension of the physical space. The reason for
this behavior is the long tail memory due to recollisions. Any Markovian approximation
(or simply neglecting the recollisions) yields an exponential approach to equilibrium.

1. Introduction

Consider a solid body moving along the x-axis, under the action of a constant force E,
immersed in a homogeneous fluid. Then its time evolution is given by:

MV̇ (t) = −G(V ) + E, (1.1)

where V = V (t) is the (horizontal) velocity of the body, M its total mass and G, the
friction term, is usually determined on the basis of phenomenological considerations.
Such a function, that for V small often takes the familiar form G(V ) = λV for a positive
λ, summarizes all the complex interactions between the body and the medium. If we sup-
pose the body initially at rest and G(V ) increasing, the solution V = V (t) of Eq. (1.1)
is increasing in time and converges exponentially to the limiting velocity V∞ which
satisfies

G(V∞) = E. (1.2)

In the equilibrium situation the external force is perfectly compensated by the friction
force and the body moves with constant velocity.
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It would be desirable, of course, to give a microscopic explanation of these facts.
The most natural way to pose the problem is to model the medium as an infinite particle
system, interacting with an obstacle accelerated by a given field E. Obviously the behav-
ior of the obstacle will depend on the obstacle-background interaction. We address the
reader to the classical monograph [10] for heuristic considerations. With regard to rig-
orous results, we are aware of Ref. [2], where the background is modeled by a vibration
field. In this case the obstacle reaches its limiting velocity with an exponential rate. On
the other hand in Refs. [4–6] it is shown that a test particle, immersed in a medium of
identical interacting particles, accelerates indefinitely whenever the interaction is smooth
or moderately diverging.

The simplest model to consider is a gas of free light particles elastically interacting
with the body. This kind of interaction gives rise to a very irregular motion, with fluc-
tuations which are very small if the ratio between the mass of the body and that of the
gas particles is very large. However the averaged motion is expected to be regular and
sufficient to give a correct description of the macroscopic behavior of the system. To
avoid the difficulties connected with the computations of the averaged quantities, one
can alternatively consider the gas in the mean-field approximation, that is the limit in
which the mass of the particles constituting the free gas goes to zero, while the number
of particles per unit volume diverges, in such a way that the mass density stays finite.
Such a limit is well known for interacting particle systems with finite total mass (see [7,
8, 12, 13]) and one-dimensional systems with unbounded mass (see [3]). This is exactly
what we do in the present paper, namely we study the time evolution of an obstacle
elastically interacting with a free gas in a mean-field approximation. This model has
been previously introduced in connection with the so-called piston problem (see [9] and
also [11] and references quoted therein). We assume that the body has a particularly
simple shape, namely we consider a cylinder with a negligible length. We prove that, if
the initial velocity of the body is sufficiently close to the limiting velocity V∞ then, for
large t :

|V∞ − V (t)| ≈ C

t(d+2)
, (1.3)

where C is a positive constant depending on the medium and the shape of the obstacle
and d = 1, 2, 3 is the dimension of the physical space.

The law (1.3) is not exponential and hence the result is somehow surprising. The
reason for this behavior is the appearance of recollisions between the gas particles and
the obstacle. Indeed if the obstacle accelerates, it can hit a gas particle many times and this
influences the friction force dramatically. In particular a gas particle which has collided
quite early, can recollide after an arbitrarily large time. This creates a long tail memory
which is responsible for the power law behavior. Neglecting the recollisions, namely
assuming that the obstacle always hits new particles at a given thermal equilibrium, the
friction force can be computed almost explicitly and the behavior is the one predicted
by Eq. (1.1), that is exponential. We show that this approximation is not legitimate in
our model. One can argue, however, that such a model is too poor to give realistic infor-
mation: the background is schematized by a free gas while an interacting system, with
good ergodic properties, could reasonably destroy the memory effects which are present
in our context. Unfortunately such ergodic properties for Hamiltonian systems seem far
to be proven. In any case the result of the present paper at least shows that, in the suitable
time scale in which the thermalization of the medium is not yet effective, the approach
to the limiting velocity is not exponential but obeys a power law. It is worth mentioning
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that it was already known that the recollisions can produce a power-law decay. In fact the
velocity-velocity correlation of a tagged particle of a one-dimensional free gas decays
as t−3. (See for instance Ref. [1]).

We prove (1.3) for an obstacle of a particular shape and under the hypothesis that
V∞ − V0 is sufficiently small, V0 < V∞ being the initial velocity of the obstacle. It
looks quite reasonable to conjecture that a power law holds under more general assump-
tions on both initial conditions and external field, however this has still to be proven
(see Sect. 5).

We conclude by outlining the plan of the paper. In the next section we establish and
discuss the model which is heuristically justified in the Appendix. Section 3 is devoted
to preliminary technicalities, while in Sect. 4 we give the proofs of the main Theorems
2.1 and 2.2. Section 5 is devoted to concluding remarks.

2. Model and Results

The body we consider is a disk of radius R in dimension d = 3, a stick of length 2R for
d = 2 and a point particle on the line for d = 1. We assume, for simplicity, its mass to
be unitary. The disk (or the stick) is constrained to stay orthogonal to the x axis, with the
center moving along the same axis. The thickness of the disk is assumed to be negligible,
however this assumption is not essential and it is made just for notational simplicity. The
system is immersed in a perfect gas in equilibrium at inverse temperature proportional
to β and with constant density ρ. Moreover a constant force E is acting on the disk.

We are interested in the time asymptotics of the system, in particular we want to
investigate whether and how the disk reaches a limiting velocity. We assume the perfect
gas in the mean-field approximation. In other words the presence of the disk modifies
the equilibrium of the gas, which starts to evolve according to the free Vlasov equation.

Let f = f (x, v; t), (x, v) ∈ R
d × R

d be the mass density in the phase space of the
gas particles. It evolves according to:

(∂t + v · ∇x)f (x, v; t) = 0, for x /∈ D(t). (2.1)

Here D(t) denotes the (d − 1)-dimensional circular surface of radius R:

D(t) = {y ∈ �⊥(X(t))| |y − X(t)|2 < R2}.
X(t) denotes the position of the center of the disk at time t and �⊥(X(t)) the plane
orthogonal to the x-axis at the point X(t).

Together with Eq. (2.1) we consider the boundary conditions. They express the con-
tinuity of f along the trajectories with elastic reflection on D(t). Defining v′ = (v′

x, v
′
⊥)

as

v′
x = 2V (t) − vx, v′

⊥ = v⊥, (2.2)

where V (t) = Ẋ(t) is the velocity of the disk and vx and v⊥ the velocity components
of the gas particles on the x-axis and the orthogonal plane respectively, we set

f+(x, v′; t) = f−(x, v; t); for x ∈ D(t), (2.3)

where

f±(x, v; t) = lim
ε→0+

f (x ± εv, v; t ± ε); for x ∈ D(t). (2.4)



170 S. Caprino, C. Marchioro, M. Pulvirenti

Equation (2.3) describes both the continuity along the collisions from the right V (t) >

vx and from the left V (t) < vx .
Coupled to Eq. (2.1) we consider the evolution equation for the disk:

Ẋ(t) = V (t), V̇ (t) = E − F(t), (2.5)

X(0) = 0, V (0) = V0,

where E > 0 is a constant given field and

F(t) = 2
∫

D(t)

dx

∫
vx<V (t)

dv(V (t) − vx)
2f−(x, v; t)

−2
∫

D(t)

dx

∫
vx≥V (t)

dv(V (t) − vx)
2f−(x, v; t) (2.6)

is the action of the gas on the disk.
As initial state for the gas distribution we assume the thermal equilibrium, namely

lim
ε→0+

f (x + εv, v; ε) = ρ(
β

π
)d/2e−βv2

, (2.7)

for β > 0.
We incidentally remark that the results in the present paper hold for any initial datum

of the form ρg(v2), with g integrably decreasing.
Summarizing we define a solution to the friction problem any pair (f, V ) where

V = V (t) solves, for almost all t ∈ R
+, Eqs. (2.5),(2.6) and f satisfies Eq. (2.8) below

d

dt
f (x + vt, v; t) = 0, a.e.(x, v), (2.8)

together with boundary conditions (2.3) and initial condition (2.7).
Note that similar models have been introduced in Ref [9]. Here we give a heuristic

derivation of the model in the Appendix.
We first observe that Eq. (2.1) can be solved by means of characteristics. More pre-

cisely, knowing the evolution of the disk X(t), V (t), we can trace back the time evolution
of position and velocity of the gas particle x(s, t; x, v), v(s, t; x, v) at time s ≤ t , having
position and velocity x, v at time t . Such backward evolution is the free motion up to
the last instant τ < t in which the particle hits the disk. On the surface of the disk we
impose the elastic collision, namely:

vx(τ
−) = 2V (τ) − vx(τ

+), v⊥(τ+) = v⊥(τ−).

Then we go backward in time, up to the one but the last collision. Impose again the
reflection condition and so on. Note that if x ∈ D(t) then v has to be interpreted as a
precollisional velocity namely v = lims→t v(s, t; x, v). At the end we obtain

F(t) = 2ρ(
β

π
)d/2

[ ∫
D(t)

dx

∫
vx<V (t)

dv(V (t) − vx)
2e−βv2(0,t;x,v)

−
∫

D(t)

dx

∫
vx≥V (t)

dv(V (t) − vx)
2e−βv2(0,t;x,v)

]
. (2.9)
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Note that to compute F(t) we need to evaluate v(0, t; x, v) and hence to know all the
previous history {X(s), V (s), s < t}. On the other hand, if the light particle goes back
without undergoing any collision, then

v(0, t; x, v) = v.

In this case we say, for obvious reasons, that the gas particle has no recollisions (the very
last collision, namely the one at time t , is automatically taken into consideration because
the gas particle is, at time t , on the surface of the disk). In absence of the recollisions
the friction term is easily computed:

F0(V ) = 2ρ(
β

π
)d/2σd

[ ∫
vx<V

dv(V − vx)
2e−βv2

−
∫

vx≥V

dv(V − vx)
2e−βv2]

, (2.10)

where σd is the area of the disk.
Let V∞ be the solution of

F0(V∞) = E. (2.11)

We assume that V∞ ≥ V0 > 0.

We will show in Lemma 2.1 that F0 is a positive, increasing and convex function in
the interval (0, V∞].

Now we see that, neglecting recollisions, our problem becomes trivial. Indeed replac-
ing F by F0 in Eq. (2.5) we have:

Ẋ(t) = V (t), V̇ (t) = E − F0(V (t)) = K(t)(V∞ − V (t));
X(0) = 0, V (0) = V0,

(2.12)

where

K(t) = F0(V∞) − F0(V (t))

V∞ − V (t)
.

The solution to Eq. (2.12) can be almost explicitly computed. We note that V is
increasing in time and converging to V∞. Furthermore a standard comparison argument
shows that

γ e−C−t ≤ V∞ − V (t) ≤ γ e−C+t , (2.13)

where

γ = V∞ − V0 and C+ = F ′
0(V0) ≤ C− = F ′

0(V∞). (2.14)

The Vlasov equation (2.1) is then solved by characteristics.
The full problem (including recollisions) is considerably more difficult because it

is not Markovian since the friction term F at time t depends on the previous history
X(s), V (s) with s < t . As we shall see, this long range memory affects the behavior of
the system in a crucial way.

For further convenience we rewrite the full friction term F as:

F(t) = F0(V (t)) + r+(t) + r−(t), (2.15)
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where r+(t) and r−(t) are the contribution coming from right and left recollisions
respectively. Explicitly:

r+(t) = 2ρ

(
β

π

)d/2 ∫
D(t)

dx

∫
vx<V (t)

dv(V (t) − vx)
2[e−βv2(0,t;x,v) − e−βv2]

(2.16)

and

r−(t) = 2ρ

(
β

π

)d/2 ∫
D(t)

dx

∫
vx≥V (t)

dv(V (t) − vx)
2[e−βv2 − e−βv2(0,t;x,v)

]
.

(2.17)

We note that r+(t) and r−(t) are both not negative as it follows by the collision law
(2.2). It turns out that r−(t) slows down the disk, in spite of the fact that this term arises
from the left recollisions. The reason is that, if the disk slows down, F0 includes many
kinematically impossible left collisions which must be compensated.

We consider as data of the problem the quantities ρ, β, R, V∞ (or equivalently E)
and γ = V∞ − V0.

We are now in the position to state the main result of the present paper.

Theorem 2.1. There exists γ0 = γ0(ρ, β, R, V∞) > 0 sufficiently small such that, for
any γ ∈ (0, γ0) there exists at least one solution (V (t), f (t)) to problem (2.1)–(2.6).
Moreover any solution (V (t), f (t)) satisfies, for any t ≥ 0:

V∞ − V (t) ≤ e−C+t γ + A+
(1 + t)d+2 γ 3, (2.18)

for a suitable positive constant A+ independent of γ and

V∞ − V (t) ≥ e−C−t γ . (2.19)

The next theorem shows that bound (2.19) can be improved.

Theorem 2.2. Let γ ∈ (0, γ0). There exists a sufficiently large t̄ , depending on γ , such
that any solution (f, V ) to problem (2.1)–(2.6) satisfies for any t ≥ 0:

V∞ − V (t) ≥ e−C−t γ + A−
td+2 γ 4χ({t > t̄}), (2.20)

where A− is a positive constant, independent of γ , and χ({. . . }) is the characteristic
function of {. . . }.

Note that the above theorems establish the power law approach to the stationary state.
For the sake of concreteness we shall prove Thms. 2.1 and 2.2 for the three-dimen-

sional case. The remaining cases d = 1, 2 follow by the same arguments with obvious
modifications.

Now we prove the announced properties of F0.

Lemma 2.1. F0 is a positive, increasing and convex function in (0, V∞].
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Proof. By (2.10) it is, for a constant C > 0:

F0(V ) = C

∫
dv⊥e−βv2

⊥
[ ∫ V

−∞
dvx(V − vx)

2e−βv2
x

−
∫ +∞

V

dvx(V − vx)
2e−βv2

x

]
. (2.21)

By the simple change of variables vx → −vx we obtain

F0(V ) = C

[∫ V

−∞
dvx(V − vx)

2e−βv2
x −

∫ −V

−∞
dvx(V + vx)

2e−βv2
x

]

≥ C

∫ −V

−∞
dvx

[
(V − vx)

2 − (V + vx)
2
]
e−βv2

x

= −4CV

∫ −V

−∞
dvxvxe

−βv2
x > 0. (2.22)

Moreover

F ′
0(V ) = 2C

[∫ V

−∞
dvx(V − vx)e

−βv2
x −

∫ −V

−∞
dvx(V + vx)e

−βv2
x

]

≥ −4C

∫ −V

−∞
dvxvxe

−βv2
x > 0. (2.23)

Finally

F ′′
0 (V ) = 2C

[∫ V

−∞
dvxe

−βv2
x −

∫ −V

−∞
dvxe

−βv2
x

]
> 0. (2.24)


�

3. Preliminary Results

In what follows the symbol C will indicate any positive constant, possibly depending on
β, V∞, ρ, R, but not on γ which is our small parameter. Any such constant is explicitly
computable.

For any γ ∈ (0, γ0) with γ0 sufficiently small, we introduce a t- a.e. differentia-
ble function t → W(t) ∈ [V0, V∞], with bounded derivative, such that W(0) = V0,
limt→∞ W(t) = V∞ and satisfying the following properties:

(i) W is increasing over the interval [0, t0], with

t0 = 1

2C−
log

C+
γ

. (3.1)

(ii) There exists a positive constant A+ such that, for any t ≥ 0, it is:

V∞ − W(t) ≤ e−C+t γ + A+
(1 + t)5

γ 3 (3.2)

and

V∞ − W(t) ≥ e−C−t γ . (3.3)

The constant A+, independent of γ and γ0, will be fixed later on.
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We collect in the following lemma some properties of the function W , which will be
useful in the sequel. For 0 ≤ s < t , we set

〈W 〉s,t = 1

t − s

∫ t

s

W(τ)dτ (3.4)

and

〈W 〉0,t = 〈W 〉t . (3.5)

Lemma 3.1. Suppose γ0 sufficiently small. Then:

i) For any t > 0 we have:

W(t) > 〈W 〉t . (3.6)

ii) t → 〈W 〉t is a strictly increasing function.
iii) For any s ∈ (0, t),

〈W 〉s,t > 〈W 〉t . (3.7)

iv) For any t > 0, the following bound holds:

W(t) − 〈W 〉t ≤ C

1 + t
(γ + A+γ 3). (3.8)

Proof.

Proof of i). The result is true for t ≤ t0 because in this region W is increasing. For t ≥ t0
we have by (3.2) and (3.3):

W(t) − 〈W 〉t = 1

t

∫ t

0
ds[(V∞ − W(s)) − (V∞ − W(t))]

≥ γ

t

∫ t

0
ds

[
e−C−s − e−C+t

]
− γ 3

[
A+

(1 + t)5

]

= γ

[
1 − e−C−t

C−t
− e−C+t

]
− γ 3

[
A+

(1 + t)5

]
(3.9)

which is positive, by choosing γ sufficiently small and consequently t0 sufficiently large.
Proof of ii)

d

dt
〈W 〉t = − 1

t2

∫ t

0
dτW(τ) + 1

t
W(t) = 1

t
[W(t) − 〈W 〉t ] > 0 (3.10)

by the previous lemma.
Proof of iii)

1

t − s

∫ t

s

W(τ)dτ − 1

t

∫ t

0
W(τ)dτ

=
(

1

t − s
− 1

t

) ∫ t

0
W(τ)dτ − 1

t − s

∫ s

0
W(τ)dτ

= s

t − s

[
1

t

∫ t

0
W(τ)dτ − 1

s

∫ s

0
W(τ)dτ

]
> 0 (3.11)

by ii).
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Proof of iv) For t ≤ 1 we have

W(t) − 〈W 〉t ≤ γ ≤ 2γ

1 + t
. (3.12)

On the other hand by (3.2) we have, for t > 1,

W(t) − 〈W 〉t = 1

t

∫ t

0
ds[V∞ − W(s) − (V∞ − W(t))]

≤ 1

t

∫ t

0
ds

(
e−C+sγ + A+

(1 + s)5
γ 3) ≤ C

t
(γ + A+γ 3)

≤ C

1 + t
(γ + A+γ 3). (3.13)


�

4. Proofs

Proof of Theorem 2.1. The strategy in proving Theorem 2.1 is the following. For an
assigned velocity W of the disk (with the properties stated in the previous section), we
can solve the free Vlasov equation outside the disk moving with velocity W and compute
the friction contribution due to the recollisions, namely r+

W and r−
W defined below. Then

we solve Eq. (2.5) for the disk with assigned r+
W and r−

W , finding a new velocity VW .
Obviously the solution of our problem is the fixed point of the map W → VW (if any),
so that our main goal is to infer for V the same properties established in (3.1),(3.2) and
(3.3) for W (see Proposition 4.1 below).

Let W be defined as in the previous section and X(t) = ∫ t

0 W(τ)dτ be the position
of the disk at time t . Consider the modified problem:

d

dt
(V∞ − VW(t)) = −K(t)(V∞ − VW(t)) + r+

W(t) + r−
W(t), (4.1)

where K(t) is the function introduced in Eq. (2.12) with VW(t) in place of V (t),

r+
W(t) = 2ρ

(
β

π

) 3
2
∫

D(t)

dx

∫
vx≤W(t)

dv(vx −W(t))2(e−βv2(0,t;x,v)−e−βv2
) (4.2)

and

r−
W(t) = 2ρ

(
β

π

) 3
2
∫

D(t)

dx

∫
vx≥W(t)

dv(vx −W(t))2(e−βv2 −e−βv2(0,t;x,v)). (4.3)

The velocities of the light particles v(s, t; x, v), s < t , are computed according to
the evolution X(s), W(s) of the disk and the law of elastic reflection (2.2). Moreover
the dynamics of the system leads a fluid particle to have a finite number of collisions
for almost all t, x ∈ D(t) and v. Finally we note that the tangential collisions, namely
those for which there exists a time s < t such that x ∈ D(t), x(s, t; x, v) ∈ D(s) and
vx(s, t; x, v) = W(s), constitute a zero (t, x, v) measure set. These claims are proven
in Proposition A.1 in the Appendix and in the sequel the possibility of having infinitely
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many or tangential collisions will be neglected. As a consequence Eq. (4.1) holds a.e.
t ∈ R

+.
In view of the fixed point argument we shall use in the sequel, we want to show that

VW behaves like W . Preliminarily however we have to estimate r±
W .

To have a recollision from the right it is necessary that vx < W(t), x ∈ D(t),
v(0, t; x, v) �= v and a time s < t has to exist such that

vx(t − s) = X(t) − X(s) =
∫ t

s

W(τ)dτ, (4.4)

that is vx = 〈W 〉s,t for some s ∈ (0, t) and

|x⊥ − v⊥(t − s)| ≤ 2R. (4.5)

Thus by Lemma 3.1 iii), for a recollision to happen it is necessary that

vx ≥ 〈W 〉t and |v⊥| ≤ 2R

t − s
. (4.6)

Lemma 4.1. Let A+ be the constant in (3.2). Then for any t ≥ 0,

r+
W(t) ≤ C

(γ + A+γ 3)3

(1 + t)5
, (4.7)

r−
W(t) ≤ Cχ({t > t0})

(γ + A+γ 3

(1 + t)5

)3
. (4.8)

Proof. We start by estimating r+
W(t). Recalling that, by (2.2) v⊥(0, t; x, v) = v⊥, from

(4.2) and (4.6) it follows:

r+
W(t) ≤ C

∫ W(t)

〈W 〉t
dvx(vx − W(t))2

∫
dv⊥e−βv2

⊥χ({|v⊥| <
2R

t − s̄
}), (4.9)

where s̄ is the maximal solution of Eq. (4.4), namely the first backward recollision time.
For vx such that s̄ < t

2 , we have:
∫

dv⊥e−βv2
⊥χ({|v⊥| <

2R

t − s̄
}) ≤ C

(
R

1 + t

)2

. (4.10)

Therefore we have a first contribution to the estimate of r+
W(t) which is

C

(
1

1 + t

)2 ∫ W(t)

〈W 〉t
dvx(vx − W(t))2 ≤ C

(
1

1 + t

)2

(W(t) − 〈W 〉t )3. (4.11)

On the other hand, if s̄ > t
2 , from (4.4) and (3.2) it follows :

vx = W(t) − 1

t − s̄

∫ t

s̄

dτ (W(t) − W(τ))

≥ W(t) − 1

t − s̄

∫ t

s̄

dτ (V∞ − W(τ))

≥ W(t) − 1

t − s̄

∫ t

s̄

dτ
[
e−C+τ γ + A+γ 3

(1 + τ)5

]

≥ W(t) −
[
e−C+ s̄ − e−C+t

C+(t − s̄)
γ + C

A+γ 3

(1 + t)5

]
. (4.12)
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Since

1 − e−C+(t−s̄)

C+(t − s̄)
< C,

it follows that

vx ≥ W(t) − C

[
γ e−C+ t

2 + A+γ 3

(1 + t)5

]
≥ W(t) − C

(γ + A+γ 3)

(1 + t)5
.

Hence the second contribution to the estimate of r+
W(t) is

C

∫ +∞

0
dvx(vx − W(t))2χ({W(t) − C(γ + A+γ 3)

(1 + t)5
≤ vx ≤ W(t)})

≤ C

[
γ + A+γ 3

(1 + t)5

]3

. (4.13)

Collecting estimates (4.11), (4.13) and using Lemma 3.1 iv), we finally obtain (4.7).
For r−

W we prove a similar estimate. First we notice that, as far as W is increas-
ing, r−

W(t) = 0 and this justifies the characteristic function in Eq. (4.8). Moreover if
v(0, t; x, v) �= v , x ∈ D(t), and vx > W(t), there exists s < t such that

vx = 2W(s) − v∗
x (4.14)

for some v∗
x > W(s). Hence

vx ≤ 2W(s) − W(s) < V∞. (4.15)

Thus from (4.3) we obtain:

r−
W(t) ≤ C

∫ V∞

W(t)

(vx − W(t))2dvx ≤ C(V∞ − W(t))3. (4.16)

By using (3.2) we obtain:

r−
W(t) ≤ C

(
γ e−C+t + γ 3A+

(1 + t)5

)3

. (4.17)

We obtain (4.8) by observing that e−C+t ≤ C

(1+t)5 . 
�

Now we prove that the function VW(t) satisfying Eq. (4.1) enjoys, for γ suitably
small, the same properties as the function W , with the same constant A+.

Proposition 4.1. Suppose γ sufficiently small. Then:

(i) t → VW(t) is a a.e. differentiable function, increasing over the interval [0, t0] with

t0 = 1

2C−
log

C+
γ

.

(ii) For any t ≥ 0:

V∞ − VW(t) ≥ e−C−t γ . (4.18)
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(iii) For any t ≥ 0:

V∞ − VW(t) < e−C+t γ + A+
(1 + t)5

γ 3. (4.19)

Proof. Since r+
W(t) and r−

W(t) are bounded, VW is a.e. differentiable with uniformly,
essentially bounded derivative. Moreover from Eq. (4.1) and the Duhamel formula we
have:

V∞ − VW(t) = γ e− ∫ t
0 K(τ)dτ

+
∫ t

0
ds e− ∫ t

s K(τ)dτ (r+
W(s) + r−

W(s)) (4.20)

which shows, by the positivity of r+
W(t) and r−

W(t), that VW(t) < V∞ for any t . Thus
K(t) < F ′

0(V∞) = C− and, again from (4.20) we get

V∞ − VW(t) ≥ e−C−t γ , (4.21)

which proves ii).
Moreover VW(t) > V0 for any t > 0. Indeed, by (4.1) it is :

d

dt
(VW (t) − V0) = F0(V∞) − F0(VW (t)) − r+

W(t) − r−
W(t)

= γ
F0(V∞) − F0(V0)

V∞ − V0

−F0(VW (t))−F0(V0)

VW (t)−V0
(VW (t)−V0)−r+

W(t)−r−
W(t). (4.22)

By the properties of F0 and Lemma 4.1 we obtain, for γ sufficiently small:

d

dt
(VW (t) − V0) > −F0(VW (t)) − F0(V0)

VW (t) − V0
(VW (t) − V0). (4.23)

This implies VW(t) > V0 for any t > 0 and consequently K(t) > F ′
0(V0) = C+. Hence,

by Eqs. (4.1), (4.21) and again Lemma 4.1 we have:

d

dt
(V∞ − VW(t)) ≤ −C+(V∞ − VW(t)) + r+

W(t) + r−
W(t)

≤ −C+γ e−C−t + C
(γ + A+γ 3)3

(1 + t)5

≤ −C+γ e−C−t + γ 2 (4.24)

for γ sufficiently small, and this implies

d

dt
(V∞ − VW(t)) < 0, (4.25)

for t ∈ [0, t0], so that i) is proven.



Approach to Equilibrium in a Microscopic Model of Friction 179

It remains to prove (iii). From Eq. (4.20) and Lemma 4.1 it follows:

V∞ − VW(t) ≤ e−C+t γ +
∫ t

0
dse−C+(t−s)(r+

W(s) + r−
W(s))

≤ e−C+t γ + C(γ + A+γ 3)3
∫ t

0
ds

e−C+(t−s)

(1 + s)5
. (4.26)

Let us evaluate the integral:

∫ t

0
ds

eC+s

(1 + s)5
=

∫ t
2

0
(·)ds +

∫ t

t
2

(·)ds

≤ eC+ t
2 − 1

C+
+ 25

(2 + t)5

eC+t − eC+ t
2

C+
. (4.27)

Thus
∫ t

0
ds

e−C+(t−s)

(1 + s)5
≤ e−C+ t

2 − e−C+t

C+
+ 25

(2 + t)5

1 − e−C+ t
2

C+

≤ 1

C+

[
e−C+ t

2 + 25

(2 + t)5

] ≤ C

(1 + t)5
. (4.28)

To conclude, there exists a constant C̄ such that:

V∞ − VW(t) ≤ e−C+t γ + C̄(γ + A+γ 3)3 1

(1 + t)5
. (4.29)

Therefore to obtain iii) it is sufficient that

C̄(γ + A+γ 3)3 < A+γ 3. (4.30)

Inequality (4.30) is satisfied, for instance, by choosing A+ = 2C̄ (this fixes A+) and
γ consequently small. 
�

We note that inequality (4.19) is strict even assuming (3.2) (which is not strict). This
improvement in passing from W to VW will be used later on.

By Proposition 4.1 we can prove Thm 2.1.
We construct a sequence {Vn}∞n=1 defined by

Vn = VVn−1 , n ≥ 2 (4.31)

setting V1 = W , W being any function with properties 3.1), 3.2) and 3.3). By Propo-
sition 4.1 such properties hold for the whole sequence (for suitable values of A+ and
t0 independent of n). By compactness (the sequence is equibounded and equicontinu-
ous), we can extract a subsequence converging to a limit point V = V (t). Let f (t),
t ≥ 0 be solution to Eq. (2.1) with boundary conditions (2.3) given by V (t), then the
couple (f, V ) solves problem (2.5), (2.6) for t ≥ 0. We will prove this by showing that
the characteristics solving (2.1) with boundary conditions given by Vn(t) converge to
characteristics solving (2.1) with boundary conditions given by V (t). In order to avoid
too heavy notation we consider the one dimensional case, the general one being an
immediate transposition of it. For t > 0 and v given, consider the equation in τ < t :

X(t) − X(τ) = v(t − τ), (4.32)
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where Ẋ = V . This is a right recollision condition of a fluid particle with the disk in the
limit dynamics and from Lemma 3.1 (which holds for the limit velocity V (t) as well),
we know that a necessary and sufficient condition for a solution to (4.32) to exist is:

〈V 〉t < v < V (t) (4.33)

since v = 〈V 〉τ,t is a continuous function of τ , such that 〈V 〉0,t = 〈V 〉t and 〈V 〉t,t =
V (t). Let τ∗ be the maximal time for which (4.32) is verified. It is characterized by the
condition

X(s) < X(t) − v(t − s), s ∈ (τ∗, t). (4.34)

Parallel to (4.32) and (4.34) we consider the equations

Xn(t) − Xn(τ) = v(t − τ), (4.35)

Xn(s) < Xn(t) − v(t − s), s ∈ (τ, t). (4.36)

Since Vn is converging to V , choosing n large enough we have

〈Vn〉t < v < Vn(t) (4.37)

so that a maximal solution does exist also in this case and we denote it by τn. By com-
pactness τn → τ̄ (extracting a subsequence if necessary). We want to show that τ̄ = τ∗.
In fact, by (4.35) and (4.36) we get in the limit n → ∞,

X(t) − X(τ̄ ) = v(t − τ̄ ), (4.38)

X(s) ≤ X(t) − v(t − s), s ∈ (τ̄ , t). (4.39)

We exclude equality in Eq. (4.39) because it would correspond to a tangential col-
lision, which is not considered because it is negligible. Therefore τ̄ should be another
maximal solution, in contrast with the uniqueness of τ∗. Thus, with regard to the first
backward recollision from the right, we have proven that τn → τ∗. Whenever the trajec-
tory of the fluid particle (x(s), v(s)), s ∈ (0, t) delivers k collisions at times τ 1, ..., τ k

in the limiting dynamics induced by V (t), the characteristics (xn(s), vn(s)) induced by
Vn(t) perform the same number of collisions, for n sufficiently large and the collision
times τ 1

n , ..., τ k
n do converge to τ 1, ..., τ k (up to extraction of the subsequence when

necessary). This can be easily proven by iterating the above arguments. We are not
considering infinitely many collisions by Proposition A.1.

The recollisions due to fluid particles coming from the left can be treated in the same
way. We remark that, in two or three dimensions we have to exclude also the null measure
set of initial conditions (x, v) for which x(tk) ∈ ∂D(tk). Finally the convergence of the
characteristics shows that r±

Vn
→ r±

V , so that (f, V ) is a solution to our friction problem.
To conclude the proof of Theorem 2.1, let us consider any solution (f, V ) to problem

(2.5) (2.6). By the continuity of V , there exists a time interval for which

V∞ − V (t) < e−C+t γ + A+
(1 + t)5

γ 3, (4.40)

because it is obviously verified at time zero. Let T be the first time for which (4.40)
is violated. The same arguments used to prove Proposition 4.1 (i) (replacing W by V )
apply here to show that

V∞ − V (t) ≥ e−C−t γ (4.41)
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and for t ∈ [0, min(t0, T )):

d

dt
(V∞ − V (t)) ≤ 0. (4.42)

Proceeding as in the proof of Proposition 4.1 (iii), since V enjoys the same properties
as W for t ∈ [0, T ), we infer that (4.40) is still valid for t = T . Hence (4.40) holds
globally in time.

This concludes the proof of Theorem 2.1.

Proof of Theorem 2.2. Consider now a solution (f, V ) to problem (2.1), (2.6). The lower
bound (2.20) will be obtained by considering the integration over the velocities v pro-
ducing a single recollision in the past. This allows us to estimate explicitly v(0, t; x, v)

in Eq. (4.2). To this end we introduce s0 > 0 defined as:

s0 = min
{
s ∈ (0, t) : V (s) ≥ V0 + 〈V 〉s,t

2

}
. (4.43)

Such s0 does exist by continuity, since by Lemma 3.2 we have at time 0:

V (0) = V0 <
V0 + 〈V 〉t

2
= V0 + 〈V 〉0,t

2
, (4.44)

while at time s = t ,

V (t) >
V0 + V (t)

2
= V0 + 〈V 〉t,t

2
. (4.45)

The set {(x, v)|x ∈ D(t), 〈V 〉t ≤ vx ≤ 〈V 〉s0,t } generates a subfamily of charac-
teristics which had at most one recollision with the disk in the past. Indeed, consider a
light particle which is to collide at x and let it go back up to the time s < t of the first
recollision in the past. Then vx = 〈V 〉s,t for some s ≤ s0. Hence, denoting by vx(s

−)

the x− component of the precollisional velocity, by (4.43) we have:

vx(s
−) = −vx + 2V (s) = −〈V 〉s,t + 2V (s) ≤ V0 (4.46)

so that

vx(0, t; x, v) = 2V (s) − vx. (4.47)

We now prove that s0 is bounded from above and from below, independently of γ ,
in the following way:

1

C−
log

3

2
≤ s0 ≤ log 4

C+
, (4.48)

provided that t is sufficiently large independently of γ .
Indeed s0 is the minimal solution of the equation:

V (s0) = V0 + 〈V 〉s0,t

2
(4.49)

which gives

V∞ − V (s0) = γ

2
+ 〈V∞ − V 〉s0,t

2
. (4.50)
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By the use of property (2.18) for V we obtain:

e−C+s0γ ≥ γ

2
− A+

(1 + s0)5
γ 3 + 〈V∞ − V 〉s0,t

2
≥ γ

2
− A+

(1 + s0)5
γ 3. (4.51)

For γ small, A+γ 2 ≤ 1
4 , so that

e−C+s0 ≥ 1

4
(4.52)

and we have proved the right bound in (4.48).
To prove the left bound, again by (2.18) we have:

〈V∞ − V 〉s0,t ≤ 1

t − s0

∫ t

s0

dτ

(
γ e−C+τ + A+γ 3

(1 + τ)5

)

≤ 1

t − s0

[
γ

e−C+s0 − e−C+t

C+
+ γ 3 A+

4

]
. (4.53)

Hence, for t sufficiently large independent of γ :

〈V∞ − V 〉s0,t ≤ 2γ

t

(
1

C+
+ γ 2A+

4

)
≤ γ

3
. (4.54)

Therefore (4.50) and (2.19) yield:

e−C−s0γ ≤ 2

3
γ, (4.55)

proving also the left bound in (4.48).
Now we set

I (t) =
∫

D(t)

dx

∫
dv⊥

∫ 〈V 〉s0,t

〈V 〉t
dvx(vx −V (t))2[e−βv2(0,t;x,v)−e−βv2

]. (4.56)

Note that, on the basis of the same arguments leading to inequality (3.6), we can
show that V (t) > 〈V 〉s0,t . Hence

r+(t) ≥ CI (t). (4.57)

For s ≤ s0 by (4.43) we get:

v2
x − v2

x(0, t; x, v) = v2
x − (2V (s) − vx)

2 = 4V (s)(〈V 〉s,t − V (s))

≥ 2V (s)(〈V 〉s,t − V0). (4.58)

The quantity in the right-hand side of (4.58) can be estimated from below in the
following way:

2V (s)(〈V 〉s,t − V0) ≥ V0γ (4.59)
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for t sufficiently large independent of γ . Indeed, by Lemma 3.1 (iii) and Eq. (2.18):

inf
s≤t

(〈V 〉s,t − V0) ≥ 〈V 〉t − V0 = 1

t

∫ t

0
dsV (s) − V0

≥ 1

t

∫ t

0
ds[γ (1 − e−C+s) − A+

(1 + s)5
γ 3]

≥ γ (1 − 1 − e−C+t

C+t
) − A+

4t
γ 3 ≥ γ

2
. (4.60)

By these considerations, we have:

I (t) ≥ β

∫
D(t)

dx

∫
dv⊥

∫ 〈V 〉s0,t

〈V 〉t
dvx(vx − V (t))2e−βv2

[v2
x − v2

x(0, t; x.v)]

≥ Cγ

∫ 〈V 〉s0,t

〈V 〉t
dvx(vx − V (t))2e−βv2

x

∫
|v⊥|< C

t

dv⊥e−βv2
⊥

≥ Cγ

t2 [(V (t) − 〈V 〉t )3 − (V (t) − 〈V 〉s0,t )
3]

= Cγ

t2 [(V (t) − 〈V 〉s,t )2(〈V 〉s0,t − 〈V 〉t )], (4.61)

for some s ∈ (0, s0). We now estimate both differences appearing in (4.61) showing that
they are both O( 1

t
).

Using Eq. (3.11) we have:

〈V 〉s0,t − 〈V 〉t = s0

t − s0
[〈V 〉t − 〈V 〉s0 ]. (4.62)

By estimate (4.48) we know that, for γ small, t0 is much larger than s0 so that, by
monotonicity, we have for any τ ∈ (0, s0):

V (τ) < V (s0) <
V0 + V∞

2
, (4.63)

after using Eq. (4.49). This implies that

〈V 〉t − 〈V 〉s0 = [〈V∞ − V 〉s0 − 〈V∞ − V 〉t
]

≥ [γ

2
− 1

t

∫ t

0
(V∞ − V (τ))dτ

]
. (4.64)

By (2.18):
∫ t

0
(V∞ − V (τ))dτ

≤ γ

∫ t

0
dτe−C+τ + γ 3A+

∫ ∞

0
dτ

1

(1 + τ)5
≤ γ

C+
+ γ 3A+

4
. (4.65)

Hence we obtain:

〈V 〉t − 〈V 〉s0 ≥ γ

2
− 1

t
[

γ

C+
+ γ 3A+

4
] ≥ γ

4
, (4.66)
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for t large independently of γ . Thus by (4.62) and (4.66) we arrive at:

〈V 〉s0,t − 〈V 〉t ≥ C
γ

t
. (4.67)

Let us now estimate the remaining term in (4.61). It is:

V (t) − 〈V 〉s,t = 〈V∞ − V 〉s,t − (V∞ − V (t)). (4.68)

Again by properties (2.18) and (2.19) we obtain:

V (t) − 〈V 〉s,t ≥ γ

t − s

∫ t

s

dτe−C−τ − γ e−C+t − γ 3A+
(1 + t)5

≥ γ

t − s0

∫ t

s0

dτe−C−τ − γ e−C+t − γ 3A+
(1 + t)5

, (4.69)

because s ≤ s0 and e−C−τ is decreasing in τ .
Consequently, for t sufficiently large independently of γ :

V (t) − 〈V 〉s,t ≥ γ
C

t
. (4.70)

Inserting estimates (4.67) and (4.70) in (4.61), by (4.57) we conclude that, for t

sufficiently large, independently of γ ,

r+(t) ≥ C
γ 4

t5
. (4.71)

Actually Eq. (4.71) holds (a fortiori) for any t > t0, provided that γ is sufficiently
small, since t0 is diverging when γ is vanishing.

For t ≥ 2t0, by virtue of (4.71) and the Duhamel formula, it is:

V∞ − V (t) ≥ e−C−t γ +
∫ t

0
dse−C−(t−s)r+(s)

≥ e−C−t γ + C

∫ t

t0

dse−C−(t−s) γ
4

s5
. (4.72)

Now we have:

∫ t

t0

ds
e−C−(t−s)

s5
≥ 1 − e−C−(t−t0)

C−t5
≥ 1 − e−C−t0

C−t5
=

1 − (
γ

C+ )
1
2

C−t5
≥ C

t5
, (4.73)

by (3.1) since t ≥ 2t0. Hence:

V∞ − V (t) ≥ e−C−t γ + C
γ 4

t5
. (4.74)

The last inequality fixes A− and the proof is finally complete. 
�
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5. Comments

In this paper we proved some significant and somehow surprising effects of recollisions
in a suitable microscopic model of friction. Our techniques are perturbative and work
only when the parameter γ = V∞ − V0 is small.

We did not prove uniqueness of the solution to problem (2.1)–(2.6). Such a property
should follow from a rather detailed analysis of the entire recollision sequence. Such a
deeper analysis would also improve the upper bound (2.18) as regards to γ -dependence.
On the other hand we were able to outline the asymptotic behavior of the solution taking
into explicit account one recollision only.

We emphasize that a small change in the model can cause a drastic change of the
time asymptotics. For instance, assuming a lower bound on the vertical component of
the gas particles velocity, namely |v⊥| > ε > 0, two consecutive collisions may happen
in a time interval of length at most 2R

ε
. This means that the memory effects are bounded

in time and it can be proven that this implies an exponential decay.
In the present paper we have considered the case 0 < V0 ≤ V∞. Of course other

cases can be studied, for instance V0 ≥ V∞ or 0 = E = V∞. Another physical interest-
ing case is when the external field depends on the position of the disk. Unfortunately it
seems hard to find a unique approach to all these cases: we analyzed the easiest one.

Let us briefly discuss the case V0 ≥ V∞ > 0 which, apparently, is symmetric to ours.
Our techniques give the paradoxical result that the difference V (t)−V∞ becomes nega-
tive before vanishing as t → ∞. Indeed, let us suppose (by absurdum) that V (t) > V∞
for all times. Then V (t) − V∞ is decreasing in time (in particular r+ = 0).

By the Duhamel formula:

V (t) − V∞ = (V0 − V∞)e− ∫ t
0 K(s)ds −

∫ t

0
dse− ∫ t

s K(τ)dτ r−(s)

≤ (V0 − V∞)e−F ′
0(V∞)t −

∫ t

0
dse−F ′

0(V0)(t−s)r−(s). (5.1)

Analogously to what we have proven in Thm. 2.2 we can find that, for small (V0−V∞)

and large t :

r−(s) > C
(V0 − V∞)4

td+2 . (5.2)

Therefore, for large t we find a contradiction because V (t) − V∞ becomes negative.
Moreover the positivity of r±(s) prevents V (t) − V∞ from becoming positive later on.
Since there is a change of sign in the difference V (t) − V∞, a detailed analysis of the
asymptotics is delicate. Even more involved is the case in which E = 0. Again after
some time V (t) becomes negative and the quantities in the square brackets in (2.16) and
(2.17) are no more positive, while in our paper the positivity of r± played an important
role. More generally, the cases in which there is a change of sign of the velocity of the
disk, for instance when V0 < 0 or when E is not constant, are beyond a straightforward
application of the techniques used in the present paper.

We did not make explicit the dependence on β of the constants, even if it is reason-
able to believe that the long tail memory becomes irrelevant as β → ∞. Indeed, in the
limiting case, all the gas particles are initially at rest and the recollisions are absent when
|V∞ − V0| is small. This is because the first collision yields an outgoing velocity larger
than 2V0 > V∞, so that the gas particles cannot be hit anymore. On the other hand, the
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probability of finding a post-collisional velocity between V0 and V∞, is vanishing as
β → 0.

We incidentally observe that for E = 0 and 1
β

= 0, the asymptotic behavior is not
exponential, even neglecting recollisions. In fact in this case F0(V ) = CV |V | and hence

V (t) = V0

1 + CV0t
. (5.3)

We finally remark that in the present paper we have essentially studied the asymptotic
behavior of the motion of the solid body. It would also be interesting to understand the
behavior of the Vlasov fluid. In particular one may ask whether the velocity distribution
at a given point (say the origin) converges to the Maxwellian when t → ∞. This is not
true in one dimension. Indeed a light particle with velocity v < −V∞, at a large time,
has surely collided with the disk in the past, while in higher dimension the transversal
velocity makes this event exceptional.

Appendix

We give an heuristic derivation of our model in the one-dimensional case. The case of a
d-dimensional disk follows with minor modifications.

Denoting by V and M velocity and mass of the heavy particle and by v and m velocity
and mass of a gas particle, the law of elastic collision says that:

V ′ = V + 2m

M + m
(v − V ); v′ = V − M − m

M + m
(v − V ), (A.1)

where V ′ and v′ are the outgoing velocities.
As usual in the mean field limit, we assume the mass of any light particle to be

m = 1
N

<< M , N being the total number of the gas particles, so that, by (A.1), we
have:

V ′ ≈ V + 2

NM
(v − V ); v′ ≈ 2V − v. (A.2)

We now evaluate the variation of the velocity �V of the heavy particle in the time
interval [t, t + �t]. It is:

�V = E�t − 1

N

∑
j∈I+(�t)

2

M
|vj − V | + 1

N

∑
j∈I−(�t)

2

M
|vj − V | + h, (A.3)

where h denotes a term o(�t) and I±(�t) denote the indices of the light particles which
are colliding from the right (vj < V ) and from the left (vj ≥ V ) respectively.

We finally apply our mean-field hypothesis by setting:

1

N

∑
j∈I±(�t)

2

M
|vj − V | = �t

2

M

∫
dv|v − V |2f ±(X, v, t). (A.4)

Taking the limit �t → 0, we obtain Eqs. (2.1)–(2.6). We also set M = 1, M being
an irrelevant constant.
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Proposition A. 1. Consider the dynamics of the disk with given velocity W = W(t) and
the fluid trajectories x(s, t; x, v), v(s, t; x, v) computed according to the evolution of
the disk and the law of the elastic reflection (2.2). Assume W differentiable for almost
all t and such that

ess supt∈R+(|W(t)| + |Ẇ (t)|) = L < +∞. (A.5)

Then the set of all t ∈ R
+, x ∈ D(t), v ∈ R

d for which x(s, t; x, v), v(s, t; x, v),
0 ≤ s < t , delivers infinitely many backward collisions, or has a tangential collision,
has vanishing Lebesgue measure.

Proof. We give the proof for the one-dimensional case, for notational simplicity.
For a given T > 0, we shall prove that the set of (x, v) ∈ R

2 for which x(s, T ; x, v),

v(s, T ; x, v), s < T yields infinitely many collisions or has a tangential collision, has
null measure. Then Proposition A.1 follows easily.

We consider a partition I1, . . . IN of the time interval [0, T ) into intervals of the same
length δ. Obviously N = T/δ. We denote by tk the middle point of Ik .

We shall not consider the case in which tk is a collision time because it is a (x, v)

measure zero event.
Consider the set

Aδ
k = {(x, v)|x(s1, T ; x, v) = X(s1), x(s2, T ; x, v) = X(s2)

for some s1, s2 ∈ Ik}.
(A.6)

Denote also by RT the set of all configurations at time T leading (backward) to infi-
nitely many collisions. Then, to have an accumulation point of the collision times, we
necessarily have two consecutive collisions falling in the same time interval Ik for some
k. Hence

RT ⊂
⋃
k

Aδ
k (A.7)

for all δ > 0.
We finally set, for s < T :

Dδ(s) = {(x, v)||x(s, T ; x, v) − X(s)| < 2Lδ,

|v(s, T ; x, v) − W(s)| < 2Lδ}. (A.8)

We shall prove that

Aδ
k ⊂ Dδ(tk). (A.9)

By Eq. (A.9) we easily conclude the proof. Indeed, by the time invariance (with
respect to the time evolution of the fluid particle flow) of the Lebesgue measure, the map
(x, v) → (x(s, T ; x, v), v(s, T ; x, v)) has unitary Jacobian and hence

|Dδ(tk)| ≤ Cδ2, (A.10)

where |A| denotes the Lebesgue measure of the set A. Therefore

|RT | ≤
N∑

k=1

|Aδ
k| ≤

N∑
k=1

|Dδ(tk)| ≤ CNδ2 = Cδ. (A.11)
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By the arbitrariness of δ we conclude that |RT | = 0.
Moreover the set ZT of all (x, v) leading to a tangential collision, i.e.

x(s, T ; x, v) = X(s); v(s, T ; x, v) = W(s)

for some s ∈ Ik, k = 1 . . . N , trivially satisfies:

ZT ⊂
⋃
k

Dδ(tk)

and hence has vanishing measure.
To prove (A.9) let (x, v) ∈ Aδ

k and s1 and s2, with s1 < s2, be two consecutive
collision instants in Ik . Then, if tk ∈ (s1, s2),

v(tk)(s2 − s1) =
∫ s2

s1

W(s)ds, (A.12)

and hence

v(tk) = W(s̄), (A.13)

for some s̄ ∈ (s1, s2). Here and in the sequel we shall use the shorthand notation
v(s) = v(s, T ; x, v), x(s) = x(s, T ; x, v). Therefore

|v(tk) − W(tk)| = |
∫ tk

s̄

Ẇ (s)ds| ≤ Lδ. (A.14)

On the other hand if tk ∈ Ik/(s1, s2), say for instance tk < s1 < s2, with no collision
in (tk, s1), then we have simultaneously:

v(s+
1 ) = W(s̄) (A.15)

for some s̄ ∈ (s1, s2) and

v(s+
1 ) = 2W(s1) − v(tk). (A.16)

Hence

|v(tk) − W(tk)| = |2W(s1) − W(s̄) − W(tk)| ≤ 2Lδ. (A.17)

Finally, let s1 be the closest collision time to tk , say for instance, s1 < tk . Then

|X(tk) − x(tk)| ≤
∫ tk

s1

ds|v(s+
1 ) − W(s)| ≤ 2Lδ. (A.18)

In fact if (x, v) develops at least two collisions in Ik , then sups∈Ik
|v(s)| < 2L. 
�

We finally remark that it is possible to prove that infinitely many collisions in a finite
time interval cannot occur, for all initial data (x, v), just for geometrical reasons, pro-
vided that W has bounded second derivative. However such an extra regularity property
does not follow easily from our arguments.
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