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Abstract: We introduce the notion of Poisson quasi-Nijenhuis manifolds generalizing
Poisson-Nijenhuis manifolds of Magri-Morosi. We also investigate the integration prob-
lem of Poisson quasi-Nijenhuis manifolds. In particular, we prove that, under some topo-
logical assumption, Poisson (quasi)-Nijenhuis manifolds are in one-one correspondence
with symplectic (quasi)-Nijenhuis groupoids. As an application, we study generalized
complex structures in terms of Poisson quasi-Nijenhuis manifolds. We prove that a gen-
eralized complex manifold corresponds to a special class of Poisson quasi-Nijenhuis
structures. As a consequence, we show that a generalized complex structure integrates
to a symplectic quasi-Nijenhuis groupoid, recovering a theorem of Crainic.
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1. Introduction

Poisson Nijenhuis structures were introduced by Magri and Morosi [16, 18] in their
study of bi-Hamiltonian systems, and intensively studied by many authors [12, 21].
Recall that a Poisson Nijenhuis manifold consists of a triple (M, π, N ), where M is a
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manifold endowed with a Poisson bivector field π , and a (1, 1)-tensor N whose Nijenhuis
torsion vanishes, i.e.

[N X, NY ] − N ([N X, Y ] + [X, NY ] − N [X, Y ]) = 0, ∀X, Y ∈ X(M),

together with some compatibility condition between π and N . Poisson Nijenhuis struc-
tures are very important in the study of integrable systems since they produce bi-Ham-
iltonian systems [16, 12].

As observed by Kosmann-Schwarzbach [11], given a Poisson Nijenhuis manifold
(M, π, N ), ((T ∗M)π , (T M)N ) constitutes a Lie bialgebroid, where (T ∗M)π is equipped
with the standard cotangent Lie algebroid structure induced by the Poisson tensor π while
(T M)N is the deformed Lie algebroid on T M induced by the Nijenhuis endomorphism
N . Indeed it is proved in [11] that the Lie bialgebroid condition on ((T ∗M)π , (T M)N )

is equivalent to the triple (M, π, N ) being Poisson Nijenhuis.
The main goal of the present paper is to introduce the notion of Poisson quasi-

Nijenhuis structures. By definition, a Poisson quasi-Nijenhuis manifold is a quadru-
ple (M, π, N , φ), where M is a manifold endowed with a Poisson bivector field π , a
(1, 1)-tensor N and a closed 3-form φ such that π and N are compatible (in the usual
Poisson-Nijenhuis sense) and

[N X, NY ] − N ([N X, Y ] + [X, NY ] − N [X, Y ]) = π�(iX∧Y φ), ∀X, Y ∈ X(M).

Recall that Lie bialgebroids are pairs of transverse Dirac structures in a Courant
algebroid [13]. When one of the two maximal isotropic direct summands fails to be
Courant involutive, this becomes a quasi-Lie bialgebroid [20, 19]. Alternatively, a quasi-
Lie bialgebroid is equivalent to the following data: a Lie algebroid A together with a
degree 1 derivation δ of the associated Gerstenhaber algebra

(
�(∧•A),∧, [·, ·]) such

that δ2 = [φ, ·] and δφ = 0 for some φ ∈ �(∧3 A) [9]. We prove

Theorem A. Given (M, π, N , φ), the following are equivalent

• (M, π, N , φ) is a Poisson quasi-Nijenhuis manifold;
• (

(T ∗M)π , (T M)N , φ
)

is a quasi-Lie bialgebroid.

It is well known that the global object corresponding to a Poisson manifold is a sym-
plectic groupoid [2, 22]. It is natural to ask what is the global object integrating a Poisson
Nijenhuis manifold. We prove

Theorem B. The base manifold of a symplectic Nijenhuis groupoid is a Poisson Ni-
jenhuis manifold. Moreover, there is a one-one correspondence between t-connected
and t-simply connected symplectic Nijenhuis groupoids (� ⇒ M, ω̃, Ñ ) and integrable
Poisson Nijenhuis manifolds (M, π, N ).

By a symplectic Nijenhuis groupoid, we mean a symplectic groupoid (� ⇒ M, ω̃)

equipped with a multiplicative (1, 1)-tensor Ñ : T � → T � such that (�, ω̃, Ñ ) is a
symplectic Nijenhuis structure. The main idea of the proof of Theorem B can be out-
lined as follows. One proves that Poisson Nijenhuis structures on a manifold M are in
one-one correspondence with Lie bialgebroids ((T ∗M)π , δ) satisfying the condition that
[δ, d] = 0, where d is the de Rham differential on M . The latter are the infinitesimal of
symplectic Nijenhuis groupoids, as can be shown using the universal lifting theorem [9].

The same method can be used to prove an analogous result for Poisson quasi-
Nijenhuis manifolds.
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Theorem C. The base manifold of a symplectic quasi-Nijenhuis groupoid is a Poisson
quasi-Nijenhuis manifold. Moreover there is a one-one correspondence between t-con-
nected and t-simply connected symplectic quasi-Nijenhuis groupoids

(
� ⇒ M, ω̃, Ñ ,

t∗φ − s∗φ
)

and integrable Poisson quasi-Nijenhuis manifolds (M, π, N , φ).

A symplectic quasi-Nijenhuis groupoid is a symplectic groupoid (� ⇒ M, ω̃)

equipped with a multiplicative (1, 1)-tensor Ñ : T � → T � and a closed 3-form
φ ∈ 	3(M) such that

(
�, ω̃, Ñ , t∗φ − s∗φ

)
is a symplectic quasi-Nijenhuis structure.

As an application, we study generalized complex structures in terms of Poisson quasi-
Nijenhuis structures. The notion of generalized complex structures was introduced by
Hitchin [8] and studied by Gualtieri [7] motivated by the study of mirror symmetry. It
comprises both symplectic and complex structures as extreme cases. We show that on a
generalized complex manifold (M, J ), where

J =
(

N π�

σ� −N∗
)

with N 2 + π�σ� = − id, the building units π , N and σ of J do exactly determine a
Poisson quasi-Nijenhuis structure. Indeed, the endomorphism N can be used to define a
derivation dN of the Gerstenhaber algebra associated to the Lie algebroid (T ∗M)π . We
prove

Theorem D. The following are equivalent

• J is a generalized complex structure;
• (M, π, N , dσ) is a Poisson quasi-Nijenhuis structure such that

(T M)N ⊕ (T ∗M)π
J−→ T M ⊕ T ∗M

is a Courant algebroid isomorphism.

A similar result (in a different form) was already proved by Crainic using a direct
argument [4].

Since a generalized complex structure corresponds to a quasi-Nijenhuis manifold
according to Theorem D, as a consequence, we prove

Theorem E. Let J be a generalized complex structure as given by Eq. (18), and (� ⇒
M, ω̃) a t-connected and t-simply connected symplectic groupoid integrating (T ∗M)π .
Then there is a multiplicative (1, 1)-tensor Ñ on � such that

(
� ⇒ M, ω̃, Ñ , t∗dσ −

s∗dσ
)

is a symplectic quasi-Nijenhuis groupoid.

This result, in a disguised form, was already proved by Crainic [4] using a different
method.

Notations. We denote the bracket on the sections of a Courant algebroid by �·, ·�, except
for the standard Courant bracket on T M ⊕ T ∗M , which is denoted by �·, ·�. The Lie
bracket of vector fields and its extension to polyvector fields (i.e. the Schouten bracket)
are denoted by [·, ·]. Any bundle map B : T ∗M → T M induces a bracket on the space
of 1-forms (see Eq. (8)). It is denoted by [·, ·]B as well as its extension to the space of
differential forms of all degrees. Finally, if �·, ·� is a bracket on the space of sections of
a vector bundle E of which J is a bundle endomorphism, then its deformation by J is
denoted by �·, ·�J (see Eq. (19)).
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2. Preliminaries

Definition 2.1 ([13]). A Courant algebroid is a triple consisting of

• a vector bundle E → M equipped with a non-degenerate symmetric bilinear form
〈·, ·〉,

• a skew-symmetric bracket �·, ·� on �(E), and

• a smooth bundle map E
ρ−→ M called the anchor, which induces a natural differential

operator D : C∞(M)→ �(E) defined by

〈D f, A〉 = 1
2ρ(A) f

for all f ∈ C∞(M) and A ∈ �(E).

These structures must be compatible in the following sense: ∀A, B, C ∈ �(E) and
∀ f, g ∈ C∞(M),

• ρ(�A, B�) = [ρ(A), ρ(B)],
• ��A, B�, C� + ��B, C�, A� + ��C, A�, B� = 1

3D(〈�A, B�, C〉 + 〈�B, C�, A〉
+ 〈�C, A�, B〉),

• �A, f B� = f �A, B� +
(
ρ(A) f

)
B − 〈A, B〉D f ,

• ρ◦D = 0, i.e. 〈D f,Dg〉 = 0,
• ρ(A)〈B, C〉 = 〈�A, B� + D〈A, B〉, C〉 + 〈B, �A, C� + D〈A, C〉〉.
Note that a Courant algebroid is not a Lie algebroid as the Jacobi identity is not satisfied.

Example 2.2 ([3]). The generalized tangent bundle T M ⊕ T ∗M of a manifold M is a
Courant algebroid, where the anchor is the projection onto the first component and the
pairing and bracket are given, respectively, by

〈X + ξ, Y + η〉 = 1
2

(
ξ(Y ) + η(X)

)
, (1)

�X + ξ, Y + η� = [X, Y ] + LXη − LY ξ + 1
2 d

(
ξ(Y )− η(X)

)
, (2)

∀X, Y ∈ X(M), ∀ξ, η ∈ 	1(M).

Definition 2.3. A Dirac structure is a smooth subbundle L of a Courant algebroid E,
which is maximal isotropic with respect to 〈·, ·〉 and whose space of sections �(L) is
closed under �·, ·�. It is thus naturally a Lie algebroid.

It is well-known [23] that a Lie algebroid (A, [·, ·]A, ρA) gives rise to a Gerstenhaber
algebra (�(∧•A),∧, [·, ·]A), and a degree 1 derivation δA of the graded commutative
algebra (�(∧•A∗),∧) such that (δA)2 = 0. Here δA is given by

(δAα)(X0, X1, . . . , Xn) =
n∑

i=0

(−1)i (ρA Xi )α(X0, . . . , X̂i , . . . , Xn)

+
∑

i<j

(−1)i+jα([Xi , X j ]A, X0,. . . ,X̂i ,. . . ,X̂ j ,. . . ,Xn). (3)

A Lie bialgebroid [15, 14] is a pair of Lie algebroid structures on A and its dual A∗
such that δA∗ is a derivation of the Gerstenhaber algebra (�(∧•A),∧, [·, ·]A) or, equiv-
alently, such that δA is a derivation of the Gerstenhaber algebra (�(∧•A∗),∧, [·, ·]A∗).
Since the bracket [·, ·]A∗ can be recovered from the derivation δA∗ , one is led to the
following alternative definition.
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Definition 2.4. A Lie bialgebroid is a pair (A, δ) consisting of a Lie algebroid
(A, [·, ·]A, ρA) and a degree 1 derivation δ of the Gerstenhaber algebra (�(∧•A),

∧, [·, ·]A) such that δ2 = 0.

More generally, we can speak about quasi-Lie bialgebroids [20, 9].

Definition 2.5 ([9]). A quasi-Lie bialgebroid is a triple (A, δ, φ) consisting of a Lie
algebroid A, a degree 1 derivation δ of the Gerstenhaber algebra (�(∧•A),∧, [·, ·]A)

and an element φ ∈ �(∧3 A) such that δ2 = [φ, ·]A and δφ = 0.

The link between Courant, Lie bi- and quasi-Lie bialgebroids is given by the following

Theorem 2.6 ([13, 20, 19]). (i) There is a 1-1 correspondence between Lie bialgeb-
roids and pairs of transversal Dirac structures in a Courant algebroid.

(ii) There is a 1-1 correspondence between quasi Lie bialgebroids and Dirac struc-
tures with transversal isotropic complements in a Courant algebroid.

Proof. The proof of (i) can be found in [13], and (ii) was proved in [20, 19]. Below we
give an explicit formula describing such a correspondence, which will be needed later.

Let (A, δ, φ) be a quasi Lie bialgebroid. Let ρA∗ : A∗ → T M be the bundle map
given by

ρA∗(ξ)( f ) = ξ(δ f ), ∀ξ ∈ A∗, ∀ f ∈ C∞(M).

Introduce a bracket on �(A∗) by

[ξ, η]A∗(X) = (ρA∗ξ)(ηX)− (ρA∗η)(ξ X)− (δX)(ξ, η).

Note that (A∗, ρA∗ , [·, ·]A∗) is in general not a Lie algebroid. Let E = A∗ ⊕ A and
ρ : E → T M be the bundle map

ρ(ξ + X) = ρA∗(ξ) + ρA(X).

Define a non-degenerate symmetric pairing on E by

〈ξ + X, η + Y 〉 = 1
2

(
ξ(Y ) + η(X)

)
,

and a bracket �·, ·� on �(E) by

�X, Y � = [X, Y ]A,

�ξ, η� = [ξ, η]A∗ + φ(ξ, η, ·), (4)

�X, ξ� = (
iXδA∗ξ + 1

2δA∗(ξ X)
)− (

iξ δA X + 1
2δA(ξ X)

)
,

for all X, Y ∈ �(A) and ξ, η ∈ �(A∗). Here δA∗ : �(∧•A∗) → �(∧•+1 A∗) is the
derivation given by Eq. (3). Then (E, 〈·, ·〉, �·, ·�, ρ) is a Courant algebroid.

Conversely, assume that (E, 〈·, ·〉, �·, ·�, ρ) is a Courant algebroid, and A is a Dirac
structure with an isotropic complement B. The duality pairing

A ⊗ B → R : X ⊗ ξ 
→ 2〈ξ, X〉
identifies B with A∗. Let φ be the element in �(∧3 A) defined by

φ(ξ, η, ζ ) = 2〈�ξ, η�, ζ 〉, ∀ξ, η, ζ ∈ �(B), (5)

ρB = ρ|B be the restriction of ρ to B and [·, ·]B be the bracket on �(B) such that

�ξ, η�− [ξ, η]B ∈ �(A), ∀ξ, η ∈ �(B). (6)

Define a derivation δ : �(∧•A)(∼= �(∧•B∗))→ �(∧•+1 A)(∼= �(∧•+1 B∗) as in Eq.
(3). The triple (A, δ, φ) becomes a quasi-Lie bialgebroid. ��
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3. Poisson Quasi-Nijenhuis Manifolds

Let M be a smooth manifold, π a Poisson bivector field, and N : T M → T M a
(1, 1)-tensor.

Definition 3.1 ([11]). The bivector field π and the tensor N are said to be compatible
[12] if

N ◦π� = π�◦N T and C N
π� = 0, (7)

where

C N
π�(α, β) := [α, β]Nπ� − ([N Tα, β]π� + [α, N Tβ]π� − N T[α, β]π�

)

and

[α, β]B := LBα(β)− LBβ(α)− d
(
β(Bα)

)
(8)

for all α, β ∈ 	1(M) and any skew-symmetric bundle map B : T ∗M → T M.

The (1, 1)-tensor N is said to have zero Nijenhuis torsion if

[N X, NY ] − N
([N X, Y ] + [X, NY ] − N [X, Y ]) = 0, ∀X, Y ∈ X(M).

In [17], Magri and Morosi defined Poisson Nijenhuis manifolds as triples (M, π, N )

such that π and N are compatible and the Nijenhuis torsion of N vanishes.
This definition is motivated by the following

Fact 3.2 ([12, 21]). Assume that π ∈ X2(M) is a Poisson tensor and N : T M → T M
a (1, 1)-tensor on M . The tensor πN defined by

πN (α, β) := β(Nπ�α), ∀α, β ∈ 	1(M)

is skew-symmetric if, and only if, N ◦π� = π ◦�N T . In this case, we have

(i) [π, πN ] = 0 if C N
π� = 0;

(ii) [πN , πN ] = 0 if the Nijenhuis torsion of N vanishes.

Moreover the converse is true when π is non-degenerate.

Hence, any Poisson Nijenhuis manifold (M, π, N ) is endowed with a bi-Hamiltonian
structure (π, πN ), i.e.

[π, π ] = 0, [π, πN ] = 0, [πN , πN ] = 0.

Similarly, one can define Poisson quasi-Nijenhuis manifolds.
Let iN be the degree 0 derivation of (	•(M),∧) defined by

(iN α)(X1, . . . , X p) =
p∑

i=1

α(X1, . . . , N Xi , . . . , X p), ∀α ∈ 	p(M).

Definition 3.3. A Poisson quasi-Nijenhuis manifold is a quadruple (M, π, N , φ), where
π ∈ X2(M) is a Poisson bivector field, N : T M → T M is a (1, 1)-tensor compatible
with π , and φ is a closed 3-form on M such that

[N X, NY ] − N
([N X, Y ] + [X, NY ] − N [X, Y ]) = π�(iX∧Y φ), ∀X, Y ∈ X(M)

and iN φ is closed.
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It is well known that, on a Poisson manifold (M, π), the bracket on 	1(M) associated
to the bundle map π� through Eq. (8) makes T ∗M into a Lie algebroid with anchor
π� : T ∗M → T M . The usual cotangent bundle will be denoted by (T ∗M)π when
equipped with this Lie algebroid structure. More precisely, we have the following

Fact 3.4 ([2]). Let π be a bivector field on M . Then [π, π ] = 0 if, and only if, (T ∗M)π
is a Lie algebroid.

On the other hand, defining a bracket [·, ·]N on X(M) by

[X, Y ]N = [N X, Y ] + [X, NY ] − N [X, Y ], ∀X, Y ∈ X(M)

as in [11], and considering N : T M → T M as an anchor map, we obtain a degree 1
derivation dN of (	•(M),∧) inspired by Eq. (3):

(dN α)(X0, X1, . . . , Xn) =
n∑

i=0

(−1)i (N Xi )α(X0, . . . , X̂i , . . . , Xn)

+
∑

i< j

(−1)i+jα([Xi , X j ]N , X0, . . . , X̂i , . . . , X̂ j , . . . , Xn).

(9)

Moreover, as proved in [11], we have the following identity

dN = [iN , d] = iN ◦d − d◦iN . (10)

The following proposition extends a result of Kosmann-Schwarzbach [11, Prop. 3.2].

Proposition 3.5. The quadruple (M, π, N , φ) is a Poisson quasi-Nijenhuis manifold if,
and only if,

(
(T ∗M)π , dN , φ

)
is a quasi Lie bialgebroid and φ is a closed 3-form.

This is an immediate consequence of Fact 3.4 and the following two lemmas.

Lemma 3.6 ([11, Proposition 3.2]). Assume that π ∈ X2(M) is a Poisson tensor and
N : T M → T M a (1, 1)-tensor on M. The differential dN is a derivation of the graded
Lie algebra (	•(M), [·, ·]π�) if, and only if, π and N are compatible.

Lemma 3.7. Let (M, π) be a Poisson manifold and N : T M → T M a (1, 1)-tensor
compatible with π�. Then d2

N = [φ, ·]π� if, and only if,

[N X, NY ] − N ([N X, Y ] + [X, NY ] − N [X, Y ]) = π�(iX∧Y φ), ∀X, Y ∈ X(M)

and π#◦(dφ)� = 0, where (dφ)� : ∧3T M → T ∗M is the bundle map defined by
(dφ)�(u, v, w) = iu∧v∧wdφ, ∀u, v, w ∈ T M.

Proof. It follows from an easy computation that
(
d2

N f − [φ, f ]π�

)
(X, Y ) = (d f )

([N X, NY ] − N ([N X, Y ]
+ [X, NY ] − N [X, Y ])− π�(iX∧Y φ)

)

for all f ∈ C∞(M). Moreover, since d◦dN + dN ◦d = 0, one has

d2
N (d f )− [φ, d f ]π� = d(d2

N f )− (
d[φ, f ]π� − [dφ, f ]π�

)

= d(d2
N f − [φ, f ]π�) + [dφ, f ]π� .
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Hence, d2
N − [φ, ·]π� vanishes on 0- and exact 1-forms if, and only if,

[N X, NY ] − N ([N X, Y ] + [X, NY ] − N [X, Y ]) = π�(iX∧Y φ), ∀X, Y ∈ X(M)

and [dφ, f ]π� = 0, ∀ f ∈ C∞(M). The latter is easily seen to be equivalent to
π#◦(dφ)� = 0. And in this case, since both d2

N and [φ, ·]π� are derivations with re-
spect to ∧, we get d2

N = [φ, ·]π� . ��
As an immediate consequence, we obtain the following result of Kosmann-Schwarz-

bach [11].

Corollary 3.8. The triple (M, π, N ) is a Poisson Nijenhuis manifold if, and only if,
((T ∗M)π , dN ) is a Lie bialgebroid.

We now turn our attention to the particular case where the Poisson bivector field π is
non-degenerate. Together with Lemma 3.6, the following two lemmas give another proof
of the equivalence between the relation [π, πN ] = 0 and the compatibility condition (7)
when π is non-degenerate (see Fact 3.2).

Lemma 3.9. Assume that π ∈ X2(M) is a Poisson tensor and N : T M → T M a
(1, 1)-tensor on M. Then πN is a bivector field such that [π, πN ] = 0 if, and only if, all
the squares in the following diagram commute.

0 �� C∞(M)

id
��

dN �� 	1(M)
dN ��

π�

��

	2(M)
dN ��

π�

��

	3(M)
dN ��

π�

��

· · ·

0 �� C∞(M) [πN ,·]
�� X1(M) [πN ,·]

�� X2(M) [πN ,·]
�� X3(M) [πN ,·]

�� · · ·
(11)

Proof. We have π�N T = Nπ� (i.e. πN is a bivector field) if, and only if, ∀ f ∈ C∞(M),

π�N T d f = Nπ�d f

⇔ π�iN d f = π
�
N d f

⇔ π�dN f = [πN , f ]. (12)

And [πN , π ] = 0 is equivalent to

[πN , π ]�(d f ) = 0

⇔ [[πN , π ], f ] = 0

⇔ [[πN , f ], π ] + [πN , [π, f ]] = 0

⇔ [π�
N d f, π ] + [πN , π�d f ] = 0

⇔ [π, π�N T d f ] = [πN , π�d f ]
⇔ [π, π�(iN d f )] = [πN , π�d f ]
⇔ π�d(iN d f ) = [πN , π�d f ]
⇔ π�dN (d f ) = [πN , π�d f ] (13)

for all f ∈ C∞(M). Since both π�◦dN and [πN , π�(·)] are derivations of (	•(M),∧),
the equivalence follows from Eqs. (12)–(13). ��
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Lemma 3.10. Assume that π ∈ X2(M) is a non-degenerate Poisson tensor, and N :
T M → T M is a (1, 1)-tensor on M. If πN is a bivector field and Diagram (11) com-
mutes, then dN is a derivation of [·, ·]π� .

Proof. Since π is Poisson, we have

π�[α, β]π� = [π�α, π�β], ∀α, β ∈ 	•(M).

Then, the Jacobi identity for the Schouten bracket gives

[πN , π�[α, β]π� ] = [[πN , π�α], π�β] + [π�α, [πN , π�β]],
which can be rewritten as

π�dN
([α, β]π�

) = π�
([dN α, β]π� + [α, dN β]π�

)

since π�◦dN = [πN , π�(·)]. The conclusion follows from the invertibility of π�. ��
The previous lemmas are used to prove the following

Proposition 3.11. (i) Let (M, π, N , φ) be a Poisson quasi-Nijenhuis manifold. Then,

[π, πN ] = 0, (14)

and

[πN , πN ] = 2π�(φ). (15)

(ii) Conversely, assume that π ∈ X2(M) is a non-degenerate Poisson bivector field,
N : T M → T M is a (1, 1)-tensor and φ is a closed 3-form. If Eqs. (14)–(15) are
satisfied, then (M, π, N , φ) is a Poisson quasi-Nijenhuis manifold.

Proof. (i) Fact 3.2 implies Eq. (14). By Proposition 3.5,
(
(T ∗M)π , dN , φ

)
is a quasi-

Lie bialgebroid. It is simple to see that its induced bivector field on M as in Prop-
osition 4.8 of [9] is πN . From Proposition 4.8 of [9], it follows that [πN , πN ] =
2π�(φ).

(ii) Since [π, πN ] = 0, Lemma 3.9 implies that π�◦dN = [πN , π�(·)] and Lemma
3.10 implies that dN is a derivation of [·, ·]π� . Hence π and N are compatible
by Lemma 3.6. Since π is non-degenerate, we may apply (π�)−1 to Eq. (15).
Then, making use of Lemma 3.9, we get back to d2

N = [φ, ·]π� . Equation (15)
and the graded Jacobi identity yield [πN , π�(φ)] = 0. Applying (π�)−1, we get
dN φ = 0. ��

Corollary 3.12. Let ω be a symplectic 2-form and φ a closed 3-form on M. Then
(M, ω, N , φ) is a symplectic quasi-Nijenhuis manifold if and only if

[ωN , ωN ] = 2φ and dωN = 0,

where [·, ·] stands for the Schouten bracket on 	•(M) induced from the Lie algebroid
(T ∗M)π , and ωN is the 2-form on M defined by

ωN (X, Y ) = ω(N X, Y ), ∀X, Y ∈ X(M).

Proof. It is well known that when π is non-degenerate, π� is an isomorphism of differ-
ential Gerstenhaber algebras from (	•(M), d, [·, ·]) to (X•(M), [π, ·], [·, ·]) [23, 10].
The conclusion thus follows immediately from Proposition 3.11 since π�ωN = πN . ��
Remark 3.13. Poisson Nijenhuis structures arise naturally in the study of integrable sys-
tems. It would be interesting to find applications of Poisson quasi-Nijenhuis structures
in integrable systems as well.
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4. Universal Lifting Theorem

In this section, we recall the universal lifting theorem and its basic ingredients, as it
plays a crucial role in the following sections. For details, see [9].

Let � ⇒ M be a Lie groupoid, A→ M its Lie algebroid and � ∈ Xk(�) a k-vector
field on �. Define F� ∈ C∞(T ∗�×�

(k). . . ×�T ∗�) by

F�(μ1, . . . , μk) = �(μ1, . . . , μk).

Definition 4.1. A k-vector field � ∈ Xk(�) is multiplicative if, and only if, F� is a

1-cocycle with respect to the groupoid T ∗�×�
(k)· · · ×�T ∗� ⇒ A∗×M

(k). . . ×M A∗.

Remark 4.2. It is simple to see that a bivector field � is multiplicative if, and only if, the
graph of the multiplication � ⊂ � × � × � is coisotropic with respect to �⊕�⊕ �̄,
where �̄ denotes the opposite bivector field to �.

Example 4.3. If P ∈ �(∧k A), then
−→
P −←−P is multiplicative, where

−→
P and

←−
P denote,

respectively, the right and left invariant k-vector fields on � corresponding to P .

By Xk
mult(�) we denote the space of all multiplicative k-vector fields on �. And

Xmult(�) =⊕
k Xk

mult(�).

Proposition 4.4 ([9]). The vector space Xmult(�) is closed under the Schouten bracket,
and therefore is a graded Lie algebra.

It is simple to show that for any given � ∈ Xk
mult(�) and any X ∈ �(∧i A), the

(k + i − 1)-vector field [←−X ,�] is always left invariant. Define
←−−
δ� X ∈ �(∧(k+i−1) A) by

←−−
δ� X = [←−X ,�].

Thus one obtains a linear operator δ� : �(∧i A) → �(∧(k+i−1) A). Here we use the
following convention: �(∧0 A) ∼= C∞(M) and for any f ∈ C∞(M),

←−
f = β∗ f . One

easily checks that the following identities are satisfied:

δ�(P ∧ Q) = (δ� P) ∧ Q + (−1)p(k−1) P ∧ δ�Q,

δ�[P, Q] = [δ� P, Q] + (−1)(p−1)(k−1)[P, δ�Q],
for all P ∈ �(∧p A) and Q ∈ �(∧q A). This leads to the following definition of k-differ-
entials. Recall that for any Lie algebroid A→ M , (�(∧•A),∧, [·, ·]) is a Gerstenhaber
algebra [23].

Definition 4.5. A k-differential on a Lie algebroid A is a degree (k − 1) derivation of
the Gerstenhaber algebra (�(∧•A),∧, [·, ·]); i.e. a linear operator

δ : �(∧•A)→ �(∧•+(k−1) A)

satisfying

δ(P ∧ Q) = (δP) ∧ Q + (−1)p(k−1) P ∧ δQ,

δ[P, Q] = [δP, Q] + (−1)(p−1)(k−1)[P, δQ],
for all P∈�(∧p A) and Q∈�(∧q A). The set of k-differentials on A is denoted by Ak(A).
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The space of all multi-differentials A(A) =⊕
k Ak(A) becomes a graded Lie algebra

when endowed with the graded commutator:

[δ1, δ2] = δ1◦δ2 − (−1)(k−1)(l−1)δ2◦δ1, where δ1 ∈ Ak(A) and δ2 ∈ Al(A).

Below is a list of basic examples.

Examples 4.6. (i) When A is a Lie algebra g, then k-differentials are in one-one cor-
respondence with Lie algebra 1-cocycles δ : g→ ∧kg with respect to the adjoint
action.

(ii) The 0-differentials correspond to sections φ ∈ �(A∗) such that dAφ = 0, i.e. Lie
algebroid 1-cocycles with trivial coefficients.

(iii) The 1-differentials correspond to the infinitesimals of Lie algebroid automor-
phisms.

(iv) If P ∈ �(∧k A), then adP = [P, ·] is clearly a k-differential, which is called the
coboundary k-differential associated to P .

(v) A Lie bialgebroid can be seen as a Lie algebroid together with a 2-differential of
square zero. The converse is also true.

From the previous discussion, we know that there exists a linear map

X•mult(�)→ A•(A) : � 
→ δ�,

which is a Lie algebra homomorphism since the graded Jacobi identity satisfied by the
Schouten bracket implies that

[δ�, δ�′ ] = δ[�,�′]. (16)

Moreover, one has the following

Universal Lifting Theorem ([9]). Assume that � ⇒ M is a target-connected and tar-
get-simply connected Lie groupoid with Lie algebroid A. Then

X•mult(�)→ A•(A) : � 
→ δ�

is an isomorphism of graded Lie algebras.

5. Symplectic Nijenhuis Groupoids

Definition 5.1. A symplectic Nijenhuis groupoid is a symplectic groupoid (� ⇒ M, ω̃)

equipped with a multiplicative (1, 1)-tensor Ñ : T � → T � such that (�, ω̃, Ñ ) is a
symplectic Nijenhuis structure.

The main result of this section is the following

Theorem 5.2. (i) The unit space of a symplectic Nijenhuis groupoid is a Poisson
Nijenhuis manifold.

(ii) Every integrable Poisson Nijenhuis manifold is the unit space of a unique target-
connected, target-simply connected symplectic Nijenhuis groupoid.
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Here, by an integrable Poisson Nijenhuis manifold, we mean the corresponding
Poisson structure is integrable, i.e. it admits an associated symplectic groupoid. See
[5, 6] for the solution of the integrability problem for Poisson manifolds and, more
generally, Lie algebroids.

Recall that a Poisson Nijenhuis manifold (M, π, N ) gives rise to a Lie bialgebroid
((T ∗M)π , dN ) according to Corollary 3.8. The following lemma gives a useful charac-
terization of those Lie bialgebroids arising from Poisson Nijenhuis structures.

Lemma 5.3. Let (M, π) be a Poisson manifold. A Lie bialgebroid ((T ∗M)π , δ) is in-
duced by a Poisson Nijenhuis structure if and only if [δ, d] = 0, where d stands for the
de Rham differential.

Proof. If (M, π, N ) is a Poisson Nijenhuis manifold, then dN = iN ◦d − d◦iN . Thus

[dN , d] = dN ◦d + d◦dN = (iN ◦d − d◦iN )◦d + d◦(iN ◦d − d◦iN ) = 0.

Conversely, given a Lie bialgebroid ((T ∗M)π , δ) such that [δ, d] = 0, one obtains
a Lie algebroid structure on T M . Let N : T M → T M be its anchor map. Thus
δ = dN : C∞(M) → 	1(M). Since [δ, d] = 0, we have ∀ f ∈ C∞(M), δ(d f ) =
−dδ f = −ddN f = dN (d f ). It thus follows that δ = dN on any differential forms
since both δ and dN are derivations and they agree on 0- and exact 1-forms. According
to Corollary 3.8, it follows that (M, π, N ) is a Poisson Nijenhuis manifold. ��
Proof of Theorem 5.2. (i) From symplectic Nijenhuis groupoids to Poisson

Nijenhuis manifolds. Assume that (�, ω̃, Ñ ) is a symplectic Nijenhuis grou-
poid. Let π̃ be the bivector field on � which is the inverse of ω̃ and let π̃Ñ ∈ X2(�)

be the bivector field defined by π̃
�

Ñ
= Ñ ◦π̃ �.

• Since [π̃ , π̃ ] = 0, the induced bivector field π = t∗π̃ on the base manifold
of the symplectic groupoid � ⇒ M is Poisson [22]. The Lie algebroid of
�→ M is isomorphic to (T ∗M)π [2]. And the multiplicative bivector field π̃

corresponds to a 2-differential on (T ∗M)π , which is the de Rham differential
d. That is, ((T ∗M)π , d) is the Lie bialgebroid corresponding to the symplectic
groupoid (�, ω̃).

• As pointed out in Fact 3.2, π̃Ñ is a Poisson tensor on � [16, 12, 21]. Moreover,
π̃Ñ is a multiplicative bivector field since Ñ is a multiplicative (1, 1)-tensor
and π̃ is a multiplicative bivector field. In other words, (�, π̃Ñ ) is a Pois-
son groupoid [14]. Let δπ̃Ñ

: 	•(M) → 	•+1(M) be the 2-differential on
(T ∗M)π induced by the multiplicative Poisson bivector field π̃Ñ on �. Since
[π̃Ñ , π̃Ñ ] = 0, the universal lifting theorem implies that

0 = δ[π̃Ñ ,π̃Ñ ] = [δπ̃Ñ
, δπ̃Ñ
] = δπ̃Ñ

◦δπ̃Ñ
+ δπ̃Ñ

◦δπ̃Ñ
= 2δ2

π̃Ñ
.

Thus, ((T ∗M)π , δπ̃Ñ
) is a Lie bialgebroid.

• Likewise, it is standard that [π̃Ñ , π̃ ] = 0. Thus the universal lifting theorem
implies that [δπ̃Ñ

, d] = 0. According to Lemma 5.3, δπ̃Ñ
= dN for some

Nijenhuis tensor N on M and (M, π, N ) is a Poisson Nijenhuis manifold.
(ii) From Poisson Nijenhuis manifolds to symplectic Nijenhuis grou-

poids. Given a Poisson Nijenhuis manifold (M, π, N ), then ((T ∗M)π , dN ) is a
Lie bialgebroid by Corollary 3.8. Assume that (T ∗M)π is integrable (see [5, 6]
for the integrability condition) and (� ⇒ M, ω̃) is a target-connected and target
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simply-connected symplectic groupoid of M . Since d2
N = 0 and [dN , d] = 0, the

universal lifting theorem implies that dN corresponds to a multiplicative Poisson
bivector field π̃Ñ on � such that [π̃Ñ , π̃ ] = 0, where π̃ is the Poisson tensor

on � inverse to ω̃. Let Ñ = π̃
�

Ñ
◦ω̃� : T � → T �. Then it is clear that Ñ is a

multiplicative (1, 1)-tensor, and (�, ω̃, Ñ ) is a symplectic Nijenhuis groupoid.
Since these two constructions are inverse to each other, the theorem is proved. ��

6. Symplectic Quasi-Nijenhuis Groupoids

The goal of this section is to generalize Theorem 5.2 to the quasi-setting. More precisely,
we will give an integration theorem for Poisson quasi-Nijenhuis manifolds.

Definition 6.1. A symplectic quasi-Nijenhuis groupoid is a symplectic groupoid (� ⇒
M, ω̃) equipped with a multiplicative (1, 1)-tensor Ñ : T �→ T � and a closed 3-form
φ ∈ 	3(M) such that

(
�, ω̃, Ñ , t∗φ − s∗φ

)
is a symplectic quasi-Nijenhuis structure.

The following result is a generalization of Theorem 5.2.

Theorem 6.2. (i) The unit space of a symplectic quasi-Nijenhuis groupoid is a Pois-
son quasi-Nijenhuis manifold.

(ii) Every integrable Poisson quasi-Nijenhuis manifold (M, π, N , φ) is the unit space
of a unique target-connected and target-simply connected symplectic quasi-Ni-
jenhuis groupoid

(
� ⇒ M, ω̃, Ñ , t∗φ − s∗φ

)
.

Proof. The proof is similar to that of Theorem 5.2, so we will merely sketch it.
Assume that (M, π, N , φ) is an integrable Poisson quasi-Nijenhuis manifold. Let

� ⇒ M be a target-connected and target-simply connected groupoid integrating the
Lie algebroid (T ∗M)π . By Proposition 3.5,

(
(T ∗M)π , dN , φ

)
is a quasi-Lie bialge-

broid, which integrates to a quasi-Poisson groupoid by the universal lifting theorem. Let
π̃Ñ ∈ X(�) be the bivector field on � corresponding to dN . Then we have

1
2 [π̃Ñ , π̃Ñ ] =

−→
φ −←−φ .

On the other hand, we know that � ⇒ M is a symplectic groupoid, whose correspond-
ing Lie bialgebroid is

(
(T ∗M)π , d

)
. The symplectic form on � is denoted by ω̃. Let

π̃ ∈ X2(�) be its corresponding Poisson tensor. Since [dN , d] = 0, we have [π̃Ñ , π̃ ] = 0

according to the universal lifting theorem. Let Ñ = π̃
�

Ñ
◦ω̃� : T �→ T �. Then it is clear

that Ñ is a multiplicative (1, 1)-tensor. Since
−→
φ −←−φ = π̃ �(t∗φ−s∗φ), from Proposition

3.11, it follows that
(
�, ω̃, Ñ , t∗φ − s∗φ

)
is a symplectic quasi-Nijenhuis groupoid.

The other direction can be proved by going backwards. ��

Remark 6.3. Note that ω̃�(π̃Ñ ) is a multiplicative 2-form on � ⇒ M . It would be inter-
esting to see what is the corresponding Dirac structure on M and how the integration
result in [1] can be applied to this situation.
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7. Generalized Complex Structures

This section is devoted to the investigation of the relationship between generalized com-
plex structures and Poisson quasi-Nijenhuis structures. Let us first recall the definition
of generalized complex structures [8, 7].

Definition 7.1. A generalized complex structure on a manifold M is a bundle map

J : T M ⊕ T ∗M → T M ⊕ T ∗M

satisfying the algebraic properties

J 2 = −I and 〈Jv, Jw〉 = 〈v,w〉 (17)

and the integrability condition

�Jv, Jw�− �v,w�− J (�Jv,w� + �v, Jw�) = 0

∀v,w ∈ �(T M⊕T ∗M). Here 〈·, ·〉 and �·, ·� are the pairing and bracket on the standard
Courant algebroid T M ⊕ T ∗M as in Example 2.2.

The first two algebraic conditions (17) imply that J must be of the form

J =
(

N π�

σ� −N∗
)

, (18)

where π ∈ X2(M) is a bivector field, σ ∈ 	2(M) is a 2-form and N : T M → T M
is a (1, 1)-tensor. Here σ� : T M → T ∗M is the map given by (σ� X)(Y ) = σ(X, Y ),
∀X, Y ∈ X(M).

On the other hand, a Courant algebroid can be deformed using a bundle map J . More
precisely, let (E, 〈·, ·〉, �·, ·�, ρ) be a Courant algebroid over M and let

E
J ��

��

E

��
M

id
�� M

be a vector bundle automorphism of E → M . Consider

• the inner product
〈A, B〉J = 〈J A, J B〉,

• the bracket

�A, B�J = �J A, B� + �A, J B�− J�A, B�, (19)

• and the bundle map
ρJ = ρ◦J

induced by J .
A natural question is

Question 7.2. When is the quadruple (E, 〈·, ·〉J , �·, ·�J , ρJ ) still a Courant algebroid?

The next proposition gives a trivial sufficient condition.
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Proposition 7.3. The quadruple (E, 〈·, ·〉J , �·, ·�J , ρJ ) is a Courant algebroid if

�J A, J B� + J 2�A, B�− J
(
�J A, B� + �A, J B�

) = 0, ∀A, B ∈ �(E).

Moreover, in this case, J is a Courant algebroid isomorphism from (E, 〈·, ·〉J , �·, ·�J , ρJ )

to (E, 〈·, ·〉, �·, ·�, ρ).

We now give an answer to Question 7.2 in the special case of the standard Courant
algebroid T M ⊕ T ∗M , where J satisfies Eqs. (17), and is given by Eq. (18) .

Lemma 7.4. Assume that J : T M⊕T ∗M → T M⊕T ∗M is given by Eq. (18). Let �·, ·�J
be the deformed bracket on X(M)⊕	1(M) as in Eq. (19). Then, for all X, Y ∈ X(M)

and ξ, η ∈ 	1(M), we have

�ξ, η�J = [ξ, η]π�, (20)

�X, Y �J = [X, Y ]N + (dσ)(X, Y, ·), (21)

�X, ξ�J =
([X, π�ξ ] − π�(LX ξ − 1

2 d(ξ X))
)

+
(LN X ξ − LX (N T ξ)

+ N T (LXξ − 1
2 d(ξ X))

)
. (22)

Proof. This follows from a straightforward computation using Eqs. (2) and (19), and is
left for the reader. ��
Proposition 7.5. Let J : T M ⊕ T ∗M → T M ⊕ T ∗M be a bundle map which satisfies
Eqs. (17), and is given by Eq. (18). Then (T M ⊕ T ∗M, 〈·, ·〉J , �·, ·�J , ρJ ) is a Courant
algebroid if, and only if, (M, π, N , dσ) is a Poisson quasi-Nijenhuis manifold. And in
this case, (T M ⊕ T ∗M, 〈·, ·〉J , �·, ·�J , ρJ ) is naturally identified with the double of the
quasi-Lie bialgebroid

(
(T ∗M)π , dN , dσ

)
.

Proof. Assume that (T M ⊕ T ∗M, 〈·, ·〉J , �·, ·�J , ρJ ) is a Courant algebroid. It is clear
that A := T ∗M and B := T M are transversal, maximal isotropic subbundles. By Eq.
(20), A = T ∗M is a Dirac structure with the induced bracket [·, ·]π� . Thus, according to
Theorem 2.6, we obtain a quasi-Lie bialgebroid. The construction of the corresponding
derivation δ of (	•(M),∧, [·, ·]π�) and the twisting 3-form φ was outlined in the proof
of Theorem 2.6. In the present situation, we have

ρB(X) = ρJ (X) = ρ(J X) = ρ(N X + σ� X) = N X, ∀X ∈ T M

and, combining Eqs. (21) and (6),

[X, Y ]B = [X, Y ]N , ∀X, Y ∈ X(M).

Therefore, comparing Eqs. (3) and (9), we conclude that δ = dN . And, combining Eqs.
(5) and (21), we get

φ(X, Y, Z) = 2〈�X, Y �J , Z〉J = 2〈J �X, Y �J , J Z〉 = 2〈�X, Y �J , Z〉
= 2〈[X, Y ]N + dσ(X, Y, ·), Z〉 = dσ(X, Y, Z), ∀X, Y, Z ∈ X(M).

Hence
(
(T ∗M)π , dN , dσ

)
is a quasi-Lie bialgebroid or, equivalently according to Prop-

osition 3.5, (M, π, N , dσ) is a Poisson quasi-Nijenhuis manifold.
Conversely, assume that (M, π, N , dσ) is a Poisson quasi-Nijenhuis manifold. By

Proposition 3.5, ((T ∗M)π , dN , dσ) is a quasi-Lie bialgebroid. Its double E is a Courant
algebroid. We will show that E is indeed isomorphic to (T M⊕T ∗M, 〈·, ·〉J , �·, ·�J , ρJ ).



724 M. Stiénon, P. Xu

First, it is simple to check that their anchors and non-degenerate symmetric pairings
coincide. It remains to check that their brackets coincide. According to Eq. (4), the
bracket �·, ·� on �(E) is given by

�ξ, η� = [ξ, η]π , (23)

�X, Y � = [X, Y ]N + (dσ)(X, Y, ·), (24)

�X, ξ� = (
iXδT Mξ + 1

2δT M (ξ X)
)− (

iξ δT ∗M X + 1
2δT ∗M (ξ X)

)
(25)

for all X, Y ∈ X(M) and ξ, η ∈ 	1(M). In our case, we have

δT ∗M = [π, ·] and δT M = dN .

It follows from a straightforward verification that the right hand sides of Eqs. (20)–(22)
and (23)–(25) coincide. Therefore, (T M⊕T ∗M, 〈·, ·〉J , �·, ·�J , ρJ ) is indeed a Courant
algebroid. ��

We are now ready to state the main result of this section.

Theorem 7.6. Assume that J : T M ⊕ T ∗M → T M ⊕ T ∗M as given by Eq. (18)
satisfies Eqs. (17). Then the following are equivalent

• J is a generalized complex structure;
• (M, π, N , dσ) is a Poisson quasi-Nijenhuis manifold such that

(T M)N ⊕ (T ∗M)π
J−→ T M ⊕ T ∗M

is a Courant algebroid isomorphism.

Here (T M)N ⊕ (T ∗M)π denotes the Courant algebroid corresponding to the quasi-Lie
bialgebroid ((T ∗M)π , dN , dσ).

Proof. By Proposition 7.3, J is a generalized complex structure if, and only if, (T M ⊕
T ∗M, 〈·, ·〉J , �·, ·�J , ρJ ) is a Courant algebroid and (T M ⊕ T ∗M, 〈·, ·〉J , �, �J , ρJ )

J−→
(T M ⊕ T ∗M, 〈·, ·〉, �·, ·�, ρ) is a Courant algebroid isomorphism. The result follows
immediately from Proposition 7.5. ��

Since any generalized complex structure naturally gives rise to a Poisson quasi-
Nijenhuis manifold, as an immediate consequence of Theorem 6.2, we have the follow-
ing

Theorem 7.7. Let J be a generalized complex structure as given by Eq. (18), and
(� ⇒ M, ω̃) a target-connected and target-simply connected symplectic groupoid
integrating (T ∗M)π . Then there is a multiplicative (1, 1)-tensor Ñ on � such that
(� ⇒ M, ω̃, Ñ , t∗dσ − s∗dσ) is a symplectic quasi-Nijenhuis groupoid.

Remark 7.8. Note that Theorem 3.3–3.4 in [4] essentially imply our Theorem 7.7. Our
proof is conceptual, while Crainic used a direct argument. It would be interesting to see
how Theorem 3.4 (ii) in [4] can be proved conceptually.
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