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Abstract: We describe the period matrix and other data on a higher genus Riemann
surface in terms of data coming from lower genus surfaces via an explicit sewing pro-
cedure. We consider in detail the construction of a genus two Riemann surface by either
sewing two punctured tori together or by sewing a twice-punctured torus to itself. In
each case the genus two period matrix is explicitly described as a holomorphic map
from a suitable domain (parameterized by genus one moduli and sewing parameters) to
the Siegel upper half plane H2. Equivariance of these maps under certain subgroups of
Sp(4, Z) is shown. The invertibility of both maps in a particular domain of H2 is also
shown.

1. Introduction

This paper is the second of a series intended to develop a mathematically rigorous theory
of chiral partition and n-point functions on Riemann surfaces at all genera, based on the
theory of vertex operator algebras. The purpose of the paper is to provide a rigorous and
explicit description of the period matrix and other data on a higher genus Riemann sur-
face in terms of data coming from lower genus surfaces via an explicit sewing procedure.
In particular, we consider and compare in some detail the construction of a genus two
Riemann surface in two separate ways: either by sewing two tori together or by sewing a
torus to itself. Although our primary motivation is to lay the foundations for the explicit
construction of the partition and n-point functions for a vertex operator algebra on higher
genus Riemann surfaces [MT2], we envisage that the results herein may also be of wider
interest.
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�� Supported by The Millenium Fund, National University of Ireland, Galway.
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As is well-known (cf. [H] for a systematic development), the axioms for a vertex
(operator) algebra V amount to an algebraicization of aspects of the theory of glu-
ing spheres, i.e., compact Riemann surfaces of genus zero. A quite complete theory of
(bosonic) n-point functions at genus one was developed by Zhu in his well-known paper
[Z]. For particularly well-behaved vertex operator algebras (we have in mind rational
vertex operator algebras in the sense of [DLM]), Zhu essentially showed that the n-
point functions, defined as particular graded traces over V , are elliptic and have certain
SL(2, Z) modular-invariance properties1 with respect to the torus modular parameter
τ . A complete description of bosonic Heisenberg and lattice VOA n -point functions
is given in [MT1]. Apart from its intrinsic interest, modular-invariance is an important
feature of conformal field theory and its application to string theory e.g., [P, GSW].
Mathematically, it has been valuable in recent developments concerning the structure
theory of vertex operator algebras [DM1, DM2], and it may well play an important role
in geometric applications such as elliptic cohomology and elliptic genus. These are all
good reasons to anticipate that a theory of n -point functions at higher genus will be
valuable; another is the consistency of string theory at higher loops (genera). Our ulti-
mate goal, then, is to emulate Zhu’s theory by first defining and then understanding the
automorphic properties of n-point functions on a higher genus Riemann surface where
the modular variable τ is replaced by the period matrix Ω(g), a point in the Siegel upper
half-space Hg at genus g.

When one tries to implement the vision outlined above at genus g ≥ 2, difficulties
immediately arise which have no analog at lower genera [T]. In Zhu’s theory, there is a
clear relation between the variable τ and the relevant vertex operators: it is not the defi-
nition of n-point functions, but rather the elucidation of their properties, that is difficult.
At higher genus, the very definition of n-point function is less straightforward and raises
interesting issues. Many (but not all) of these are already present at genus 2, and it is
this case that we mainly deal with in the present paper.

A very general approach to conformal field theory on higher genus Riemann surfaces
has been discussed in the physics literature [MS, So, DP, VV, P]. In particular, there
has been much progress in recent years in understanding genus two superstring theory
[DPI, DPVI, DGP]. The basic idea we follow is that by cutting a Riemann surface along
various cycles it can be reduced to (thrice) punctured spheres, and conversely one can
construct Riemann surfaces by sewing punctured spheres. It is interesting to note that
Zhu’s g = 1 theory is not formulated by sewing punctured spheres per se, but rather by
implementing a conformal map of the complex plane onto a cylinder. Tracing over V
has the effect of sewing the ends of the cylinder to obtain a torus. This idea does not gen-
eralize to the case when g = 2, and we must hew more closely to the sewing approach
of conformal field theory. Roughly speaking, what we do is sew tori together in order
to obtain a compact Riemann surface S of genus 2 and which is endowed with certain
genus 1 data encoded by V via the Zhu theory [T]. There are two essentially different
ways to obtain S (which, for simplicity, we take to have no punctures in this work) from
genus 1 data: either by sewing a pair of once-punctured complex tori, or by sewing a
twice punctured torus to itself (attaching a handle). These two sewing schemes will give
rise to seemingly different theories and different definitions of n-point functions. These
issues are discussed in detail in the sequel [MT2].

We now give a more technical introduction to the contents of the present paper.
Notwithstanding our earlier discussion of the role of vertex operators, they do not ap-
pear explicitly in the present work! We are concerned here exclusively with setting up

1 The general conjecture that the partition function is a modular function if V is rational remains open.
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foundations so that the ideas we have been discussing are rigorous and computationally
effective. Section 2 records the many modular and elliptic-type functions that we will
need. In the paper [Y], which is very important for us, Yamada developed a general
approach to computing the period matrix of a Riemann surface S obtained by sew-
ing Riemann surfaces S1, S2 (which may coincide) of smaller genus. In Sects. 3 and
4 we develop the theory in the case that S1 and S2 are distinct. We refer to this as the
ε -formalism, ε itself being a complex number which is a part of the data according to
which the sewing is performed. (See Fig. 1 below.) We begin in Sect. 3 with some of the
details of Yamada’s general theory, and make some explicit computations. In particular,
we introduce infinite matrices Aa for a = 1, 2, whose entries are certain weighted mo-
ments of the normalized differential of the second kind on Sa . These matrices determine
another infinite matrix X whose entries are weighted moments of the normalized differ-
ential of the second kind on S (Proposition 1), and this in turn determines the period
matrix Ω(g) of S (Theorem 3). In particular, the infinite matrix

I − A1 A2 (1)

plays an important role (I is the infinite unit matrix). The entries of this matrix depend
on data coming from Sa , and in particular they are power series in ε. We show (Theorem
2) that (1) has a well-defined determinant det(I − A1 A2) which is holomorphic for small
enough ε. Section 3 ends with some additional results concerning the holomorphy of
det(I − A1 A2) and Ω(g) in various domains.

In Sect. 4 we study in more detail the case in which the Sa have genus 1, so that they
have a modulus τa ∈ H1. The triple (τ1, τ2, ε) determines a genus 2 surface as long as
the three parameters in question satisfy a certain elementary inequality. This defines a
manifold Dε(τ1, τ2, ε) ⊆ H1 × H1 × C consisting of all such admissible triples. Asso-
ciating to this data the genus two period matrix Ω(2) = Ω(2)(τ1, τ2, ε) of S defines a
map

Fε : Dε(τ1, τ2, ε) → H2 (2)

(τ1, τ2, ε) �→ Ω(2)(τ1, τ2, ε)

which is important for everything that follows. When we introduce partition functions
in the ε-formalism at g = 2 in the sequel to the present paper [MT2], they will be
functions on Dε , not H2. The map Fε interpolates between the two domains. We obtain
(Theorem 4) an explicit expression for the genus 2 period matrix

Ω(2)(τ1, τ2, ε) =
(

Ω
(2)
11 Ω

(2)
12

Ω
(2)
12 Ω

(2)
22

)
(3)

determined by an admissible triple. Each Ω
(2)
i j turns out to be essentially a power series

in ε with coefficients which are2 quasimodular forms, i.e., certain polynomials in the
Eisenstein series E2(τi ), E4(τi ), E6(τi ) for i = 1, 2. Moreover Fε is an analytic map,
and we show (Theorem 5) that it is equivariant with respect to the action of a group
G ∼= (SL(2, Z)× SL(2, Z)) �Z2 (the wreathed product of SL(2, Z) and Z2). G embeds
into Sp(4, Z) in a standard way, and this defines the action of G on H2. The action
on Dε is explained in Subsect. 4.4. These calculations are facilitated by an alternate
description (Proposition 4 ) of the entries of (3) in terms of combinatorial gadgets that

2 Notation for modular and elliptic-type functions is covered in Sect. 2.
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we call chequered necklaces. They are certain kinds of graphs with nodes labelled by
positive integers and edges labelled by quasimodular forms, and they play a critically
important role in the sequel to the present paper. We show (Proposition 5) that about any
degeneration point p where ε = 0 (i.e., the two tori S1, S2 touch at a point), there is a
G-invariant neighborhood of p throughout which Fε is invertible.

Sections 5 and 6 are devoted to development of the corresponding formalism in the
case that S is obtained by self-sewing (i.e., attaching a handle to) a surface S1 of one
lower genus. We refer to this as the ρ-formalism. Although we are able to achieve results
that parallel the development of the ε-formalism outlined in the previous paragraph, it
is fair to say that of the two, the ρ-formalism is the more complicated. In Sect. 5 we
first discuss the results of Yamada (loc. cit.) in a general ρ -formalism, and calculate
weighted moments as before. This leads us to introduce the analog of (1), namely

I − R, (4)

where R is an infinite matrix whose entries are 2 × 2 block matrices determined by
weighted moments of the normalized differential of the second kind on S1. As before,
the entries of R are holomorphic in ρ, and we show (Theorem 7) that det(I −R) is defined
and holomorphic in a certain ρ-domain. The matrix R then determines the period matrix
on S (Theorem 8). We also discuss several sewing scenarios for self-sewing a sphere,
including one (Proposition 9) where the Catalan series, familiar from combinatorics [St],
plays an unexpected role.

In Sect. 6 we investigate in detail the self-sewing of a twice-punctured torus with
modulus τ ∈ H1 to form a genus two Riemann surface. As before sewing determines a
map

Fρ : Dρ(τ,w, ρ) → H2 (5)

(τ, w, ρ) �→ Ω(2)(τ, w, ρ),

where now Dρ(τ,w, ρ) ⊆ H1 ×C×C determines the admissible sewing parameters (w
describes the relative position of the punctures). Again we obtain (Theorem 9) explicit
formulas for the entries of the matrix

Ω(2)(τ, w, ρ) =
(

Ω
(2)
11 Ω

(2)
12

Ω
(2)
12 Ω

(2)
22

)
(6)

and show that Fρ is holomorphic. Roughly speaking, the entries of R and the Ω
(2)
i j in

this case are power series in ρ with coefficients which are quasimodular and elliptic
functions in the variables τ,w. We provide a combinatorial description of (6) in terms
of a notion of chequered necklace suitably modified compared to the ε case. A com-
plicating factor is that Ω

(2)
22 involves a logarithm of (the inverse square of) the prime

form on S. Because of this, it is necessary to pass to a covering space D̂ρ of Dρ before
equivariance properties can be considered. This is carried-out in Sect. 6.3, where we
construct a diagram

Dρ Fρ−→ H2

↖ ↗ F̂ρ

D̂ρ
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We show (Theorem 11) that the map F̂ρ is equivariant with respect to a group L
described as a semi-direct product of SL(2, Z) and the (nonabelian) Heisenberg group
H ∼= Z

1+2 (a 2-step nilpotent group with center Z). Again L acts on H2 via an embedding
into Sp(4, Z) and on D̂ρ in a manner prescribed in Theorem 10. In Subsect. 6.4 we obtain
the expected local invertibility of Fρ about a point of degeneration, which is a bit more
subtle than degeneration in the ε-formalism. One of the reasons for establishing the local
invertibility results is that once obtained, we have a way of comparing the two sewing
domains Dε and Dρ , at least in some regions, by looking at

(Fρ )−1 ◦ Fε . (7)

In the final Sect. 7, (7) is briefly discussed, where we observe that it is equivariant with
respect to a common subgroup of G and L isomorphic to SL(2, Z). The Appendix con-
cludes with the explicit formulas for Ω(2) to O(ε9) in the ε-formalism and to O(ρ5) in
the ρ -formalism.

2. Some Elliptic Functions

We briefly discuss a number of modular and elliptic-type functions that we will need.
The notation we introduce will be in force throughout the paper. The Weierstrass elliptic
function with periods3 σ, ς ∈ C

∗ is defined by

℘(z, σ, ς) = 1

z2 +
∑

m,n∈Z,(m,n) =(0,0)

[
1

(z − mσ − nς)2 − 1

(mσ + nς)2

]
. (8)

Choosing ς = 2π i and σ = 2π iτ (τ will always lie in the complex upper half-plane
H), we define

P2(τ, z) = ℘(z, 2π iτ, 2π i) + E2(τ )

= 1

z2 +
∞∑

k=2

(k − 1)Ek(τ )zk−2. (9)

Here, Ek(τ ) is equal to 0 for k odd, and for k even is the Eisenstein series [Se]

Ek(τ ) = − Bk

k! +
2

(k − 1)!
∑
n≥1

σk−1(n)qn .

Here and below, we take q = exp(2π iτ); σk−1(n) = ∑
d|n dk−1, and Bk is the kth

Bernoulli number defined by

t

et − 1
− 1 +

t

2
=
∑
k≥2

Bk
tk

k!

= 1

12
t2 − 1

720
t4 +

1

30240
t6 + O(t8).

3 The period basis is more usually denoted by ω1, ω2.
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P2 can be alternatively expressed as

P2(τ, z) = qz

(qz − 1)2 +
∑
n≥1

nqn

1 − qn
(qn

z + q−n
z ), (10)

where qz = exp(z). If k ≥ 4 then Ek(τ ) is a holomorphic modular form of weight k on
SL(2, Z). That is, it satisfies

Ek(γ τ) = (cτ + d)k Ek(τ )

for all γ =
(

a b
c d

)
∈ SL(2, Z), where we use the standard notation

γ τ = aτ + b

cτ + d
. (11)

On the other hand, E2(τ ) has an exceptional transformation law

E2(γ τ) = (cτ + d)2 E2(τ ) − c(cτ + d)

2π i
. (12)

The first three Eisenstein series E2(τ ), E4(τ ), E6(τ ) are algebraically independent and
generate a weighted polynomial algebra Q = C[E2(τ ), E4(τ ), E6(τ )] which, following
[KZ], we call the algebra of quasimodular forms.

We define P1(τ, z) by

P1(τ, z) = 1

z
−
∑
k≥2

Ek(τ )zk−1, (13)

where P2 = − d
dz P1 and P1 + zE2 is the classical Weierstrass zeta function. P1 is

quasi-periodic with

P1(τ, z + 2π i) = P1(τ, z),

P1(τ, z + 2π iτ) = P1(τ, z) − 1. (14)

We also define P0(τ, z), up to a choice of the logarithmic branch, by

P0(τ, z) = − log(z) +
∑
k≥2

1

k
Ek(τ )zk, (15)

where P1 = − d
dz P0. We define the elliptic prime form K (τ, z) by [Mu]

K (τ, z) = exp(−P0(τ, z)), (16)

so that P2 = d2

dz2 log K . (exp(z2 E2/2)K (τ, z) is the classical Weierstrass sigma func-
tion.) K (τ, z) is quasi-periodic with

K (τ, z + 2π i) = −K (τ, z),

K (τ, z + 2π iτ) = −q−1
z q−1/2 K (τ, z). (17)
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K (τ, z) is an odd function of z and can be expressed as

K (τ, z) = − iθ1(τ, z)

η(τ )3 = z + O(z3), (18)

where θ1(τ, z) =∑n∈Z
exp(π iτ(n + 1/2)2 + (n + 1/2)(z + iπ)) and

η(τ) = q
1

24
∏
n≥1

(1 − qn) (19)

is the Dedekind eta function.
Define elliptic functions Pk(τ, z) for k ≥ 3 from the analytic expansion

P1(τ, z − w) =
∑
k≥1

Pk(τ, z)wk−1, (20)

where

Pk(τ, z) = (−1)k−1

(k − 1)!
dk−1

dzk−1 P1(τ, z) = 1

zk
+ Ek + O(z). (21)

Finally, it is convenient to define for k, l = 1, 2, . . .,

C(k, l) = C(k, l, τ ) = (−1)k+1 (k + l − 1)!
(k − 1)!(l − 1)! Ek+l(τ ), (22)

D(k, l, z) = D(k, l, τ, z) = (−1)k+1 (k + l − 1)!
(k − 1)!(l − 1)! Pk+l(τ, z). (23)

Note that C(k, l) = C(l, k) and D(k, l, z) = (−1)k+l D(l, k, z). These naturally arise
in the analytic expansions (in appropriate domains)

P2(τ, z − w) = 1

(z − w)2 +
∑

k,l≥1

C(k, l)zl−1wk−1, (24)

and for k ≥ 1,

Pk+1(τ, z) = 1

zk+1 +
1

k

∑
l≥1

C(k, l)zl−1, (25)

Pk+1(τ, z − w) = 1

k

∑
l≥1

D(k, l, w)zl−1. (26)

3. The ε Formalism for Sewing Together Two Riemann Surfaces

In this section we review a general construction due to Yamada [Y] for “sewing” together
two Riemann surfaces of genus g1 and g2 to form a surface of genus g1 + g2. The princi-
ple aim is to describe various structures such as the genus g1 + g2 period matrix in terms
of data coming from the genus g1 and genus g2 surfaces. The basic method described
below follows that of Yamada. However, a significant number of changes have been
made in order to express the final formulas more neatly. We also discuss the holomor-
phic properties of the period matrix and of a certain infinite dimensional determinant.
In the next section, this general formalism will be applied to the construction of a genus
two Riemann surface.
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3.1. The Bilinear Form ω(g) and the Period Matrix Ω(g). Consider a compact Riemann
surface S of genus g with canonical homology basis a1, . . . ag, b1, . . . bg . In general

there exists g holomorphic 1-forms ν
(g)
i , i = 1, . . . g which we may normalize by [FK1,

Sp] ∮
ai

ν
(g)
j = 2π iδi j . (27)

These forms can be neatly encapsulated in a unique singular bilinear two form ω(g),
known as the normalized differential of the second kind. It is defined by the following
properties [Sp, Mu, Y]:

ω(g)(x, y) =
(

1

(x − y)2 + regular terms

)
dxdy (28)

for any local coordinates x, y, with normalization∫
ai

ω(g)(x, ·) = 0 (29)

for i = 1, . . . , g. Using the Riemann bilinear relations, one finds that

ν
(g)
i (x) =

∮
bi

ω(g)(x, ·), (30)

with ν
(g)
i normalized as in (27). The genus g period matrix Ω(g) is then defined by

Ω
(g)
i j = 1

2π i

∮
bi

ν
(g)
j (31)

for i, j = 1, . . . , g. It is useful to also introduce the normalized differential of the third
kind [Mu, Y]

ω
(g)
p2−p1

(x) =
p2∫

p1

ω(g)(x, ·), (32)

for which
∮

ai
ω

(g)
p2−p1

= 0. For a local coordinate x near pa for a = 1, 2 we have

ω
(g)
p2−p1

(x) =
(

(−1)a

x − pa
+ regular terms

)
dx .

Both ω(g)(x, y) and ω
(g)
p2−p1

(x) can be expressed in terms of the prime form K (g)(x, y)

(dx)−1/2(dy)−1/2, a holomorphic form of weight (− 1
2 ,− 1

2 ) with [Mu]

ω(g)(x, y) = ∂x∂y log K (g)(x, y)dxdy, (33)

ω
(g)
p2−p1

(x) = ∂x log
K (g)(x, p2)

K (g)(x, p1)
dx . (34)

We also note that K (g)(x, y) = −K (g)(y, x) and that K (g)(x, y) = x − y + O((x − y)3).
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Example 1. For the genus one Riemann torus with periods 2π i and 2π iτ along the a
and b cycles, the holomorphic 1-form satisfying (27) in the usual parameterization is
ν

(1)
1 = dz . The normalized differential of the second kind is determined by P2(τ, z) via

ω(1)(x, y) = P2(τ, x − y)dxdy. (35)

In this case, (29) and (30) follow from (14), and Ω
(1)
11 = τ . The normalized differential

of the third kind is ω
(1)
p2−p1

(x) = (P1(τ, x − p2)− P1(τ, x − p1))dx and the prime form

is K (1)(x, y) = K (τ, x − y) of (16).

It is well-known that Ω(g) is a complex symmetric matrix with positive-definite
imaginary part, i.e., Ω(g) ∈ Hg , the genus g Siegel complex upper half-space. The
intersection form � is a natural non-degenerate symplectic bilinear form on the first
homology group H1(S, Z) ∼= Z

2g , satisfying

�(ai , a j ) = �(bi , b j ) = 0, �(ai , b j ) = δi j , i, j = 1, . . . , g.

The genus g symplectic group4 is

Sp(2g, Z) = {γ =
(

A B
C D

)
∈ SL(2g, Z)|

ABT = B AT , C DT = DT C, ADT − BCT = Ig}.
It acts on Hg via

γ.Ω(g)= (AΩ(g) + B)(CΩ(g) + D)−1, (36)

and naturally on H1(S, Z), where it preserves �.

3.2. The ε Formalism for Sewing Two Riemann Surfaces. We now discuss a general
method described by Yamada [Y] for calculating the bilinear form (28) and hence the
period matrix on the surface formed by sewing together two Riemann surfaces. Consider
two Riemann surfaces Sa of genus ga for a = 1, 2. Choose a local coordinate za on Sa
in the neighborhood of a point pa , and consider the closed disk |za | ≤ ra for ra > 0
sufficiently small. (Note that the choice ra = 1 is made in ref. [Y]). Introduce a complex
sewing parameter ε where |ε| ≤ r1r2, and excise the disk

{za, |za | ≤ |ε|/rā} ⊂ Sa

to form a punctured surface

Ŝa = Sa\{za, |za | ≤ |ε|/rā}.
Here and below, we use the convention

1 = 2, 2 = 1. (37)

4 Here and elsewhere, the transpose of a matrix or vector is denoted by T.
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Fig. 1. Sewing Two Riemann Surfaces

Define the annulus

Aa = {za, |ε|/rā ≤ |za | ≤ ra} ⊂ Ŝa,

and identify A1 and A2 as a single region A = A1 � A2 via the sewing relation

z1z2 = ε. (38)

In this way we obtain a compact Riemann surface ˆ{S1\A1} ∪ {Ŝ2\A2} ∪ A of genus
g1 +g2. The sewing relation (38) can be considered to be a parameterization of a cylinder
connecting the two punctured Riemann surfaces. Noting the notational differences with
ref. [Y], the genus g1 + g2 normalized differential of the second kind ω(g1+g2) of ( 28)
enjoys the following properties:

Theorem 1 (Ref. [Y], Theorem 1, Theorem 4).

(a) ω(g1+g2) is holomorphic in ε for |ε| < r1r2;
(b) limε→0 ω(g1+g2)(x, y) = ω(ga)(x, y)δab for x ∈ Ŝa, y ∈ Ŝb, a, b = 1, 2.

Regarded as a power series in ε, the coefficients of ω(g1+g2) can be calculated from
ω(g1) and ω(g2) as follows. Let Ca(za) ⊂ Aa denote a simple, closed, anti-clockwise
oriented contour parameterized by za , surrounding the puncture at za = 0. Note that
C1(z1) may be deformed to −C2(z2) via (38). Then one finds [Y]:

Lemma 1 (op.cit., Lemma 4).

ω(g1+g2)(x, y) = ω(ga)(x, y)δab +
1

2π i

∮
Ca(za)

(ω(g1+g2)(y, za)

za∫
ω(ga)(x, ·)) (39)

for x ∈ Ŝa, y ∈ Ŝb and a, b = 1, 2 .

Define weighted moments for ω(g1+g2) for k, l = 1, 2, . . . by

Xab(k, l) = Xab(k, l, ε)

= ε(k+l)/2

√
kl

1

(2π i)2

∮
Ca(u)

∮
Cb(v)

u−kv−lω(g1+g2)(u, v). (40)

The ε(k+l)/2/
√

kl factor is introduced for later convenience. Note that

Xab(k, l) = Xba(l, k) (41)

and that ε−(k+l)/2 Xab(k, l, ε) is holomorphic in ε for |ε| < r1r2 from Theorem 1. We
define Xab = (Xab(k, l)) to be the infinite matrix indexed by k, l.
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Next define a set of holomorphic 1-forms on Ŝa by

aa(k, x) = aa(k, x, ε) = εk/2

2π i
√

k

∮
Ca(za)

z−k
a ω(ga)(x, za), (42)

and define aa(x) = (aa(k, x)) to be the infinite row vector indexed by k. Note from (28)
that for x, y ∈ Ŝa with x = 0 we have

ω(ga)(x, y) =
∑
k≥1

⎡
⎢⎣ 1

2π i

∮
Ca(za)

z−k
a ω(ga)(x, za)

⎤
⎥⎦ yk−1dy,

=
∑
k≥1

√
kε−k/2aa(k, x)yk−1dy. (43)

Using Lemma 1 we have:

Lemma 2. ω(g1+g2)(x, y) is given by

ω(g1+g2)(x, y) =
{

ω(ga)(x, y) + aa(x)XāāaT
a (y) x, y ∈ Ŝa,

aa(x)(−I + Xāa)aT
ā (y) x ∈ Ŝa, y ∈ Ŝā .

(44)

Proof. From (43) it follows that
za∫

0

ω(ga)(x, ·) =
∑
k≥1

ε−k/2

√
k

aa(k, x)zk
a . (45)

Let x, y ∈ Ŝ1. Using (38), (39) and (45) we find that ω(g1+g2)(x, y) − ω(g1)(x, y) is
given by

∑
k≥1

ε−k/2

√
k

a1(k, x)

⎛
⎜⎝− εk

2π i

∮
C2(z2)

z−k
2 ω(g1+g2)(y, z2)

⎞
⎟⎠ (46)

=
∑

k,l≥1

ε(k+l)/2

√
kl

a1(k, x)a1(l, y)
1

(2π i)2

∮
C2(w2)

∮
C2(z2)

z−k
2 w−l

2 ω(g1+g2)(z2, w2),

giving (44) for x, y ∈ Ŝ1.
For x ∈ Ŝ1, y ∈ Ŝ2 we find that ω(g1+g2)(x, y) is given by

∑
k≥1

ε−k/2

√
k

a1(k, x)

⎛
⎜⎝− εk

2π i

∮
C2(z2)

z−k
2 ω(g1+g2)(y, z2)

⎞
⎟⎠ (47)

= −
∑
k≥1

a1(k, x)a2(k, y)

+
∑

k,l≥1

ε(k+l)/2

√
kl

a1(k, x)a2(l, y)
1

(2π i)2

∮
C1(z1)

∮
C2(z2)

z−l
1 z−k

2 ω(g1+g2)(z1, z2),

giving (44). A similar analysis follows for x, y ∈ Ŝ1 and x ∈ Ŝ2, y ∈ Ŝ1. ��
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We next compute the explicit form of the moment matrix Xab in terms of the moments
of ω(ga), which we denote by

Aa(k, l) = Aa(k, l, ε) = ε(k+l)/2

(2π i)2
√

kl

∮
Ca(x)

∮
Ca(y)

x−k y−lω(ga)(x, y)

= εk/2

2π i
√

k

∮
Ca(x)

x−kaa(l, x). (48)

Note from (28) that for x, y ∈ Ŝa we have

ω(ga)(x, y) − dxdy

(x − y)2

=
∑

k,l≥1

⎧⎪⎨
⎪⎩

1

(2π i)2

∮
Ca(u)

∮
Ca(v)

u−kv−lω(ga)(u, v)

⎫⎪⎬
⎪⎭ xk−1 yl−1dxdy,

=
∑

k,l≥1

√
klε−(k+l)/2 Aa(k, l, ε)xk−1 yl−1dxdy. (49)

Proposition 1. The matrices Xab are given in terms of Aa by

Xaa = Aa(I − Aā Aa)−1, (50)

Xaā = I − (I − Aa Aā)−1. (51)

Here,

(I − Aa Aā)−1 =
∑
n≥0

(Aa Aā)n (52)

and is convergent as a power series in ε for |ε| < r1r2.

Proof. Compute X11 from (46) to find

X11(k, l) = ε(k+l)/2

√
kl

1

(2π i)2

∮
C1(x)

∮
C1(y)

x−k y−lω(g1)(x, y)

−
∑
m≥1

[ε
k/2

2π i

1√
k

∮
C1(x)

x−ka1(m, x).

ε(m+l)/2

√
ml

1

(2π i)2

∮
C1(y)

∮
C2(z2)

y−l z−m
2 ω(g1+g2)(y, z2)],

and similarly for X22. Thus using (48) and recalling (41) we have

Xaa = Aa(I − Xāa). (53)



On Genus Two Riemann Surfaces Formed from Sewn Tori 599

We may find X12 from (47) as follows:

X12(k, l) = −
∑
m≥1

εk/2

2π i

1√
k

∮
C1(x)

a1(m, x)x−k

⎛
⎜⎝ε(m+l)/2

√
ml

1

(2π i)2

∮
C2(y)

∮
C2(z2)

y−l z−m
2 ω(2)(y, z2)

⎞
⎟⎠ ,

and similarly for X21, i.e.,

Xaā = −Aa Xāā . (54)

Define infinite block matrices

X =
[

X11 X12
X21 X22

]
, A =

[
A1 0
0 A2

]
, Q =

[
0 −A1

−A2 0

]
(55)

so that (53, 54) can be combined as

X = A + Q X, (56)

so that

X = (I − Q)−1 A. (57)

Here (I − Q)−1 =∑n≥0 Qn which we now show converges for |ε| < r1r2.
Consider X = A + AX + Q2 X . Then since Q2 = diag(A1 A2, A2 A1) we obtain

iterative relations

Xaa = Aa(I + Aā Xaa), (58)

I − Xaā = I + Aa Aā(I − Xaā). (59)

Now ε−(k+l)/2 Xab(k, l) is holomorphic in ε for |ε| < r1r2 by Theorem 1. Therefore,
Xab(k, l) has a series expansion in ε1/2 convergent for |ε| < r1r2. Then (58) implies
Xaa(k, l) = (

∑N
n=0(Aa Aā)n Aa)(k, l) + O(ε(k+l)/2+2N+1) where the coefficient of each

power of ε consists of a finite sum of finite products of A1 and A2. Hence

Xaa =
∞∑

n=0

Aa(Aā Aa)n = Aa(I − Aā Aa)−1,

converges for |ε| < r1r2. A similar argument holds for Xaā where one finds

Xaā =
∞∑

n=1

(Aa Aā)n = I − (I − Aa Aā)−1

converges for |ε| < r1r2. Finally

(I − Q)−1 =
∑
n≥0

Qn =
∑
n≥0

Q2n(I + Q)

is therefore also convergent for |ε| < r1r2. ��
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The invertibility of the infinite matrix I − A1 A2 for |ε| < r1r2 is crucial in the ε

sewing formalism. We now define an infinite determinant of I − A1 A2 which we show
is a holomorphic function of ε for |ε| < r1r2. This determinant plays a dominant role
in the sequel to this work [MT2]. Firstly, since A1(k, m)A2(m, l) = O(εm+(k+l)/2) we
may define a (2N − 3) × (2N − 3) matrix

TN (k, l) =
∑

1≤m≤N−(k+l)/2

A1(k, m)A2(m, l), (60)

for 1 ≤ k, l ≤ 2N − 3. TN is a truncated approximation for A1 A2 to O(εN ),

A1 A2 =
⎛
⎜⎝

TN 0 · · ·
0 0 · · ·
...

...
. . .

⎞
⎟⎠ + O(εN+1).

We may then define as formal power series in ε to O(εN ) the expressions5

det(I − A1 A2) = det(IN − TN ) + O(εN+1), (61)

T r log(I − A1 A2) = T r log(IN − TN ) + O(εN+1), (62)

where T r log(IN − TN ) = −∑N/2
n=1

1
n T r(T n

N ) + O(εN+1). Comparing the finite matrix
contributions of (61) and (62) we have

Lemma 3. As formal power series in ε,

log det(I − A1 A2) = T r log(I − A1 A2). (63)

We now show that T r log(I − A1 A2) is holomorphic in ε for |ε| < r1r2 so that:

Theorem 2. det(I − A1 A2) is non-vanishing and holomorphic in ε for |ε| < r1r2.

Proof. Let ω(g1+g2) = f (z1, z2, ε)dz1dz2 for |za | ≤ ra . Then f (z1, z2, ε) is holomor-
phic in ε for |ε| ≤ r for r < r1r2 from Theorem 1. Apply Cauchy’s inequality to the
coefficient functions for f (z1, z2, ε) =∑n≥0 fn(z1, z2)ε

n to find

| fn(z1, z2)| ≤ M

rn
, (64)

for M = sup|za |≤ra ,|ε|≤r | f (z1, z2, ε)| . Consider

I = 1

(2π i)2

∮
Cr1 (z1 )

∮
Cr2 (z2 )

ω(g1+g2)(z1, z2) log(1 − ε

z1z2
), (65)

for Cra (za) the contour with |za | = ra . Then using (64) we find

|I| ≤
∑
n≥0

|ε|n
(2π)2

∮
Cr1 (z1 )

∮
Cr2 (z2 )

| fn(z1, z2) log(1 − ε

z1z2
)dz1dz2|

≤
∑
n≥0

M.
|ε|n
rn

.| log

(
1 − |ε|

r1r2

)
|.r1r2,

5 For the sake of notational simplicity we denote both the usual finite dimensional and the defined infinite
dimensional determinants by det.
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i.e., I is absolutely convergent and thus holomorphic in ε for |ε| ≤ r < r1r2. Since
|z1z2| = r1r2 we may alternatively expand in ε/z1z2 to obtain

I = −
∑
k≥1

εk

k

1

(2π i)2

∮
Cr1 (z1 )

∮
Cr2 (z2 )

ω(g1+g2)(z1, z2)z
−k
1 z−k

2

= −T r X12,

where T r X12 =∑k≥1 X12(k, k) for X12 of (51). But (59) implies

T r X12 = −
∑
n≥1

T r((A1 A2)
n),

is absolutely convergent for |ε| < r1r2. Hence we find

T r log(I − A1 A2) = −
∑
n≥1

1

n
T r((A1 A2)

n),

is also absolutely convergent for |ε| < r1r2. Thus from Lemma 3, det(I − A1 A2) is
non-vanishing and holomorphic for |ε| < r1r2. ��

These determinant properties can also be expressed in terms of the block matrix Q
using6

Lemma 4. det(I ± Q) = det(I − A1 A2).

Proof. Let QN be the truncated approximation for Q to O(εN ). Then one finds det(I +
QN ) = det(I − QN ). But det(I + QN ) det(I − QN ) = det(I − Q2

N ) = det(I − TN )2

for TN of (60) and the result follows. ��
The sewn genus g1 + g2 Riemann surface naturally inherits a basis of cycles labelled

{as1 , bs1 |s1 = 1, . . . , g1} and {as2 , bs2 |s2 = g1 + 1, . . . , g1 + g2} from the genus g1 and
genus g2 surfaces respectively. Integrating ω(g1+g2) along the b cycles then gives us the
holomorphic 1-forms and period matrix. For a = 1, 2 we define

α
(ga)
sa (k) =

∮
bsa

aa(k), (66)

and the infinite vector α
(ga)
sa = (α

(ga)
sa (k)). Then we find using (30) and (31) together

with Lemma 2 and Proposition 1 that [Y]:

Theorem 3 (op. cit. Theorem 4.). Ω(g1+g2) is holomorphic in ε for |ε| < r1r2, and is
given by

2π iΩ(g1+g2)
s1t1 = 2π iΩ(g1)

s1t1 + α
(g1)
s1 (A2(I − A1 A2)

−1)α
(g1)T
t1 , (67)

2π iΩ(g1+g2)
s2t2 = 2π iΩ(g2)

s2t2 + α
(g2)
s2 (A1(I − A1 A2)

−1)α
(g2)T
t2 , (68)

2π iΩ(g1+g2)
s1s2 = −α

(g1)
s1 (I − A2 A1)

−1α
(g2)T
s2

= −α
(g2)
s2 (I − A1 A2)

−1α
(g1)T
s1 , (69)

with s1, t1 ∈ {1, . . . , g1} and s2, t2 ∈ {g1 + 1, . . . , g1 + g2}.
6 See the previous footnote.
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Example 2. Let S1 be a genus g surface and S2 the Riemann sphere C ∪ {∞} with
bilinear form

ω(0)(x, y) = dxdy

(x − y)2 , x, y ∈ S2. (70)

Choose p2 = 0 with z2 ∈ C as the local coordinate onS2. Then a2(k, x) = √
kεk/2x−k−1

dx from ( 42) and hence A2 = 0 from (48). Thus X22 = A1 and X11 = X12 = X21 = 0.
Then one can check that the RHS of (44) reproduces ω(g) directly for a = b = 1 whereas,
using (38 ), it follows for a = b = 2 from (49) and for a = b from (43).

Let us now consider the holomorphic properties of Ω(g1+g2). From Theorem 1,
ω(g1+g2)(x, y) is holomorphic in ε for |ε| < r1r2 and therefore Ω(g1+g2) is also. We
now show that if ω(ga) is holomorphic with respect to a complex parameter (such as
one of the modular parameters of the Riemann surface Sa) then ω(g1+g2) and therefore
Ω(g1+g2) is also holomorphic with respect to that parameter. To this end we firstly prove
the following elementary lemma:

Lemma 5. Let f (x, y) be a complex function holomorphic in x for |x | < R with expan-
sion f (x, y) = ∑

m≥0 cm(y)xm. Suppose that each cm(y) is holomorphic and that
f (x, y) is continuous in y for |y| < S. Then f (x, y) is also holomorphic in y for
|y| < S.

Proof. Define the compact region R = {(x, y) : |x | ≤ R−, |y| ≤ S−} for R− = R − δ1
and S− = S − δ2 for δ1, δ2 > 0. f is continuous in the compact region R and hence
| f (x, y)| ≤ M ≡ supR | f |. Apply Cauchy’s inequality to f as a holomorphic function
of x for |x | ≤ R− to find

|cm(y)| ≤ sup|x |≤R− | f (x, y)|
Rm−

≤ M

Rm−
.

But cm(y) is holomorphic for |y| ≤ S− with expansion cm(y) = ∑
n≥0 cmn yn so that

applying Cauchy’s inequality again gives

|cmn| ≤ sup|y|≤S− |cm(y)|
Sn−

≤ M

Rm− Sn−
.

Thus f (x, y) = ∑
m≥0

∑
n≥0 cmn xm yn is absolutely convergent for |x | < R−, |y| <

S−. Hence cn(x) = ∑
m≥0 cmn xm converges for |x | < R− and f is holomorphic in y

with convergent expansion f (x, y) =∑n≥0 cn(x)yn for |y| < S−. We may then choose
δ1, δ2 sufficiently small to show that the result follows for all |x | < R, |y| < S. ��
Proposition 2. Suppose that ω(ga) is a holomorphic function of a complex parameter μ

for |μ| < S. Then for |ε| < r1r2, ω(g1+g2) is also holomorphic in μ for |μ| < S.

Proof. Suppose that ω(g1) is holomorphic in μ wlog. Then a1(k) and A1(k, l) are holo-
morphic (and continuous) in μ for |μ| < S. We now show that Xab is holomorphic in μ

for |μ| < S using Lemma 5. Using continuity of A1 and (58) of Proposition 1 we find
that for |μ + δ| < S,

(I − A2 A1) lim
δ→0

(X11(μ + δ) − X11(μ)) = 0.
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But (I − A2 A1) is invertible for |ε| < r1r2 from Proposition 1 and so X11(μ) is
continuous for |μ| < S. A similar result holds for X12, X21 and X22. From Theo-
rem 1, ε−(k+l)/2 Xab(k, l) is holomorphic in ε for |ε| < r1r2. Furthermore, as explained
in Proposition 1, the ε expansion coefficients consist of a finite sum of finite products of
A1 and A2 terms and thus they are holomorphic in μ for |μ| < S. We may therefore apply
Lemma 5 to ε−(k+l)/2 Xab(k, l) which is continuous in μ for |μ| < S and holomorphic
in ε for |ε| < R = r1r2 with ε expansion coefficients holomorphic in μ for |μ| < S.
Thus ε−(k+l)/2 Xab(k, l) and therefore Xab(k, l) is holomorphic in μ for |μ| < S.

Finally consider ω(g1+g2) as given in (44) of Lemma 2. Using arguments similar to
those above we see that ω(g1+g2) is continuous in μ for |μ| < S and holomorphic in ε for
|ε| < r1r2 with ε expansion coefficients holomorphic in μ for |μ| < S. Thus ω(g1+g2) is
holomorphic in μ for |μ| < S. ��
Corollary 1. Given the previous conditions then Ω(g1+g2) is holomorphic in μ for |μ| <

S where |ε| < r1r2.

In conclusion, we similarly find by applying Proposition 2 to (65) that

Proposition 3. Suppose that ω(ga) is holomorphic in μ for |μ| < S. Then det(I − A1 A2)

is non-vanishing and holomorphic in μ for |μ| < S and |ε| < r1r2.

4. Sewing Two Tori to Form a Genus Two Riemann Surface

We now specialize to the case of two tori sewn together to form a genus two Riemann
surface. We first consider an elementary description of a disk on a torus compatible
with SL(2, Z) modular-invariance. We then apply the ε formalism in order to sew two
punctured tori with modular parameters τ1 and τ2 together to form a genus two Rie-
mann surface with period matrix Ω(2)(τ1, τ2, ε) ∈ H2, where Ω(2) is holomorphic in
(τ1, τ2, ε) ∈ Dε for a suitably defined domain Dε . We provide an alternative description
of Ω(2) in terms of the sum of weights of particular “necklace” graphs. We then describe
the equivariance properties of this holomorphic mapping from Dε to H2 with respect to
a certain subgroup G ⊆ Sp(4, Z), and prove that it is invertible in a certain G-invariant
domain.

4.1. A Closed Disk on a Torus. A complex torus S (that is, a compact Riemann surface
of genus 1), can be represented as a quotient C/�, where � is a lattice in C. Moreover,
two such tori Sa, a = 1, 2 are isomorphic if, and only if, the lattices are homothetic ,
that is, there is a ξ ∈ C

∗ such that �2 = ξ�1.
A framing of S = C/� is a choice of basis (σ, ς) such that the modulus τ = σ/ς

satisfies τ ∈ H1. We say that the basis (σ, ς) is positively oriented in this case. A pair
of framed tori (C/�a, σa, ςa), a = 1, 2 are isomorphic if, and only if, there is a ξ as
above such that (σ2, ς2) = ξ(σ1, ς1). The modulus τ depends only on the isomorphism
class of the framed torus, and there is a bijection

{isomorphism classes of framed tori} → H1, (71)

(C/�, σ, ς) �→ σ/ς.

SL(2, Z) is the group of automorphisms of � which preserves oriented bases. It acts
on isomorphism classes of framed tori via(

a b
c d

)
: (C/�, σ, ς) �→ (C/�, aσ + bς, cσ + dς),
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and on H1 via fractional linear transformations(
a b
c d

)
: τ �→ aτ + b

cτ + d
.

With respect to these two actions, the bijection (71) is SL(2, Z)-equivariant.
In the following it is convenient to identify S with the standard fundamental region

for � determined by the basis, and with appropriate identifications of boundary. To
describe a well-defined disk in S, define the minimal length of � as

D(�) = min
0 =λ∈�

|λ|. (72)

It obviously satisfies

D(ξ�) = |ξ |D(�). (ξ = 0). (73)

We may now describe a closed disk on S. The proof follows from the triangle inequal-
ity.

Lemma 6. For p ∈ S, the points z ∈ S satisfying |z − p| ≤ k D(�) define a closed disk
centered at p provided k < 1

2 .

Let S be a complex torus of modulus τ . Among all homothetic lattices � for which
we define S ∼= C/�, it will be convenient to work with the lattice �τ which has basis

(2π iτ, 2π i). Note that for γ =
(

a b
c d

)
∈ SL(2, Z) we have

D(�γτ ) = 1

|cτ + d| D(�τ ). (74)

4.2. The Genus Two Period Matrix in the ε Formalism. We now apply the ε-formalism
to a pair of tori Sa = C/�a with local co-ordinates za , where �a has oriented basis
(σa, ςa) and τa = σa/ςa ∈ H1 for a = 1, 2. We shall sometimes refer to S1 and S2
as the left and right torus respectively. After Lemma 6 we may consider the annuli Aa
centred at the origin of Sa described above, with outer radius ra < 1

2 D(�a). Following
the prescription of Subsect. 3.2, we sew the two tori by identifying the annuli A1 and
A2 via the relation z1z2 = ε as in (38), where |ε| ≤ r1r2 < 1

4 D(�1)D(�2).
As discussed in Subsect. 4.1 we take (σa, ςa) = (2π iτa, 2π i) and qa = exp(2π iτa)

for a = 1, 2. Define the domain7

Dε = {(τ1, τ2, ε) ∈ H1×H1×C | |ε| <
1

4
D(�τ1)D(�τ2)}. (75)

We now explicitly determine the period matrix8.

7 The superscript ε merely denotes that we are working in the ε-formalism, and should not be interpreted
as a variable of any kind.

8 The genus two period matrix is also described in [T] without proof and in a different notation.
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Theorem 4. Sewing determines a holomorphic map

Fε : Dε → H2,

(τ1, τ2, ε) �→ Ω(2)(τ1, τ2, ε). (76)

Moreover Ω(2) = Ω(2)(τ1, τ2, ε) is given by

2π iΩ(2)
11 = 2π iτ1 + ε(A2(I − A1 A2)

−1)(1, 1), (77)

2π iΩ(2)
22 = 2π iτ2 + ε(A1(I − A2 A1)

−1)(1, 1), (78)

2π iΩ(2)
12 = −ε(I − A1 A2)

−1(1, 1). (79)

Notation here is as follows: Aa(τa, ε) is the infinite matrix with (k, l)-entry,

Aa(k, l, τa, ε) = ε(k+l)/2

√
kl

C(k, l, τa); (80)

(1, 1) refers to the (1, 1)-entry of a matrix with C(k, l, τ ) of (22).

Proof. The bilinear two form ω(1) is given by (35). Using (20), the basis of 1-forms (42)
with periods (2π iτa, 2π i) is then given by

aa(k, x) = εk/2dx

2π i
√

k

∮
Ca(z)

z−k P2(τa, x − z)dz,

= √
kεk/2 Pk+1(τa, x)dx . (81)

Now (80) follows from (48), (25) and (22). Note that (14) implies that αa(k) of ( 66) is

αa(k) = ε1/2δk,1. (82)

We therefore find Ω(2) to be given by (77)–(79) for |ε| < r1r2 < 1
4 D(�τ1)D(�τ2).

By Theorem 3, Ω(2) is holomorphic in ε for |ε| < r1r2 < 1
4 D(�τ1)D(�τ2). The left

torus bilinear form ω(1)(x, y, τ1) is holomorphic in some neighborhood |τ1 − τ 0
1 | < S

of any point τ 0
1 ∈ H1. Hence we may apply Corollary 1 with μ = τ1 − τ 0

1 for |μ| < S
to conclude that Ω(2) is holomorphic in τ1 . Similarly Ω(2) is holomorphic in τ2, and by
Hartog’s theorem (e.g., [Gu]) Ω(2) is holomorphic on Dε . ��

The infinite matrices Aa(τa, ε) will play a crucial rôle in the further analysis of the
ε formalism. Dropping the subscript, they are symmetric and have the form:

A(τ, ε) =

⎛
⎜⎜⎜⎜⎜⎝

εE2(τ ) 0
√

3ε2 E4(τ ) 0 · · ·
0 −3ε2 E4(τ ) 0 −5

√
2ε3 E6(τ ) · · ·√

3ε2 E4(τ ) 0 10ε3 E6(τ ) 0 · · ·
0 −5

√
2ε3 E6(τ ) 0 −35ε4 E8(τ ) · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ .
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4.3. Chequered Necklace Expansion for Ω(2). It is useful to introduce an interpretation
for the expressions for Ω(2) found above in terms of the sum of weights of certain graphs.
Let us introduce the set of chequered necklaces N . By definition, these are connected
graphs with n ≥ 2 nodes, (n−2) of which have valency 2 and two of which have valency
1 (these latter are the end nodes), together with an orientation, say from left to right,
on the edges. Moreover vertices are labelled by positive integers and edges are labelled
alternatively by 1 or 2 as one moves along the graph, e.g.,

k1• 1−→ k2• 2−→ k3• 1−→ k4• 2−→ k5• 1−→ k6•
We also define the degenerate necklace N0 to be a single node with no edges. Define a
weight function

ω : N −→ C[E2(τa), E4(τa), E6(τa), ε | a = 1, 2],

as follows: if a chequered necklace N has edges E labelled as
k• a−→ l• then we define

ω(E) = Aa(k, l, τa, ε),

ω(N ) =
∏

ω(E), (83)

where Aa(k, l, τa, ε) is given by (80) and the product is taken over all edges E of N .
We further define ω(N0) = 1.

Among all chequered necklaces there is a distinguished set for which both end nodes
are labelled by 1. There are four types of such chequered necklaces, which may be fur-
ther distinguished by the labels of the two edges at the extreme left and right. We use
the notation (37) for a = 1, 2 , and say that the chequered necklace

1• a−→ i• . . .
j• b−→ 1•

is of type ab . We then set

Nab = {isomorphism classes of chequered necklaces of type ab},
ωab =

∑
N∈Nab

ω(N ),

where ωab is considered as an element in C[E2(τa), E4(τa), E6(τa), ε | a = 1, 2]. It is
clear that we may use this formalism to represent matrix expressions like those appearing
earlier. Then we have

Lemma 7. For a = 1, 2 we have

ωaā = ωāa = (I − Aa Aā)−1(1, 1),

ωaa = (Aā(I − Aa Aā)−1)(1, 1).

Thus we may conclude from Theorem 4 that

Proposition 4. For a = 1, 2 we have

Ω(2)
aa = τa +

ε

2π i
ωaa,

Ω
(2)
aā = − ε

2π i
ωaā .
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4.4. Equivariance of Fε . In Theorem 4 we established the existence of the analytic map
Fε . Here we establish the equivariance of this map with respect to a certain subgroup
G of Sp(4, Z). We will employ the graphical representation for Ω = Ω(2)(τ1, τ2, ε) in
terms of chequered necklaces discussed in the last subsection.

As an abstract group, G is isomorphic to (SL(2, Z)× SL(2, Z))�Z2, i.e., the direct
product of two copies of SL(2, Z) which are interchanged upon conjugation by an invo-
lution. There is a natural injection G → Sp(4, Z) in which the two SL(2, Z) subgroups
are mapped to

�1 =

⎧⎪⎨
⎪⎩
⎡
⎢⎣

a1 0 b1 0
0 1 0 0
c1 0 d1 0
0 0 0 1

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , �2 =

⎧⎪⎨
⎪⎩
⎡
⎢⎣

1 0 0 0
0 a2 0 b2
0 0 1 0
0 c2 0 d2

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (84)

and the involution is mapped to

β =
⎡
⎢⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎦ . (85)

In this way we obtain a natural action of G on H2. The action on Dε is described in the
next lemma.

Lemma 8. G has a left action on Dε as follows:

γ1.(τ1, τ2, ε) = (γ1τ1, τ2,
ε

c1τ1 + d1
), (86)

γ2.(τ1, τ2, ε) = (τ1, γ2τ2,
ε

c2τ2 + d2
), (87)

β.(τ1, τ2, ε) = (τ2, τ1, ε), (88)

for (γ1, γ2) ∈ SL(2, Z) × SL(2, Z).

Proof. It is straightforward (and quite standard) to see that (86) - (88) formally define a
(left) action of G on H1 × H1 × C. What we must show is that this action preserves the
domain Dε . For β this is obvious, and for elements (γ1, γ2) it follows from (74). ��

We now establish the following result:

Theorem 5. Fε is equivariant with respect to the action of G, i.e., there is a commutative
diagram for γ ∈ G,

Dε Fε→ H2
γ ↓ ↓ γ

Dε Fε→ H2

Proof. Fix (τ1, τ2, ε) ∈ Dε , with Ω = Fε(τ1, τ2, ε) =
(

Ω11 Ω12
Ω12 Ω22

)
. Of course, each

Ωi j is a function of (τ1, τ2, ε). The action of G on H2 is given in (36), and in particular

β : Ω �→
(

Ω22 Ω12
Ω12 Ω11

)
. Therefore from (88) we have

Fε(β(τ1, τ2, ε)) = Fε(τ2, τ1, ε) =
(

Ω22 Ω12
Ω12 Ω11

)
= β(Fε(τ1, τ2, ε)).
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So the theorem is true in case γ = β. To complete the proof of the theorem, it suffices to
consider the case when γ = γ1 lies in the ‘left’ modular group acting on τ1. From (36),

γ1 : Ω �→
( a1Ω11+b1

c1Ω11+d1

Ω12
c1Ω11+d1

Ω12
c1Ω11+d1

Ω22 − c1Ω
2
12

c1Ω11+d1

)
, (89)

and we are obliged to show that the matrix in display (89) coincides with Fε(γ1(τ1, τ2, ε))

= Fε(γ1τ1, τ2,
ε

c1τ1+d1
). In other words, we must establish the following identities:

a1Ω11 + b1

c1Ω11 + d1
= Ω11(γ1τ1, τ2,

ε

c1τ1 + d1
), (90)

Ω12

c1Ω11 + d1
= Ω12(γ1τ1, τ2,

ε

c1τ1 + d1
), (91)

Ω22 − c1Ω
2
11

c1Ω11 + d1
= Ω22(γ1τ1, τ2,

ε

c1τ1 + d1
). (92)

Aa(k, l, τa, ε) of (80) is a modular form of weight k + l for k + l > 2, whereas
Aa(1, 1, τa, ε) = εE2(τa) enjoys an exceptional transformation law thanks to (12).

Using Lemma 8 we then find that

A1(k, l, γ1τ1,
ε

c1τ1 + d1
)) = (c1τ1 + d1)

(k+l)/2(A1(τ1, ε) + κδk1δl1), (93)

A2(k, l, τ2,
ε

c1τ1 + d1
)) = (c1τ1 + d1)

−(k+l)/2 A2(τ2, ε), (94)

where

κ = − ε

2π i

c1

c1τ1 + d1
. (95)

It follows from Proposition 4 both that

1 − κω11 = c1Ω11 + d1

c1τ1 + d1
, (96)

and

Ω11

(
γ1τ1, τ2,

ε

c1τ1 + d1

)

= 1

c1τ1 + d1

(
a1τ1 + b1 +

ε

2π i
ω11

(
γ1τ1, τ2,

ε

c1τ1 + d1

))
. (97)

Consider a necklace N ∈ N11 of weight ω(N ) and let S11(N ) denote the set of all

“broken” graphs formed from N by deleting any n edges of type
1• 1−→ 1• for all n ≥ 0.

Every such graph consists of n + 1 connected graphs N1, . . . Nn+1 of type 11. From (93)
and (94) it therefore follows that

ω(N )(γ1τ1, τ2,
ε

c1τ1 + d1
) = 1

c1τ1 + d1

∑
n≥0

κn
∑

N1,...Nn+1

ω(N1) . . . ω(Nn+1).



On Genus Two Riemann Surfaces Formed from Sewn Tori 609

Summing over all N we then find

ω11(γ1τ1, τ2,
ε

c1τ1 + d1
) = 1

(c1τ1 + d1)

∑
n≥0

κnωn+1
11

= 1

(c1τ1 + d1)

ω11

1 − κω11

= ω11

c1Ω11 + d1
,

where for the last equality we used (96). Now (97) yields

Ω11

(
γ1τ1, τ2,

ε

c1τ1 + d1

)
= 1

c1τ + d1

(
a1τ1 + b1 +

Ω11 − τ1

c1Ω11 + d1

)

= a1Ω11 + b1

c1Ω11 + d1
,

which is the desired (90). Similarly from Proposition 4 we have

Ω12

(
γ1τ1, τ2,

ε

c1τ1 + d1

)
= − 1

(c1τ1 + d1)

ε

2π i
ω12

(
γ1τ1, τ2,

ε

c1τ1 + d1

)
.

Breaking necklaces of type 12 results in products over necklaces of type 11 together
with one necklace of type 12. Hence by a similar argument to that above we find

ω12

(
γ1τ1, τ2,

ε

c1τ1 + d1

)
= ω12

1 − κω11

= (c1τ1 + d1)ω12

c1Ω11 + d1
,

so that Ω12(γ1τ1, τ2,
ε

cτ1+d1
) is as in (91). Finally,

Ω22(γ1τ1, τ2,
ε

cτ1 + d1
) = τ2 +

1

c1τ1 + d1

ε

2π i
ω22

(
γ1τ1, τ2,

ε

cτ1 + d1

)
.

Breaking necklaces of type 22 results in products over necklaces of type 11 together
with one necklace of type 12 and another of type 21. Hence by a similar argument to
that above we find

1

(c1τ1 + d1)

ε

2π i
ω22(γ1τ1, τ2,

ε

cτ1 + d1
) = ε

2π i

(
ω22 +

κω2
12

1 − κω11

)

= Ω22 − τ2 − c1Ω
2
12

c1Ω11 + d1
,

leading to (92). This completes the proof of the theorem. ��
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4.5. Local Invertibility of Fε about the Two Tori Degeneration Point ε = 0. Let Dε
0 be

the subset of Dε for which ε = 0. From Theorem 4 it is clear that the restriction of Fε

to Dε
0 induces the natural identification

Fε : Dε
0

∼→ H1 × H1 ⊆ H2,

(τ1, τ2, 0) �→
(

τ1 0
0 τ2

)
. (98)

Dε
0 corresponds to the set of points where the genus 2 Riemann surface degenerates into a

pair of genus 1 surfaces with Ω(2) = diag(Ω
(2)
11 ,Ω

(2)
22 ). We will consider the invertibility

of the map Fε in a neighborhood of a point in Dε
0. First we prepare a lemma.

Recall (e.g., [FK2]) that a group H of homeomorphisms of a space X is said to act
discontinuously on X if each point x ∈ X has a precisely invariant open neighborhood
under the action of H in the following sense (loc. cit.): the stabilizer Stab(x) of x in H
is finite, and there is an open neighborhood N of x such that hN ∩ N = φ if h /∈ Stab(x)

and hN = N if h ∈ Stab(x).

Lemma 9. Suppose that H acts discontinuously on a pair of spaces X, Y , and that
F : X → Y is a continuous H-equivariant map. Then the following hold:
(a) If x ∈ X and F(x) = y then there are precisely invariant open neighborhoods (under
the action of H) U ⊆ X and V ⊆ Y of x and y respectively with F(U ) ⊆ V ;
(b) Suppose further that Stab(x) = Stab(y) and that the restriction of F to U is 1 − 1.
Then F is 1 − 1 on the H-invariant domain

⋃
h∈H hU.

Proof. For part (a), let V be a precisely invariant open neighborhood of y in Y , U ′ a
precisely invariant neighborhood of x in X , and set U = F−1(V ) ∩ U ′. Because F is
H -equivariant then Stab(x) ⊆ Stab(y), and from this it follows that U is also precisely
invariant under the action of H . Now (a) follows.

As for (b), suppose the contrary so that there exist u1, u2 ∈ U and h1, h2 ∈ H such
that h1u1 = h2u2 and F(h1u1) = F(h2u2). Thanks to the equivariance of F it is no
loss to assume that h2 = 1, so that h1u1 = u2 and F(h1u1) = F(u2). From the last
equality we see that h1V ∩ V = φ, so that h1V = V and h1 ∈ Stab(y).

Therefore, h1 ∈ Stab(x) by hypothesis, and therefore h1U = U . But then h1u1 and
u2 ∈ U are distinct points of U on which F takes the same value. This contradicts the
assumption that F is 1 − 1 on U , and completes the proof of the lemma. ��

We now have

Proposition 5. Let x ∈ Dε
0. Then there exists a G−invariant neighborhood N ε

x ⊆ Dε

of x throughout which Fε is invertible.

Proof. Let x = (τ1, τ2, 0). From Theorem 4, the Jacobian of Fε at x satisfies

∣∣∣∣∂(Ω11,Ω22,Ω12)

∂(τ1, τ2, ε)

∣∣∣∣
x

=
∣∣∣∣∣∣
1 0 0
0 1 0
0 0 −1

∣∣∣∣∣∣ = −1.

By the inverse function theorem, there exists an open neighborhood of x in Dε through-
out which Fε is invertible. Set Fε(x) = y. It follows immediately from (98) that the
stabilizers (in G) of x and y are equal.
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Next, it is well-known that the action (36) of Sp(2g, Z) on Hg is discontinuous. In
particular, the action of G on H2 is discontinuous: furthermore from the case g = 1
it is easy to see that the action of G on H1 × H1 × C (and hence also on Dε) is also
discontinuous. Choose precisely invariant neighborhoods (under the action of G) U, V
of x , respectively y such that the conditions of part (a) of Lemma 9 hold. It is clear from
the non-vanishing of the Jacobian that we may also assume that Fε is 1 − 1 on U . Thus,
we have achieved the hypotheses of part (b) of Lemma 9. That result tells us that the
open neighborhood

N ε
x =

⋃
γ∈G

γU

has the desired properties. ��
We conclude this section with the explicit form of Ω = Ω(2)(τ1, τ2, ε) to order ε3.

We have from ( 77) to (79) that

2π iΩ11 = 2π iτ1 + ε2 E2(τ2) + O(ε4), (99)

2π iΩ22 = 2π iτ2 + ε2 E2(τ1) + O(ε4), (100)

2π iΩ12 = −ε(1 + ε2 E2(τ1)E2(τ2) + O(ε4)). (101)

It is straightforward to check the equivariance properties described in Theorem 5 to the
given order. In Appendix A more detailed expansions are provided. We may invert this
relationship using Proposition 5 to find to order Ω3

12 that

τ1 = Ω11 − 2π iΩ2
12 E2(Ω22) + O(Ω4

12), (102)

τ2 = Ω22 − 2π iΩ2
12 E2(Ω11) + O(Ω4

12), (103)

ε = −2π iΩ12(1 − (2π i)2Ω2
12 E2(Ω11)E2(Ω22) + O(Ω4

12)). (104)

5. The ρ Formalism for Self-Sewing a Riemann Surface

5.1. The General ρ Formalism. In this section we review the general Yamada construc-
tion [Y] for sewing a Riemann surface of genus g to itself to form a surface of genus
g + 1. We consider examples of sewing a Riemann sphere to itself in some detail where
the Catalan series arise in a surprising way. In the next section, this general formalism
will be applied to the construction of a genus two surface where the Catalan series again
plays an important role.

Consider a Riemann surface S of genus g and let z1, z2 be local coordinates on S
in the neighborhood of two separated points p1 and p2. Consider two disks |za | ≤ ra
for ra > 0 sufficiently small and a = 1, 2. Note that r1, r2 must be sufficiently small
to also ensure that the disks do not intersect. Introduce a complex parameter ρ where
|ρ| ≤ r1r2 and excise the disks

{za, |za | < |ρ|r−1
ā } ⊂ S

for a = 1, 2 to form a twice-punctured surface

Ŝ = S\
⋃

a=1,2

{za, |za | < |ρ|r−1
ā }.
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Here we again use the convention (37). We define annular regions Aa ⊂ Ŝ with Aa =
{za, |ρ|r−1

ā ≤ |za | ≤ ra} and identify them as a single region A = A1 � A2 via the
sewing relation

z1z2 = ρ, (105)

to form a compact Riemann surface Ŝ\{A1 ∪A2}∪A of genus g +1. The sewing relation
(105) can be considered to be a parameterization of a cylinder connecting the punctured
Riemann surface to itself. Using the Yamada formalism [Y], and noting the notational
differences, the genus g + 1 normalized differential of the second kind ω(g+1) of (28)
obeys

Theorem 6 (Ref. [Y], Theorem 1, Theorem 4).

(a) ω(g+1) is holomorphic in ρ for |ρ| < r1r2.
(b) limρ→0 ω(g+1)(x, y) = ω(g)(x, y) for x, y ∈ Ŝ .

Regarded as a power series in ρ, the coefficients of the analytic expansion of ω(g+1) in
ρ can be calculated from ω(g). Let Ca(za) ⊂ Aa denote a closed anti-clockwise oriented
contour parameterized by za surrounding the puncture at za = 0 on Ŝ. Note that C1(z1)

may be deformed to −C2(z2). Then similarly to Lemma 1 we find [Y]

Lemma 10.

ω(g+1)(x, y) = ω(g)(x, y) +
1

2π i

∑
a=1,2

∮
Ca(z)

(ω(g+1)(y, z)

z∫
ω(g)(x, ·)), (106)

for x, y ∈ Ŝ.

For a, b = 1, 2 and k, l = 1, 2, . . . we define weighted moments

Yāb(k, l) = ρ(k+l)/2

√
kl

1

(2π i)2

∮
Ca(u)

∮
Cb(v)

u−kv−lω(g+1)(u, v). (107)

Note that Yab(k, l) = Yb̄ā(l, k). We also define Y = (Yab(k, l)) to be the infinite matrix
indexed by the pairs a, k and b, l. We define a set of holomorphic 1-forms on Ŝ ,

aa(k, x) = ρk/2

2π i
√

k

∮
Ca(za)

z−k
a ω(g)(x, za), (108)

and define a(x) = (aa(k, x)) and ā(x) = (aā(k, x)) to be the infinite row vectors
indexed by a, k . In a similar way to Lemma 2 we then have

Lemma 11. ω(g+1)(x, y) for x, y ∈ Ŝ is given by

ω(g+1)(x, y) = ω(g)(x, y) − a(x)(I − Y )ā(y)T . (109)
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We next compute the explicit form of Y in terms of the following weighted moments
of ω(g):

Rāb(k, l) = −ρ(k+l)/2

√
kl

1

(2π i)2

∮
Ca(x)

∮
Cb(y)

x−k y−lω(g)(x, y)

= −ρk/2

√
k

1

2π i

∮
Ca(x)

x−kab(l, x), (110)

where Rab(k, l) = Rb̄ā(l, k) and the extra minus sign is introduced for later convenience.
We may consider R as an infinite block matrix (similar to Q of (55))

R = (Rab(k, l)) = −
[

B A
A BT

]
, (111)

with

A(k, l) = A(k, l, ρ) = ρ(k+l)/2

(2π i)2
√

kl

∮
C1(x)

∮
C1(y)

x−k y−lω(g)(x, y),

B(k, l) = B(k, l, ρ) = ρ(k+l)/2

(2π i)2
√

kl

∮
C2(x)

∮
C1(y)

x−k y−lω(g)(x, y). (112)

Similarly to Proposition 1 we find:

Proposition 6. Yab(k, l) is given in terms of R by

I − Y = (I − R)−1. (113)

Here

(I − R)−1 =
∑
n≥0

Rn

and is convergent in ρ for |ρ| < r1r2.

Likewise, similarly to Theorem 2 we may define det(I − R) and find:

Theorem 7. det(I − R) is non-vanishing and holomorphic in ρ for |ρ| < r1r2.

We can define a standard basis of cycles {a1, b1, . . . ag+1, bg+1} on the sewn genus
g +1 surface as follows, where the set {a1, b1, . . . ag, bg} is the original basis. Then ag+1

is defined as the contour C2 on Ŝ whereas bg+1 is defined to be a path chosen in Ŝ from
z1 = z0 to z2 = ρ/z0 which points are identified on the sewn surface. Integrating (109)
along a br cycle on S for r = 1, . . . g gives g holomorphic 1-forms for x ∈ Ŝ,

ν
(g+1)
r (x) = ν

(g)
r (x) − a(x)(I − R)−1ᾱT

r , (114)

where ᾱr = (αr,ā(k)) with

αr,a(k) =
∮
br

aa(x, k). (115)
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We then find from (30), (31), (114) and (115) that for r, s = 1, . . . g,

2π iΩ(g+1)
rs = 2π iΩ(g)

rs − αr (I − R)−1ᾱT
s .

The remaining normalized holomorphic one form ν
(g+1)
g+1 can be expressed in terms

of the normalized differential of the third kind ω
(g)
p2−p1

of (32) with weighted moments

βa(k) = ρk/2

√
k

1

2π i

∫
Ca(za)

(ω
(g)
p2−p1

+ (−1)1+a dza

za
)z−k

a . (116)

Then by Cauchy’s theorem we find that [Y]

Lemma 12 (op. cit, Corollary 5). The normalized holomorphic one form ν
(g+1)
g+1 is given

by

ν
(g+1)
g+1 (x) = ω

(g)
p2−p1

(x) +
1

2π i

∑
a=1,2

∮
Ca(z)

ω(g+1)(x, z)

z∫
(ω

(g)
p2−p1

+ (−1)1+a dza

za
). (117)

Hence integrating (117) over a br cycle and using ( 109) we find for r = 1, . . . , g
that

2π iΩ(g+1)
rg+1 =

p2∫
p1

ν
(g)
r − αr (I − R)−1β̄T .

Finally Ω
(g+1)
g+1g+1 is described in [Y]:

Lemma 13 (op. cite. Lemma 5). Ω
(g+1)
g+1g+1 is given by

2π iΩ(g+1)
g+1g+1 = log(

ρ

z2
0

) +

z−1
2 (z0)∫

z−1
1 (z0)

ω
(g)
p2−p1

+
∑

a=1,2

1

2π i

∮
Ca

ν
(g+1)
g+1 (z)

z∫
z−1

a (z0)

(ω
(g)
p2−p1

+ (−1)1+a dza

za
),

where the logarithmic branch is determined by the choice of the cycle bg+1 as a path in

Ŝ from z1 = z0 to z2 = ρ/z0.

Substituting ν
(g+1)
g+1 from (117) one eventually obtains [Y]

2π iΩ(g+1)
g+1g+1 = log ρ + C0 − β(I − R)−1β̄T ,

where

C0 = lim
u→0

⎡
⎢⎢⎣

z−1
2 (u)∫

z−1
1 (u)

ω
(g)
p2−p1

− 2 log u

⎤
⎥⎥⎦ .
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However from (34) we may express C0 in terms of the prime form

C0 = lim
u→0

log
K (g)(z−1

2 (u), p2)K (g)(z−1
1 (u), p1)

u2 K (g)(z−1
2 (u), p1)K (g)(z−1

1 (u), p2)

= − log(−z′
1(p1)z

′
2(p2)K (g)(p2, p1)

2),

where d
du z−1

a (u)|u=0 = 1/z′
a(pa) and using K (g)(p2, p1) = −K (g)(p1, p2). We there-

fore find altogether that

Theorem 8. The genus g + 1 period matrix for |ρ| < r1r2 is given by

2π iΩ(g+1)
rs = 2π iΩ(g)

rs − αr (I − R)−1ᾱT
s , r, s = 1, . . . , g, (118)

2π iΩ(g+1)
rg+1 =

p2∫
p1

ν
(g)
r − β(I − R)−1ᾱT

r , r = 1, . . . , g, (119)

2π iΩ(g+1)
g+1g+1 = log

( −ρ

z′
1(p1)z′

2(p2)K (g)(p2, p1)2

)
− β(I − R)−1β̄T , (120)

where Ω(g+1) is holomorphic in ρ for 0 < |ρ| < r1r2 and the logarithmic branch is
determined by the choice of the cycle bg+1.

We finally obtain the following holomorphic properties for ω(g+1) , Ω(g+1) and
det(I − R). The proof follows a similar argument to that for Propositions 2 and 3.

Proposition 7. Suppose that ω(g) is a holomorphic function of a complex parameter μ

for |μ| < S. Then det(I − R) is non-vanishing and both ω(g+1) and det(I − R) are
holomorphic in μ for |μ| < S with |ρ| < r1r2 whereas Ω(g+1) is holomorphic in μ for
|μ| < S with 0 < |ρ| < r1r2.

5.2. Self-Sewing a Sphere to form a Torus. It is instructive to consider two separate
examples of sewing a Riemann sphere to itself to form a torus. The first is mainly illus-
trative whereas the second is related to some later genus two considerations wherein the
Catalan numbers arise in an interesting and surprising way. In both cases ω(1) is given
by (35) with an appropriately identified modular parameter τ .

5.2.1. Simplest Case. Let S0 = C∪{∞} be the Riemann sphere with bilinear form (70).
Choose local coordinates z1 = z in the neighborhood of the origin and z2 = 1/z′ for z′ in
the neighborhood of the point at infinity. Identify the annular regions |q|r−1

ā ≤ |za | ≤ ra
for a complex parameter q obeying |q| ≤ r1r2 via the sewing relation

z = qz′. (121)

Note that the annular regions do not intersect on the sphere provided r1r2 < 1 so that
|q| < 1. We then find [Y]
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Proposition 8. q = exp(2π iτ), where τ is the torus modular parameter.

Proof. The 1-forms (108) are

a1(k, x) = √
kqk/2x−k−1dx,

a2(k, x) = −√
kqk/2xk−1dx,

so that A(k, l) = 0 and B(k, l) = qkδk,l in (111) giving

I − R = diag(1 − q, 1 − q, . . . , 1 − qk, 1 − qk, . . .).

Hence Lemma 11 gives for x, y ∈ Ŝ0,

ω(1)(x, y) =
⎧⎨
⎩ xy

(x − y)2 +
∑
k≥1

kqk

1 − qk

[(
x

y

)k

+
( y

x

)k
]⎫⎬
⎭ dxdy

xy
.

Under the conformal map z → log z we then verify ω(1)(u, v) = P2(τ, u − v)dudv

with u = log x and v = log y using (10), where q = exp(2π iτ). The sewing relation
(121) is then just the standard torus periodicity relation log z = log z′ + 2π iτ .

Alternatively, we may apply (120) of Theorem 8 using z2 = 1/z − 1/p2 and then
consider p2 → ∞. Then K (0)(p2, 0) = p2 with ω

(1)
p2−0(x) = ( 1

x−p2
− 1

x )dx so that

βa(k) = 0 and z′
1(0)z′

2(p2)K (0)(p2, 0)2 = −1 independent of p2. This implies that

2π iτ = 2π iΩ(1)
11 = log q again. ��

Remark 1. The modular transformation τ → τ +1 is generated by a continuous variation
in the sewing parameter exp(iθ)q for 0 ≤ θ ≤ 2π . This corresponds to a Dehn twist
b1 → a1+b1 in the b1 cycle chosen in Lemma 13 and Theorem 8 so that 2π iΩ(1)

11 = log q
is evaluated on the next logarithmic branch.

Remark 2. ω(1)(x, y) and det(1 − R) = ∏
k≥1(1 − qk)2 are clearly holomorphic for

|q| < 1 as expected from Theorems 6 and 7.

5.2.2. General Self-Sewing of a Sphere and the Catalan Series. For z ∈ S0 choose local
coordinates z1 = z in the neighborhood of the origin and z2 = z′ −w for z′ in the neigh-
borhood of w ∈ S0. Identify the annuli |ρ|r−1

2 ≤ |z| ≤ r1 and |ρ|r−1
1 ≤ ∣∣z′ − w

∣∣ ≤ r2
for |ρ| ≤ r1r2 via the sewing relation

z(z′ − w) = ρ. (122)

The two annular regions do not intersect provided |w| > r1 +r2 ≥ r1 +|ρ|r−1
1 ≥ 2|ρ|1/2.

The lower bound occurs for r1 = r2 = |ρ|1/2 and is realized when the two annuli
become degenerate (infinitesimally thin) and touch at the point z1 = −z2 = w/2 with
w2 = −4ρ. Thus defining

χ = − ρ

w2 ,
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then χ = 1
4 is the degenerate point. We define the Catalan series9 to be the series f (χ)

convergent for |χ | < 1
4 satisfying

χ = f

(1 + f )2 . (123)

Thus

f (χ) = 1 − √
1 − 4χ

2χ
− 1 =

∑
n≥1

1

n

(
2n

n + 1

)
χn

= χ + 2χ2 + 5χ3 + 14χ4 + O
(
χ5
)

. (124)

The coefficients 1
n

( 2n
n+1

)
are the Catalan numbers which occur in a remarkably wide range

of combinatorial settings e.g., [St].

Proposition 9. For the sewing described by (122), the torus modular parameter is q =
f (χ), the Catalan series.

Proof. Define the Möbius transformation

z �→ γ.z = w

1 + f
(

z − f

z − 1
), (125)

where f = f (χ). Then with z = γ.Z and z′ = γ.Z ′ the sewing relation (122) becomes,
on using (123),

Z = f Z ′.

Thus we recover the earlier sewing relation of (121) with modular parameter q = f (χ).
This result can be verified from (120) of Theorem 8 as follows. With ω(0) of (70) the

basis of 1-forms (108) is given by

a(0)
1 (k, x) = √

kρk/2x−k−1dx,

a(0)
2 (k, x) = √

kρk/2(x − w)−k−1dx, (126)

with

R(0) = −
[

B(0) A(0)

A(0) B(0)T

]
,

A(0)(k, l) = 0, B(0)(k, l) = (−χ)(k+l)/2

√
kl

(−1)k+1(k + l − 1)!
(k − 1)!(l − 1)! ,

ω
(0)
w−0(x) = (

1

x − w
− 1

x
)dx,

K (0)(w, 0) = w,

β(0)(k) = (−χ)k/2

√
k

[−1, (−1)k], (127)

9 The Catalan series is more usually defined to be 1 + f (χ).
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where the 0 superscript indicates the genus of the sphere. After some calculation, we
find that τ is given by

2π iτ = 2π iΩ(1)
11 = log χ + 2

∑
k≥1

1

k
χk
∑
n≥1

Sn,k(χ),

where S1,k(χ) = 1 and

Sn,k(χ) =
∑

kn−1,...k1≥1

χkn−1+...+k1

(
k + kn−1 − 1

kn−1

)(
kn−1 + kn−2 − 1

kn−2

)

. . .

(
k2 + k1 − 1

k1

)
, (128)

for n > 1. We will show below that∑
n≥1

Sn,k(χ) = (1 + f (χ))k, (129)

which implies
∑

k≥1
1
k χk ∑

n≥1
Sn,k(χ) = − log(1 − χ(1 + f )) = log(1 + f ) from (124).

Therefore 2π iτ = log χ + 2 log(1 + f ) = log f so that q = f as claimed.
It remains to prove (129). Since

∑
k1≥1 χk1

(k2+k1−1
k1

) = (1 − χ)−k2 − 1 we find for
n > 1 that

Sn,k(χ) =
∑

kn−1≥1

χkn−1

(
k + kn−1 − 1

kn−1

)
. . .

∑
k2≥1

(
χ

1 − χ

)k2
(

k3 + k2 − 1

k2

)
− Sn−1,k(χ).

Repeating this process leads to

N∑
n=1

Sn,k(χ) =
([

1

1 − χ
1−χ/···

]
N

)k

,

where [ 1
1− χ

1−χ/···
]N denotes the N th term in the continued fraction expansion of F =

1/(1 − χ F) whose solution from (124) is F = 1 + f . ��
Remark 3. The modular transformation τ → τ +1 is generated by a continuous variation
in the sewing parameter exp(iθ)ρ for 0 ≤ θ ≤ 2π .

Using Lemma 11 and comparing to ω(1) of (35) results in novel expressions for
Eisenstein series En(q) for q = f (χ). Thus, for example, one finds

Proposition 10.

E2(q = f (χ)) = − 1

12
+

2χ

1 − 4χ
(1 + B(0))−1(1, 1), (130)

where (1, 1) refers to the (k, l) = (1, 1) element of the infinite matrix (1 + B(0))−1.
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Proof. From (109) and (126) we have

ω(1)(x, y) = dxdy

(x − y)2 − a(0)(x)(I − R(0))−1(ā(0))T (y).

But ω(1)(x, y) = ω(1)(u, v) = P2(u − v, τ )dudv with τ = 1
2π i log f (χ) from Prop-

osition 9 with x = γ.eu and y = γ.ev using (125). Then, on substituting for u, v into
ω(1)(x, y) one eventually finds using ( 127) that

ω(1)(x, y) = eu−vdudv

(eu−v − 1)2 −
∑

k,l≥1

(1 + B(0))−1(k, l)
√

kl

(
− χ

1 − 4χ

)(k+l)/2

.(eu − 1)k−1(ev − 1)l−1

[(
1 − f

eu − f

)k+1 ( 1 − f

1 − f ev

)l+1

+(−1)k+l
(

1 − f

1 − f eu

)k+1 ( 1 − f

ev − f

)l+1
]

eu+vdudv,

using 1 − f = (1 + f )
√

1 − 4χ . Expanding in u, v we then find that

ω(1)(x, y) = [ 1

(u − v)2 − 1

12
+

2χ

1 − 4χ
(1 + B(0))−1(1, 1) + O(u, v)]dudv, (131)

from which the result follows on comparison with (9). ��

6. Self-Sewing a Torus to Form a Genus Two Riemann Surface

6.1. The Genus Two Period Matrix in the ρ Formalism. We now apply the ρ-formalism
to sew a twice punctured torus with modulus τ and punctures separated by w to form a
genus two Riemann surface with period matrix Ω(2)(τ, w, ρ). We will see that Ω(2) is
holomorphic for (τ, w, ρ) in an appropriate domain Dρ . We again provide a description
of Ω(2) in terms of a sum of weights of necklaces. There is a holomorphic mapping
Fρ : Dρ → H2, and we describe its equivariance properties with respect to a certain
group. The logarithmic contribution log(−ρ/K 2) to Ω

(2)
22 in (120) gives rise to a subtle

analytic structure which we discuss in some detail. Finally, we prove that Fρ is invertible
in a certain domain.

Consider a framed torus (cf. Subsect. 4.1) S = C/�, where � ⊆ C is a lattice with
positively oriented basis (σ, ς) and modulus τ = σ/ς ∈ H1. Define annuli Aa, a = 1, 2,

centered at z = 0 and z = w of S with local coordinates z1 = z and z2 = z −w respec-
tively. Take the outer radius of Aa to be ra < 1

2 D(�) and the inner radius to be |ρ|/rā ,
with |ρ| ≤ r1r2 < 1

4 D(�)2 (cf. Lemma 6). Identifying the annuli according to the
sewing relation (105) z1z2 = ρ gives rise to a compact Riemann surface of genus 2.

As in the remarks following Lemma 6, we now take � = �τ with basis (2π iτ, 2π i)
and with w in the fundamental parallelogram for �τ with sides (2π iτ, 2π i). As with the
sphere example above, the two annuli must not intersect. This requires the inequalities
|w − λ| > r1 + r2 ≥ 2|ρ|1/2 to hold for λ ∈ �τ . Thus we find

2|ρ|1/2 < |w| < D(�τ ) − 2|ρ|1/2.
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Notice that this implies |ρ| < 1
16 D(�τ )

2, which refines the inequality satisfied by ρ

discussed above. As a result of this discussion, we see that the relevant domain in the ρ

-formalism is the following:10

Dρ = {(τ, w, ρ) ∈ H1 × C × C | |w − λ| > 2|ρ|1/2 > 0, λ ∈ �τ }. (132)

We may apply Theorem 8 to determine Ω(2)(τ, w, ρ). We find:

Theorem 9. Sewing determines a holomorphic map

Fρ : Dρ → H2,

(τ, w, ρ) �→ Ω(2)(τ, w, ρ). (133)

Proposition 11. Ω(2) = Ω(2)(τ, w, ρ) is given by

2π iΩ(2)
11 = 2π iτ − ρσ((I − R)−1(1, 1)), (134)

2π iΩ(2)
12 = w − ρ1/2σ((β(I − R)−1(1)), (135)

2π iΩ(2)
22 = log(− ρ

K (τ, w)2 ) − β(I − R)−1β̄T , (136)

where the branch of the log function in (136) is determined by the choice of the cycle b2.
Here, R = R(τ, w, ρ) = (Rab(k, l)) is an infinite matrix with indices k, l = 1, 2, 3, . . .

and a, b = 1, 2; β = β(τ,w, ρ) = (βa(k)) is an infinite row vector; (1, 1) and (1) are
the (1, 1)- and (1)- (block) entries of a matrix; σ(M) denotes sum over the entries of a
finite matrix; and

R(k, l) = −ρ(k+l)/2

√
kl

[
D(k, l, τ, w) C(k, l, τ )

C(k, l, τ ) D(l, k, τ, w)

]
, (137)

β(k) = ρk/2

√
k

(Pk(τ, w) − Ek(τ ))[−1, (−1)k], (138)

with notation as in Sect. 2.

Proof. Since ω(1)(x, y) = P2(x − y)dxdy from ( 20) we find that the set of 1-forms
(108) with periods (2π iτ, 2π i) is given by

a1(k, x) = a1(k, x, τ, ρ) = √
kρk/2 Pk+1(τ, x)dx,

a2(k, x) = a2(k, x, τ, ρ) = a1(k, x − w).

The matrices A(k, l), B(k, l) in (112) are given directly from the expansions (25) and
(26) which are convergent on Dρ resulting in (137). α1,a(k) of (115) is independent of
a = 1, 2 with

α1,a(k) =
∮
b1

aa(k, ·) = ρ1/2δk,1.

Hence 2π iΩ(2)
11 is as stated from (118) of Theorem 8 for (τ, w, ρ) ∈ Dρ . From Exam-

ple 1 we know that ω
(1)
w−0(x) = (P1(τ, x − w) − P1(τ, x))dx and the prime form is

10 The footnote relating to (75) concerning notation applies here too.
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K (1)(x, y) = K (τ, x − y). We obtain the given moments (138) of ω
(1)
w−0(x) from ( 20).

Hence since ν(1)(x) = dx, we find 2π iΩ(2)
12 is as given from (119) of Theorem 8 for

(τ, w, ρ) ∈ Dρ . Finally applying (120) with K (1)(w, 0) = K (τ, w) we obtain (136) for
(τ, w, ρ) ∈ Dρ .

Ω
(2)
i j (τ, w, ρ) is holomorphic in ρ for 0 < |ρ| < r1r2 from Theorem 8. Proposition 7

then states that Ω
(2)
i j (τ, w, ρ) is also holomorphic in τ ∈ H1. We also need to show that

Ω
(2)
i j (τ, w, ρ) is holomorphic in w. Since Y = (I − R)−1 converges for |ρ| < r1r2

then, following an argument similar to that in Proposition 2, we find that Ω
(2)
i j (τ, w, ρ)

is continuous in w for (τ, w, ρ) ∈ Dρ . The Weierstrass functions Pk(τ, w) for k ≥ 1
are holomorphic in w. Hence the ρ expansion coefficients Ω

(2)
i j (τ, w, ρ) are holomor-

phic functions in w since they consist of finite sums and products of these Weierstrass
functions. Hence, by Lemma 5, Ω(2)

i j (τ, w, ρ) is holomorphic in w. Finally, by Hartog’s

Theorem, Ω
(2)
i j is holomorphic on Dρ . ��

6.2. Necklace Expansion for Ω(2). We introduce a graphical interpretation for the ρ

period matrix formulas analogous to that described earlier for the ε-expansion. Consider
the set of necklaces N = {N }: they are connected graphs with n ≥ 2 nodes, n − 2 of
which have valency 2 and two of which have valency 1, together with an orientation,
say from left to right. Furthermore, each vertex carries two labels k, a with k a positive
integer and a = 1 or 2. A typical necklace in the ρ-formalism looks as follows:

k1,a1• −→ k2,a2• −→ k3,a3• −→ k4,a4•
We define the degenerate necklace N0 to be a single node with no edges. Next we define
a weight function

ω : N −→ C[P2(τ, w), P3(τ, w), E2(τ ), E4(τ ), E6(τ ), ρ1/2].

If N ∈ N has edges E labelled as
k,a• −→ l,b• then we define

ω(E) = Rab(k, l, τ, w, ρ),

ω(N ) =
∏

ω(E),

with Rab(k, l) as in (137) and where the product is taken over all edges of N . We further
define ω(N0) = 1.

The necklaces with prescribed end nodes labelled (k, a; l, b) look as follows:

k,a• −→ k1,a1• . . .
k2,a2• −→ l,b• (type (k, a; l, b)).

We set

Nk,a;l,b = {isomorphism classes of necklaces of type (k, a; l, b)}.
As in Lemma 7 we obtain
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Lemma 14. We have for k, l ≥ 1,

(I − R)−1
ab (k, l) =

∑
N∈Nk,a;l,b

ω(N ).

Finally it is convenient to define

ω11 =
∑

a,b=1,2

∑
N∈N1,a;1,b

ω(N ),

ωβ1 =
∑

a,b=1,2

∑
k≥1

βa(k)
∑

N∈Nk,a;1,b

ω(N ),

ω1β̄ =
∑

a,b=1,2

∑
k≥1

β̄b(k)
∑

N∈N1,a;k,b

ω(N ),

ωββ̄ =
∑

a,b=1,2

∑
k,l≥1

βa(k)β̄b(l)
∑

N∈Nk,a;l,b

ω(N ). (139)

Note that Rab(k, l) = Rb̄ā(l, k), so that ωβ1 = ω1β̄ . Then from Theorem 9 we have

Proposition 12.

2π iΩ(2)
11 = 2π iτ − ρω11,

2π iΩ(2)
12 = w − ρ1/2ωβ1,

2π iΩ(2)
22 = log(− ρ

K (τ, w)2 ) − ωββ̄ . ��

6.3. Equivariance of Fρ . In Subsect. 4.4 we defined a subgroup G ⊂ Sp(4, Z) which
preserves the domain Dε , and proved the equivariance of Fε under the action of G. In
this section we wish to establish analogous equivariance properties in the ρ-formalism.
With this in mind, one might expect that the map Fρ occurring in Theorem 9 is the
correct analog of Fε . However, because of the logarithmic branch structure of Ω

(2)
22 , it

is necessary to lift Fρ to a single-valued function F̂ρ on a certain covering space D̂ρ for
Dρ before the correct analogs can be established.

6.3.1. Some Heisenberg and Jacobi-type groups. In this subsection we consider some
groups relevant to our enterprise, and start with certain subgroups of Sp(4, Z). For
(a, b, c) ∈ Z

3 set

μ(a, b, c) =
⎛
⎜⎝

1 0 0 b
a 1 b c
0 0 1 −a
0 0 0 1

⎞
⎟⎠ , (140)

with

A = μ(1, 0, 0), B = μ(0, 1, 0), C = μ(0, 0, 1).
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The matrices (140) form a subgroup Ĥ ⊆ Sp(4, Z) which is a 2-step nilpotent group
with center isomorphic to Z and generated by C , and central quotient isomorphic to Z

2.
Note that we have the presentation

Ĥ = 〈A, B, C | [A, B]C−2 = [A, B, C] = 1〉. (141)

The ‘left’ modular group �1 (84) is also a subgroup of Sp(4, Z), and indeed it normalizes
Ĥ according to the conjugation formula

γ −1μ(u, v, w)γ = μ((u, v)γ,w), γ ∈ �1. (142)

Here it was convenient to abuse notation, taking

γ =
⎛
⎜⎝

a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞
⎟⎠ ∈ �1 and (u, v)γ = (u, v)

(
a b
c d

)
. (143)

In this way we get a subgroup L = Ĥ�1 ⊆ Sp(4, Z) which is a split extension of
SL(2, Z) by Ĥ . Note that Z(L) = 〈C〉, and that the central quotient J = L/Z(L) ∼=
Z

2
� SL(2, Z) is the Jacobi group which figures in the transformation laws of Jacobi

forms ([EZ]).
Let H = 〈A, B〉 be the subgroup of Ĥ generated by A and B. It follows from (141)

that H has the presentation

H = 〈A, B | [A, B] = C ′, [A, C ′] = [B, C ′] = 1〉,
where we have set C ′ = C2. We call H the Heisenberg group, though H and Ĥ (which
are not isomorphic) are often confused in this regard. We see from (142) that |Ĥ : H | = 2
and that �1 normalizes H . Thus L0 = H�1 is a subgroup of L of index 2.

Lemma 15. L acts on Dρ as follows:

μ(a, b, c).(τ, w, ρ) = (τ, w + 2π iaτ + 2π ib, ρ), (144)

γ.(τ, w, ρ) =
(

aτ + b

cτ + d
,

w

cτ + d
,

ρ

(cτ + d)2

)
. (145)

The kernel of the action is Z(L), so that the effective action is that of J = L/Z(L).

Proof. Let us first work with the larger domain whereby we allow the triple (τ, w, ρ)

to lie in H1 × C × C. Then it is easy to see that the first equality defines an action of Ĥ
with kernel 〈C〉, and that the second equality defines a faithful action of SL(2, Z).

Next we show that these two actions jointly define an action of the group L . To this
end it is useful to rewrite (145) more functorially in terms of the cocycle j (γ, τ ) = cτ +d,
which satisfies

j (γ1γ2, τ ) = j (γ1, γ2τ) j (γ2, τ ), γ1, γ2 ∈ �1. (146)

Thus

γ.(τ, w, ρ) =
(

γ τ,
w

j (γ, τ )
,

ρ

j (γ, τ )2

)
,
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and we have to show that

γ −1μ(x, y, z)γ.(τ, w, ρ) = μ((x, y)γ, z).(τ, w, ρ). (147)

The right-hand-side of (147) is equal to

(τ, w + 2π i((ax + cy)τ + bx + dy), ρ).

The left-hand-side is equal to

γ −1μ(x, y, z).

(
γ τ,

w

j (γ, τ )
,

ρ

j (γ, τ )2

)

= γ −1.

(
γ τ,

w

j (γ, τ )
+ 2π i(xγ τ + y),

ρ

j (γ, τ )2

)

= γ −1.

(
γ τ,

w + 2π i(x(aτ + b) + y(cτ + d))

j (γ, τ )
,

ρ

j (γ, τ )2

)

=
(

τ,
w + 2π i(x(aτ + b) + y(cτ + d))

j (γ, τ ) j (γ −1, γ τ )
,

ρ

( j (γ, τ ) j (γ −1, γ τ ))2

)
= (τ, w + 2π i(x(aτ + b) + y(cτ + d)), ρ) ,

where we used (146) to get the last equality. This confirms (147).
It remains to show that the action of L preserves Dρ , and for this it is enough to prove

it for a set of generators. Bearing in mind the definition of Dρ (132), the result is clear
for μ(x, y, z). To prove it for γ ∈ �1, we must show that if (τ, w, ρ) ∈ Dρ then∣∣∣∣ w

j (γ, τ )
− λ

∣∣∣∣ > 2

∣∣∣∣ ρ

( j (γ, τ ))2

∣∣∣∣
1/2

> 0 (148)

for all λ ∈ �γτ . But λ = 1
j (γ,τ )

λ′ for some λ′ ∈ �τ , whence (148) reduces to

| j (γ, τ )|−1|w−λ′| > 2| j (γ, τ )|−1|ρ|1/2 > 0. This follows from the fact that (τ, w, ρ) ∈
Dρ , and the proof of the lemma is complete. ��

6.3.2. Some covering spaces. One sees that projection onto the first coordinate

pr1 : Dρ → H1,

(τ, w, ρ) �→ τ,

is locally trivial with contractible base H1. From the long exact sequence associated to a
fibration we obtain an exact sequence 0 = π2(H1) → π1(F) → π1(Dρ) → π1(H1) =
0, where F is the fiber. Thus, we have π1(Dρ) ∼= π1(F). From Lemma 6.5, there is a
free action of Z

2 = Ĥ/Z(L) on each fiber pr−1
1 (τ ). Furthermore, from the definition

of Dρ we see that

π1(Dρ/Z
2) ∼= π1(C/�τ \ {0}) × π1(C \ {0})

∼= H × Z.

Here, H is the Heisenberg group of the previous subsection.
We need to describe this identification carefully. Consider the usual realization of

C/�τ as the fundamental parallelogram for �τ with identification of sides, and let
α, β be the cycles along the sides with periods 2π iτ, 2π i respectively. Define δ to be a
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closed clockwise contour about an interior point of the parallelogram with local coordi-
nate w = 0. Then there is an isomorphism of groups

π1(C/�τ \ {0}) ∼=→ H,

α �→ A, β �→ B, δ �→ C ′.

Similarly, let η denote a closed anti-clockwise contour about ρ = 0 in the complex
plane. Then π1(C \ {0}) = 〈η〉.

Let D̃ρ be a universal covering space of Dρ with covering projection

p1 : D̃ρ → Dρ.

There is a free action of the fundamental group H × Z on D̃ρ , and we define

D̂ρ = D̃ρ/〈η−2δ〉.
Thus we have a sequence of covering projections

D̃ρ p3−→ D̂ρ p4−→ Dρ p2−→ Dρ/Z
2, (149)

where p1 = p4 ◦ p3. The action of �1 on Dρ lifts (modulo the fundamental group) to
an action on the universal cover. That is, there is a group G acting on D̃ρ , where G fits
into a short exact sequence

1 → H × Z → G → �1 → 1.

We have Z(G) = Z(H) × Z, in particular η−2δ ∈ Z(G). It follows that G acts on D̂ρ ,
and there is a sequence of surjective group maps

G → G/〈η−2δ〉 → L → �1 (150)

in which the four groups act on the corresponding spaces in (149 ).

6.3.3. Lifting the logarithm l(x). From (136), the logarithmic contribution to Ω
(2)
22 is

l(x) = log

(
− ρ

K (τ, w)2

)
, x = (τ, w, ρ) ∈ Dρ. (151)

The remaining parts ω11, ωβ1 and ωββ̄ of Ω(2) are single-valued on Dρ since they are

expressible in terms of the Weierstrass functions and Eisenstein series. Now K (τ, w)2 =
−θ1(τ, w)2/η(τ)6 is a Jacobi form of weight −2 and index 1 [EZ], so that exp l(x) =−ρ

K (τ,w)2 is single-valued. The way it transforms under the Jacobi group J can be read-off
of Lemma 15. We find that

exp l((a, b).x) = exp(2πa2iτ + 2aw) exp l(x), (a, b) ∈ Z
2, (152)

exp l(γ1.x) = exp

(
− 1

2π i

c1w
2

c1τ + d1

)
exp l(x), γ1 ∈ �1, (153)

where (a, b) is the image of μ(a, b, c) in J . For a given choice of the branch l(x), we
therefore find that

l((a, b).x) = l(x) + 2πa2iτ + 2aw + 2π i N (a, b), (a, b) ∈ Z
2,

for some N (a, b) ∈ Z.
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Let l̃(x̃) be a lifting of l(x) to a single-valued function on D̃ρ . K (τ, w)2 is holo-
morphic for (τ, w) ∈ H1×C with a zero of order two for each w ∈ �τ (see (18)). Let
x̃ ∈ D̃ρ and p1(x̃) = x = (τ, w, ρ). Using (152) we find:

l̃(α.x̃) = l̃(x̃) + 2π iτ + 2w + 2π i Nα,

l̃(β.x̃) = l̃(x̃) + 2π i Nβ,

l̃(η.x̃) = l̃(x̃) + 2π i,

l̃(δ.x̃) = l̃(x̃) + 4π i,

for some Nα, Nβ ∈ Z. In particular, note that by composing these transformations
we confirm the relation [α, β] = δ. We may define new generators α′ = αη−Nα ,
β ′ = βη−Nβ , which satisfy the same relations and for which Nα′ = Nβ ′ = 0. Relabel-
ling, we then obtain

Lemma 16. With previous notation, we have

l̃(αaβbγ cδd .x̃) = l̃(x̃) + 2π ia2τ + 2aw + 2π i(c + 2(ab + d)), (154)

for a, b, c, d ∈ Z. In particular,

l̃(η−2δ.x̃) = l̃(x̃),

so that l̃ pushes down to a single-valued function l̂ on D̂ρ.

From (153) we find for γ ∈ �1 that

l(γ1.x) = l(x) − 1

2π i
.

c1w
2

c1τ + d1
+ 2π i N (γ1), (155)

for some N (γ1) ∈ Z. It is easy to see that (155) is consistent with respect to the composi-
tion of γ1, γ2 ∈ �1 with a trivial cocycle condition N (γ1γ2) = N (γ1)+ N (γ2). Thus the
extension (150) splits, in particular G contains the subgroup L = Ĥ�1 and G = L ×Z.

Since L ∩ 〈η−2δ〉 = 1 there is an injection

L −→ G/〈η−2δ〉,

and through this map L acts on D̂ρ. We can now read-off from (154) and (155) that l̂
transforms as follows:

Theorem 10. The action of L on D̂ρ satisfies

l̂(μ(a, b, c).x̂) = l̂(x̂) + 2π ia2τ + 2aw + 2π i(ab + c), μ(a, b, c) ∈ Ĥ ,

(156)

l̂(γ1.x̂) = l̂(x̂) − 1

2π i
.

c1w
2

c1τ + d1
, γ1 ∈ �1, (157)

where x̂ ∈ D̂ρ, p4(x̂) = (τ, w, ρ).
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6.3.4. Equivariance of F̂ρ and Fρ . After the results of the previous subsection we know
that Fρ lifts to a single-valued holomorphic function F̂ρ on D̂ρ :

F̂ρ : D̂ρ → H2,

x̂ �→ Ω̂(2)(x̂). (158)

By Proposition 12 we have

2π iΩ̂(2)
11 (x̂) = 2π iτ − ρω11(x),

2π iΩ̂(2)
12 (x̂) = w − ρ1/2ωβ1(x),

2π iΩ̂(2)
22 (x̂) = l̂(x̂) − ωββ̄(x),

where (τ, w, ρ) = x = p4(x̂).

Theorem 11. F̂ρ is equivariant with respect to the action of L. Thus, there is a commu-
tative diagram for γ ∈ L,

D̂ρ F̂ρ→ H2
γ ↓ ↓ γ

D̂ρ F̂ρ→ H2

Proof. It suffices to consider the separate actions of Ĥ and �1, and we first consider that
of Ĥ . From ( 36), elements of Ĥ act as follows:

μ(a, b, c) : Ω̂ �→
(

Ω̂11, Ω̂12 + aΩ̂11 + b
Ω̂12 + aΩ̂11 + b, Ω̂22 + a2Ω̂11 + 2aΩ̂12 + ab + c

)
. (159)

We must show that the matrix in (159) coincides with F̂ρ(μ(a, b, c).x̂). Set x =
(τ, w, ρ). Using (144), the periodicity of Pk(τ, w) in w for k > 1, and the quasi-
periodicity of P1(τ, w) (14), we find that R(k, l) and β(k) satisfy

R(k, l)((a, b).x) = R(k, l)(x), (160)

β(k)((a, b).x) = β(k)(x) + aρ1/2δk,1. (161)

Thus ω11, ωβ1 and ωββ̄ satisfy

ω11((a, b).x) = ω11(x),

ωβ1((a, b).x) = ωβ1(x) + aρ1/2ω11(x),

ωββ̄((a, b).x) = ωββ̄(x) + a2ρω11(x) + 2aρ1/2ωβ1(x).

We therefore find

Ω̂11(μ(a, b, c).x̂) = τ − ρ

2π i
ω11((a, b).x) = Ω̂11(x̂).

Similarly, we have

Ω̂12(μ(a, b, c).x̂) = 1

2π i
(w + 2π iaτ + 2π ib − ρ1/2ωβ1((a, b).x))

= Ω̂12(x̂) + aΩ̂11(x̂) + b.
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Now application of (156) yields

Ω̂22(μ(a, b, c).x̂) = 1

2π i
(l̂(μ(a, b, c).x̂) − ωββ̄((a, b).x))

= 1

2π i
(l̂(x̂) + 2π ia2τ + 2aw + 2π i(ab + c)

−ωββ̄(x) − a2ρω11(x) − 2aρ1/2ωβ1(x))

= Ω̂22 + a2Ω̂11 + 2aΩ̂12 + ab + c.

This establishes equivariance of F̂ρ with respect to Ĥ .
As in the ε-formalism, the exceptional transformation law (12) for E2 plays a critical

rôle in establishing �1-equivariance of F̂ρ . Consider the action (89) of �1 on H2. Since
E2 appears only in R(1, 1) and β(1), (145) implies that

R(k, l)(γ1.x) = R(k, l)(x) + κδk,1δl,1, (162)

β(k)(γ1.x) = β(k)(x) − κ
w

ρ1/2 δk,1, (163)

κ = c1

c1τ + d1

ρ

2π i
. (164)

We then have

Ω̂11(γ1.x̂) = 1

c1τ + d1
(a1τ + b1 − 1

2π i

ρ

c1τ + d1
ω11(γ1.x)).

Similarly to Theorem 5 in the ε formalism, (162) implies that the transformation under
γ1 of the weight ω(N ) for N ∈ N1,a;1,b is the sum of the weights of the product over all

possible necklaces in N1,a;1,b formed from N by deleting the edges of type
1,a1• −→ 1,a2•

and multiplying by a κ factor for each such deletion. From Proposition 12 and (164) we
obtain

1 − κω11 = (c1Ω̂11 + d1)/(c1τ + d1).

Then we find, much as before, that

ω11(γ1.x) =
∑
n≥0

κnωn+1
11 (x)

= (c1τ + d1)ω11(x)

c1Ω̂11 + d1
. (165)

Then Ω̂11(γ1.x̂) is as given in (89).
We next have

Ω̂12(γ1.x̂) = 1

c1τ + d1

1

2π i
(w − ρ1/2ωβ1(γ1.x)).

Equations (162) and (163) imply that
∑

k βa(k)ω(N ) for N ∈ Nk,a;1,b transforms under
γ1 as a sum over the product with κ factors of weights of necklaces in N1,a;1,b and at
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most one necklace in Nk,a;1,b with a βa(k) factor. Then one finds

ρ1/2ωβ1(γ1.x) = ρ1/2ωβ1(x) − κwω11(x)

1 − κω11(x)

= w − 2π i(c1τ + d1).
Ω̂12

c1Ω̂11 + d1
.

This implies Ω̂12(γ1.x̂) is as given in (89).
Finally, using (157) we have

Ω̂22(γ1.x̂) = 1

2π i
(l̂(x̂) + κ

w2

ρ
− ωββ̄(γ1.x)).

Using a similar argument, (162) and (163) imply that

ωββ̄(γ1.x) = ωββ̄(x) +
κω2

β1(x) − 2κ w
ρ1/2 ωβ1(x) + κ2 w2

ρ
ω11(x)

1 − κω11

= ωββ̄(x) − κ
w2

ρ
+ 2π i

c1Ω̂
2
12

c1Ω̂11 + d1
.

Hence Ω̂22(γ1.x̂) is as given in (89) and hence �1 acts equivariantly. This completes the
proof of the theorem. ��
Remark 4. Much the same as in Remark 1, Ω22 → Ω22 + 1 is generated by C corre-
sponding to a Dehn twist in the connecting cylinder.

We may also choose a branch of l(x) and consider the equivariance of Fρ on Dρ

under the action of the subgroup �1.

Corollary 2. For any choice of branch for l(x), Fρ is equivariant with respect to the
action of �1. Thus, there is a commutative diagram for γ ∈ �1,

Dρ Fρ→ H2
γ ↓ ↓ γ ��
Dρ Fρ→ H2

6.4. Local Invertibility About the Two Tori Degeneration Limiting Point. We now con-
sider the invertibility of the Fρ map in the neighborhood of a degeneration point. In the
ρ-formalism this degeneration is more subtle than that of the ε-formalism discussed in
Subsect. 4.5. Define the �1 -invariant parameter

χ = − ρ

w2 . (166)

We will show that ρ,w → 0 for fixed χ is the 2 -torus degeneration limit. From (132)
we have |w| > 2|ρ|1/2 (for λ = 0) so that |χ | < 1

4 . (Similarly to Subsect. 5.2.2, χ = 1
4
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is a singular point where two degenerate annuli touch at z1 = −z2 = w/2.) To describe
this limit more precisely, we introduce the domain

Dχ = {(τ, w, χ) ∈ H1 × C × C | (τ, w,−w2χ) ∈ Dρ, 0 < |χ | <
1

4
}. (167)

Thanks to Theorem 9 and Corollary 2, there is a �1-equivariant holomorphic map

Fχ : Dχ → H2,

(τ, w, χ) �→ Ω(2)(τ, w,−w2χ). (168)

Let

Dχ
0 = {(τ, 0, χ) ∈ H1 × C × C|0 < |χ | <

1

4
}

denote the space of limit points where ρ,w → 0 for fixed χ = 0. Then

Proposition 13. For (τ, w, χ) ∈ Dχ ∪ Dχ
0 we have

2π iΩ(2)
11 = 2π iτ + w2(1 − 4χ)G(χ) + O(w4),

2π iΩ(2)
12 = w

√
1 − 4χ(1 + w2(1 − 4χ)E2(τ )G(χ) + O(w4)),

2π iΩ(2)
22 = log f (χ) + w2(1 − 4χ)E2(τ ) + O(w4), (169)

where

G(χ) = 1

12
+ E2(q = f (χ)),

and f (χ) is the Catalan series (124).

Proof. Note that Pn(τ, w) = 1
wn (1 + w2 E2(τ )(δn,2 − δn,1) + O(w4)) from (9) and (13).

Then (137) and (138) imply

R(k, l) = R(0)(k, l) + w2χ E2(τ )δk,1δl,1 + O(w4),

β(k) = β(0)(k)(1 − w2 E2(τ )δk,1) + O(w4),

log

(
− ρ

K (τ, w)2

)
) = log χ + w2 E2(τ ) + O(w4),

using (127). For w = 0 these expressions are exactly those found in Proposition 9 for a
torus formed from a sphere by sewing an annulus centered at z = 0 to another centered
at z = w. Expanding ( 134) with ρ = −χw2 to order w2 implies

2π iΩ(2)
11 = 2π iτ + w2χσ((I − R(0))−1(1, 1)) + O(w4).

But (130) implies

σ((I − R(0))−1(1, 1)) = 2(I + B(0))−1(1, 1) = (1 − 4χ)

χ
G(χ), (170)

leading to the stated result for Ω
(2)
11 . Similarly, for Ω

(2)
12 we find

2π iΩ(2)
12 = w[1 − (−χ)1/2σ(β(0)(1 − R(0))−1(1))],

[1 + w2 E2(τ )χσ((1 − R(0))−1(1, 1)) + O(w4)].
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After some algebra and using (123), (128) and (129 ) one finds

1 − (−χ)1/2σ(β(0)(1 − R(0))−1(1)) = 1 − 2χ
∑
n≥1

Sn,1(χ)

= 1 − 2χ(1 + f (χ))

= √
1 − 4χ.

The stated result for Ω
(2)
12 then follows on using (170 ) again. Finally, for Ω

(2)
22 we find

as above, using Proposition 9, that

2π iΩ(2)
22 = log χ − β(0)(1 − R(0))−1β̄(0)T

+E2(τ )w2[1 − (−χ)1/2σ(β(0)(1 − R(0))−1(1))]2 + O(w4)

= log f (χ) + w2(1 − 4χ)E2(τ ) + O(w4). ��
The restriction of Fχ to Dχ

0 induces the natural identification

Fχ : Dχ
0

∼→ H1 × H1 ⊆ H2

(τ, 0, χ) �→
(

τ 0
0 1

2π i log f (χ)

)
, (171)

i.e., Ω(2) = diag(Ω
(2)
11 ,Ω

(2)
22 ). The invertibility of the �1-equivariant map Fχ in a

neighborhood of a point in Dχ
0 then follows:

Proposition 14. Let x ∈ Dχ
0 . Then there exists a �1−invariant neighborhood N χ

x ⊆ Dχ

of x throughout which Fχ is invertible.

Proof. The proof is very similar to Proposition 5. Let x = (τ, 0, χ). The Jacobian of
the Fχ map at x is from (169)

∣∣∣∣∂(Ω11,Ω12,Ω22)

∂(τ,w, χ)

∣∣∣∣
x

=
∣∣∣∣∣∣
1 0 0
0 1

2π i

√
1 − 4χ 0

0 0 1
2π i

f ′(χ)
f (χ)

∣∣∣∣∣∣
= 1

4π2χ
= 0,

using f ′(χ) = f (χ)/(χ
√

1 − 4χ). By the inverse function theorem, there exists an
open neighborhood of x ∈ Dχ

0 throughout which Fχ is invertible. The result then fol-
lows by choosing precisely invariant neighborhoods (under the action of �1) U, V of x ,
respectively y = Fχ (x) such that the conditions of part (a) of Lemma 9 hold. The open
neighborhood

N χ
x =

⋃
γ∈�1

γU

has the required properties. ��
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7. Mapping Between the ε and ρ Parameterizations

We have described in the previous sections two separate parameterizations for the genus
two period matrix Ω(2) based on either sewing two punctured tori in the ε-formalism
or sewing a twice-punctured torus to itself in the ρ-formalism. In this final section
we show that there is a 1-1 mapping between suitable �1−invariant domains in both
parameterizations.

Theorem 12. There exists a 1-1 holomorphic mapping between �1−invariant open
domains Iχ ⊂ Dχ and Iε ⊂ Dε , where Iχ and Iε are open neighborhoods of a
2-torus degeneration point.

Proof. From Proposition 5 there exists a G-invariant (and thus �1−invariant) open
domain N ε ⊂ Dε such that the holomorphic map Fε : N ε → Fε(N ε) is invert-
ible with Fε(N ε) an open neighborhood of a given 2-torus degeneration point Ω(2) =
diag(Ω

(2)
11 ,Ω

(2)
22 ). Similarly, from Proposition 14 there exists a �1-invariant open domain

N χ ⊂ Dχ such that the holomorphic map Fχ : N χ → Fχ (N χ ) is invertible with
Fχ (N χ ) an open neighborhood of diag(Ω

(2)
11 ,Ω

(2)
22 ). Define a �1-invariant open neigh-

borhood of diag(Ω
(2)
11 ,Ω

(2)
22 ) by IΩ = Fε(N ε)∩ Fχ (N χ ). Hence, defining�1-invariant

open domains Iχ = (Fχ )−1(IΩ) and Iε = (Fε)−1(IΩ), we find (Fε)−1 ◦ Fχ : Iχ →
Iε is holomorphic and 1-1. ��

We conclude by displaying the explicit form of the 1-1 mapping to order w3, obtained
by combining the expansions of (102)-(104) and Proposition 13:

τ1(τ, w, χ) = τ +
1

2π i
w2(1 − 4χ)

1

12
+ O(w4),

τ2(τ, w, χ) = 1

2π i
log( f (χ)) + O(w4),

ε(τ, w, χ) = −w
√

1 − 4χ(1 + w2 E2(τ )(1 − 4χ) + O(w4)). (172)

It is then straightforward to check that these relations are invariant under the action of
�1 to the given order using (12), (86) and (145).

Acknowledgement. The authors wish to thank Harold Widom and Alexander Zuevsky for useful discussions.

8. Appendix

In this appendix we supply the explicit form of the genus two period matrix Ω(2) of
Theorem 4 in the ε -formalism to O(ε9) and of Theorem 9 in the ρ-formalism to O(ρ5).

2π iΩ(2)
11 (τ1, τ2, ε) = 2π iΩ(2)

22 (τ2, τ1, ε)

= 2π iτ1 + F2ε
2 + E2 F2

2ε4 + (E2
2 F2

3 + 6 E4 F2 F4)ε
6

+ (E2
3 F2

4 + 12 E2 E4 F2
2 F4 + 10 E6 F2 F6 + 30 E6 F4

2)ε8

+ O(ε10),

2π iΩ(2)
12 (τ1, τ2, ε) = −ε[1 + E2 F2ε

2 + (E2
2 F2

2 + 3 E4 F4)ε
4

+ (E2
3 F2

3 + 9 E2 E4 F2 F4 + 5 E6 F6)ε
6

+ (E2
4 F2

4 + 15 E2
2 E4 F2

2 F4 + 5 E2 E6 F2 F6 + 30 E2 E6 F4
2

+ 30 E4
2 F2 F6 + 9 E4

2 F4
2 + 7 E8 F8)ε

8] + O(ε11),

where for brevity’s sake we have defined Ek = Ek(τ1) and Fk = Ek(τ2).
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Similarly, in the ρ-formalism we find that Ω(2)(τ, w, ρ) to O(ρ4) is as follows:

2π iΩ(2)
11 = 2π iτ − 2 ρ + 2 ( P2 + E2) ρ2 − 2 (P2 + E2)

2 ρ3

+2( (P2 + E2)
3 + 2 P3

2)ρ4 + O(ρ5),

2π iΩ(2)
12 = w + 2 P1ρ − 2 P1 (P2 + E2) ρ2

+2[ P1 (P2 + E2)
2 + P3 (P2 − E2)]ρ3 − 2[ P3 (P4 + E4)

+ P1 (P2 + E2)
3 + 2 P1 P3

2 + P3(P2
2 − E2

2)]ρ4 + O(ρ5),

2π iΩ(2)
22 = log(− ρ

K 2(w, τ)
) − 2 P1

2ρ + [2 P1
2 (P2 + E2) + (P2 − E2)

2]ρ2

−[2 P1
2 (P2 + E2)

2 + 2/3 P3
2 + 4 P1 P3 (P2 − E2)]ρ3

+[1/2 P4
2 + 1/2 E4

2 + 3 (P4 − E4) (P2 − E2)
2 + 2 P1

2 (P2 + E2)
3

−E4 P4 + 4 P3 P1(P1 P3 + E4 + P4 + P2
2 − E2

2)]ρ4 + O(ρ5),

where Ek = Ek(τ ) and Pk = Pk(w, τ).
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