Commun. Math. Phys. 270, 575-585 (2007) Communications in
Digital Object Identifier (DOI) 10.1007/s00220-006-0157-3 Mathematical

Physics

Nonzero Kronecker Coefficients and What They Tell
us about Spectra

Matthias Christandl!, Aram W. Harrow?, Graeme Mitchison'

1 Centre for Quantum Computation, DAMTP, University of Cambridge, Wilberforce Road,
Cambridge, CB3 OWA, UK. E-mail: matthias.christandl@qubit.org; g.j.mitchison@damtp.cam.ac.uk
2 Department of Computer Science, University of Bristol, Bristol, BS8 1UB, UK. E-mail: a.harrow @bris.ac.uk

Received: 20 February 2006 / Accepted: 27 June 2006
Published online: 9 January 2007 — © Springer-Verlag 2006

Abstract: A triple of spectra (4, r2, r48) is said to be admissible if there is a density
operator p48 with
(Spec ,oA, Spec ,oB, Spec pAB) = (rA, rB, rAB).

How can we characterise such triples? It turns out that the admissible spectral triples
correspond to Young diagrams (i, v, A) with nonzero Kronecker coefficient g, [5, 14].
This means that the irreducible representation of the symmetric group V), is contained in
the tensor product of V,, and V,,. Here, we show that such triples form a finitely gener-
ated semigroup, thereby resolving a conjecture of Klyachko [14]. As a consequence we
are able to obtain stronger results than in [5] and give a complete information-theoretic
proof of the correspondence between triples of spectra and representations. Finally, we
show that spectral triples form a convex polytope.

1. Introduction

A curious connection between representation theory and the spectra of operators was
discovered recently. Suppose we are given a bipartite density operator p4#, and suppose
this has spectrum 743 = Spec (p48). Let r4 be the spectrum of the marginal operator
p4 = TrgpA8, and rB that of the other marginal operator pZ. Then clearly there are
restrictions on the possible spectral triples (4, r 8, rA8) as pA? ranges over all density
operators. For instance, if ,oAB is pure, so rAB — (1,0,...), then r4 = rB. How does
one characterise the set of possible spectral triples? One way to do this is via representa-
tion theory [5, 14]: there is a correspondence between triples of spectra and irreducible
representations of the symmetric group V,,, V,, and V,, where

Vi C V. V. (1)

Two rather different methods were used to prove this. In [14] a body of powerful tech-
niques from invariant theory [11, 15, 2] were harnessed (see also [16, 7]). In [5], the
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approach came from the direction of quantum information theory, and a key ingredi-
ent was a theorem relating spectra and Young diagrams due to Alicki, Rudnicki and
Sadowski [1] and Keyl and Werner [12]. This theorem can be given a short and elegant
proof [10] (see also [5]) that has interesting parallels with classical information theory.
To those with an information theory background, therefore, the approach taken in [5]
has some advantages of accessibility. It is shown there that for every density operator
A8 there is a sequence of triples (1), v/, A()) satisfying relation (1) that converges
to the spectra:

j—o00

where the bar denotes normalisation. Klyachko [14] proves this as well as a converse
that says that to every (u, v, A) with V,  C V,, ® V, there is a density operator with
spectra (ji, ¥, A).

One aim of this paper is to show that informational methods can be used to prove
Klyachko’s converse. On our way to this result we prove his conjecture [14, Conjecture
7.1.4] that triples (u, v, A) with V;, C V,, ® V, form a semigroup. We also prove that
the semigroup is finitely generated. Together with our previous results on the correspon-
dence with spectral triples this will imply that the set of admissible spectral triples is a
convex polytope.

2. Background

Let us consider in more detail the relation between irreducible representations and spec-
tra. The irreducible representations of both unitary and symmetric groups are labelled by
Young diagrams. If A denotes a Young diagram, its row lengthsare .1 > Ay > ... > Ay
and its size is |A| := Zf-l:l A;i. We denote the corresponding irreducible representations
of U(d) (or GL(d)) with highest weight A by U)‘f and those of the symmetric group Sk
by V;. Schur-Weyl duality states that (C¢)®* decomposes as a direct sum of irreducible
representations:

CH¥*= P vlew. )
rePar(k,d)

where Par (k, d) indicates the set of partitions of k into < d parts; i.e. the Young diagrams
with no more than d rows and a total of k£ boxes.

Consider a density operator p on C¢. We can take k copies of it and measure the label
A on ((C")‘g’k. The estimation theorem [1, 12] states that, as k increases, the spectrum r
of p is increasingly well approximated by the normalised row lengths of A, i.e. by the
distribution A = A/|A|. Formally:

Theorem 2.1 (Estimation Theorem). Let P, be the projection onto Uf ® Vi. Then
Tr P p®F < (k+ 1)Y= exp (—kD(A|Ir)) (3)

where D(pllq) = 2 ; pilog(pi/q:) is the Kullback-Leibler distance.
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Let us now return to the case of bipartite states, and consider the Clebsch-Gordan
series for the symmetric group:

V.®V, = @ 8uva Vo,
rePar(k,k)

where the multiplicities g, are known as the Kronecker coefficients. Since V;, = V7,
the Kronecker coefficients can also be defined in terms of the Si-invariant subspace of
Vie®Vy,®V,ie.

guva =dim(V, ® V, ® V)L)Sk. 4)

There is also a way of viewing the Kronecker coefficients in terms of the irreducible
representations of the general linear group. It is arrived at by equating the Schur-Weyl
decompositions of (C" ® C")®* and of (C"")®k (see [5]) and reads

U™ | GL(m) x GL(n) = @ g U, ® U,

nePar(k,m)
vePar(k,n)

This interpretation of the Kronecker coefficients can equivalently be stated in terms
of invariants as

guv = dim(U}}' @ Uy} ® Ujm) SHm 6L, 5)

where GL(m) x GL(n) actson U ;T ® U] and simultaneously on U;""*, the representation
dual to U;"", according to the inclusion GL (m) x GL(n) — GL(m)®GL(n) C GL(mn).
In [5] Theorem 2.1 was applied to give the following:

Theorem 2.2. For every density operator pA8B | there is a sequence (19, v\, 1)) of
partitions, labeled by natural numbers j, such that

8ui v ah 0 forall j

and
lim a) = Spec o, (6)
j—o0
lim Y = Spec p?®, (7
j—o00
lim Y = Spec pB. (®)
j—o0

Klyachko [14] derived a very similar theorem:

Theorem 2.3. For a density operator pB with the rational spectral triple (r4, r8, r48)

there is an integer m > 0 such that g,,,.4 8 48 7 0.

He also proved a converse, that is given in the following section as Theorem 3.2.
We now give a resumé of our new results.
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3. Summary of the Results

Let KRON denote the set of triples (u, v, A) with nonzero Kronecker coefficients. Our
first result is

Theorem 3.1. KRON is a finitely generated semigroup with respect to row-wise addi-
tion, i.e. gy # 0and g,y # 0 implies g4, vav' j4x # 0.

This was conjectured in Klyachko’s paper [14, Conjecture 7.1.4 and below]. It implies
stability of the Kronecker coefficients: i.e. if g, 7 O then gy nvna # O, for integers
N > 0. This was announced by Kirillov [13, Theorem 2.11] but without proof. A simple
corollary of stability is that non-vanishing Kronecker coefficients obey entropic relations
(as explained in [5]). More importantly, it plays a key role in our information-theoretic
proof of the following theorem.

Theorem 3.2. Let (1, v and A be diagrams with k boxes and at most m, n and mn rows,
respectively. If g,v;. # 0, then there exists a density operator A8 on Hpy ® Hp =
C™ @ C" with spectra

Spec p = U, )
Spec cpl =7, (10)
Spec pAB = J. (11)

We also give a compact version of the proof of Theorem 2.2, which was presented
in [5]. In this way we obtain a simple proof of the full correspondence between Kronecker
coefficients and admissible spectral triples.

Furthermore, it will allow us to draw the following corollary.

Corollary 3.3. Theorem 2.2 and Theorem 2.3 are equivalent.

Using the correspondences to spectral triples, the fact that KRON is a finitely gener-
ated semigroup can be given the following geometrical interpretation.

Theorem 3.4. Spect, the set of admissible spectral triples, is a convex polytope.

4. The Set of Nonzero Kronecker Coefficients is a Finitely Generated Semigroup

In order to prove Theorem 3.1, we introduce a representation of GL(n) which we call

the Cartan product ring
m .__ m
- &b un
k>0 pePar(k,m)
Define Q" similarly and also
an* — @ @ Umn*’
k>0 rePar(k,mn)

where U;""* is the representation dual to U;"". We assume here that (,,, v, and A, are
non-negative because we are ultimately interested in combining irreducible representa-
tions of S, which are only defined for nonnegative A. However, all of our results can be
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easily generalized for dominant weights w, v, A without the non-negativity restrictions.
To establish Q" as a graded ring, we introduce the Cartan product [8] that maps U, ® U,
to U,,+» by projecting onto the unique U4, -isotypic subspace of U, ® U,. We denote
the Cartan product by o, so that for |u,) € Uy, luy) € Uy, |uy) o |u,) is defined to be
the projection of |u,) ® |u,) onto the U, -isotypic subspace of U, ® U,. Clearly Q"
is graded under the action of o, GL(n) preserves this grading and GL(n) acts properly

on products, i.e. g(lr) o |B)) = (gla)) o (g1B)).
The proof of Theorem 3.1 now rests on the following lemma:

Lemma 4.1. (a) Q" has no zero divisors. That is, if |a), |8) € Q" are nonzero, then
la) o [B) # 0.
(b) 0" ® Q" ® (Q™")* has no zero divisors.
Here we have defined (Q")* = @, (U* with the corresponding Cartan product
w I’Z)* o(UNH*— (U Z +v) " and we have extended the Cartan product to tensor products
in the natural way.

Proof. Although only statement (b) of the lemma is used in the proof of the theorem,
for ease of exposition we will prove part (a) and then sketch how similar arguments can
establish (b). Our proof follows the treatment of the Borel-Weil theorem in [3, p. 115],
with notational changes (e.g. we write («|g|v) for what would be called «(gv) there).
Let |vy) be a highest weight vector for U, . For any |«) € U,, note that (x|g|v,) is

(i) a polynomial in the matrix elements of g,
(ii) identically zero only if |o) = O (due to the irreducibility of U,).

Now define the set X, := {g € GL(n)|{x|g|v)) = 0}. The above two claims mean that
X is a proper closed subset of GL(n) in the Zariski topology whenever |«) # 0.
Similarly, if [8) € Uy’ and |v;/) is a highest weight vector for U; then Xg := {g €
GL(n)|{B|g|v,/) = 0} is a proper Zariski-closed subset of GL(n) if and only if |8) # 0.
The fact that |v,) and |vy ) are highest weight vectors means that |vy) ® |vy) =
|V;4) € U4 and thus

(@] ® (BDg(lvr) @ [va)
(| o (BDglvasr)- 12)

We are free to replace (¢| ® (8| with (x| o (8] in the last step because we are taking
the inner product with a vector that lies entirely in U;.,/. Now suppose |@) o |8) = 0.
Then for all g at least one of the terms on the LHS of Eq. (12) vanishes, and thus
GL(n) = X4 U Xg. Since GL(n) is irreducible, it cannot be the union of two proper
closed subsets, and we conclude |«) and |8) cannot both be nonzero.

The proof of (b) is almost identical, but consider instead |a) € U, ® U, ® U;,
1B) € Uy ® Uy ® Uy, and the group GL(m) x GL(n) x GL(mn) (which is still irre-
ducible). O

{arfglva)(Blglvar) = (
(

Note that we could relax the restriction that 1, > 0 by multiplying the inner products
of the form («|g|vy) by a high enough power of det g (guaranteed to be nonzero for
g € GL(n)) to obtain a polynomial in the matrix elements of g.

Proof of Theorem 3.1. Given any ring R with an action of G on it, let R denote the
ring of G-invariants in R. Now recall Eq. (5):

guvi. = dim(U,, ® U, ® U;)CSLm>6Lm),
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If g;,vn # 0 and g, # O then according to this equation there exist nonzero vectors
lns) € U, @ U, ® U;:)GL(m)xGL(n) and |M;ww) c (Uu’ QU, ® U;:/)GL(m)XGL(n).
Define |Mu+u/,v+v’,k+k’) = |ty,v2)0 |uu’,v’,k’>- Then |Mﬂ+u’,v+u/,A+A’) # 0 by part (b) of
Lemma 4.1 and [uy4 vv a40/) € Upayy ® Upy ® U, is GL(m) x GL(n)-invari-
ant, since this property is preserved by the Cartan product. Thus (U 4y ® Uy ®
UA*H,)GL(’")XGL(”) # 0 and we conclude that g4,/ v+ a4n 7 O.

We continue to show that KRON is finitely generated. Note that 9", Q" and Q"™"** are
each generated by a basis for the respective fundamental representations' and therefore
are finitely generated. This implies that also R = Q"' ® Q" ® Q""" is finitely generated.
We now consider the ring of invariants R of R under the simultaneous action of the
group G = GL(m) x GL(n) on Q" ® Q" and as a subgroup of GL(mn) on Q""*. This
action is algebraic, i.e. every element of R is contained in a finite-dimensional represen-
tation of G. Thus we can apply a generalisation of Hilbert’s theorem [18, Theorem 3.6]
to conclude that R is finitely generated. Since

RG = @ (U;T ® U:l ® U{nn*)GL(m)XGL(;z)
VA

and g,y = dim(U ;T QU!®U )’f*)GL(’")XGL(") we see that KRON is finitely generated,
too. O

A similar proof was given in [6] which proved that under the diagonal action of a
connected reductive group G, the triples (y, v, A) with dim(U, ® U, ® U 3¢ £ 0 form
a finitely generated semigroup.

5. The Correspondence of Nonzero Kronecker Coefficients to Spectra

Proof of Theorem 2.2. Rather than working with the mixed state p*% we will con-
sider a purification [)A8C of pA8  which has Spec p€ = Spec pA8. Let r4 =
Spec pA, r8 := Spec p? and r¢ := Spec pC. Plf denotes the projector onto the Young
subspace U’ ® V), in system A, and PVB , Pf are the corresponding projectors onto
Young subspaces in B and C, respectively. As a consequence of Theorem 2.1 (see [5,
Corollary 2]), for given € > 0 one can find a ko such that the following inequalities hold
simultaneously for all k > ko:

TrPx(pM)® > 1—¢, Px:= Z P, (13)
pilla—ral<e

Tr Py (p5)® > 1 —¢, Py:= Z PE, (14)
villo—rB <

TeP(p)* = 1-€, Pz:= >  Pf. (15)

Ael|—rCl1<e
For0 <€ < %, the estimates (13)-(15) can be combined to yield

Tr[(Px ® Py ® Pz) (1¥) (¥ BH®F] > 1 -3¢ > 0. (16)

1 The fundamental representations of GL(d) are those with Young diagrams of the form (le, Od_e) for
Lefl,..., d}.



Nonzero Kronecker Coefficients and Spectra 581

Since (|y)ABC)®* is evidently invariant under permutation of its k subsystems, it takes
the form

(PO =" Jauun),

VA

where |o,01) € U[f QU QU @ (V, ®V, ® V;.)5. Equation (16) then implies
that there must be at least one triple (i, v, A) with ||z — rd|l; < e, |0 — rB|; <€,
I* —rCll < e€and |ayy;) #0. Thus (V, ® V, ® Vi) # 0 implies that g, # 0. It
remains to pick a sequence of decreasing € with corresponding triples (1), vt (),
O

Ithas been observed in different contexts that the speed of convergence in Theorem 2.1
and consequently in Theorem 2.2 is proportional to 1/+/k [1, 9].
We will now prove Corollary 3.3, the equivalence of Theorem 2.2 and 2.3.

Proof of Corollary 3.3. We start by showing how Theorem 2.3 follows from
Theorem 2.2.

Let (r4, 7B, r48) e Spect, the set of admissible spectral triples. According to
Theorem 2.2, there is a sequence of elements in KRON, whose normalised values con-
verge to (4, r8, r4B). By Theorem 3.1, the set KRON is a finitely generated semi-
group. With a finite set of generators (1@, v, 1)) of KRON we can therefore express
(r4, 8, r48)Y in the form

A B A = (@, 5020, (17)

1

for a set of nonnegative numbers x; which sum to one. Since the union of the 7 + 1-vertex
simplices equals the whole polytope, every point in it can be taken to be the sum of
just ¢ + 1 normalised generators (ﬂ(i ) 5D 2@y (cf. Carathéodory’s theorem). From the
set of m + n + mn equations in the variables x; in Eq. (17), choose a set of ¢ linearly
independent ones, add the ( + 1) constraint >; xi = 1 and write the set of equations as
Mx =7, ie. 7= (ri,...,r, 1) forr; € {rlA, ...,r;,‘},rfg, ...rf,rlAB,...,r,ﬁf} and
)_é = (xl, . ,x,+1).

If rA, rB, rAB) is rational, the x; will be rational as well, since M is rational. This
shows that (r4, r8, r48) =3, %(/l(i), @ 2Dy, where we set x; = i forn;,n € N.
Multiplication by |u|n results in

ln G B A8y = i (u 00 20).
i

Since the right-hand side of this equation is certainly an element of KRON this shows that
for rational (r#, 7B, r48) there is a number m := |u|n such that 8mrA mrB mrAB 7 0.

It remains to show that Theorem 2.2 follows from Theorem 2.3. Suppose (4, r &, r458)
is a spectral triple corresponding to some p4 2. Then we can construct a series of rational
triples (AW, pBU) rABU)Y that approaches (r4, 8, rA8) and by Theorem 2.3, there
exists a series (u), v, 1)) such that (20, 1), 1)) approaches (r4, B, rA8) and
8uh v # Oforall j.o O
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Note that there are two ways in which Klyachko’s Theorem 2.3 does not quite give
the full strength of Theorem 2.2. First, it does not guarantee the speed of convergence.
Second, it does not imply that, in the case of rational triples (rA, rB, rAB ), there is
an increasing sequence of values of k for which g;,4 ¢.5 ;.48 # 0; this follows from
Theorem 2.2 and can be thought of as a sort of stability obtained without appeal to
Theorem 3.1.

We now turn our attention to Theorem 3.2, beginning with an asymptotic result.

Lemma 5.1. Let i, v and A be diagrams with k boxes and at most m, n and mn rows,
respectively. If g,v;. 7 0, then there exists a density operator pA8 on C™ ® C" with
spectra satisfying

ISpec p* — il < 8, (18)
ISpec p® —vlly <8, (19)
ISpec pAB — Iy <8, (20)

for 6 = O(mn,/(logk)/k).

Here if p, g are probability distributions then ||p — gll1 := >, [p(x) — g(x)].

Proof. Tt will suffice to construct a pure state |cp)“_3c € C"@C"C™" with ||Spec ¢4 —
fill <8, ISpec 9® — |l < & and [|Spec ¢© — |1 < 8, since Spec p*# = Spec ¢€.
Since g, # 0, there exists a unit vector [y) € (VM®VV®VA)Sk.Writingé = m*n?,

[¥) € (C" ®C" @ C"™)®H% = (CH®H* = Uy,

where U f denotes the symmetric representation of GL(¢), and the superscript £ empha-
sizes which GL(-) we are using. Denote the projector onto U¢ C (CH®* by PL. Note
that Tr P! = dim U} = (kZﬁI) < k% Fix a vector |¢g) € C¢ and let dU denote a Haar

measure for the unitary group U (¢) with normalisation [ dU = 1. Then by Schur’s
lemma

P! = dim U! / dg (gl¢o) (dolgH ="
geU(t)

Thus

1 =Tr Py )y
= dim U, / dg Tr ) (¥(glgo) (polg"HEF
geU ()

. l T\®k
<dimU, grer%) Tr|Y) (¥ 1(gldo) (Polg )"

Let g € U(£) be the unitary operator achieving the above maximisation, and define
l¢) := gl¢o). Then

w1 (10%) 1 =
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Let P}/', P} and P"" denote the projectors onto U/t @V, C (CMSk Ur®V, C (Ch%k
and U@V, C (C™")®k respectively. Then by construction (P @ P @ PM™)|y) =
[¥), so [¥)(¢| < P! ® P) ® P/" and

Tr (P ® P @ P™) o) {(@|®* = Tr (1Y) (¥ lg) (e
= 1wl (19)%) 1

Kt

= =
dim U}

Focussing for now on the A subsystem, we have
Tr P (o) = k. (1)
On the other hand, Theorem 2.1 (Spectrum Estimation) states that
Tr P (o) < (k+ 1)"" =D/ exp(—k D (ji||Spec ¢™)). (22)
Combining Egs. (21) and (22), we find that

Im(m — 1) log(k + 1) + £ logk

D(ji||Spec ™) < p

and for k > 1, we can apply Pinsker’s inequality [17] (which states that ||p — ¢ ||% /2 <
D(pllq) for any probability distributions p, g) to bound

i — Spec ™ |l1 < 3mn./(logk)/ k.

This proves Eq. (18). Equations (19) and (20) follow by repeating this argument (starting
with Eq. (21)) for Pl and P;"". 0O

Theorem 3.2 now follows by observing that, if g, # O, then g;, jv ja # O for
any integer j > 1, because of the semigroup property (Theorem 3.1). The above lemma

then gives us a sequence of density operators ,o(Ajf whose spectra converge to (i, v, A),

and, by compactness of the set of density matrices on C" @ C”, the sequence pé“jf has
a limit pA4 8 satisfying Egs. (9), (10) and (11).

6. Convexity

Let us now gather together some implications of the theorems. Let Kron denote the
normalised triples (i, v, 1), where (i, v, A) € KRON. From Theorem 2.2 we know
that any admissible spectral triple, i.e. any point in Spect, can be approximated by a
sequence in Kron and therefore lies in Kron, the closure of Kron; thus Spect € Kron.
From Theorem 3.2 we know that Kron C Spect, and hence, since Spect is closed,
Kron C Spect. Thus we have

Spect = Kron.

Note that Kron consists of rational points (normalised row lengths of diagrams) and there
are certainly operators with irrational spectra. So Kron, unlike its closure, is a proper
subset of Spect.
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Theorem 3.1 allows us to say more about Kron, and hence Spect. The semigroup
property of KRON (Theorem 3.1) implies that if (&, v, ), (i, V', A') € Kron, then
(pi+ (1= p)i, pv + (1 = p)¥', ph+ (1 — p)A) € Kron,

for every p with 0 < p < 1. Thus Kron is convex. Furthermore, Theorem 3.1 implies
that there is a finite set of generators (,u(’), v®_ A®) of KRON, so any (i, v, A) € Kron
can be written

(L, v, 1) = in(ﬁm’ SOION
i

Thus Kron is a convex polytope. We enshrine this in Theorem 3.4.
An alternative proof for Theorem 3.4 that makes use of Kirwan’s convexity theorem
for moment maps can be found in [4, Chap. 2.3.6].
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