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Abstract: We investigate the scaling of the largest critical percolation cluster on a large
d-dimensional torus, for nearest-neighbor percolation in sufficiently high dimensions, or
when d > 6 for sufficiently spread-out percolation. We use a relatively simple coupling
argument to show that this largest critical cluster is, with high probability, bounded above
by a large constant times V 2/3 and below by a small constant times V 2/3(log V )−4/3,
where V is the volume of the torus. We also give a simple criterion in terms of the
subcritical percolation two-point function on Z

d under which the lower bound can be
improved to small constant times V 2/3, i.e. we prove random graph asymptotics for the
largest critical cluster on the high-dimensional torus. This establishes a conjecture by
[1], apart from logarithmic corrections. We discuss implications of these results on the
dependence on boundary conditions for high-dimensional percolation.

Our method is crucially based on the results in [11, 12], where the V 2/3 scaling was
proved subject to the assumption that a suitably defined critical window contains the
percolation threshold on Z

d . We also strongly rely on mean-field results for percolation
on Z

d proved in [17–20].

1. Introduction

1.1. The model. We consider Bernoulli bond percolation on the graph G, where G is
either the hypercubic lattice Z

d , or the finite torus Tr,d = {−�r/2�, . . . , �r/2� − 1}d .
For G = Z

d , we consider two sets of bonds. In the nearest-neighbor model, two
vertices x and y are linked by a bond whenever |x − y| = 1, whereas in the spread-out
model, they are linked whenever 0 < ‖x − y‖ ≤ L . Here, and throughout the paper, we
write ‖ · ‖ for the supremum norm, and | · | for the Euclidean norm on Z

d . The integer
parameter L is typically chosen large. We let each bond independently be occupied with
probability p, or vacant otherwise. The resulting product measure is denoted by PZ,p,
and the corresponding expectation EZ,p. We write {0 ←→ x} for the event that there
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exists a path of occupied bonds from the origin 0 to the lattice site x , and define

τZ,p(x) := PZ,p(0←→ x) (1.1)

to be the two-point function. We further write CZ(x) := {y ∈ Z
d | x ←→ y} for the

cluster or connected component of x , |CZ(x)| for the number of vertices in CZ(x) and
χZ(p) := ∑

x∈Zd τZ,p(x) = EZ,p|CZ(0)| for the expected cluster size. The degree of
the graph, which we denote by �, is thus � = 2d in the nearest-neighbor case and
� = (2L + 1)d − 1 in the spread-out case.

It is well-known that bond percolation on Z
d in dimension d ≥ 2 obeys a phase

transition, i.e. there exists a critical threshold pc(Z
d) ∈ (0, 1) such that pc(Z

d) =
inf{p : PZ,p(|CZ(0)| = ∞) > 0}. Furthermore, by the results in [3, 34], pc(Z

d) can be
expressed as pc(Z

d) = sup{p : χZ(p) <∞}.
For G = Tr,d , we also consider two related settings:

1. The nearest-neighbor torus: an edge joins vertices that differ by 1 (modulo r ) in
exactly one component. For d fixed and r large, this is a periodic approximation to
Z

d . Here � = 2d for r ≥ 3. We study the limit in which r →∞ with d > 6 fixed,
but large.

2. The spread-out torus: an edge joins vertices x = (x1, . . . , xd) and y = (y1, . . . , yd)

if 0 < maxi=1,...,d |xi − yi |r ≤ L (with | · |r the metric on Zr ). We study the limit
r → ∞, with d > 6 fixed and L large (depending on d) and fixed. This gives a
periodic approximation to range-L percolation on Z

d . Here � = (2L + 1)d − 1
provided that r ≥ 2L + 1, which we will always assume.

We consider bond percolation on these tori with bond occupation probability p and write
PT,p and ET,p for the product measure and corresponding expectation, respectively. We
use the notation τT,p(·), χT(p) and CT(·) analogously to the corresponding Z

d -quantities.
In this paper, we will investigate the size of the maximal cluster on Tr,d , i.e.,

|Cmax| := max
x∈Tr,d

|CT(x)|, (1.2)

at the critical percolation threshold pc(Z
d). An alternative definition for the critical

percolation threshold on the torus, denoted by pc(Tr,d), was given in [11, (1.7)] as the
solution to

χT(pc(Tr,d)) = λV 1/3, (1.3)

where λ is a sufficiently small constant, and V = |Tr,d | = rd denotes the volume of the
torus. The definition of pc(Tr,d) in (1.3) is an internal definition only, due to the fact
that [12] deals with rather general tori, for which an external definition (such as pc(Z

d))
does not always exist. On the other hand, the internal definition in (1.3) assumes a priori
mean-field behavior, and is therefore unsuitable outside this setting. On the high-dimen-
sional torus Tr,d , we therefore have two sensible critical values, the externally defined
pc(Z

d), and the internally defined pc(Tr,d) in (1.3). One of the goals of this paper is to
investigate how close these two critical values are.

The most prominent example of percolation on a finite graph is the random graph,
which is obtained by applying percolation to the complete graph. This has been first stud-
ied by Erdős and Rényi in 1960 [15]. They showed that, when p is scaled as (1 + ε)V−1,
there is a phase transition at ε = 0. For ε < 0, the size of the largest cluster is propor-
tional to log V , whereas for ε > 0, it is proportional to V . For ε = 0, the size of the
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largest cluster divided by V 2/3 weakly converges to some (non-trivial) limiting random
variable, while the expected cluster size is, as in (1.3), proportional to V 1/3. This fol-
lows from results by Aldous [5]. See also [10] for results up to 1984, and [26, 27, 33]
for references to subsequent work. We will refer to the V 2/3-scaling as random graph
asymptotics.

In this paper, we study the size of the largest cluster on the torus for p = pc(Z
d). It

has been shown by Borgs, Chayes, van der Hofstad, Slade and Spencer [11, 12] that, if

pc(Z
d) = pc(Tr,d) + O(V−1/3), (1.4)

then, with probability at least 1− O(ω−1), |Cmax| is in between ω−1V 2/3 and ωV 2/3 as
V → ∞, for ω ≥ 1 sufficiently large. Here, we write f (x) = O(g(x)) for functions
f, g ≥ 0 and x converging to some limit, if there exists a constant C > 0 such that
f (x) ≤ Cg(x) in the limit, and f (x) = o(g(x)) if g(x) = O( f (x)). Furthermore, we
write f = �(g) if f = O(g) and g = O( f ).

Aizenman [1] conjectured that this random graph asymptotics holds for the maximal
critical cluster in dimension d > 6, as we explain in more detail below. Also in [12]
it was conjectured that (1.4) holds. By means of a coupling argument, we prove that a
slightly weaker statement than (1.4) (with a logarithmic correction in the lower bound,
see (1.6) below) indeed holds for d sufficiently large in the nearest-neighbor model, or
d > 6 and L sufficiently large in the spread-out model. Furthermore, we give a criterion
which we believe to hold, and which implies (1.4) without logarithmic corrections.

Note that all our results assume that d is large in the nearest-neighbor model or d > 6
and L large in the spread-out model. That is, we require the torus to be in some sense
high-dimensional. We do believe that the results hold for all d > 6 and L ≥ 1, however,
the proof relies on various lace expansion results, which require that the degree � is
large. On the other hand, we do not expect these asymptotics to be true for d ≤ 6.

Aizenman [1] studied a similar question, but now for percolation on a box of width
r under bulk boundary conditions, where clusters are defined to be the intersection of
the box {−�r/2�, . . . , �r/2� − 1}d with clusters in the infinite lattice (and thus clusters
need not be connected within the box). Aizenman assumed that the probability, at criti-
cality, that x is connected to the origin is bounded above and below by constants times
‖x‖−(d−2). This assumption was established in [19] for the spread-out model for d > 6
and sufficiently large, but finite L ≥ 1, and in [18] for the nearest-neighbor model above
19 dimensions. Aizenman showed that, under this condition on the two-point function,
the size of the largest connected component under bulk boundary conditions is, with
high probability, bounded from above by a constant times r4 log r , and bounded from
below by εr r4 for any sequence εr → 0 as r → ∞. Furthermore, he conjectures that
the r4-scaling for the size of the largest cluster holds for dimension d > 6 also under free
boundary conditions (where no connections outside the box are allowed), but changes to
V 2/3 = r2d/3 � r4 under periodic boundary conditions. This indicates the importance
of boundary conditions at criticality in high dimensions. We will further elaborate on
the role of boundary conditions in Sect. 6.

1.2. Results. Our first result gives asymptotic bounds on the size of the largest cluster.

Theorem 1.1. Fix d > 6 and L sufficiently large in the spread-out case, or d sufficiently
large for nearest-neighbor percolation. Then there exist constants b1, b2, C > 0, such
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that for all ω1 ≥ C and ω2 ≥ 1,

P
T,pc(Zd )

(
ω−1

1 V 2/3(log V )−4/3 ≤ |Cmax| ≤ ω2V 2/3
)

≥ 1− b1

ω
3/2
1 (log V )2

− b2

ω2
as r →∞. (1.5)

The constant b1 can be chosen as 288 · 1203, and b2 equal to b6 in [11, Theorem 1.3].

To prove Theorem 1.1, we will use a coupling argument relating χT(p) and χZ(p) to
show that there exists a constant 	 ≥ 0 such that, when r →∞,

pc(Tr,d)− 	

�
V−1/3(log V )2/3 ≤ pc(Z

d) ≤ pc(Tr,d) +
	

�
V−1/3. (1.6)

Relying on results in [11], (1.6) implies (1.5). Inequality (1.5) implies that |Cmax|V−2/3

is a tight random variable, but it does not rule out that |Cmax|V−2/3 → 0 as V →∞.
Our method is crucially based on the results in [11, 12], but we also rely on mean-field

results for percolation on Z
d by Hara [17, 18], Hara and Slade [20], and Hara, van der

Hofstad and Slade [19]. Each of these papers relies on the lace expansion, but the lace
expansion will not be used in this paper. The lecture notes by Slade [38] and Hara and
Slade [21] provide a general introduction to the lace expansion and its role in proving
mean-field critical behavior for percolation and related models.

Note that in [11, 12], pc(Tr,d) was defined as in (1.3). The results in [11, 12], how-
ever, do not establish rigorously that the exponent 1/3 in (1.3) is the only correct choice.
Indeed, [11, 12] suggest that a smaller exponent would also do, since the supercritical
results proved there are not sufficiently sharp. Theorem 1.1 shows that, at least in terms
of the power of V , the scaling of |Cmax| at pc(Z

d) and at pc(Tr,d) is identical, thus
establishing that on Z

d the choice (1.3) is appropriate.
Unfortunately, the lower bound in Theorem 1.1 does not quite meet the upper bound.

Under a condition on the percolation two-point function, we can prove the matching
lower bound. To state this result, we introduce the quantity

χ̃Z(p, r) := sup
y

∑

z
r∼y, ‖z‖≥ r

2

τZ,p(z), (1.7)

where we write that x
r∼ y when x (mod r) = y (mod r). We will call x and y

r-equivalent when x
r∼ y.

Theorem 1.2. Under the assumptions in Theorem 1.1, suppose that there exists a K > 0
such that, for p = pc(Z

d)− K�−1V−1/3 and some CK > 0, the bound

χ̃Z(p, r) ≤ CK V−2/3 (1.8)

holds. Then, for all ω ≥ 1 and b equal to b6 in [11, Theorem 1.3],

P
T,pc(Zd )

(
1

ω
V 2/3 ≤ |Cmax| ≤ ωV 2/3

)

≥ 1− b

ω
. (1.9)
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Inequality (1.9) implies that |Cmax|V−2/3 is tight, and that each possible weak limit along
any subsequence is non-zero. The result in (1.9) combined with the results in [11] would
indicate that the scaling of |Cmax| at pc(Tr,d) and at pc(Z

d) agree, thus showing that
there is no significant difference between the internally and externally defined critical
values.

Analogously to Theorem 1.1, we will show that when (1.8) holds, there exists a
constant 	 ≥ 0 such that, when r →∞,

pc(Tr,d)− 	

�
V−1/3 ≤ pc(Z

d) ≤ pc(Tr,d) +
	

�
V−1/3, (1.10)

and deduce (1.9) using [11].
We strongly believe that (1.8) holds. Indeed, (1.8) follows when the two-point func-

tion is sufficiently smooth. For example, the condition

max
‖z‖≥ r

2 , x∈Tr,d

τZ,p(z)

τZ,p(z + x)
≤ C (1.11)

for some positive constant C , where we consider Tr,d = {−�r/2�, . . . , �r/2� − 1}d as
a subset of Z

d , implies that

τZ,p(z) ≤ C

V

∑

x∈Tr,d

τZ,p(z + x) for ‖z‖ ≥ r

2
. (1.12)

Note that, for every y ∈ Z
d , we have that

∑
z

r∼y

∑
x∈Tr,d

f (z + x) = ∑
x∈Zd f (x) for

all functions f : Zd �→ R. Consequently,

χ̃Z(p, r) = sup
y

∑

z
r∼y, ‖z‖≥ r

2

τZ,p(z)

≤ C

V
sup

y

∑

z
r∼y, ‖z‖≥ r

2

∑

x∈Tr,d

τZ,p(z + x) ≤ C

V

∑

x∈Zd

τZ,p(x) = C

V
χZ(p). (1.13)

Thus, for p = pc(Z
d)− K�−1V−1/3, we obtain by the fact that γ = 1 (see [4 and 20],

or Theorem 3.3 below) that χ̃Z(p, r) is bounded from above by a constant multiple
of V−2/3.

1.3. Related results. In this section we discuss the relation between Theorems 1.1 and
1.2 and the literature.

Hara and Slade [22, 23] study the geometry of large critical clusters on the rescaled
lattice. Under the conditions of Theorem 1.1, they show that critical clusters with size of
order n on the lattice rescaled by n−1/4 converge to integrated super-Brownian excursion
as n → ∞. Together with the results in [20], and using [3, 4], these papers prove that
various critical exponents for percolation exist and take on mean-field values.

Borgs, Chayes, Kesten and Spencer [13, 14] consider the largest cluster in a finite
box of width r under free boundary conditions, i.e., clusters are connected only within
the box. They show that, for p = pc(Z

d), the largest critical cluster scales like V δ/(1+δ),
where the critical exponent δ is defined by

Ppc(Zd )

(|CZ(0)| ≥ n
) ≈ n−1/δ as n→∞, (1.14)
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under some conditions related to the so-called scaling and hyperscaling postulates. The
hyperscaling postulates are proven in dimension d = 2, and are widely believed to hold
up to the upper critical dimension 6. For the mean-field value δ = 2, proved in [22, 23],
we would obtain the V 2/3 asymptotics. However, in [13, 14], it was assumed that crossing
probabilities of a cube of dimensions (r, 3r, . . . , 3r) remain uniformly bounded away
from 1 as r →∞. In high dimensions, Aizenman [1] proves that any cube {0, . . . , r}d
has crossings with high probability, so that the results in [13, 14] do not apply. Also, in
high dimensions, the hyperscaling relations are not valid. More specifically, one hyper-
scaling relation is that

2− η = d
δ − 1

δ + 1
. (1.15)

Under the conditions of Theorem 1.1, due to [6, 18–20], we have that η = 0, δ = 2, so
that this hyperscaling relation fails for d > 6.

Theorems 1.1 and 1.2 study the scaling of the largest critical percolation cluster on
the high-dimensional torus. These results indicate that the scaling limit of the largest
critical cluster should be described by |Cmax|V−2/3. We conjecture that, at p = pc(Z

d),
the random variables |Cmax|V−2/3 converge as r → ∞ to some (non-trivial) limiting
distribution. It would be of interest to investigate whether, if the rescaled largest cluster
converges, the limit law is identical to the limit of |Cmax|r−2/3 for the largest cluster
of the random graph on r vertices, as identified by Aldous [5]. The convergence of
|Cmax|V−2/3 would describe part of the incipient infinite cluster (IIC) for percolation on
the torus, as described by Aizenman [1]. Aizenman’s IIC is closely related to the scaling
limit of percolation on large cubes, see [1, Sect. 5]. Mind also the warning at the bottom
of [1, p. 553].

Another approach to the incipient infinite cluster is described by Kesten [30]. Indeed,
Kesten investigates the local configuration close to the origin in Z

2, conditioned on the
critical cluster of the origin to be infinite. Since, at criticality, the cluster of the origin
is infinite with probability 0, an appropriate limit needs to be taken. Kesten offers two
alternatives:

(i) To condition the origin to be connected to infinity at p > pc(Z
2) and take the

limit p ↘ pc(Z
2).

(ii) To condition the critical cluster of the origin to be connected to the boundary of
the box {−r, . . . , 0, . . . , r}2 and take the limit r →∞.

Kesten proves that both limits exist and are equal. This limit is Kesten’s incipient infi-
nite cluster. Kesten was motivated to describe this IIC in order to study random walk
on large critical clusters [31], for which physicists have performed simulations showing
subdiffusive behavior.

Járai [28, 29] extended these results, and proved that several other natural condition-
ing and limiting schemes give the same limit. In one of these constructions, Járai takes
a uniform point in the largest critical cluster on a box {0, . . . , r − 1}d , shifts it to the
origin and takes the limit r →∞. In [25], the proof of existence of the IIC was extended
to high-dimensional percolation, under the assumptions of Theorems 1.1 and 1.2. The
proof in [25] follows the proof in [24], where the IIC was constructed for spread-out
oriented percolation above 4 spatial dimensions.

We conjecture that, as r → ∞, the law of local configurations around a uniform
point in Cmax at criticality converges to the IIC as constructed in [25]. This result would
give a natural link between the scaling limit of critical percolation on a large box in [1]
and Kesten’s notion of the IIC in [30].
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We recall that, following the conjecture in [1], the size of the largest connected
component |Cmax| on the cube {0, . . . , r−1}d under free boundary conditions scales like
r4 (as under bulk boundary conditions), in contrast to the V 2/3-scaling under periodic
boundary conditions. Such qualitatively different behavior between free and periodic
boundary conditions has also been observed when studying loop-erased random walks
and uniform spanning trees on a finite box in high dimensions, as we will explain now.

Choose two uniform points x and y from the d-dimensional box of side length r , with
d > 4. We are interested in the graph distance between these two points on a uniform
spanning tree. Pemantle [35] showed that this graph distance has the same distribution
as the length of a loop-erased random walk starting in x and stopped when reaching
y. Loop-erased random walk above 4 dimensions converges to Brownian motion (cf.
[32, Sect. 7.7]), that is, it scales diffusively. This suggests that, under free boundary
conditions, the graph distance between x and y scales like r2. On the other hand, the
combined results of Benjamini and Kozma [7] and Peres and Revelle [36] show that the
distance between x and y on a uniformly chosen spanning tree on the torus Tr,d is of
the order V 1/2 = rd/2 > r2 for d > 4. Schweinsberg [37] identifies the logarithmic
correction for the scaling on the 4-dimensional torus.

1.4. Organization. This paper is organized as follows. In Sect. 2, we state a coupling
result that is crucial for all our subsequent bounds. In Sect. 3, we collect the main results
from previous work that are used in our arguments. In Sect. 4, we prove the upper bound
in Theorem 1.1. In Sect. 5, we prove the complementary lower bounds in Theorems 1.1
and 1.2. Finally, in Sect. 6, we discuss how the growth of the maximal cluster depends
on the precise boundary conditions.

2. A Coupling Result for Clusters on the Torus and Z
d

In this section, we prove that the cluster size for percolation on the torus is stochastically
smaller than the one on Z

d by a coupling argument. We fix p, and omit the subscript
p from the notation. We use subscripts Z and T to denote objects on Z

d and Tr,d ,
respectively.

The goal of this section is to give a coupling of the Tr,d -cluster and the Z
d -cluster

of the origin. This will be achieved by constructing these two clusters simultaneously
from a percolation configuration on Z

d , as we explain in more detail now.
The basic idea is that, on any graph, it is well-known that the law of a cluster C(0)

can be described by subsequently exploring the bonds one can reach from 0. We will
first describe this exploration of a cluster in some detail, before giving the coupling,
which is described by a more elaborate way of exploring the percolation clusters on the
torus and on Z

d simultaneously from a percolation configuration on Z
d . The explora-

tion process is defined in terms of colors of the bonds. Initially, all bonds are uncolored,
which means that they have not yet been explored. During the exploration process we
will color the bonds black if they are found to be occupied, and white if they are found
to be vacant. Furthermore, we distinguish between active and inactive vertices. Initially,
only the origin 0 is active, and all other vertices are inactive.

We now explore the bonds in the graph according to the following scheme. We order
the vertices in an arbitrary way. Let v be the smallest active vertex. Now we explore (and
color) all uncolored bonds that have an endpoint in v, i.e., we make the bond black with
probability p and white with probability 1− p, independently of all other bonds. In case
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we have assigned the black color, we set the vertex at the other end of the bond active
(unless it was already active and none of its neighboring edges are now uncolored, in
which case we make it inactive). In particular, the active vertices are those vertices that
are part of a black bond, as well as an uncolored bond. Finally, after all bonds starting
at v have been explored, we set v inactive. We repeat doing so until there are no more
active vertices. In the latter case, the exploration process is completed, i.e., there are no
more black bonds that share a common endpoint with an uncolored bond. The cluster
C(0) is equal to the set of vertices that are part of the black bonds. When the graph is
finite, then this procedure always stops. When the graph is infinite, then the exploration
process continues forever precisely when |C(0)| = ∞. This completes the exploration
of a single cluster on a general graph.

The exploration of a single cluster will be extended to explore the cluster on the
torus CT(0) and the cluster on the infinite lattice CZ(0) simultaneously from a perco-
lation configuration on Z

d . For CZ(0), the result of the exploration will be identical to
the exploration of a single cluster described above. The related cluster CT(0) is a subset
of all vertices that are r -equivalent to vertices part of a black bond. The main result
in this section is Proposition 2.1, whose proof gives the details of this simultaneous
construction of the two clusters.

To state the result, we need some notation. For x, y ∈ Tr,d , we write x
T←→ y when

x is connected to y in the percolation configuration on the torus, while, for x, y ∈ Z
d , we

write x
Z←→ y when x is connected to y in the percolation configuration on Z

d . Also,
we call two distinct bonds {x1, y1} and {x2, y2} r-equivalent if there exists an element
z ∈ Z

d such that {x1, y1} = {x2 + r z, y2 + r z}. We sometimes abbreviate r -equivalent to
equivalent. For a directed bond b = (x, y), we write b = x and b = y, and for two bonds

b1 = (x1, y1) and b2 = (x2, y2), we write b1
r∼ b2 when (x1, y1) = (x2 + r z, y2 + r z)

for some z ∈ Z
d . For A and B increasing events, we denote by A ◦ B the event that A

and B occur on disjoint sets of bonds, see [9].

Proposition 2.1 (The coupling). Consider nearest-neighbor percolation for r ≥ 3 or
spread-out percolation for r ≥ 2L + 1, in any dimension. There exists a probability law
PZ,T on the joint space of Z

d - and Tr,d -percolation such that, for all events E,

PZ,T(CT(0) ∈ E) = PT(CT(0) ∈ E), PZ,T(CZ(0) ∈ E) = PZ(CZ(0) ∈ E), (2.1)

and PZ,T-almost surely, for all x ∈ Tr,d ,

{0 T←→ x} ⊆
⋃

y∈Zd : y
r∼x

{0 Z←→ y}. (2.2)

In particular, |CT(0)| ≤ |CZ(0)|. Moreover, for x
r∼ y, and PZ,T-almost surely,

{0 Z←→ y} ∩ {0 T←→ x}c (2.3)

⊆
⋃

b1 =b2 : b1
r∼b2

⋃

z∈Zd

(0
Z←→z) ◦ (z

Z←→b1) ◦ (z
Z←→b2) ◦ (b2 is Z− occ.) ◦ (b2

Z←→y).

Equation (2.2) will be used to conclude that the expected cluster size on Tr,d is bounded
from above by the one on Z

d . In order to prove our main results, we use (2.3) to prove
a related lower bound on the expected cluster size on Tr,d in terms of the one on Z

d .
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See Sects. 4 and 5 for details. The inequality on the cluster sizes of Tr,d - and Z
d -perco-

lation also follows from the coupling used by Benjamini and Schramm [8, Theorem 1].
However, (2.3) does not follow immediately from their work.

Proof of Proposition 2.1. The exploration of a single cluster, as described above, will
be generalized to construct CT(0) and CZ(0) simultaneously from a percolation con-
figuration on Z

d . The difference between percolation on the torus and on Z
d can be

summarised by saying that, on the torus, r -equivalent bonds have the same occupation
status, while on Z

d , equivalent and distinct bonds have an independent occupation status.
For the exploration of the torus CT(0), we have to make sure that we explore equivalent
bonds at most once. We therefore introduce a third color, gray, indicating that the bond
itself has not been explored yet, but one of its equivalent bonds has. Therefore, at each
step of the exploration process, we have 4 different types of bonds on Z

d :

• uncolored bonds, which have not been explored yet;
• black bonds, which have been explored and found to be occupied;
• white bonds, which have been explored and found to be vacant;
• gray bonds, of which an equivalent bond has been explored.

As in the exploration of a single cluster, we number the vertices of Z
d in an arbi-

trary way, and start with all bonds uncolored and only the origin active. Then we repeat
choosing the smallest active bond, and explore all uncolored bonds containing it. How-
ever, after exploring a bond (and coloring it black or white), we color all bonds that
are r -equivalent to it gray. Again, this exploration is completed when there are no more
active vertices. This is equivalent to the fact that there are no more black (and therefore
occupied) bonds sharing a common endpoint with an uncolored bond.

The exploration process of CT(0) must be completed at some point, since the number
of bonds within CT(0) is finite and vertices turn active only if a bond containing it is
explored and is found to be occupied. We call the result of this exploration process the
T-exploration. The cluster CT(0) consists of all vertices in Tr,d that are contained in a
bond that is r -equivalent to a black bond. However, we have embedded the cluster CT(0)

into Z
d , which will be useful when we also wish to describe the related cluster CZ(0).

For CZ(0), the exploration of the cluster is similar, but there are no gray bonds.
We start with the final configuration of the T-exploration, and set all vertices that are
a common endpoint of a black bond and a gray bond active. Then we make all gray
bonds uncolored again. From this setting we apply the coloring scheme that colors the
uncolored bonds that contain an active vertex. The coloring scheme is the one for the
exploration cluster on Z

d , where no gray bonds are created. Again, we perform this
exploration until there are no more active vertices, i.e., no more black bonds attached to
uncolored bonds. The result is called the Z-exploration. In particular, the black bonds
in the T-exploration are a subset of the black bonds in the Z-exploration, which proves

that {0 T←→ x} ⊆⋃
y

r∼x
{0 Z←→ y}, and hence |CT(0)| ≤ |CZ(0)|.1

We now show (2.3). When {0 Z←→ y} occurs, then picture all Z-occupied paths from

0 to y in mind. Since x
r∼ y and {0 T←→ x}c occurs, each of these paths Z-connect-

ing 0 and y should contain a bond which is T-vacant. Fix such a (self-avoiding) path

1 To obtain a coupling for the full percolation configurations on Tr,d and Z
d , we can finally let all bonds

that have not been explored be independently occupied with probability p, both in Tr,d and in Z
d , indepen-

dently of each other. However, we do not rely on the coupling of the percolation configuration, but only on
the coupling of the clusters CT(0) and CZ(0).
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Fig. 1. Illustration of the right-hand side in (2.3). The bond b1 has been explored first and is found to be
Z-vacant and T-vacant. The bond b2 is r -equivalent and thus has been explored in the Z-exploration only, it
is T-vacant (determined by b1 during the T-exploration), but Z-occupied

ω : 0 ←→ y that is Z-occupied, and denote by b2 the first bond that is T-vacant, but

Z-occupied, so that (0
Z←→ b2) ◦ (b2 is Z− occ.) ◦ (b2

Z←→ y). Due to our coupling,
this implies that there exists a previously explored bond b1 that is r -equivalent to b2,
which is (T- and Z-) vacant. This, in turn, implies that there exists a vertex z that is

visited by ω such that (z
Z←→ b1) without using any of the bonds in ω. Therefore, the

event (0
Z←→ z) ◦ (z

Z←→ b1) ◦ (z
Z←→ b2) ◦ (b2 is Z − occ.) ◦ (b2

Z←→ y) occurs
(see Fig. 1). ��

3. Previous Results

In this section we cite results of previous works that will be used in our analysis later on.
We make essential use of results by Borgs, Chayes, van der Hofstad, Slade and Spencer
[11, 12] for percolation on Tr,d , which we cite in the following two theorems.

Theorem 3.1 (Subcritical phase). Under the conditions in Theorem 1.1, for λ suffi-
ciently small and any q ≥ 0,

(
λ−1V−1/3 + q

)−1 ≤ χT

(
pc(Tr,d)−�−1q

)
≤

(
λ−1V−1/3 + q/2

)−1
. (3.1)

Also, for p = pc(Tr,d)−�−1q and ω ≥ 1,

PT,p

(

|Cmax| ≥ χ2
T
(p)

3600 ω

)

≥
(

1 +
36 χ3

T
(p)

ω V

)−1

. (3.2)

Instead of the upper bound in (3.1), we will mainly use the cruder bound

χT

(
pc(Tr,d)−�−1q

)
≤ 2

q
. (3.3)

Theorem 3.2 (Scaling window). Assume the conditions in Theorem 1.1. Let λ > 0 and
	 <∞. Then there is a finite positive constant b (depending on λ and 	) such that, for
p = pc(Tr,d) + �−1ε with |ε| ≤ 	V−1/3 and ω ≥ 1,

PT,p

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
. (3.4)
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Theorems 3.1 and 3.2 have been proven in [11, Theorems 1.2 and 1.3] subject to the
triangle condition. Using the lace expansion, the triangle condition was established in
[12, Prop. 1.2 and Theorem 1.3] for d > 6 and sufficient spread-out or d sufficiently
large for nearest-neighbor percolation.

Furthermore, we will use two properties of Z
d -percolation in high dimensions for-

mulated in the following two theorems.

Theorem 3.3 (Expected cluster size). Under the conditions in Theorem 1.1, there exists
a positive constant Cχ , such that

1

�
(

pc(Zd)− p
) ≤ χZ(p) ≤ Cχ

�
(

pc(Zd)− p
) as p ↗ pc(Z

d). (3.5)

In other words, the critical exponent γ exists and takes on the mean-field value 1.

This theorem is proven in [20] and [4]. According to [21], d ≥ 19 is sufficient for the
nearest-neighbor model.

We also need (sub)critical bounds on the decay of the connectivity function. These
are expressed in the following theorem.

Theorem 3.4 (Bounds on the two-point function). Under the conditions in
Theorem 1.1, there exist constants cτ , Cτ , cξ , Cξ > 0 such that,

cτ

(|x | + 1)d−2 ≤ τ
Z,pc(Zd )(x) ≤ Cτ

(|x | + 1)d−2 . (3.6)

In other words, the critical exponent η exists and takes the value 0. Furthermore, for
any p < pc(Z

d),

τZ,p(x) ≤ e−
‖x‖
ξ(p) , (3.7)

where the correlation length ξ(p) is defined by

ξ(p)−1 = − lim
n→∞

1

n
log PZ,p

(
(0, . . . , 0)←→ (n, 0, . . . , 0)

)
, (3.8)

and satisfies

cξ (pc(Z
d)− p)−1/2 ≤ ξ(p) ≤ Cξ (pc(Z

d)− p)−1/2. (3.9)

The power law bound (3.6) is due to Hara [18] for the nearest-neighbor case, and to
Hara, van der Hofstad and Slade [19] for the spread-out case. For the exponential bound
(3.7), see e.g. Grimmett [16, Prop. 6.47]. Hara [17] proves the bound (3.9).

4. The Upper Bound on the Maximal Critical Cluster

The following corollary establishes the upper bound on pc(Z
d) and the upper bound

on |Cmax| in Theorem 1.1. For the proof, we first use Proposition 2.1 to obtain that
χT(p) ≤ χZ(p). Then we use (3.5) to turn this into relations between pc(Tr,d) and
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pc(Z
d). Finally, using Theorem 3.2 we obtain a bound on |Cmax|. We now present the

details of the proof.

Corollary 4.1. Under the conditions of Theorem 1.1 there exists a constant 	 ≥ 0 such
that, when r →∞,

pc(Z
d) ≤ pc(Tr,d) +

	

�
V−1/3. (4.1)

Consequently, for b as in Theorem 3.2 and all ω ≥ 1,

P
T,pc(Zd )

(
|Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
. (4.2)

Proof. By Proposition 2.1,

χT(pc(Tr,d)) ≤ χZ(pc(Tr,d)). (4.3)

When pc(Tr,d) ≥ pc(Z
d), then (4.1) holds with 	 = 0, so we will next assume that

pc(Tr,d) < pc(Z
d). Using (1.3), (4.3) and (3.5), we obtain that

λV 1/3 ≤ Cχ

�
(

pc(Zd)− pc(Tr,d)
) , (4.4)

so that

pc(Z
d) ≤ pc(Tr,d) +

Cχ

λ�
V−1/3, (4.5)

which is (4.1) with 	 = λ−1Cχ .
The bound (4.2) follows from the fact that, with p = pc(Tr,d) + 	�−1V−1/3 ≥

pc(Z
d) by (4.1),

P
T,pc(Zd )

(
|Cmax| ≤ ωV 2/3

)
≥ PT,p

(
|Cmax| ≤ ωV 2/3

)
≥ 1− b

ω
(4.6)

for some constant b > 0 depending on λ and 	, and all ω ≥ 1. We have used Theorem
3.2 in the last bound. ��

5. The Lower Bound on the Maximal Critical Cluster

In this section, we will bound χT(p) − χZ(p) from below. First we use the results and
framework of Sect. 2 to prove such a lower bound in terms of χ̃Z(p, r). Subsequently,
assuming (1.8), we use Theorem 3.2, Corollary 4.1 and the bounds (3.3) and (3.4) to
prove Theorem 1.2.

Some more work is required if we do not assume (1.8). We first deduce a bound on
χ̃Z(p, r) using the bounds in Theorem 3.4. Then we use this bound together with Lemma
5.1 to show Theorem 1.1 with the same ingredients as for the proof of Theorem 1.2.
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5.1. A lower bound on χT(p) in terms of χZ(p)

Lemma 5.1. For all p ∈ [0, 1] and r ≥ 3 in the nearest-neighbor model or r ≥ 2L + 1
in the spread-out model,

χT(p) ≥ χZ(p)
(
1− χZ(p) χ̃Z(p, r)− p �2χZ(p)2χ̃Z(p, r)

)
. (5.1)

Proof. The bound (5.1) will be achieved by comparing the two-point functions on the
torus and on Z

d . We will write P = PZ,T and omit the percolation parameter p from the
notation. Using (2.2), we write

τT(x) = P

⎛

⎜
⎝

⋃

y∈Zd :y r∼x

{0 Z←→ y}
⎞

⎟
⎠− P

⎛

⎜
⎝

⋃

y∈Zd :y r∼x

{0 Z←→ y} ∩ {0 T←→ x}c
⎞

⎟
⎠ . (5.2)

We further bound, using inclusion-exclusion,

P

⎛

⎜
⎝

⋃

y∈Zd :y r∼x

{0 Z←→ y}
⎞

⎟
⎠≥

∑

y∈Zd :y r∼x

P
(
0

Z←→y
)− 1

2

∑

y1 =y2∈Zd :y1,y2
r∼x

P
(
0

Z←→y1, y2
)
,

(5.3)

so that

τT(x) ≥
∑

y∈Zd :y r∼x

τZ(y)− 1

2

∑

y1 =y2∈Zd :y1,y2
r∼x

P
(
0

Z←→ y1, y2
)

−P

⎛

⎜
⎝

⋃

y∈Zd :y r∼x

{0 Z←→ y} ∩ {0 T←→ x}c
⎞

⎟
⎠ . (5.4)

Summation over x ∈ Tr,d and using that
∑

x∈Tr,d

∑
y∈Zd :y r∼x

=∑
y∈Zd yields that

χT(p) ≥ χZ(p)− χT,1(p)− χT,2(p), (5.5)

where

χT,1(p) = 1

2

∑

y1 =y2∈Zd :y1
r∼y2

P
(
0

Z←→ y1, y2
)
, (5.6)

χT,2(p) =
∑

x∈Tr,d

P

⎛

⎜
⎝

⋃

y∈Zd :y r∼x

{0 Z←→ y} ∩ {0 T←→ x}c
⎞

⎟
⎠ . (5.7)

Here we use that the sum over x and over y1 and y2 such that y1, y2
r∼ x is the same as

the sum over y1 and y2 such that y1
r∼ y2. We are left to bound χT,1(p) and χT,2(p). We

start by bounding χT,1(p). Using the tree-graph inequality (see [4]),

P
(
0

Z←→ x, y
) ≤

∑

z∈Zd

τZ(z) τZ(x − z) τZ(y − z), (5.8)
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(for which the proof easily follows using the BK-inequality [9]), we obtain

χT,1(p) ≤ 1

2

∑

z

∑

y1 =y2:y1
r∼y2

τZ(z) τZ(y1 − z) τZ(y2 − z)

= 1

2
χZ(p)

∑

y′1 =y′2:y′1
r∼y′2

τZ(y′1) τZ(y′2). (5.9)

Here, and in the remainder of the proof, all sums over vertices will be over Z
d unless

written explicitly otherwise.

Since y′1 = y′2 and y′1
r∼ y′2, we must have that ‖y′1‖ ≥ r

2 or ‖y′2‖ ≥ r
2 . By symmetry,

these give the same contributions, so that,

χT,1(p) ≤ χZ(p)
∑

y′1

τZ(y′1)
∑

y′2:y′1
r∼y′2,‖y′2‖≥ r

2

τZ(y′2) ≤ χZ(p)2 χ̃Z(p, r), (5.10)

where we recall (1.7). We are left to prove that χT,2(p) ≤ p �2χ3
Z
(p) χ̃Z(p, r).

We use (2.3) and note that the right-hand side of (2.3) does not depend on x . Since∑
x∈Tr,d

∑
y∈Zd :y r∼x

=∑
y∈Zd , this brings us to

χT,2(p) ≤
∑

y∈Zd

P

⎛

⎜
⎝

⋃

b1 =b2:b1
r∼b2

⋃

z∈Zd

(0
Z←→ z) ◦ (z

Z←→ b1) ◦ (z
Z←→ b2)

◦ (b2 is Z− occ.) ◦ (b2
Z←→ y)

⎞

⎟
⎠ . (5.11)

Therefore, by the BK-inequality [9],

χT,2(p) ≤
∑

y,z

∑

b1 =b2:b1
r∼b2

P
(
(0

Z←→ z) ◦ (z
Z←→ b1) ◦ (z

Z←→ b2)

◦(b2 is Z− occ.) ◦ (b2
Z←→ y)

)

≤ p
∑

y,z

∑

b1 =b2:b1
r∼b2

τZ(z) τZ(b1 − z) τZ(b2 − z) τZ(y − b2). (5.12)

We can perform the sums over z, y to obtain, with b′i = bi − z,

χT,2(p) ≤ p χZ(p)2
∑

b′1 =b′2 : b′1
r∼b′2

τZ(b
′
1) τZ(b

′
2) = p �2χZ(p)2

∑

u =v : u
r∼v

τZ(u) τZ(v),

(5.13)

where the factor �2 arises from the number of choices for b′1 and b′2 for fixed b′1 and b′2.
Therefore, by (5.10), we arrive at the bound

χT,2(p) ≤ p �2χ3
Z
(p) χ̃Z(p, r). (5.14)

The bounds (5.10) and (5.14) complete the proof of (5.1). ��
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5.2. Proof of the main results

Proof of Theorem 1.2. We assume (1.8) and take p = pc(Z
d) − K1�

−1V−1/3 for K1
sufficiently large. Choose V sufficiently large to ensure that p > 0. When K1 ≥ K ,
the bound (1.8) still holds. We obtain from Lemma 5.1 together with Theorem 3.3 and
(1.8) that

χT(p) ≥ K−1
1 V 1/3

(
1− CχCK K−1

1 V−1/3 − p �2C2
χ
CK K−2

1

)
≥ c̃K1 V 1/3, (5.15)

where c̃K1 is chosen appropriately. Let K1 be so large that p < pc(Tr,d), which can be
done by (4.1). Then, by (3.3),

2

�(pc(Tr,d)− pc(Zd) + K1V−1/3)
≥ χT(p) ≥ c̃K1 V 1/3, (5.16)

so that

pc(Z
d) ≥ pc(Tr,d) +

(

K1 − 2

c̃K1�

)

V−1/3, (5.17)

which is (1.10) with 	 = (
2 c̃−1

K1
−�K1

) ∨ 0. This, together with (4.1), permits using
Theorem 3.2. By doing so, we obtain that, for p equal to the right-hand side of (5.17),

P
T, pc(Zd )

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)
≥ PT, p

(
ω−1V 2/3 ≤ |Cmax| ≤ ωV 2/3

)

≥ 1− b

ω
. (5.18)

This completes the proof of Theorem 1.2. ��
Unfortunately, we cannot quite prove (1.8) so we will give cruder upper bounds on
χ̃Z(p, r). This is the content of the following lemma:

Lemma 5.2. Under the conditions in Theorem 1.1, choose K sufficiently large, and let
R = K (log V )(pc(Z

d)− p)−1/2. Then for all p ≤ pc(Z
d)− K�−1V−1/3,

χ̃Z(p, r) ≤ Cχ̃ R2

V
(5.19)

for some constant Cχ̃ > 0.

Note that it is here where the power of log V comes into play.

Proof. For p ≤ pc(Z
d)− K�−1V−1/3, we bound

χ̃Z(p, r) = sup
y

∑

z
r∼y,‖z‖≥ r

2

τZ,p(z) ≤ sup
y

∑

z
r∼y,‖z‖≥R

τZ,p(z) + sup
y

∑

z
r∼y, r

2≤‖z‖≤R

τZ,p(z).

(5.20)

We start with the second contribution, for which we use (3.6). Since ‖z‖ ≥ r
2 , we have

that

τZ,p(z) ≤ τ
Z,pc(Zd )(z) ≤

Cτ

(|z| + 1)d−2 ≤
C1

V

∑

x∈Tr,d

Cτ

(|z + x | + 1)d−2 (5.21)
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for constants Cτ , C1 > 0, where C1 depends on the dimension d only. Therefore,

sup
y

∑

z
r∼y: r2≤‖z‖≤R

τZ,p(z) ≤ C1

V
sup

y

∑

x∈Tr,d

∑

z
r∼y:‖z‖≤R

Cτ

(|z + x | + 1)d−2

≤ C1

V

∑

z:‖z‖≤2R

Cτ

(|z| + 1)d−2 ≤
C2 R2

V
, (5.22)

where the positive constant C2 depends on d and L only. For the sum due to ‖z‖ ≥ R,
we use (3.7) and (3.9) to see that

sup
y

∑

z
r∼y, ‖z‖≥R

τZ,p(z) ≤ sup
y

∑

z
r∼y, ‖z‖≥R

exp
{
−C−1

ξ
‖z‖ (pc(Z

d)− p)1/2
}
. (5.23)

Since ‖z‖ ≥ 1
d (|z1| + · · · + |zd |) for all z = (z1, . . . , zd) ∈ Z

d , (5.23) can be further
bounded from above by

∑

z:‖z‖≥R

exp
{
−C−1

ξ
‖z‖ (pc(Z

d)− p)1/2
}

≤
⎛

⎝
∑

z1:|z1|≥R

exp

{

−(dCξ )
−1 |z1|

(
pc(Z

d)− p
)1/2

}
⎞

⎠

d

≤ C3

(
pc(Z

d)− p
)−d/2

exp

{

− R

Cξ

(
pc(Z

d)− p
)1/2

}

, (5.24)

for some constant C3 > 0. Since R = K (log V )(pc(Z
d)− p)−1/2, the exponential term

can be bounded by V−K/Cξ . Furthermore, by our choice of p,
(

pc(Z
d)− p

)−d/2 ≤
(
K�−1

)−d/2
V d/6. Choose K so large that K/Cξ − d/6 > 1. Then the upper bound is

of the order o(V−1). This, together with (5.22), proves the claim. ��
We next use Lemma 5.2 to prove the lower bound in (1.6):

Lemma 5.3. Under the conditions in Theorem 1.1, there exists a constant 	 ≥ 0 such
that

pc(Z
d) ≥ pc(Tr,d)− 	

�
V−1/3(log V )2/3. (5.25)

Proof. By Lemma 5.2, for all p ≤ pc(Z
d)− K�−1V−1/3,

χ̃Z(p, r) ≤ Cχ̃ K 2(log V )2

V
(

pc(Zd)− p
) . (5.26)

With Theorem 3.3, this can be further bounded as

χ̃Z(p, r) ≤ Cχ̃ K 2 (log V )2

V
�χZ(p). (5.27)

Then, by Lemma 5.1 and χZ(p) ≥ 1,

χT(p) ≥ χZ(p)
(

1− (1 + p�2)χ̃(p, r) χZ(p)2
)

(5.28)
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if � and r are sufficiently large. Combining (5.27) and (5.28) yields

χT(p) ≥ χZ(p)

(

1− (1 + p�2)� Cχ̃ K 2 (log V )2

V
χZ(p)3

)

. (5.29)

Let

p̂ := pc(Z
d)− Ĉ

�
V−1/3(log V )2/3 (5.30)

for some (sufficiently large) constant Ĉ > 0. Depending on Ĉ , we take V large to ensure
that p̂ > 0. Then, by Theorem 3.3,

χZ( p̂)3 ≤ C3
χ

�3
(

pc(Zd)− p̂
)3 =

(
Cχ

Ĉ

)3

V (log V )−2. (5.31)

Substituting (5.31) into (5.29) for p = p̂, using p̂ ≤ 1 and the lower bound in (3.5) give

χT( p̂) ≥
(

1− (1 + �2)� Cχ̃ K 2C3
χ

Ĉ3

)
1

Ĉ

V 1/3

(log V )2/3 . (5.32)

We make the Ĉ in (5.30) so large that

ĉ :=
(

1− (1 + �2)� Cχ̃ K 2C3
χ

Ĉ3

)
1

Ĉ
> 0, (5.33)

so that (5.32) simplifies to

χT( p̂) ≥ ĉ V 1/3(log V )−2/3. (5.34)

The quantity

q := �
(

pc(Tr,d)− p̂
) = ĈV−1/3(log V )2/3 −�

(
pc(Z

d)− pc(Tr,d)
)
, (5.35)

is positive if V is large enough, by (4.1). Hence Theorem 3.1 is applicable, and (3.3)
yields

χT( p̂) = χT

(
pc(Tr,d)− q �−1) ≤ 2

�
(

pc(Tr,d)− p̂
) . (5.36)

Merging (5.34) and (5.36), we arrive at

pc(Tr,d)− pc(Z
d) ≤ 1

�

[
2

ĉ
− Ĉ

]

V−1/3(log V )2/3, (5.37)

which is (5.25) with 	 = (2ĉ−1 − Ĉ) ∨ 0. ��
Corollary 5.4. Under the conditions in Theorem 1.1, there exists a constant C > 0 such
that, for all ω1 ≥ C,

P
T,pc(Zd )

(
|Cmax| ≥ ω−1

1 (log V )−4/3 V 2/3
)
≥

(

1 +
1203/2 · 288

ω
3/2
1 (log V )2

)−1

. (5.38)
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Proof. Take V so large that λ−1 ≤ √ω1 120−1(log V )2/3, and let

p̂ = pc(Tr,d)−√ω1 120−1�−1V−1/3(log V )2/3. (5.39)

Then, by (3.1),

χ2
T
( p̂) ≥

(
1

λ−1V−1/3 +
√

ω1 120−1V−1/3(log V )2/3

)2

≥ 3600 ω−1
1 (log V )−4/3 V 2/3.

(5.40)

This enables the bound

P
T,pc(Zd )

(
|Cmax| ≥ ω−1

1 (log V )−4/3 V 2/3
)
≥ P

T,pc(Zd )

(

|Cmax| ≥ χ2
T

(
p̂
)

3600

)

. (5.41)

By Lemma 5.3, p̂ ≤ pc(Z
d) for ω1 ≥ C , and C > 0 large enough. Thus, we use (3.2)

and (3.3) to bound (5.41) further from below by

PT, p̂

(

|Cmax| ≥ χ2
T

(
p̂
)

3600

)

≥
(

1 +
36 χ3

T

(
p̂
)

V

)−1

≥
(

1 +
36 · 23 · 1203

ω
3/2
1 (log V )2

)−1

. (5.42)

��
Combining our results from Sects. 4 and 5, we finally prove Theorem 1.1:

Proof of Theorem 1.1. By Corollaries 4.1 and 5.4, for ω1 ≥ C for some sufficiently
large C and ω2 ≥ 1,

P
T,pc(Zd )

(
ω−1

1 (log V )−4/3 V 2/3 ≤ |Cmax| ≤ ω2V 2/3
)
≥1−

⎛

⎜
⎝

1203·288
ω

3/2
1 (log V )2

1+ 1203·288
ω

3/2
1 (log V )2

⎞

⎟
⎠− b2

ω2
,

(5.43)

where the term in brackets on the right-hand side vanishes for V →∞. Then b1 in (1.5)
can be taken as 1203 · 288. This proves Theorem 1.1. ��

5.3. Discussion of (1.8). At the end of Sect. 1.2 we argued why we believe that (1.8)
holds. Another approach to (1.8) is to split the sum over z in (1.7). Note that, for
p = pc(Z

d) − K1�
−1V−1/3, the sum due to ‖z‖ ≤ K1V 1/6 can be bounded, for

any K1 > 0, as

sup
y

∑

z
r∼y, r

2≤‖z‖≤K1V 1/6

τZ(z) ≤ C sup
y

∑

z
r∼y, r

2≤‖z‖≤K1V 1/6

(‖z‖ + 1)−(d−2) ≤ C K 2
1 V−2/3.

(5.44)

Therefore, we are left to give a bound on the contribution from ‖z‖ ≥ K1V 1/6. The
restriction ‖z‖ ≥ K1V 1/6 is equivalent to ‖z‖ ≥ CK ,K1ξ(p), where ξ(p) denotes the cor-
relation length. Indeed, ξ(p) is comparable in size to (pc(Z

d)− p)1/2 as proven by Hara
[17] (see also (3.9)), and the constant CK ,K1 can be made arbitrarily large by taking K1
large. This contribution could be bounded by investigating τZ(z) for ‖z‖ ≥ CK ,K1ξ(p).
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6. The Role of Boundary Conditions

In this section, we discuss the impact of boundary conditions on the geometry of the
largest critical cluster. For the d-dimensional box {−�r/2�, . . . , �r/2� − 1}d , we write
Br,d if we consider it with free boundary conditions, and we write Tr,d if it is equipped
with periodic boundary conditions. We fix p = pc(Z

d) and further omit this subscript.
Furthermore, we write C for a positive constant, whose value may change from line to line.

With Michael Aizenman [2], we have discussed the role of boundary conditions for
critical percolation above the upper critical dimension. We will summarize the conse-
quences of Theorems 1.1 and 1.2 in this discussion now. Assume that the conditions
in Theorem 1.1 are satisfied. Let X1, X2, X3 and X4 be 4 uniformly chosen vertices in
Br,d . Then, Aizenman notices that, with bulk boundary conditions,

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4)→ 0, (6.1)

as the width of the torus r tends to infinity. Indeed,

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) = PZ(X1 ←→ X2, X3, X4)

PZ(X1 ←→ X2, X3 ←→ X4)
.

(6.2)

We can compute

PZ(X1 ←→ X2, X3, X4) = V−4
∑

x∈Br,d

EZ[|CZ(x, r)|3], (6.3)

where CZ(x, r) is the set of vertices y ∈ Br,d for which x
Z←→ y, and the right-hand

side will be bounded from above by the following lemma.

Lemma 6.1. Under the conditions of Theorem 1.1, for p = pc(Z
d) and r ≥ 3∨(2L +1),

EZ[|CZ(x, r)|3] ≤ Cr10, for all x ∈ Br,d . (6.4)

The proof will be given at the end of this section.
On the other hand,

PZ(X1 ←→ X2, X3 ←→ X4) = V−4 ∑
x,y,u,v∈Br,d

PZ(x
Z←→ u, y

Z←→ v).

By the FKG-inequality, for all x, y, u, v ∈ Br,d ,

PZ(x
Z←→ u, y

Z←→ v) ≥ PZ(x
Z←→ u) PZ(y

Z←→ v), (6.5)

so that

PZ(X1 ←→ X2, X3 ←→ X4) ≥ V−4

⎛

⎝
∑

x,u∈Br,d

PZ(x
Z←→ u)

⎞

⎠

2

. (6.6)

For fixed x , by (3.6),
∑

u∈Br,d

PZ(x
Z←→ u) ≥

∑

u∈Br,d

cτ

(|x − u| + 1)d−2 ≥ Cr2. (6.7)



354 M. Heydenreich, R. van der Hofstad

Summing over x gives an extra factor V . We obtain that

PZ(X1 ←→ X2, X3 ←→ X4) ≥ CV−2r4. (6.8)

Therefore, when d > 6,

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) = PZ(X1 ←→ X2, X3, X4)

PZ(X1 ←→ X2, X3 ←→ X4)

≤ V−3r10

CV−2r4 =
r6

CV
→ 0. (6.9)

All this changes when we consider the torus with periodic boundary conditions and we
assume that

χT(pc(Z
d)) = �

(
V 1/3). (6.10)

Note that (6.10) is a consequence of (1.10), which follows from (1.8), and Theorem 3.1.
In this case,

PT(X1 ←→ X2, X3, X4) ≥ PT(X1, X2, X3, X4 ∈ Cmax). (6.11)

Thus, for ω ≥ 1 sufficiently large,

PT(X1 ←→ X2, X3, X4) ≥ PT

(
X1, X2, X3, X4 ∈ Cmax, |Cmax| ≥ 1

ω
V 2/3

)

≥ ω−4V−4/3
PT

(
|Cmax| ≥ 1

ω
V 2/3

)
≥ 1

2
ω−4V−4/3. (6.12)

On the other hand, we have that

PT(X1 ←→ X2, X3 ←→ X4) ≤ PT

(
(X1 ←→ X2) ◦ (X3 ←→ X4)

)

+ PT(X1 ←→ X2, X3, X4), (6.13)

and, by the BK-inequality,

PT

(
(X1 ←→ X2) ◦ (X3 ←→ X4)

) ≤ PT(X1 ←→ X2) PT(X3 ←→ X4)

= V−2χT(pc(Z
d))2 ≤ CV−4/3. (6.14)

Therefore, assuming (6.10), we obtain

lim sup
V→∞

PT(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) > 0. (6.15)

The difference between (6.9) and (6.15) was conjectured by Aizenman [2]. The obvious
conclusion is that boundary conditions play a crucial role for high-dimensional perco-
lation on finite cubes.

We do not know that (6.10) holds, so now we will investigate the changes using
the results in Theorem 1.1 in the above discussion. Thus, we will use that, with high
probability,

V 2/3(log V )−4/3 ≤ |Cmax| ≤ ωV 2/3, (6.16)
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and

1

ω
V 1/3(log V )−2/3 ≤ χT(pc(Z

d)) ≤ ωV 1/3. (6.17)

We will see that the conclusion weakens. Indeed, by (6.9),

PZ(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) ≤ Cr6V−1 = Cr6−d → 0, (6.18)

where the convergence is as an inverse power of r , while by an argument as in (6.12),
now using (6.16),

PT(X1 ←→ X3 | X1 ←→ X2, X3 ←→ X4) ≥ C(log V )−
16
3 , (6.19)

which only converges to zero as a power of log r . Therefore, the main conclusion that
boundary conditions play an essential role is preserved.

We have argued that the largest critical cluster with bulk boundary conditions is much
smaller than the one with periodic boundary conditions. We will now argue that, under
the condition of Theorem 1.1, critical percolation clusters on the periodic torus Tr,d are
similar to percolation clusters on a finite box with bulk boundary conditions, where the
box has width V 1/6 = rd/6 � r . Here we rely on the coupling in Proposition 2.1. In
particular, when the origin 0 is T-connected to a uniformly chosen point X , then, with
high probability, there is no Z-connection at distance o(V 1/6) from 0 to a point that is
r -equivalent to X .

This will be illustrated by the following calculation. Assume for the moment that
χT(pc(Z

d)) = �(V 1/3). This follows from our assumption (1.8). Choose the vertex X
uniformly from the torus Tr,d . Then, for any ε > 0,

PZ,T

(∃y ∈ Z
d : y

r∼ X, |y| ≤ εV 1/6, 0
Z←→ y | 0 T←→ X

)

≤ PZ,T

(∃y ∈ Z
d : y

r∼ X, |y| ≤ εV 1/6, 0
Z←→ y

)

PZ,T

(
0

T←→ X
) . (6.20)

For the denominator, we rewrite

PZ,T

(
0

T←→ X
) = V−1χT(pc(Z

d)) ≥ CV−2/3, (6.21)

whereas the numerator in (6.20) is bounded from above by

∑

y∈Zd

PZ,T

(
y

r∼ X, |y| ≤ εV 1/6, 0
Z←→ y

)
≤ 1

V

∑

y:|y|≤εV 1/6

1

(|y| + 1)d−2 ≤ Cε2V−2/3.

(6.22)

Thus,

PZ,T

(∃y ∈ Z
d : y

r∼ X, |y| ≤ εV 1/6, 0
Z←→ y | 0 T←→ X

) ≤ Cε2. (6.23)

We have seen that, under bulk boundary conditions, |Cmax| is of the order �(r4),
whereas under periodic boundary conditions, it is of the order �(V 2/3). Thus, the maxi-
mal critical percolation cluster on a high dimensional torus is�(R4)with R = V 1/6 � r ,
so that Cmax is 4-dimensional, but now in a box of width R. This suggests that percolation
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on a box Br,d with periodic boundary conditions is similar to percolation on the larger
box BR,d under bulk boundary conditions, with R = V 1/6 � r .

Without assuming (1.8), the lower bound on the denominator is only
CV−2/3(log V )2/3, thus we obtain the weaker bound

PZ

(
∃y ∈ Z

d : y
r∼ X, |y| ≤ εV 1/6(log V )−1/3, 0

Z←→ y | 0 T←→ X
)
≤ ε2. (6.24)

The conclusion that occupied paths are long is preserved.
We conclude this section with the proof of Lemma 6.1.

Proof of Lemma 6.1. For all x ∈ Br,d ,

EZ[|CZ(x, r)|3] =
∑

s,t,u∈Br,d

PZ

(
x

Z←→ s
Z←→ t

Z←→ u
)

≤ 3
∑

s,t,u∈Br,d

v,w∈Zd

PZ

(
(x

Z←→ v) ◦ (v
Z←→ s) ◦ (v

Z←→ w) ◦ (w
Z←→ t) ◦ (w

Z←→ u)
)

.

(6.25)

Using the BK-inequality, this can be further bounded from above by

3

⎛

⎝ sup
v∈Zd

∑

s∈Br,d

τZ(s − v)

⎞

⎠

2
∑

u∈Br,d

τ ∗3
Z

(x − u), (6.26)

where τ ∗3
Z

denotes the threefold convolution of τZ. We begin to bound the expression in
parenthesis. Fix v ∈ Z

d . If the distance between v and the box Br,d is larger than r , then
τZ(s − v) ≤ Cr−(d−2) for all s ∈ Br,d , by (3.6). Hence, in this case,

∑

s∈Br,d

τZ(s − v) ≤ Cr2. (6.27)

Otherwise, ‖s − v‖ ≤ 2r for all s ∈ Br,d , and therefore, by (5.22),
∑

s∈Br,d

τZ(s − v) ≤
∑

z∈B2r,d

τZ(z) ≤ Cr2. (6.28)

Using [19, Prop. 1.7 (i)] for d > 6, we see that, for all z ∈ Z
d , the upper bound in (3.6)

implies that

τ ∗2
Z

(z) ≤ C

(|z| + 1)d−4 , (6.29)

which in turn implies, when d > 6, so that (d − 2) + (d − 4) > d,

τ ∗3
Z

(z) = (τZ ∗ τ ∗2
Z

)(z) ≤ C

(|z| + 1)d−6 . (6.30)

Thus we obtain, for x ∈ Br,d ,
∑

u∈Br,d

τ ∗3
Z

(x − u) ≤
∑

z∈B2r,d

τ ∗3
Z

(z) ≤
∑

z∈B2r,d

C

(|z| + 1)d−6 ≤ Cr6. (6.31)

The combination of the bounds (6.25)–(6.31) yields the desired upper bound Cr10. ��
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