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Abstract: In this paper we show, in dimension n ≥ 3, that knowledge of the Cauchy
data for the Schrödinger equation in the presence of a magnetic potential, measured on
possibly very small subsets of the boundary, determines uniquely the magnetic field and
the electric potential. We follow the general strategy of [7] using a richer set of solutions
to the Dirichlet problem that has been used in previous works on this problem.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467
2. Carleman Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
3. Construction of Solutions by Complex Geometrical Optics . . . . . . . . . . 476
4. Towards Recovering the Magnetic Field . . . . . . . . . . . . . . . . . . . . 479
5. Moving to the Complex Plane . . . . . . . . . . . . . . . . . . . . . . . . . 482
6. Recovering the Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488

1. Introduction

Let� ⊂ Rn be an open bounded set with C∞ boundary; we are interested in the magnetic
Schrödinger operator

LA,q(x, D) =
n∑

j=1

(D j + A j (x))
2 + q(x)

(1.1)
= D2 + A · D + D · A + A2 + q

with real magnetic potential A = (A j )1≤ j≤n ∈ C2(�̄; Rn) and bounded electric poten-
tial q ∈ L∞(�). As usual, D = −i∇. In this paper, we always assume the dimension
to be ≥ 3. Let us introduce the
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Assumption 1. 0 is not an eigenvalue of the magnetic Schrödinger operator LA,q :
H2(�) ∩ H1

0 (�) → L2(�).

Let ν be the unit exterior normal. Under Assumption 1, the Dirichlet problem
{LA,qu = 0

u|∂� = f ∈ H
1
2 (∂�)

(1.2)

has a unique solution in H1(�), and we can introduce the Dirichlet to Neumann map
(DN)

NA,q : H
1
2 (∂�) 	 f 
→ (∂ν + i A · ν)u|∂� ∈ H− 1

2 (∂�)

associated to the magnetic Schrödinger operator LA,q with magnetic potential defined
by (1.1).

The inverse problem we consider in this paper is to recover information about the
magnetic and electric potential from the DN map measured on subsets of the boundary.
As was noted in [12], the DN map is invariant under a gauge transformation of the
magnetic potential: it ensues from the identities

e−i�LA,qei� = LA+∇�,q , e−i�NA,qei� = NA+∇�,q , (1.3)

that NA,q = NA+∇�,q when � ∈ C1(�̄) is such that �|∂� = 0. Thus NA,q carries
information about the magnetic field1 B = d A. Sun showed in [12] that from this infor-
mation one can determine the magnetic field and the electric potential if the magnetic
potential is small in an appropriate class. In [8] the smallness assumption was eliminated
for smooth magnetic and electric potentials and for C2 and compactly supported mag-
netic potential and L∞ electrical potential. The regularity assumption on the magnetic
potential was improved in [13] to C2/3+ε, ε > 0, and to Dini continuous in [10]. Recently
in [11] a method was given for reconstructing the magnetic field and the electric potential
under some regularity assumptions on the magnetic potential.

All of the above mentioned results rely on constructing complex geometrical optics
solutions, with a linear phase, for the magnetic Schrödinger equation. We also mention
that the inverse boundary value problem is closely related to the inverse scattering prob-
lem at a fixed energy for the magnetic Schrödinger operator. The latter was studied under
various regularity assumptions on the magnetic and electrical potentials in [9], for small
compactly supported magnetic potential and compactly supported electric potential. This
result was extended in [3] for exponentially decaying magnetic and electric potentials
with no smallness assumption.

In this paper we extend one of the main results of [7] to the case of the magnetic
Schrödinger equation. Let x0 ∈ Rn\ch(�) (where ch(�) denotes the convex hull of�),
we define the front and back sides of ∂� with respect to x0 by

F(x0) = {x ∈ ∂� : (x − x0) · ν(x) ≤ 0},
B(x0) = {x ∈ ∂� : (x − x0) · ν(x) > 0}.

The following result was obtained in [7] when there are no magnetic potentials, i.e.
A1 = A2 = 0 (we then write Nq j = N0,q j for the Dirichlet to Neumann maps):

1 Here A is viewed as the 1-form
∑n

j=1 A j dx j .
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Theorem (1.2 in [7]) (Kenig, Sjöstrand, Uhlmann). Let� be an open bounded set with
C∞ boundary in Rn, n ≥ 3, let q1, q2 be two bounded potentials on� such that Assump-
tion 1 is satisfied.

Let x0 ∈ Rn\ch(�), suppose that there exists a neighborhood F̃ of the front side
F(x0) such that

Nq1 f (x) = Nq2 f (x) ∀x ∈ F̃, ∀ f ∈ H
1
2 (∂�),

then q1 = q2.

Let us now state the precise results of this article.

Theorem 1.1. Let� be a simply connected open bounded set with C∞ boundary in Rn,
n ≥ 3, let A1, A2 be two real C2 vector fields on �̄ and q1, q2 be two bounded potentials
on � such that Assumption 1 is satisfied.

Let x0 ∈ Rn\ch(�), suppose that the Dirichlet to Neumann maps related to the
operators LA1,q1 and LA2,q2 coincide on part of the boundary near x0 in the sense that
there exists a neighborhood F̃ of the front side of ∂� with respect to x0 such that

NA1,q1 f (x) = NA2,q2 f (x) ∀x ∈ F̃, ∀ f ∈ H
1
2 (∂�), (1.4)

then if A1 and A2 are viewed as 1-forms,

d A1 = d A2 and q1 = q2.

Remark 1.2. We only use the simple connectedness of the set � to obtain the equality
d A1 = d A2 and to deduce that the two magnetic potentials differ from a gradient. If we
already know that A1 − A2 = ∇�, we don’t need the fact that � is simply connected,
in particular, Theorem 1.1 contains Theorem 1.2 of [7].

Nevertheless Theorem 1.1 in [7] improves on this result by restricting the
Dirichlet-to-Neuman maps to a space of functions on the boundary with support in
a small neighborhood of the back side B(x0). We have left the corresponding result in
the magnetic case open.

As in [7], we make the following definition of a strongly star shaped domain.

Definition 1.3. An open set � with smooth boundary is said to be strongly star shaped
with respect to x1 ∈ ∂� if every line through x1 which is not contained in the tangent
hyperplane cuts the boundary at precisely two distinct points x1 and x2 with transversal
intersection at x2.

With this definition, Theorem 1.1 implies the following corollary

Corollary 1.4. Under the assumptions on �, the magnetic potentials A1, A2 and the
electric potentials q1, q2 of Theorem 1.1, let x1 ∈ ∂� be a point of the boundary such
that the tangent hyperplane of ∂� at x1 only intersects ∂� at x1 and such that � is
strongly star shaped with respect to x1.

Suppose that there exists a neighborhood F̃ of x1 in ∂� such that (1.4) holds then

d A1 = d A2 and q1 = q2.
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We proceed as in [7] by constructing some complex geometrical optics solutions
using a Carleman estimate. The construction of these solutions is fairly similar to those
presented in the latter paper, except for the changes due to the presence of the mag-
netic potential. However, the part concerned with the recovery of the potential and the
magnetic field is new.

The plan of this article is as follows. In the second section, we prove a Carleman esti-
mate with boundary terms for the magnetic Schrödinger operator, which will be useful
both for the construction of the complex geometrical optics solutions, and for estimating
boundary terms in the limit when the semi-classical parameter tends to zero. In the third
section, we construct complex geometrical optics solutions by solving an eikonal and
a transport equation and using the Carleman estimate derived in the preceding section.
The fourth and fifth sections are devoted to the analysis of the information obtained
when passing to the limit when the semi-classical parameter tends to zero. This actually
provides enough information on a certain Radon transform to determine the magnetic
field. In the last section, once the magnetic field has been determined, we apply the same
arguments to determine the electric potential.

2. Carleman Estimate

Our first step is to construct solutions of the magnetic Schrödinger equation LA,qu = 0
of the form

u(x, h) = e
1
h (ϕ+iψ)(a(x) + hr(x, h)) (2.1)

(where ϕ and ψ are real functions) by use of the complex geometrical optics method:
of course, ψ and a will be sought as solutions of respectively an eikonal equation and
a transport equation. In order to be able to go from an approximate solution to an exact
solution, one wants the conjugated operator

e
ϕ
h h2LA,qe− ϕ

h

to be locally solvable in a semi-classical sense, which means its principal symbol2

pϕ(x, ξ) = ξ2 − (∇ϕ)2 + 2i∇ϕ · ξ (2.2)

to satisfy Hörmander’s condition

{Re pϕ, Im pϕ} ≤ 0 when pϕ = 0.

Since we furthermore want to obtain solutions (2.1) for both the phases ϕ and −ϕ,
we will consider phases satisfying the condition

{Re pϕ, Im pϕ} = 0 when pϕ = 0. (2.3)

Definition 2.1. A real smooth function ϕ on an open set �̃ is said to be a limiting
Carleman weight if it has non-vanishing gradient on �̃ and if the symbol (2.2) satisfies
condition (2.3) on T ∗(�̃). This is equivalent to say that

〈ϕ′′∇ϕ,∇ϕ〉 + 〈ϕ′′ξ, ξ 〉 = 0 when ξ2 = (∇ϕ)2 and ∇ϕ · ξ = 0. (2.3′)

2 Here and throughout this article, we are using the semi-classical convention.
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The appropriate tool in deducing local solvability for the conjugated operator and in
proving that the geometrical optics method is effective (meaning that indeed one gains
one power of h in the former asymptotics) is a Carleman estimate. The goal of this
section is to prove such an estimate.

In this section, � is as in the introduction and �̃ will denote an open set �̃ � �. We
will use the following notations:

(u|v) =
∫

�

u(x)v̄(x) dx, (u|v)∂� =
∫

∂�

u(x)v̄(x) dσ(x),

and ‖u‖ = √
(u|u) denotes the L2 norm on �. We say that the estimate

F(u, h) � G(u, h)

holds for all u ∈ X (where X is a function space, such as L2(�)) and for h small if there
exist constants C > 0 and h0 > 0 (possibly depending on q and A) such that for all
0 ≤ h ≤ h0 and for all u ∈ X , the inequality F(u, h) ≤ CG(u, h) is satisfied.

We will make extensive use of the Green formula for the magnetic Schrödinger
operator LA,q , which for the sake of convenience, we state as a lemma.

Lemma 2.2. Let A be a real C1 vector field on �̄ and q ∈ L∞(�) then we have the
magnetic Green formula

(LA,qu|v)� − (u|LA,q̄v)� = (
u|(∂ν + iν · A)v

)
∂�

− (
(∂ν + iν · A)u|v)

∂�
(2.4)

for all u, v ∈ H1(�) such that 
u, 
v ∈ L2(�).

Proof. Integrating by parts, we have

(LA,qu|v)� = (∇u|∇v)� + (Du|Av)� + (Au|Dv)�
+

(
(q + A2)u|v)

�
− (
(∂ν + iν · A)u|v)

∂�
(2.5)

and by permuting u and v, replacing q by q̄ , and taking the complex conjugate of the
former, we get

(LA,q̄ u|v)� = (∇u|∇v)� + (Du, Av)� + (Au|Dv)�
+

(
(q + A2)u|v)

�
− (

u|(∂ν + iν · A)v
)
∂�
.

Subtracting the former to (2.5), we end up with (2.4). ��
If ϕ is a limiting Carleman weight, we define

∂�± = {x ∈ ∂� : ±∂νϕ ≥ 0}.
Proposition 2.3. Let ϕ be a C∞ limiting Carleman weight on �̃, let A be a C1 vector
field on �̄ and q ∈ L∞(�), the Carleman estimate

−h(∂νϕ e
ϕ
h ∂νu|e ϕh ∂νu)∂�− + ‖e

ϕ
h u‖2 + ‖e

ϕ
h h∇u‖2

� h2‖e
ϕ
h LA,qu‖2 + h(∂νϕ e

ϕ
h ∂νu|e ϕh ∂νu)∂�+ (2.6)

holds for all u ∈ C∞(�̄) ∩ H1
0 (�) and h small.
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In particular, when u ∈ C∞
0 (�), we have the Carleman estimate

‖e
ϕ
h u‖ + h‖e

ϕ
h ∇u‖ � h‖e

ϕ
h LA,qu‖. (2.6′)

The proof of the Carleman estimate follows standard arguments. We refer the reader to
Chapters 17.2 and 28 in [6] and the references therein for a general study on L2 Carleman
estimates.

Proof. Taking v = e
ϕ
h u, it is equivalent to prove the following a priori estimate

−h(∂νϕ ∂νv|∂νv)∂�− + ‖v‖2 + ‖h∇v‖2

� 1

h2 ‖(e ϕh h2LA,qe− ϕ
h )v‖2 + h(∂νϕ ∂νv|∂νv)∂�+ (2.7)

since ‖he
ϕ
h ∇u‖ � ‖v‖ + ‖h∇v‖ and (e

ϕ
h ∂νu)|∂� = ∂νv|∂�. Conjugating the magnetic

Schrödinger operator by the exponential weight gives rise to the following operator:

e
ϕ
h h2LA,qe− ϕ

h = P + i Q + R + h2(q + A2), (2.8)

where P and Q are the self-adjoint operators

P = h2 D2 − (∇ϕ)2,
Q = ∇ϕ · h D + h D · ∇ϕ,

and R = h(A · h D + h D · A) + 2ih A · ∇ϕ.

Our first remark concerns the fact that we may neglect the term h2(q + A2) since the
right-hand side of (2.7) may be perturbed by a term bounded by h2‖v‖2, which may be
absorbed by the left-hand side if h is small enough. Omitting the term q + A2 gives rise
to such an error. Hence we will prove the a priori estimate for the operator P + i Q + R.
The same is not true of the term R because errors of order ‖v‖2 + ‖h∇v‖2 may not be
absorbed into the left hand-side.

Note that if p and q denote the principal symbol respectively of P and Q, the fact
that ϕ is a limiting Carleman weight means that

{p, q} = 0 when p + iq = 0.

This condition is not enough to obtain an a priori estimate for P + i Q, one needs to have
a positive Poisson bracket. Our first step is to remedy this by using a classical convexity
argument. Consider the modified Carleman weight

ϕ̃ = ϕ + h
ϕ2

2ε
,

where ε is a suitable small parameter to be chosen independent of h, and denote by p̃
and q̃ the corresponding symbols, and by P̃, Q̃, R̃ the corresponding operators, when ϕ
has been replaced by ϕ̃. Then, we have

∇ϕ̃ =
(

1 +
h

ε
ϕ

)
∇ϕ, ϕ̃′′ =

(
1 +

h

ε
ϕ

)
ϕ′′ +

h

ε
∇ϕ ⊗ ∇ϕ;
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therefore when ξ2 = (∇ϕ̃)2 and ∇ϕ̃ · ξ = 0, we have

{ p̃, q̃} = 4〈ϕ̃′′ξ, ξ 〉 + 4〈ϕ̃′′∇ϕ̃,∇ϕ̃〉

= 4h

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 > 0, (2.9)

since ϕ is a limiting Carleman weight. Furthermore, if we restrict ourselves to the hyper-
plane Vx orthogonal to ∇ϕ, we get

{ p̃, q̃}(x, ·)|Vx = 4h

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 + a(x)(ξ2 − (∇ϕ̃)2)

with a(x) = 4h(∇ϕ̃)2/ε − 4〈ϕ̃′′∇ϕ̃,∇ϕ̃〉/(∇ϕ̃)2, and since this bracket is a quadratic
polynomial with no linear part, this implies that there exists a linear form b(x, ξ) in ξ
such that

{ p̃, q̃} = 4h

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 + a(x) p̃ + b(x, ξ)q̃.

This computation implies on the operator level that

i[P̃, Q̃] = 4h2

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 +
h

2
(a P̃ + P̃a)

+
h

2
(bw Q̃ + Q̃bw) + h3c(x),

where the first order differential operator bw is the semi-classical Weyl quantization3

of b. In fact, the positivity of the bracket (2.9) essentially induces the positivity of the
commutator i[P̃, Q̃]

i([P̃, Q̃]v|v) = 4h2

ε

(
1 +

h

ε
ϕ

)2

‖(∇ϕ)2v‖2

︸ ︷︷ ︸
>0

+ h Re(a P̃v|v) + h Re(Q̃v|bwv) + h3(cv|v) (2.10)

(recall that v|∂� = 0 which explains why there are no boundary terms). The former fact
will be enough to obtain the a priori estimate on P̃ + i Q̃.

Our last observation is that

‖h∇v‖2 = (P̃v|v) + ‖
√
(∇ϕ)2 v‖2

leading to

‖h∇v‖2 � ‖P̃v‖2 + ‖v‖2. (2.11)

Now, we turn to the proof of the estimate. We have

‖(P̃ + i Q̃)v‖2 = ‖P̃v‖2 + ‖Q̃v‖2 + i(Q̃v|P̃v)− i(P̃v|Q̃v)
3 The absence of the h2 term is due to the use of the Weyl quantization.
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and the magnetic Green formula (2.4) (used in the straightforward case with no potential
P̃ = h2L0,−(∇ϕ̃)2/h2 ), together with the fact that v|∂� = 0, gives

(Q̃v|P̃v) = (P̃ Q̃v|v)− h2(Q̃v|∂νv)∂�
= (P̃ Q̃v|v) + 2ih3(∂νϕ̃ ∂νv|∂νv)∂�

and similarly, since Q̃ is first order, we get

(P̃v, Q̃v) = (Q̃ P̃v, v).

Therefore we have

‖(P̃ + i Q̃)v‖2 = ‖P̃v‖2 + ‖Q̃v‖2 + i([P̃, Q̃]v|v)
− 2h3(∂νv|∂νϕ̃ ∂νv)∂�,

and using (2.10), we get

‖(P̃ + i Q̃)v‖2 + 2h3(∂νv|∂νϕ̃ ∂νv)∂� ≥ ‖P̃v‖2 + ‖Q̃v‖2 +
C1h2

ε
‖v‖2

− (Ch‖P̃v‖ ‖v‖ + Ch‖Q̃v‖ ‖h∇v‖)︸ ︷︷ ︸
≤ 1

2 ‖P̃v‖2+ 1
2 ‖Q̃v‖2+

C2
2 h2

2

(
‖v‖2+‖h∇v‖2

)
,

which combined with (2.11), gives when ε is small enough

‖(P̃ + i Q̃)v‖2 + 2h3(∂νv|∂νϕ̃ ∂νv)∂�
� (1 − O(ε−1h2)‖P̃v‖2 + ‖Q̃v‖2 +

h2

ε

(‖v‖2 + ‖h∇v‖2).

Thus, taking h and ε small enough

‖(P̃ + i Q̃)v‖2 + 2h3(∂νv|∂νϕ̃ ∂νv)∂� � h2

ε

(‖v‖2 + ‖h∇v‖2). (2.12)

The last part4 of the proof is concerned with the additional term R̃v due to the
magnetic potential; from the former inequality we deduce

‖(P̃ + i Q̃ + R̃)v‖2 + h3(∂νv|∂νϕ̃ ∂νv)∂�
� h2

ε

(‖v‖2 + ‖h∇v‖2 − O(ε)‖h−1 R̃v‖2)

and using the fact that ‖h−1 R̃v‖2 � ‖v‖2 + ‖h∇v‖2, we obtain

‖(P̃ + i Q̃ + R̃)v‖2 + h3(∂νv|∂νϕ̃ ∂νv)∂� � h2

ε

(‖v‖2 + ‖h∇v‖2)

4 This is the main difference with respect to the proof of the Carleman estimate in [7].
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if ε is chosen small enough. Finally, with v = e
ϕ2

2ε e
ϕ
h u, we get

‖e
ϕ2

2ε e
ϕ
h u‖2 + ‖h∇e

ϕ2

2ε e
ϕ
h u‖2 � 1

h2 ‖e
ϕ2

2ε e
ϕ
h h2LA,qu‖2

+ h
(
e
ϕ2

ε ∂ν(e
ϕ
h u)|∂νϕ̃ ∂ν(e ϕh u)

)
∂�
,

this gives the Carleman estimate (2.6) since

1 ≤ eϕ
2/2ε ≤ C,

1

2
≤ ∂νϕ̃

∂νϕ
= 1 +

h

ε
ϕ ≤ 3

2

on �̄ for all h small enough. ��
We denote by H1

scl(�) the semi-classical Sobolev space of order 1 on � with asso-
ciated norm

‖u‖2
H1

scl(�)
= ‖h∇u‖2 + ‖u‖2

and by Hs
scl(R

n) the semi-classical Sobolev space on Rn with associated norm

‖u‖2
Hs

scl(R
n) = ‖〈h D〉su‖2

L2(Rn)
=

∫
(1 + h2ξ2)s |û(ξ)|2 dξ.

Changing ϕ into −ϕ, we may rewrite the Carleman estimate in the following conve-
nient way:

√
h‖√∂νϕ e− ϕ

h ∂νu‖L2(∂�+)
+ ‖e− ϕ

h u‖H1
scl(�)

� h‖e− ϕ
h LA,qu‖ +

√
h‖√−∂νϕ e− ϕ

h ∂νu‖L2(∂�−). (2.13)

By regularization, this estimate is still valid for u ∈ H2(�)∩H1
0 (�). A similar Carleman

estimate gives the following solvability result:

Proposition 2.4. Let ϕ be a limiting Carleman weight on �̃, let A be a C1 vector field on
�̄ and q ∈ L∞(�). There exists h0 such that for all 0 ≤ h ≤ h0 and for allw ∈ L2(�),
there exists u ∈ H1(�) such that

h2LA,q(e
ϕ
h u) = e

ϕ
h w and h‖u‖H1

scl(�)
� ‖w‖.

Proof. We need the following Carleman estimate:

‖v‖ � h‖e− ϕ
h LA,qe

ϕ
h v‖H−1

scl (R
n)
, ∀v ∈ C∞

0 (�). (2.14)

Let � � �̂ ⊂ �̃, assume that we have extended A to a C1 vector field on �̂ and q to a
L∞ function on �̂. Let χ ∈ C∞

0 (�̂) equal 1 on �. With the notations used in the proof
of Proposition 2.3 we have

〈h D〉−1(P̃ + i Q̃)〈h D〉 = P̃ + i Q̃ + h R1,
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where R1 is a semi-classical pseudo-differential operator of order 1, therefore from
estimate (2.12) we deduce

‖(P̃ + i Q̃)〈h D〉v‖2
H−1

scl (R
n)

� h2

ε
(‖v‖2

H1
scl(R

n)
− O(ε)‖R1v‖2)

� h2

ε
‖v‖2

H1
scl(R

n)

for any v ∈ C∞
0 (�̂), if h and ε are small enough. Besides, we have

‖(R̃ + h2(q + A2))v‖H−1
scl (R

n)
� h‖v‖,

therefore if ε is small enough, we have

‖〈h D〉v‖ � h‖e− ϕ̃
h LA,qe

ϕ̃
h 〈h D〉v‖H−1

scl (R
n)

for any v ∈ C∞
0 (�̂). Hence if u ∈ C∞

0 (�), taking v = χ〈h D〉−1u ∈ C∞(�̂) in the
former estimate, and using the fact that

‖(1 − χ)〈h D〉−1u‖Hs
scl

= O(h∞)‖u‖
we obtain

‖u‖ � h‖e− ϕ̃
h LA,qe

ϕ̃
h u‖H−1

scl (R
n)
, ∀u ∈ C∞

0 (�).

This gives the Carleman estimate (2.14) since eϕ̃/h = eϕ
2/εeϕ/h . Classical arguments

involving the Hahn-Banach theorem give the solvability result. ��

3. Construction of Solutions by Complex Geometrical Optics

The goal of this section is to construct solutions of the magnetic Schrödinger equation
of the form (2.1). To do so we take ψ to be a solution of the eikonal equation

p(x,∇ψ(x)) + iq(x,∇ψ(x)) = 0;
such solutions exist since {p, q} = 0 when p = q = 0. More precisely, the eikonal
equation reads

(∇ψ)2 = (∇ϕ)2, ∇ϕ · ∇ψ = 0. (3.1)

In fact, in the remainder of this article, we fix the limiting Carleman weight to be

ϕ(x) = 1

2
log(x − x0)

2. (3.2)

For such a choice of ϕ, the second part of the eikonal equation is merely the fact that
ψ is a function of the angular variable (x − x0)/|x − x0| and we can actually give an
explicit solution of the eikonal equation

ψ(x) = π

2
− arctan

ω · (x − x0)√
(x − x0)2 − (ω · (x − x0))2

= dSn−1

( x − x0

|x − x0| , ω
)
, (3.3)
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where ω ∈ Sn−1. Let us be more precise about the set where ω may vary, keeping in
mind that we want this function to be smooth — in particular, we have to ensure that
ω �= (x − x0)/|x − x0| whenever x ∈ �̄.

For that purpose, let r0 > 0 be large enough so that �̄ ⊂ B(x0, r0), let H denote
a hyperplane separating x0 and ch(�), and H+ the open half space containing �̄ (and
therefore x0 /∈ H+), we set

� = {θ ∈ Sn−1 : x0 + r0θ ∈ H+}

and �̌ the image of � under the antipodal application. Let ω0 ∈ Sn−1\ (�∪ �̌) and �0 be
a neighborhood ofω0 in Sn−1\ (�∪�̌), then the distance�×�0 	 (θ, ω) → dSn−1(θ, ω)

is a C∞ function. Moreover, �̄ ⊂ �̃ = x0 + R+�, hence we have (x − x0)/|x − x0| ∈ �
for all x in the open neighborhood �̃ of �̄, thus ψ depends smoothly on the variables
(x, ω) on �̃× �0.

Remark 3.1. Suppose that x0 = 0 and ω = (1, 0, . . . , 0), which we can always assume
by doing a translation and a rotation. Notice that by considering the complex variable
z = x1 + i |x ′| ∈ C (with x = (x1, x ′) ∈ R × Rn−1), we have

ϕ = log |z| = Re log z, ψ = π

2
− arctan

Re z

Im z
= Im log z

when Im z > 0 (note thatψ = arctan(Im z/Re z) on the first quadrant Re z > 0, Im z >
0) hence ϕ + iψ = log z.

With such ϕ and ψ , we have

h2LA,qe
1
h (ϕ+iψ) = e

1
h (ϕ+iψ)(h(D + A) · (∇ψ − i∇ϕ)

+ h(∇ψ − i∇ϕ) · (D + A) + h2LA,q
)
,

thus we will have

h2LA,q
(
e

1
h (ϕ+iψ)a

) = O(h2)e
1
h (ϕ+iψ)

if a is a C2 solution of the first transport equation, given by

(
(D + A) · (∇ψ − i∇ϕ) + (∇ψ − i∇ϕ) · (D + A)

)
a = 0.

We write the latter as a vector field equation

(∇ψ − i∇ϕ) · Da + (∇ψ − i∇ϕ) · Aa +
1

2i
(
ψ − i
ϕ)a = 0. (3.4)

We seek a under exponential form a = e�, which means finding � solution of

(∇ϕ + i∇ψ) · ∇� + i(∇ϕ + i∇ψ) · A +
1

2

(ϕ + iψ) = 0 (3.5)

on �. The function � has C2 regularity since the magnetic potential A is C2.
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Remark 3.2. Considering the complex variable z = x1 + i |x ′| as in Remark 3.1 with
ϕ+ iψ = log z, we may seek� as a solution of the following Cauchy-Riemann equation
in the z variable:

∂�

∂ z̄
− (n − 2)

2(z − z̄)
+

1

2
A · (e1 + ier ) = 0,

where er = (0, θ) is the unit vector pointing in the direction of the r -axis. Indeed, if we
denote by (x1, r, θ) ∈ R × R+ × Sn−2 a choice of cylindrical coordinates on Rn and
z = x1 + ir , we have

∇(ϕ + iψ) · ∇ = ∂ log z

∂x1

∂

∂x1
+
∂ log z

∂r

∂

∂r
= 2

z

∂

∂ z̄

and 
(ϕ + iψ) =
( ∂2

∂x2
1

+
∂2

∂r2 +
(n − 2)

r

∂

∂r
+

1

r2
Sn−2

)
(ϕ + iψ)

= n − 2

r

∂

∂r
log z = (n − 2)i

r z
.

Remark 3.3. Note that the set of solutions of (3.4) is invariant under the multiplication
by a function g satisfying

(∇ϕ + i∇ψ) · ∇g = 0.

In the setting of Remark 3.1, this condition reads

∂g

∂ z̄
= 0

on �, i.e. g is a holomorphic function of z = x1 + i |x ′|.
Having chosen the phase ϕ + iψ and the amplitude e�, we obtain an approximate

solution of the magnetic Schrödinger equation

h2LA,q(e
1
h (ϕ+iψ)e�) = e

1
h (ϕ+iψ)h2LA,qe� = O(h2)e

ϕ
h

(recall that � is C2) which we can transform into an exact solution thanks to Proposi-
tion 2.4; there exists r(x, h) ∈ H1(�) such that

h2e
1
h (ϕ+iψ)LA,qr(x, h) = −e

1
h (ϕ+iψ)hLA,qe�

and ‖r‖H1
scl(�)

� ‖LA,qe�‖.
We sum up the result of this section in the following lemma.

Lemma 3.4. Let x0 ∈ Rn\ch�, there exists h0 > 0 and r such that ‖r‖H1
scl(�)

= O(1)
and

u(x, h) = e
1
h (ϕ+iψ)(e�(x) + hr(x, h))

is a solution of the equation LA,qu = 0, when h ≤ h0, and ϕ is the limiting Carleman
weight (3.2), ψ is given by (3.3) and � is a solution of the Cauchy-Riemann equation
(3.5).

Note that with ϕ as in (3.2) the parts of the boundary ∂�± delimited by the sign of
∂νϕ correspond to the front and back sides of the boundary

∂�− = F(x0), ∂�+ = B(x0).
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4. Towards Recovering the Magnetic Field

Let x0 ∈ Rn\�, suppose that the assumptions of Theorem 1.1 are fulfilled and consider

Fε = {x ∈ ∂� : (x − x0) · ν(x) < ε|x − x0|2} ⊃ F(x0)

with ε > 0 small enough so that Fε ⊂ F̃ , therefore satisfying

NA1,q1 f (x) = NA2,q2 f (x), ∀x ∈ Fε, ∀ f ∈ H
1
2 (∂�). (4.1)

We may assume without loss of generality that the normal components of A1 and A2
are equal on the boundary

A1 · ν = A2 · ν on ∂� (4.2)

since we can do a gauge transformation in the magnetic potential

NA,q = NA+∇�,q

(see (1.3) in the introduction) with � ∈ C3(�̄) such that �|∂� = 0 and ∂ν� is a pre-
scribed C2 function on the boundary 5 . We extend A1 and A2 as C2 compactly supported6

functions in Rn .
We consider two geometrical optics solutions

u j (x, h) = e
1
h (ϕ j +iψ j )(e� j + hr j (x, h))

of the equations LA1,q̄1 u1 = 0 and LA2,q2 u2 = 0 constructed in the former section with
phases

ϕ2(x) = −ϕ1(x) = ϕ(x) = log |x − x0|,
ψ2(x) = ψ1(x) = ψ(x) = dSn−1

( x − x0

|x − x0| , ω
)
,

(4.3)

defined on a neighborhood �̃ of � (and ω varies in �0), and where �1 and �2 are
solutions of the equations

(∇ϕ − i∇ψ) · ∇�1 + i(∇ϕ − i∇ψ) · A1 +
1

2

(ϕ − iψ) = 0,

(∇ϕ + i∇ψ) · ∇�2 + i(∇ϕ + i∇ψ) · A2 +
1

2

(ϕ + iψ) = 0.

(4.4)

The remainders r j are bounded independently of h in H1
scl. Note that it implies the

following estimate on u j :

‖e− ϕ j
h u j‖H1

scl
= O(1). (4.5)

By w we denote the solution to the equation

LA1,q1w = 0, w|∂� = u2|∂�
5 After the use of a partition of unity and a transfer to {x1 ≥ 0}, this is Theorem 1.3.3. in [6].
6 Note that A1 and A2 do not necessarily agree on ∂�.
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so that NA1,q1(u2|∂�) = (∂νw)|∂� + i A1 · ν u2|∂�. The assumption (4.1) means that

∂ν(w − u2)(x) = 0, ∀x ∈ Fε

(here we use the fact (4.2) that the normal components of the magnetic potentials coincide
on the boundary). Besides, we have

LA1,q1(w − u2) = −LA1,q1 u2 = (LA2,q2 − LA1,q1)u2

= (A2 − A1) · Du2 + D · (A2 − A1)u2

+ (A2
2 − A2

1 + q2 − q1)u2, (4.6)

hence we deduce
(LA1,q1(w − u2)|u1

)

= (
(A2 − A1) · Du2|u1

)
+

(
u2|(A2 − A1) · Du1

)

+
1

i

(
(A2 − A1) · ν u2|u1

)
∂�︸ ︷︷ ︸

=0

+
(
(A2

2 − A2
1 + q2 − q1)u2|u1

)
. (4.7)

The magnetic Green’s formula gives

(LA1,q1(w − u2)|u1)

= (w − u2|LA1,q̄1 u1)︸ ︷︷ ︸
=0

−(
(∂ν + i A1 · ν)(w − u2)|u1)∂�

= −(∂ν(w − u2)|u1)∂�\Fε , (4.8)

and combining (4.7) and (4.8), we finally obtain
∫

∂�\Fε
∂ν(u2 − w) ū1 dσ(x) =

∫

�

(A2
2 − A2

1 + q2 − q1)u2 ū1 dx

+
∫

�

(A2 − A1) · (Du2 ū1 + u2 Du1) dx . (4.9)

With our choice of ϕ2 = ϕ = log |x − x0|, we have

Fε ⊃ F(x0) = ∂�− thus ∂�\Fε ⊂ ∂�+,

and moreover ∂νϕ > ε on ∂�\Fε, therefore the modulus of the left-hand side in (4.9)
is bounded by

1√
ε
‖√∂νϕ e− ϕ

h ∂ν(u2 − w)‖∂�+ × ‖e�1 + hr1‖∂�+︸ ︷︷ ︸
≤‖e�1‖∂�+‖r1‖H1

scl

which, by virtue of the Carleman estimate (2.13), is bounded by a constant times

1√
ε

(√
h‖e− ϕ

h LA1,q1(u2 − w)‖ + ‖√−∂νϕ e− ϕ
h ∂ν(u2 − w)‖∂�−︸ ︷︷ ︸

=0 because of (4.1)

)
.



Determining a Magnetic Schrödinger Operator 481

In view of (4.6) and of (4.5) the former expression is O(h− 1
2 ). Therefore we can conclude

that the right-hand side of (4.9) is O(h− 1
2 ). This constitutes an important difference with

[7], where7 the corresponding term was O(h).
More directly, the first and second right-hand side terms of (4.9) are respectively O(1)

and O(h−1) as may be seen from (4.5). It turns out that the information obtained when
disregarding the bounded term is enough to recover the magnetic field. We multiply (4.9)
by h and let h tend to 0:

lim
h→0

∫

�

(
(A2 − A1) · h Du2 ū1 + u2 (A2 − A1) · h Du1

)
dx = 0.

Using the explicit form of the solutions u1 and u2, this further means

∫

�

(A2 − A1) · (∇ϕ + i∇ψ)e�̄1+�2 dx = 0. (4.10)

Adding the complex conjugate of the first line of (4.4) to the second line, we see that

(∇ϕ + i∇ψ) · (∇�̄1 + ∇�2 + i(A2 − A1)
)

+
(ϕ + iψ) = 0;

this implies that

(D + A2 − A1) · (∇ϕ + i∇ψ)(e�̄1+�2) = 0. (4.11)

As observed in Remark 3.3, in the expression for u2, we may replace e�2 by e�2 g if
g is a solution of (∇ϕ + i∇ψ) · ∇g = 0. Then (4.10) can be replaced by

∫

�

(A2 − A1) · (∇ϕ + i∇ψ)e�̄1+�2 g dx = 0.

From equation (4.11), we see that we can replace A2 − A1 by i∇ in the former equality

∫

�

g(x)∇ · (
e�̄1+�2(∇ϕ + i∇ψ)) dx = 0 (4.12)

for all functions g such that (∇ϕ + i∇ψ) · ∇g = 0 on �.

Remark 4.1. An integration by parts gives

∫

∂�

(∂νϕ + i∂νψ)e
�̄1+�2 g dσ −

∫

�

e�̄1+�2 (∇ϕ + i∇ψ) · ∇g︸ ︷︷ ︸
=0

dx = 0

hence we have
∫
∂�
(∂νϕ + i∂νψ)e�̄1+�2 g dσ = 0.

7 See (5.16) and the subsequent lines in [7].
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5. Moving to the Complex Plane

In this section, we follow Remark 3.1 and choose to work in the cylindrical coordi-
nates. Let us be more precise: suppose that x0 = 0 /∈ ch(�) and that we have picked
ω ∈ Sn−1\(� ∪ �̌) with the notations of Sect. 3. After a rotation, we assume that
ω = (1, 0, . . . , 0), therefore we have

� � �̃ ⊂ {x ∈ Rn : x ′ �= 0}.

We choose the following cylindrical coordinates:

t = x1, r = |x ′| > 0, θ = �(x) = x ′

|x ′| ∈ Sn−2.

By Sard’s theorem, the set of critical values of� : � 
→ Sn−2 is of measure 0, therefore
the set �θ0 = �−1(θ0) = {x ∈ � : x ′ = rθ0, r > 0} is an open set with smooth
boundary for almost every θ0 in �(�). The result obtained in the former section reads

∫

Sn−2

∫∫

�θ

g(x)∇x · (
e�̄1+�2(∇xϕ + i∇xψ)

)
rn−2drdt dθ = 0,

and taking g = g1(t, r)⊗ g2(θ) and varying g2 leads to

∫∫

�θ

g(t, r)∇x · (
e�̄1+�2(∇xϕ + i∇xψ)

)
rn−2drdt = 0 (5.1)

for any function g such that (∇xϕ + i∇xψ) ·∇x g = 0 on�θ , and this for almost every θ .
Now we consider the complex variable z = t + ir ∈ C+ = {w ∈ C : Imw > 0}

and write our results in this setting. Let us recall the results of the computations made
in Remarks 3.1 and 3.2:

∇x (ϕ + iψ) · ∇x = 2

z

∂

∂ z̄
and 
x (ϕ + iψ) = (n − 2)i

r z
(5.2)

and thus ∇x · ∇x ◦ (ϕ + iψ) = 2

z

∂

∂ z̄
+
(n − 2)i

r z
.

Similarly, the functions � j satisfy

∂

∂ z̄
(�̄1 +�2) = (n − 2)

(z − z̄)
+

1

2
(A1 − A2) · (e1 + ier ). (5.3)

Finally, (5.1) reads

∫∫

�θ

g(z)
1

z

( ∂
∂ z̄

− (n − 2)

(z − z̄)

)
(e�̄1+�2)(z − z̄)n−2 dz̄ ∧ dz = 0, (5.4)

for any g ∈ H(�θ ). Replacing the holomorphic function g/z on �θ by g, we can drop
the factor 1/z.
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If g is a holomorphic function, we have8

d
(
e�̄1+�2 g(z)(z − z̄)n−2dz

)

= ∂

∂ z̄

(
(z − z̄)n−2e�̄1+�2

)
g(z)dz̄ ∧ dz

=
(
∂

∂ z̄
− n − 2

z − z̄

) (
e�̄1+�2

)
g(z)(z − z̄)n−2dz̄ ∧ dz,

therefore the Stokes’ formula implies

∫∫

�θ

g(z)
( ∂
∂ z̄

− (n − 2)

(z − z̄)

)
(e�̄1+�2)(z − z̄)n−2 dz̄ ∧ dz

=
∫

∂�θ

g(z)e�̄1+�2(z − z̄)n−2 dz.

Together with (5.4) this gives
∫

∂�θ

g(z)e�̄1+�2(z − z̄)n−2 dz = 0 (5.5)

for any g ∈ H(�θ ).
Lemma 5.1. There exists a non-vanishing holomorphic function F on �θ , continuous
on �̄θ , whose restriction to ∂�θ is equal to (z − z̄)n−2e�̄1+�2 .

Proof. We denote f (z) = (z − z̄)n−2e�̄1+�2 and consider the Cauchy integral operator

C( f )(z) = 1

2π i

∫

∂�θ

f (ζ )

ζ − z
dζ, ∀z ∈ C\∂�θ .

The function C( f ) is holomorphic inside and outside �θ and the Plemelj-Sokhotski-
Privalov formula reads on the boundary

lim
z→z0
z∈�θ

C( f )(z)− lim
z→z0
z /∈�θ

C( f )(z) = f (z0), ∀z0 ∈ ∂�θ . (5.6)

The function ζ → (ζ − z)−1 is holomorphic on �θ when z /∈ �θ hence (5.5) implies
that C( f )(z) = 0 when z /∈ �θ . The second limit in (5.6) is 0, thus F = C( f ) is a
holomorphic function on �θ whose restriction to the boundary agrees with f .

It remains to prove that F does not vanish on �θ . This is clear by the argument
principle since

vararg
∂�θ

F = vararg
∂�θ

f = 0

and F is holomorphic. ��
8 The result of this computation is the transcription of the fact that the formal adjoint of (∇ϕ + i∇ψ) · ∇

is ∇ · (∇ϕ + i∇ψ) in the complex setting, where the measure is rn−2dz̄ ∧ dz.
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In particular, with the former function, we have on the boundary

(z − z̄)n−2e�̄1+�2 = F(z, θ), ∀z ∈ ∂�θ .
We want to prove that F admits a holomorphic logarithm9; to do so, we consider the
one form on �

α = d F

F

(recall that F is non-vanishing on �) which is closed. Since � is simply connected, α
has a primitive α = da, which defines a logarithm of F . The equation F = ea implies
that a is holomorphic with respect to z, hence one can define a holomorphic logarithm
of F . This implies

�̄1 +�2 + log(z − z̄)n−2 = log F(z), ∀z ∈ ∂�θ
with log F a holomorphic function on �θ , and therefore

∫

∂�θ

g(z)
(
�̄1 +�2 + log(z − z̄)n−2

)
dz = 0.

An application of Stokes’ formula gives
∫∫

�θ

g(z)
( ∂
∂ z̄
(�̄1 +�2)− n − 2

z − z̄

)
dz̄ ∧ dz = 0,

hence using equation (5.3), this implies
∫∫

�θ

g(z)(A1 − A2) · (e1 + ier ) dz̄ ∧ dz = 0. (5.7)

With g = 1, the former equality reads
∫∫

�θ

(t + ir)(∇xϕ + i∇xψ) · (A1 − A2) dt dr = 0.

Denote by Pθ = span(ω, er ) the plane along the axis directed by ω = (1, 0, . . . , 0),
and by P+

θ the half plane where x · er > 0, then �θ = � ∩ {x = (x1, x ′) ∈ Rn : x ′ =
rθ, r > 0} = �∩ P+

θ . Let πθ be the projection on Pθ and dλθ the measure on the plane,
then (5.7) (with g = 1) implies

∫

Pθ∩�
πθ (A1 − A2) dλθ = 0,

for almost every θ ∈ Sn−2, hence for all θ ∈ Sn−2 by continuity. The former may be
rephrased under the form

∫

x0+P
ξ · (

1�(A1 − A2)
)

dλP = 0, ∀ξ ∈ P

for all linear planes P containing ω = (1, 0, . . . , 0). We can also let x0 vary in a small
neighborhood of 0 /∈ ch(�) and ω vary in a neighborhood �0 of (1, 0, . . . , 0) on the
sphere Sn−1.

9 This is obvious when �θ is simply connected, which is the case if � is for instance convex.
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Lemma 5.2. Let A be a C1 vector field on �̄. If
∫

P∩�
ξ · A dλP = 0, ∀ξ ∈ Tx (P) (5.8)

for all planes P such that d((0, e1), T (P)) < δ then d A = 0 on �.

The proof of this lemma is based on the following microlocal version of Helgason’s
support theorem.

Theorem 5.3. Let f ∈ C0(Rn), suppose that the Radon transform of f satisfies

R f (H) =
∫

H
f dλH = 0

for all hyperplanes H in some neighbourhood of a hyperplane H0, then

N∗(H0) ∩ WFa( f ) = ∅,

where N∗(H0) denotes the conormal bundle of H0.

The proof of this result may be found in [2] (see Proposition 1) or in [5] (see Sect. 6).
We will also need the microlocal version of Holmgren’s theorem (see [5], Sect. 1 or [6]
Sect. 8.5).

Theorem 5.4. Let f ∈ E ′(Rn) then we have

N (supp f ) ⊂ WFa( f ),

where N (supp f ) is the normal set of the support of f .

These two results may be combined to provide a proof of Helgason’s support theorem
(see [2] and [5]). We also refer to the book [4] for a review on Radon transforms.

Proof of Lemma 5.2. Let χ ∈ C∞
0 (|x | < 1

2 ) and χε = ε−nχ(·/ε) be a standard regular-
ization, one has

∫

P
ξ · (χε ∗ 1�A) dλP = ε−n

∫
χ

( y

ε

)(∫

(−y+P)∩�
ξ · A dλ−y+P

)
dy = 0

when d((0, e1), T (P)) < δ − ε. Therefore it suffices to prove the result when � = Rn

and A ∈ C∞
0 (R

n; Rn) since d(χε ∗1�A) tends to d A as a distribution when ε tends to 0.
Our first step is to prove that

ι∗H d A = 0 (5.9)

for any subspace H ⊂ Rn of dimension 3 such that d((0, e1), T (H)) < δ. Here ιH
denotes the injection of H in Rn . For any plane P ⊂ H such that d((0, e1), T (P)) < δ,
we have

∫

P
〈d A, ξ ∧ η〉 dλP = d

dt

(∫

tξ+P
η · A dλP −

∫

tη+P
ξ · A dλP

)

t=0
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when ξ, η ∈ Tx (H). The space H is of dimension 3 so we can assume that either η or
ξ belongs to Tx (P), thus the former expression is zero because of (5.8) and of the fact
that whenever η ∈ Tx (P)

∫

tη+P
ξ · A dλP is constant.

Therefore, if RH denotes the Radon transform in H , we obtain

RH
(〈ι∗H d A, ξ ∧ η〉)(P) = 0

for any plane P ⊂ H such that d((0, e1), T (P)) < δ and for any ξ, η ∈ Tx (H).
Combining Theorems 5.3 and 5.4 we obtain

N∗(P) ∩ N (supp〈ι∗H d A, ξ ∧ η〉) = ∅

for any plane P ⊂ H such that d((0, e1), T (P)) < δ. This gives (5.9) since such a family
of planes sweeps other�∩H and the support of A is on one side of at least one such plane.

The result (5.9) implies in particular that

〈d A(x), ξ ∧ η〉 = 0, ∀x ∈ Rn,∀(ξ, η) ∈ Sn × Rn, |ξ − e1| < δ,

and therefore d A = 0 by linearity. ��

6. Recovering the Potential

End of the proof of Theorem 1.1. Applying this lemma, we finally obtain

d A1 = d A2 on �,

therefore the difference of the two potentials is a gradient A1 − A2 = ∇� (recall that
� is simply connected). The identity (5.7) now reads

∫∫

�θ

g(z)∂z̄�(z, θ) dz̄ ∧ dz = 0

for any holomorphic function g on �θ and by Stokes’ theorem we get
∫

∂�θ

g(z)�(z, θ) dz = 0.

Reasoning as in the beginning of Lemma 5.1, there exists a holomorphic function �̃ ∈
H(�θ ) such that �̃|∂�θ = �|∂�θ . Now � is real-valued, and since �̃ is real-valued
on ∂�θ and harmonic, it is real-valued everywhere. The only real-valued holomorphic
functions are the constant ones, so �̃ and hence � is constant on ∂�θ . Varying x0 and
ω, we get that � is constant on the boundary ∂�.

Indeed, the fact that� is constant on ∂�θ means that X ·� = 0 when X is a tangent
vector field to ∂�θ , hence it suffices to show that when varying x0 and ω, one generates
enough directions to span the tangent space to ∂� at a given point a ∈ ∂�. Note that the
plane Pθ belonging to the family of rotating planes passing through a ∈ ∂� is spanned
by the vectors ω and er = πω(a − x0)/|πω(a − x0)|, where πω is the orthogonal projec-
tion onto the spaceω⊥. A variation of x0 in a small neighborhood of 0 induces a variation
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of er in a neighborhood of πω(a)/|πω(a)|. If one picks ω to be outside the tangent space
Ta(∂�), then the intersection of Ta(∂�) with the union of planes generated by ω and
er when er varies in a neighborhood of πω(a)/|πω(a)|, contains enough independent
vectors to span Ta(∂�). Therefore � is constant on ∂�, and we may as well assume
that � = 0 on ∂�.

By a gauge transformation, we may assume that � = 0, thus A1 = A2. We could
almost directly apply the result in [7] to recover the identity of the two potentials q1 = q2,
if it were not for the presence of the two magnetic potentials in the equations. Instead
we go back to the limit induced by (4.9). The second right-hand side term is now zero.
The left-hand side is now O(√h) since the O(h−1) term in (4.6) is zero and we can
reproduce the arguments given after (4.9). Therefore we obtain

lim
h→0

∫

�

(q2 − q1)u2ū1 dx = 0, (6.1)

thus
∫

�

(q2 − q1)e
�̄1+�2 dx = 0.

As observed in Remark 3.3, we may replace e�2 by e�2 g if g is a solution of (∇ϕ +
i∇ψ) · ∇g = 0. Then the former can be replaced by

∫

�

(q2 − q1)e
�̄1+�2 g(x) dx = 0.

Moving to the complex plane, as in Sect. 5, this reads
∫

�

(q2 − q1)g(z)e
�̄1+�2(z − z̄)n−2 dz̄ ∧ dz ∧ dθ = 0

for any holomorphic function g on �θ . But the transport equation (5.3) now reads

∂

∂ z̄

(
(z − z̄)n−2e�̄1+�2

) = 0,

therefore if we take g = (z − z̄)−n+2e−�̄1−�2 , and write q = 1�(q1 − q2), we obtain
∫

R2×Sn−1
q(t, r, θ)g(θ) dt dr dθ = 0 (6.2)

for any (say smooth) function g(θ). Varying x0 slightly, this remains true for the translated
functions q(· − y), when y is small, hence for regularisations of q,

χε ∗ q = ε−n
∫
χ

( y

ε

)
q(x − y) dy,

therefore it suffices to assume that q is smooth. When q is smooth, varying g, (6.2)
implies

∫

R2
q(t, r, θ) dt dr = 0 (6.3)

for all θ ∈ Sn−2.
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As in Sect. 5, varying x0 and ω, (6.3) may be interpreted as
∫

P
q dλP = 0

for any plane P such that d((0, e1), T (P)) < δ. This implies that for any subspace H
of dimension 3 such that d((0, e1), T (H)) < δ we have

RH q(P) =
∫

P
q dλP = 0

for any plane such that d((0, e1), T (P)) < δ. Applying Theorems 5.3 and 5.4 as in the
proof of Lemma 5.2, we get

N∗(P) ∩ N (supp q|H ) = ∅,

and therefore q = 0 on H leading to q = 0. This ends the proof of Theorem 1.1. ��
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