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Abstract: We prove shuffle relations which relate a product of regularised integrals of

classical symbols ["“® 0; d&;,i =1, ..., k to regularised nested iterated integrals:
k reg reg
H/ o;jd§ = Z/ dél/ dfz"'/ dee @, 023y,
P = &l<lél 621<I6k 1

where X is the group of permutations over k elements. We show that these shuffle
relations hold if all the symbols o; have vanishing residue; this is true of non-integer
order symbols on which the regularised integrals have all the expected properties such
as Stokes’ property [MMP]. In general the shuffle relations hold up to finite parts of cor-
rective terms arising from a renormalisation on tensor products of classical symbols, a
procedure adapted from renormalisation methods to compute Feynman diagrams famil-
iar to physicists. We relate the shuffle relations for regularised integrals of symbols with
shuffle relations for multiple zeta functions adapting the above constructions to the case
of a symbol on the unit circle.
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1. Introduction

Before describing the contents of the paper, let us give some general motivation. Starting
froma function f : N — C, one can build functions P(f) : N — Cand P(f) : N — C:

P(Him)y= > fm), P(Himy= D fm).

n>m>0 n>m=>0

The operators P and P obey Rota-Baxter relations and define Rota-Baxter type operators
of weight —1 and 1 respectively:

P(f)P(g) =P (f P(g)+P(gP(f)+P(fQ)

and
PN P@) =P (1P@)+P(sPN)—P(fe.

When applied to f(n) =n"%', g(n) = n~*2, these relations lead to the “second shuffle
relations” for zeta functions [ENR]:

$(z1) £(z2) = ¢(21, 22) +&(22, 21) + & (21 + 22),
where £(z) = >, on *and £(z1,22) = 2, o, 11 My . Similarly,
£(21) $(z2) = £ (21, 22) + ¢ (22, 21) — £ (21 +22),

where Z (21, 22) = D i ny'ny
Correspondingly, starting from f € L' (R, C), one can build P(f) : R — C:

P(f)(y) = fx)dx.

Then the classical Rota-Baxter relation (of weight zero)

P(f)P(g) = P(f P(g)+P(gP(f)
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is an integration by parts in disguise. It leads to to shuffle relations for integrals:

/ fi= Z/ (- P(frw) fra—ny-+*) fr@) fry V=2

TEX)

under adequate integrability assumptions on the functions f;.
Zeta functions generalize to zeta functions associated to elliptic classical pseudo-
differential operators on a closed manifold M defined by

@=L n

AneSpec(A),r, #0

modulo some extra under assumptions on the leading symbol of the operator A to ensure
the existence of its complex power A7<. If 04(z) denotes the symbol of this complex
power then provided the order of A is positive, for Re(z) large enough, ¢4 is actually an
integral of the symbol on the cotangent bundle 7* M

ta(e) = / dx / it (04 () (x, £) &
M T*M

with d§ := (271),, ,
the whole plane replacing the ordinary integral by a cut-off integral JCT* M-

The main purpose of this paper is to establish shuffle relations for cut-off integrals
of classical symbols o; € CS% (U;) (see notations in the Preliminaries):

n being the dimension of M. It extends to a meromorphic function on

k

H]lffi = z ]l P (- P(P(0or(k) Ork—1)) -+ - 0(2)) Oc(1)y Yk >2

i=1 TEL)

and other regularised integrals built from cut-off integrals. We give sufficient assump-
tions on the symbols for such shuffle relations to hold, conditions which we shall specify
below, once we have introduced the necessary technical tools. It turns out that on the
class of non-integer order classical symbols, on which these regularised integrals have
the expected properties such as Stokes’ property, translation invariance...(see [MMP]),
these shuffle relations hold. Otherwise a renormalisation procedure is needed to take
care of obstructions to these shuffle relations.

In order to make this statement precise, we first need to extend cut-off and other
regularised integrals on classical symbols to cut-off and other regularised iterated inte-
grals on tensor products of classical symbols; they are all continuous linear forms on
spaces of symbols which naturally extend to continuous linear forms on the (closed)
tensor product. The Wodzicki residue, which is also continuous on classical symbols
of fixed order, extends in a similar way to a higher order residue density res, j at point
x = (x1,...,xx) € U= U x--- x Ui on the tensor product ®f~‘:1CS(U,-) and the
well-known relation expressing the ordinary residue density resy := res, o as a complex
residue:

ResZ:()][ 0 (2)(x,£)dE = ———res, (0(0)) Yo € CS(U)
T*U ’(0)

X

extends to ®f.‘=1CS (U;). Here o (z) is a holomorphic family of classical symbols with
order «(z) such that o’ (0) # 0.
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Indeed, the map z +— JCTf‘U o(2)(x,&)dE witho € ®£‘:1CS""' (U;) is meromorphic
with poles of order no larger than k and we have (see Theorem 2)

Dt -
Resﬁzo][ 0@)(x.§)dE = — 1, 4 (0(0) Yo €&, CSW), (1)
T U [Tiz; @/ (0)
which is independent of the choice of regularisation R : ¢ +— o (z) which sends the
symbol o to a holomorphic family of symbols o (z) such that o (0) = o.
Another approach to regularised iterated integrals is to consider the operator o
P(o),

P(o)(n) = / o (£) dE.
1&1<In|

It maps 0 € CS(U) to a symbol P (o) which is not anymore classical, since it raises
the power of the logarithm entering the asymptotic expansion of the symbol by one.
The fact that the algebra of classical symbols is not stable under the action of P justifies
the introduction of log-polyhomogeneous symbols in this context (see e.g. [L] for an
extensive study of log-polyhomogeneous symbols and operators). Indeed, the operator
P satisfies a Rota-Baxter relation (of weight zero):

P(o) P(t) = P(oc P(1)) + P(t P(0))

and defines a Rota-Baxter operator on the algebra of logpolyhomogeneous symbols
(see Proposition 3). In one dimension the Rota-Baxter relation is an integration by
parts formula in disguise but for higher dimensions, this Rota Baxter formula does not
merely reduce to an integration by parts formula. However, similarities are to be expected
between the obstructions to shuffle relations for regularised integrals studied here and the
obstructions to Stokes’ formula for regularised integrals of symbol valued forms studied
in [MMP]. In both cases the obstructions disappear under a non-integrality assumption
on the orders of the symbols involved. It is interesting to note that regularised integrals
behave nicely specifically on symbols of non-integer order, namely when they obey
Stokes’ property [MMP] and have good transformation properties [L., MMP].

Unlike in the previous approach, we now take a fixed open subset U € R” so that
U =U,i=1,...,k. From a tensor product 0 = 01 ® - - - ® oy of classical symbols
o; € CS(U) and operators

o +— Pi(o),
0)(x; 815, 8) == P(o(x; 81, ..., 8k, 7)) (k)

for fixed x € U, one builds a map (x,&) — (Pjo---0 Px_1(0)) (x, &) which is log-
polyhomogeneous. The regularised cut-off iterated integral of o can then be seen as an
ordinary regularised cut-off integral (extended by M. Lesch [L] to logpolyhomogeneous
symbols) on the logpolyhomogeneous symbol Pj o - - - o Px_1(c) in our case':

o= déi Pio---0 Py_1(07).
Fru® = 2 b f

TEX)

1 Similar nested integrals arise in D.Kreimer’s work [K1] in relation to a change of scale in the renormal-
isation procedure. His rooted trees describing nested integrations can be adapted to our context, decorating
trees with symbols o;. We thank D. Kreimer for pointing this reference out to us, which we read after this
article was completed.
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When o = ® o; and the (left) partial sums a1 +az +---+aj, j = 1, ..., k of the orders
«; of the symbols o; € CS(U) are non-integer, the following shuffle relations hold (see
Theorem 4):

k
;= d&Pio---0 Pr_; (07), 2
E][TX*UG Z][TX*U &1 Py k—1 (07) (@)

TEL)

where we have set o; 1= ®f.‘:1crf(,').

A holomorphic regularisation procedure R : o +— o (z) on CS(U) (with some conti-
nuity assumption) induces a regularisation procedure 0| Q- - - Qo > 01(2) Q- - -® 0k (2)
on ®CS(U). Using results by Lesch [L] on cut-off integrals of holomorphic families of
logpolyhomogeneous symbols we build meromorphic maps z JCT;*U o (z) with poles

of order at most k for any o € ®kCS(U).
When o (z) has order Eq. (2) implies the following equality of meromorphic functions

k
Ilﬁnfﬂd==zlﬁwd§ﬂ0~~0&4(®ﬁmﬂﬂd)- 3)
i=171x x

TEXL

But in general, the constant term in the meromorphic expansion on the 1.h.s does not
coincide with the product of the regularised integrals JCTEU oi := fp,_g F0;(z), namely
in general

R
oj.

k k
o[£, a0 #[14
i=17 U i=1" U

However, shuffle relations extend to these regularised integrals provided the symbols
involved have vanishing Wodzicki residue (see Corollary 2):

kR R
H][ Gi=z][ d§1 Pro---o Py (or).
/T U

TEX)

For general symbols, a renormalisation procedure borrowed from physicists keeps track
of counterterms one needs to introduce in order to pick the “right” finite part thereby
circumventing the problem that “taking finite parts” does not commute with “taking
products” of meromorphic functions.

The above constructions are adapted in Sect. 5 to invariant classical pseudodifferential
operators acting on sections over the unit circle S'. Using the identification ' ~ R/27Z,
one can relate the shuffle relations for integrals of the symbol of the modulus of the Dirac
operator on the circle with “second shuffle relations” for multiple zeta-functions. The
adaptation is not straightforward as the symbol is not a smooth function anymore; since it
involves Dirac measures the integrals turn out to be discrete sums. The Euler-MacLaurin
formula is the main tool which enables us to go from integrals of symbols to discrete
sums of symbols.

These shuffle relations for regularised integrals of symbols and their link with shuffle
relations for zeta functions are a hint towards deeper algebraic structures underlying
cut-off multiple integrals on one hand and renormalisation procedures in quantum field
theory on the other hand (see Sect. 5.5).
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It appears from the investigations carried out here, that iterated integrals of symbols
seem to provide a stepping stone between Feynman type integrals in physics and the
renormalisation procedures used to handle their divergences on one hand and multiple
zeta functions and the regularised shuffle relations they obey, a line of thought we pursue
further in [MP].

2. Preliminaries

For o € R, k € N, the set CS**(U) of scalar valued logpolyhomogeneous symbols of
order o on an open subset U of R” can be equipped with a Fréchet structure. Such a
symbol reads:
N-1
o= > Y Ooum+ow: @)

m=0

where 1 is a smooth function which vanishes at 0 and equals to one outside a compact,
where oy, (x, &) = Zl;zo Oq—m,p(x, &) logP |&] € C®(S*U) with oy, p(x, &) pos-
itively homogeneous in £ of order « — m and where o(y) € C*°(S*U) is a symbol of
order « — N. The following semi-norms labelled by multiindices y, 8 and integers
m>0,pef{l, ..., k}, N give rise to a Fréchet topology on CS""]‘(U):

sup, e e (1 + 1ED TP 10} 0l o (x, £)1;

N—-1
SUP e k¢ cpn [E] VY197 0 (a -> w@)aa_m) (x, &)I;

m=0

SUP, ek =118 B O p (. )]
where K ranges over compact sets in U.

Remark 1. Note that the first set of norms corresponds to the ordinary symbol topology,
the second set of norms controls the rest term o) whereas the last set of norms is the
ordinary supremum norm on the homogeneous components of the symbol.

Let us introduce some notations. The set CS™°(U) := (,,cg CS™(U) corresponds to
the algebra of smoothing symbols. The set

sty = J |Jecsm w)

meZ keN

of integer order log-polyhomogeneous symbols, which is equipped with an inductive
limit topology of Fréchet spaces is strictly contained in the algebra generated by log-
polyhomogeneous symbols of any order

cs* )= (|J | csm .
meR keN

Following [KV] (see also [L]), we extend the continuity on symbols of fixed order
to families of symbols with varying order as follows:
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Definition 1. Let k be a non-negative integer. A map b — o (b) € CS**(U) of symbols
parametrized by a topological space B is continuous if the following assumptions hold:

1. the order a(b) of o (b) is continuous in b,
2. for any non-negative integer j, the homogeneous components ooy j,1(b)(x, &),
0 < I < k of the symbol o(b)(x, &) yield continuous maps b + og@p)—;j(b) =

>0 Tup)—j1 log! €] into C®(T*U),
3. for any sufficiently large integer N, the truncated kernel

KM B)(x, y) = / dECE g (B)(x, £),

Tx*U

x

where

N
o)) (x,8) :==a(b)(x,§) — z V(&) oap)—j(b)(x, §)

j=0

vields a continuous map b + o(n)(b) into some CEKIN(U x U) where
limy_ 00 K(N) = +00.

3. Regularised Integrals of log-Polyhomogeneous Symbols

We recall for completeness, well-known results on regularisation techniques of inte-
grals of ordinary log-polyhomogeneous symbols which lead to trace functionals on the
corresponding pseudodifferential operators.

3.1. Cut-off integrals of log-polyhomogeneous symbols. We start by recalling the con-
struction of cut-off integrals of log-polyhomogeneous symbols [L] which generalizes
results previously established by Guillemin and Wodzicki in the case of classical sym-
bols.

Lemma 1. Let U be an open subset of R" and for any non-negative integer k, let o €
CS**(U) be a log-polyhomogeneous symbol, then for any x € U,

° f BX(0.R) o (x, &)d& has an asymptotic expansion in R — oo of the form:

00 k

/B*(O R) o(x,8)dE ~psoco Cx(0) + z z Pi(oq—j1)(og R) Ro—J+n

Jj=0,0—j+n#0 [=0

k
> resx. () i+l g (5)

= [+1

where Pi(0q—j1)(X) is a polynomial of degree | with coefficients depending on oo |
and where C (o) is the constant term corresponding to the finite part:

Ci(0) :=/T* o<N>(x,5)ds+/B*(O ¥ (E)o(x, ) dE

( 1)l+ll|
" Z Z (@ — j+n)+! / UUa—j,l(xv §)dsé

Jj=0,a—j+n#0 (=0

which is independent of N > o +n — 1.
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e For any fixed pu > 0,

k

10gl+1 m
Pps o 0 (x, £)dE = fpp_o o(x, §)dE + 3 = resi(0).
B0, R) By (0,R) = 1

Remark 2. If o is a classical operator, setting k = 0 in the above formula yields

N
DR o0 / o(x,§)dt = / o) (x, E)dE+ | / Y (E) Ourj(x, &) dE
B}(0,R) ;U =0’/ BXO.1)

N

1
_ Z —/ Oa—j(x, w)dw.
S¥U !

oa—j+n
Jj=0,a—j+n#0 J

Proof. Given a log-polyhomogeneous symbol o € CS**(U), forany N € N we write:

N
o(x, &) = D U)o j(x, &) +o)(x. &) V(x.&) e T*U, (6)
j=0
where o(y) € S N=1(U).

e For some fixed N € N chosen large enough such that« — N — 1 < —n, we write
ox, &) = Zj-v:o Yo j(x, &)+ o) (x, &) and split the integral accordingly:

N
/ o(x,§)d§ = Z/ W(S)Ua—j(x7§)d§+/ o) (x, §)d§.
B:(0,R) =/BrO.R) B:(0,R)

X

Since — N — 1 < —n, o) lies in L' (T;*U) and the integral [5. o o) o) (x, §)d&
converges when R — oo to fT*U o) (x, £)d&. On the other hand, forany j < N,

/ ws)aa_j(x,@:/ w<s>aa_,»<x,s>+/ Garj (5, E), ()
B;(O,R) B;(O,l)

D*(1,R)

X

since v is constant equal to 1 outside the unit ball. Here D} (1, R) = B} (0, R) —
B}(0, 1). The first integral on the r.h.s. converges and since

k
Ouj(X,8) = D 0q—ju(x, &) log' [£],

=0

the second integral reads:

k /R
/ Oa—j(x, §)dE = Z/ r@=i*=ogl r dr / Oa—j (X, w)dw.
D*(1,R) =1 SEU
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Hence the following asymptotic behaviours:

k I+1
log™ R
dE 0 (5, 6) ~roe S / Ga (6. )
/D;g(LR) o * = [+1 S:U “

lo [+1
= lg+ I res; x(0) ifa—j=—n
=0

whereas:
Al

( 1)l+1

log' R

21

(I=0)! (x—j+n/
~R -R Ou—j1(x, w)dw
/1J;<1,R> o Z(Z —j+n) su

i=0 x
a—j+n

-nl—. _i1(x, w)d
+eb (@ — j+n)! /S;Uaa e, @)de

(=D
/ Ou—ji(x,w)dow |if @ — j # —n.
SEU

(a — j+n)lt!

Putting together these asymptotic expansions yields the statement of the proposition

with

N N L ( 1)l+lly
Ci(0) =/ o(N) + / Yo, +
! ey Jé“) 0 2. Z( )t

Jj=0,a;+n#0 (=0

e The u-dependence follows from

1 [+1
log[”(u R) = log’” (1+ ogu)
log R
I+1 log 1t k
~R—00 10gl+1 R chk_'_l (@) .
k=0

res; (o)

S¥U

The logarithmic terms Zf:o T loglJr1 (1 R) therefore contribute to the finite

I+1
part by Z;‘ZO IO%T“ -res) x (o) as claimed in the lemma. O

Discarding the divergences, we can therefore extract a finite part from the asymptotic

expansion of fB(O R) o (x, £)d& and set for o € CS*K(R"):

Definition 2. Given a non-negative integer k, an open subset U C R" and a point

x € U, forany o € CS**(U), the cut-off integral

][ o (x. E)dE = fpp oy / o (x. E)dE
U B:(0.R)

X

N
= [ owmnass Y [ y@ow o
:U = /B0

N k

( 1)l+ll|
" Z z (¢ —j +n)l+1 / UUa—j,l(X,§)dS§

Jj=0,a—j+n#0 (=0

is independent of N > o +n — 1.

®)
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It is independent of the parametrisation R provided the higher Wodzicki residue
resy | = / o_n1(x, §)dsé
*U
vanishes for all integer 0 <1 < k.

This explicit description of the finite part leads to the following continuity result.

Proposition 1. For any fixed a € R and any non-negative integer k, and given an open
subset U € R", a point x € U, the map

CS**(U) - Cc®U, )

o — (x — o(x,é)ds)
:u

is continuous in the Fréchet topology of C S%* (U and the natural topology of C*® (U, C).
Remark 3. The assumption that « be fixed is essential here.

Proof. From formula (8) and the fact that symbols are smooth functions on U x R”, it
follows that the cut-off integral is C*°(U, C)-valued.

The maps o (x — fB;(O’l) V(€)oa—j(x, &) d’g‘) and o — (x — ij;U Ou—jl
(x,8) ds.’;:) are clearly continuous as integrals over compact sets of continuous maps. On

the other hand the map o — (x = [rep o) (X, 6) dé) is continuous since o — o)
is continuous and oy)(x,§) < C(1 + |E))™" can be uniformly bounded by an L!
function. 0O

As well as the higher order residue density functionres, x, one candefineon CS k)
an extension of the ordinary residue density function res, as follows:

res, (o) = / (0(x. ), dsE.
SrU

where dg& is the volume measure on the unit cotangent sphere S;U induced by the
canonical volume measure on 7,U. Even though it certainly does not induce a graded
trace on the algebra of log-polyhomogeneous operators on a closed manifold as the
higher order residue does [L], it is a useful tool for what follows since we have the
following continuity result:

Lemma 2. Given any non-negative integer k, and given any a € R, the map:

CSs**(U) - Cc®U, )

o (x > resy(0))

is continuous for the Fréchet topology on CS**(U).
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3.2. Integrals of holomorphic families of log-polyhomogenous symbols. Following [KV]
(see also [L]), we define a holomorphic family of log-polyhomogeneous symbols in
CS**(U) in the same way as in Definition 1 replacing continuous by holomorphic.
We quote from [PS] the following theorem which extends results of [L] relating
the Wodzicki residue of holomorphic families of log-polyhomogeneous symbols with
higher Wodzicki residues. For simplicity, we restrict ourselves to holomorphic families
with order «(z) given by an affine function of z, a case which covers natural applications.

Theorem 1. Let U be an open subset of R" and let k be a non-negative integer. For any
holomorphic family z — o(z) € CS*@KU) of symbols parametrised by a domain
W C Csuchthatz — a(z) = o' (0) z+a(0) is an affine function witha' (z) = o’ (0) # 0,
then for any x € U, there is a Laurent expansion in a neighborhood of any z¢9 € P,

S (0)(20) (x)
][*Ua(z)(x,é)dé = fpzzzo][T*Uo(z)(x,é)dHZ—’ o
x j=1

(z — z0)!

X

K
+ZS;(0)(ZO)(X) (z—2z0) + 0 ((z - zo)K) ,

J=1

where for 1 < j < k+1, Rj(0)(z0)(x) is locally explicitly determined by a local
expression (see [L] for the case o’ (0) = 1)

rj(0)(z0)(x)
= Zk: CH . res ((U )<z+1—j))( ) o)
B 15 @ o) (+1— )t (00 20)-

Here o(;)(z) is the local symbol given by the coefficient of log! |£] of o, i.e.

k
o(2) = Y oa)(2)log €.

=0

On the other hand, the finite part fp,_, fT*U o0 (2)(x, &)dE consists of a global piece
JL]R" 0 (z0)(x, &) dE& and a local piece:

fpz=m][T*U0(Z)(x,E)d$ =][ o (z0)(x, §) d§

k

( 1)l+1 1 .
Z @ I ™ ((U(Z))u 1)) o). (10)

=
Finally, for 1 < j < K, Sj(0)(z0)(x) reads

@) = f e ds
k

DI+ ol
+ Z ) - J resy ((0(1))(j D) (ZO)). (11)

S (@ 2T+ 1+ 1)!
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As a consequence, the finite part fp,_ f—T* y 0 (2)(x, §)d§ is entirely determined by the

derivative a’(zo) of the order and by the derivatives of the symbol o ¥ (zo), [ <k+1
via the cut-off integral and the Wodzicki residue density.

3.3. Regularised integrals of log-polyhomogeneous symbols. Let us briefly recall the
notion of holomorphic regularisation taken from [KV] (see also [PS]).

Definition 3. A holomorphic regularisation procedure on C S**(U) for any fixed non-
negative integer k is a map

R : CS™F(U) - Hol (CS*”‘(U))
o+ 0(2),

where Hol (CS*’k(U)) is the algebra of holomorphic maps with values in CS k),

such that

1. 0(0) =o,

2. 0(z) has holomorphic order a(z) (in particular, «(0) is equal to the order of o) such
that o’ (0) # 0.

We call a regularisation procedure R continuous whenever the map

R : CS™*(U) — Hol (CS*’k(U))
o (z0(2)
s continuous.

Remark 4. 1t is easy to check [PS] that if z — o(z) € CS*@*(U) then o) (z) €
C §%(z0).k+j ).

Examples of holomorphic regularisations are the well known Riesz regularisation o —
0(2)(x,&) := o(x,&) - |€]7° and generalisations of the type o +— o(z)(x,§) =
H(z) -o(x,&) - |&|7%, where H is a holomorphic function such that H(0) = 1. The
latter include dimensional regularisation (see [P]). These regularisation procedures are
clearly continuous.

As a consequence of the results of the previous paragraph, given a holomorphic reg-
ularisation procedure R : o +— o (z) on CS**"(U) and a symbol o € CS*’k(U), for
every point x € U, the map z — JCT; v 0 (@) (x, §)dE is meromorphic with poles of

order at most k + 1 at points in o~ Y([=n, +oo[ N Z), where « is the order of & () so that
we can define the finite part when z — 0 as follows.

Definition 4. Given a holomorphic regularisation procedure R : o +— 0(2)
on CS**(U), a symbol o € CS*K(U) and any point x € U, we define the regularised
integral

xU

x

R
/ o(x,§)d§ = fpz:O][ o(z)(x,§)d§
T T:U
k+1 1 )
— i _ _ J
= lim ][T;UdSU(z)(x,é;‘) ZZjReszzo][T;Udé‘a(z)(x,S)

—
Z =1

We have the following continuity result.
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Proposition 2. Given a continuous holomorphic regularisation procedure R : o +—
o(z) on CS**k(U), where k is a non-negative integer, for any fixed « € R, there is a
discrete set Py C C such that the map

CS*K(U) — €U, Hol(C — P,))
. H][ o (x. £)(2) dé
TFU

is continuous on C*° (U, Hol(C — Py)). Moreover the map

CS**(U) - Cc>®(U, )
R
o o(x,&)dé
T:U

is continuous on C S%*(U).
Remark 5. The assumption that o be constant is essential here.

Proof. From Theorem 1 we know that the map z +— JCT* y @ (2)(x, -) is meromorphic
X

with simple poles in some discrete set P,. From Proposition 1 we know that the map

o + fo is continuous. Combining these two results gives the continuity of the map

o (z — JCT*U o(x,8)(z) d“g‘), where the r.h.s. is understood as a holomorphic map
on C — P,.

‘We now prove the second part of the proposition. By Theorem 1 applied to zg = 0,
it is sufficient to check that the maps o +— f—T* y 0(0)(x,&)dE and the maps o —

res, (00/(0)) are C>®(U, C) valued and continuous for any 1 < j < k + 1 for the
Fréchet topology on log-polyhomogenous symbols and the Fréchet topology on smooth
functions.

From the continuity assumption on the regularisation R combined with Proposi-
tion 1 and Lemma 2 it follows that for a log-polyhomogeneous symbol 7, both x
JLTX*U 7(x,&)d& and x +— res,(t) are smooth functions. Applying this to T = o (0)
(which is log-polyhomogeneous by the above remark) with 0 < j < k + 1 yields the
result. O

4. Regularised Integrals on Tensor Products of Classical Symbols

4.1. Tensor products of symbols. LetUy, ..., Ur be open subsets of R”. Since the spaces
CS™i (U;) and C §™i-ki (U;) are Fréchet spaces, we can form their closed tensor products,
where the closed tensor product of two Fréchet spaces E and F is the Fréchet space
EQ®F built as the closure of E ® F for the finest topology for which® : Ex F — EQF
is continuous.

Definition 5. For any multiindices (m1, ..., myp) € RL (ki, ..., kr) € NE we set
CSImimL) (g x ... x Up) := ®L, 8™ (U})
and
Cslmimme) ke hi) () ox U = &L 8™k (U

The multiindex (my, ..., mp) is called the multiple order of o and my + - - - + my, its
total order.
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There are at least two ways of continuously extending regularised integrals to tensor
products of symbols.

4.2. A first extension of regularised integrals to tensor products.

Definition 6. Let U = Uy x --- x Up withx = (x1,...,x1), x; € Uj,i =1,...,L
open subsets in R". Let (ay,...,ar) € Cl and let (k, ..., k1) be a multiindex of
non-negative integers.

The continuous maps

Cs% kiU, — c®U;, C)

oi = | xi — oi(x;j,&)d& ), i=1,...,L
T Ui

induce a uniquely defined map:

CSI(UO[I ..... O{L),(kl ..... kL)(U) - COO(U, (C)

or—>(xr—> G(x,é)dél---d&)
U

which gives rise to a linear map on @CS(U;) called the multiple regularised cut-off
integral of o (x, -).

Clearly, if o (x, -) = ®f?:16i (x;, -) we have:

L
§)déy---déL = i &) dé&;.
%wo(x £)de, - diy Hﬁ*zwm &) d

The following extends holomorphic regularisations to tensor products of symbol spaces.

Definition 7. Let U = Uy x --- x UL, be a product of open subsets of R". For a given
multiindex (ky, ..., kp) with k; non-negative integers, a regularisation procedure R on

csikk gy s q map:

o> R(o):z— 0(2)
such that

1. 0(0) =0,

2. 0(z) has holomorphic (multiple) order a(z) = (¢1(2), ..., a1 (2)) € RE (in par-
ticular, a(0) is equal to the (multiple) order of o) such that Re (otlf (0)) > 0 for all
ie{l,...,L}.

CS*k).
Clearly, regularisation procedures R1, ..., Ry on cs*+h ), ..., C S*ke (Ur) induce

product regularisation procedure.
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Definition 8. Let U = Uy x --- x Up with U;, i = 1, ..., L open subsets in R" and let
(k1, ..., kp) be a multiindex of non-negative integers. Given a product regularisation
procedure

5L . k k
R = ®i:1Ri 10 =Q;_10i > 0(z) = ®i=1(7i(2)
on ®f-‘=0C S(U;) of continuous regularisations R;,i = 1, ..., L, the continuous maps

CS*(U;) — C*(U;, Hol(C — P,))

0w—>(xi'—>/ Rf<ai)<z)<xi,si)dsi), i= 1L
TX";U,'

induce a uniquely defined map:

&F_,C 8% (U;) — C®(U, Hol(C — U*_, P))

o (x r—>7[ R0)(2)(x,8)d&; - 'de)~
Tyu

Similarly the continuous maps

CS%U;) — C*(U;,C)

Ri
oj > xi'—>][ oi(x;,&)d& ), i=1,...,L
TLU;

induce a uniquely defined map:

& CS% (Up) — C™(U, C)

R
ar—)(xn—) o(x,é)d%‘),
TxU

which induces a linear map on ®f:0C S(U;) called the multiple regularised integral
associated with the product regularisation R.

The Wodzicki residue density resy, on CS(U;) similarly give rise by continuity to
€Sy, on ®£‘:1CS(U,-) in such a way that forany x = (x1,...,x7) € Uy x --- x Up:

L
78, 1.(®0; (x;, ) = [ [ resy, (03 (xi, ).
i=1

Theorem 2. Let U = Uy x --- x Up with U;,i = 1, ..., L open subsets in R" and let
o€ ®iL: 1CS(U;). Given a product regularisation procedure

R =Q|Ri: ®0i —> R 0i(z)

on CSy (U) of continuous regularisations R;,i = 1,..., L such that R;(c)(z) has
order a;(z), the map

. Hjl R(0)(2)(x. ) déy - --dEL
T*U
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is meromorphic with poles at most of order L and:

(-t __
R L_ % R LEYAE - -dEp = ———r€s,, .
€S0 T (0)(@)(x, §) d&; &L TE a{(O)reS .L(0)
In particular, when «;(0) = o(0) is constant this yields
Res f R(o) @), ) der --de, = D 5, 1 (o)
z=0 T);%U ’ (a/(o))l‘ X, .

Proof. By a continuity argument, this follows from the fact that this same relation holds
on products ¢ = ®I.L:10,~:

L

L
Maﬁwﬂﬂ@mm&wﬁwh=nk%o Ri(00) (@) (xi, &) d&i
x = i=1 i

1 T3 U;

HL —1
= | r@resxi (Gl)
i=1 !

L
=D &L

[Tz /(0)
O

On the grounds of this theorem, taking finite parts we set:

Definition 9. Given a product regularisation R = ®iL:1R,~ on CSy(U), for any o €
CSy(U) we call

R
%‘ou£w=mﬂf o (2)(x, £) dE
T U

sU T;

X

with R : 0 + 0(2), the R-regularised iterated integral of o.

Remark 6. With these notations we have:
R . L Ri
foassbiows =[]+ daaws.
T’;ki U i=1 Tx*- Ui

5. An Alternative Extension of Regularised Integrals to Tensor Products
of Classical Symbols

We now give an alternative extension of regularised integrals to tensor products of clas-
sical symbols which we then compare with the one previously defined. For this purpose
we consider a map similar to the map o +— fl £1<R O (x, £)d& underlying the construction
of cut-off integrals. We will henceforth work under the assumption Uy = - - - = Uy = U
an open subset of R”.
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5.1. Rota-Baxter relations
Proposition 3. 1. The map o — P(o) defined by
P(o)(x,n) ;:/ o(x,§)d§
[E1<In]

maps CS**=1(U) to CS**(U). Giveno € CS**=1(U), P(c) = C+1 for some con-
stant C and witht € C 84k, In particular, when o € R, it has order max(0, o +n).
2. Foranyo € CS**1(U)
resy x—1(0)
k

so that if o has vanishing residue of order k — 1 then P (o) also lies in C§*k-1 ).
3. P obeys the following Rota-Baxter relation [EGK]:

P(0) P(t) = P(o P(1)) + P(t P(0)). (13)

P(o)(x,n) — logk In| e cs** () (12)

Proof. Replacing R by |n| in the asymptotic expansion (5) yields:
00 k—1

P@)@,m~Celo)+ D, > Pilow—jn)(logn) [nl*~/*"
J=0,0—j+n#0 [=0

+ >0 I8l0) potet (14)

= [+1

where Pj(oy— ;) (X) is a polynomial of degree [ with coefficients depending on oy ;
and where Cy (o) is the constant term corresponding to the finite part.

P(o0) is therefore the sum of a symbol of order zero (the constant Cy(c)) and a
symbol 7 of order « + n so that when « € R, its order is max (0, « + n). Furthermore, it

lies in CS%*(U) and the coefficient of log® || is res‘kkﬂ
The Rota-Baxter relation then follows from:

P(a)(n)P(t)(n)z/ a(&)ds/ r(¢) de
[E1<In] E1<Inl

=/ o) de [ r<§>d§+/ r@)de | o()dE
[E1<In| [E1<|&]| [&1<Inl lE1<|&]

— P(o P(£)(n) + P(z P(0))().
O

Let Cy := ®f:l CS**(U) be the space of k-chains built from CS**(U). Using the
Rota-Baxter map we define a map

Po : Co+1 - Co
by
P R CS*(U) - @, CS™*(U)
Pr(o)(x, &1, ..., 8) == P (o(, 61, ..., &, ) (x, ).
In particular we have:

Pi(01 @ @ oke1) (X, 81, .., &) = o1(x, §1) - - - ok (x, &) Plore1) (x, §p).



30 D. Manchon, S. Paycha

Theorem 3. Let U be an open subset of R". For any integer k > 1,
1. the composition Py o --- o Pr_1 maps ®f:1CS°"' (U) to CS**1 ().
Foro; € CS(U),
PioPyo -0 Pei(01® - Qo) = P (- P(og)ok—1--)o2) o1 (15)

is a finite sum of log-polyhomogeneous symbols of order given by the partial sum
ajtoaz+---+aj+(j—Dnwith j =1,..., k. Inparticular, when ay, ..., ar € R,
then Py o Py o -0 Pr_1(0) has order given by

o(PioPyo---0 Pr_1(0))
=max (0, ..., max(0, max(0, ax +n) +ax_1 +n),...)+az +n) +ay.

2. Furthermore,

k—1
szl resy (o)

Pio---oPr1(01 @ - Qop)(x,§1) — logt=! g € CSHF2(U).

(k—1)!
(16)
3. The following shuffle (or iterated Rota-Baxter) relations hold:
k
HP(Ui) = Z PoPio---oP1(0r1) ® - ®0r(x))
i=1 TEL)
= Z P (P (- P(ort)0ctk—1) -+ )02(2)) Oz(1)) - (17)

TEX)
Remark 7. For k = 2 Eq. (17) yields back Eq. (13).
Proof.

1. By a continuity argument, it suffices to show that P o P o --- o Pr_1(0) €
CS**=1(U) for any 0 = o] ® --- ® oy. This follows from the first point in
Proposition 3 by induction on k. Indeed, applying it to k = 2, we first check that
Pi(02) € CS*!(U); then assuming that the statement holds for k we can apply
Proposition3to P,o P3o---0 P02 ® -+ - @ 0k+1) € C§*k-1 (U) from which we
infer that

PioPyo--0P(0]1 ®02Q - ® 0Ok+1)
=P(ProP3o--- 0P (01 Q0 ®--0kt1)) ECS*’k(U).

This formula combined with Proposition 3 also yields in a similar manner that
PioP,oP3o---0 Pr_1(0] ® -+ ® oy) is a finite sum of log-polyhomogeneous

symbols of order g +- - -+ + (j — Dn with j =1, ..., k. From there we easily
derive the formula for degree of Pjo P,o P3o---0 Px_1(01 ® - - - ® o) when the
«;’s are real.

2. Similarly, an induction using Eq. (12) implies Eq. (16).
3. Equation (17) follows from Eq. (13) in a similar manner. 0O



Shuffle Relations for Regularised Integrals of Symbols 31

5.2. Iterated cut-off integrals of classical symbols. By the results of the previous para-
graph, the operator P o---o Py_1 sends ®i-‘= CS(U) to CS**=1(U), a space on which
we can apply cut-off regularisation described in Sect. 2.

Definition 10. Let U C R” be an open subset. For o € ®f‘: 1CSU) and given a point
x € U we set

= Pio---0Pr_ o
]{T:U)km, mdy =3 ][T;Udé 1 10 0 D), 6)

TEL)
= Z][ dél/ dsz-~-/ g o (X, Ec(1). - - Exr)-
rex,/ WU |&21=<I81] &k 1=<I&k—11
Lemma 3. R” be an open subset. For oy, ..., or € CS(U) such that all the (left) partial
sums of the orders ay +ap +---+aj, j =1,..., k are non-integer valued, then
k k
1‘[][ 0i (x, &) d&; = fpp_ o H/ 0 (x., &) d;.
i=1 Y i=1 |&1<R

Proof. We need to show that

k
prRi%oo/l
i=l i

§i<IR

k
0i(x. &) d; =pr%0]_[/$| oilx 6 dé.
i i=17 5=

Foreachi € {1, ..., k} we have the following asymptotic expansion (see Eq. (5)):

o0

ki
[ owds e Gt DD PG ) og RORS T
[&i1<R;

m=0,0; —m+n#0 p=0

ki
Z reSp,x(IO-I) 1 gp+] Rl
= P*

Multiplying these asymptotic expansions and setting R; = R can give rise to new finite
parts other than Hle PR 00 &<k O (x,&)d& = Hf:l C.(07). Indeed, when set-
ting R; = R; = R, positive powers of R; arising from the asymptotic expansion of
f‘ £<R; O (x, &) d&; might compensate negative powers of R; arising from the asymp-
totic expansion of fl £1<R; Oi (x, &) d&; thus leading to a new constant term. But since

such powers arise in the form R¥1T@2++&j=m+jn gch a compensation can only happen

if a; + a2 +--- + «; takes integer values. One therefore avoids such compensations
assuming that none of all the (left) partial sums of the orders o) + ap + --- + & are
non-integers. O

We deduce from the definition and the above lemma that cut-off regularisation “com-
mutes” with products of symbols in certain special cases: the cut-off iterated integral of
a product of symbols coincides with the product of the cut-off integrals of the symbols
provided these have orders whose (left) partial sums are non-integer valued.
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Proposition 4. Let 0; € CSY(U), i = 1, ..., k be such that all the (left) partial sums
of the orders a1 +ax +---+aj, j = 1,..., k are non-integer valued. Then

][T*U)k Hal(x §)dé = H][ oi(x, &) d§;. (18)

Proof. From the above lemma it follows that

k
[1f o
i=17TxU
k
= fprooo ] | / oi(x, &) d&i
i=1

|&i1<R
= pr—>oo Z / / o / dSk HUT(Z) él’(l)
reEA [E11=<R 1&21=<I&1] EkI1=<I&L—1] i1
]l Hol (x. &) d&;.
T*U)A
]
Theorem 4. Let 0; € CS*(U), i = 1, ...,k be such that all the (left) partial sums
ay+ax+---+a;, j=1,...,k are non-integer valued. Then the following shuffle

relations hold:

k
H][T*Udé“im

Z][ o 0Py (00 ® - @ or ) (§) dE

rex, /WU

Z][ 51/ d§z~--/ &1 00y (X, &) -+ 01y (%, £1). (19)
rex /WU 162]=<I€1] €k—11=I5]

Proof. Recall that P(o;)(x;, ni) = f\é\slml oi(x,&)d&. Applying Eq. 17) to n; = R
fori =1, ...k and then taking the finite part when R — oo yields the result:

H][T*U %= ll_ll PRoc /Bx (0,R) %

_pr—>oo Z / "'OPk—l(ar(l) ®"'®O'r(k))
2 Jron”

= Z][ P (- P(0ce)0rk—1) - )Te @) Tr(nydé1.
U

The above lemma then yields the result under the assumption that all partial orders are
non-integer. O



Shuffle Relations for Regularised Integrals of Symbols 33

5.3. Iterated integrals of holomorphic families of classical symbols. When the symbols
have integer order, neither does the iterated cut-off integral of the tensor product of the
symbols coincide with the product of their cut-off integrals (see Eq. (18)), nor do the
shuffle relations (19) hold for cut-off integrals. However holomorphic perturbation of
these symbols will have holomorphic orders, the (left) partial sums of which will be
non-integer outside a discrete set and both Eq. (18) and the shuffle relations (19) hold
for these perturbed symbols.

Proposition 5. Let U be an open subset of R". Let R : o + o(z) be a holomorphic
regularisation procedure on CS**(U) such that o () has order a(z) = q z + a(0) with
q #0. Forany o; € CS*ki(U), i = 1,2, with 6;(2) of order o; (z) = q z + «; (0)

1. the map

> P(02(2))(§) 01(2)(§) d§

T*U
is meromorphic with at most poles of order ki + ky + 2 in the discrete set
Pyi=q"" (Z—a1(0) U 2q) " (Z—a1(0) — x2(0)).

2. We have the following identity of meromorphic functions:

][ d§o1(2) d& 02(2)
T*U T*U

=][*U P (01(z)) (§) 02(2)(§) d§ +][ ” P (02(2)) (§) 01(2)(§) d§. (20)

*
X TX

Proof.

1. We first observe that P(02(z)) 01(2) is the sum of a symbol 71(z) € CS*1@k ()
proportional to o7(z) and a symbol 12(z) 01(z) € CS¥@+@@+nki+k+l (1) with
72(z) € C§*2@+nk*1(17) (see Proposition 3). By Theorem 1 and using the linearity
of the cut-off integral, we find that the cut-off integral

lf Pwﬂdﬂﬁm&ﬂﬁdé=f rmmafw&+f
T*U TX*U T*

X

” 2(2)(§) 01(2)(§) d§

X

is meromorphic with poles of order at most k1 + k> at points in P, defined as in the
proposition since o1 (z) = g z+a1(0) and o1 (2)+2(2)+n = 2q z+a1(0)+a2(0) +n.

2. Equation (20) then follows from applying (19) to o; := 0,(z) (with k = 2) outside
the discrete set of poles. O

This generalises to the tensor product of & symbols.

Theorem 5. Let U be an open subset of R and let R be a holomorphic regularisation

procedure o +— o (z) on CS(U) such that o (z) has order a(z) = q z+a(0) withg # 0.

For any o; € CS(U) with 0;(z) of order o; (z) = q z + «; (0),

1. the map z — JCT*U dE Pio---0Pr1(01(2) ® -+ - ® 0 (2)) (x, &) is meromorphic
with poles of order at most k in

k
Pei= U™ (Z-a1(0) = a2(0) —--- — a;(0)).
j=1
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2. The map

> . ®)_j0i(z) d
(TyU)

is meromorphic with poles of order at most k and we have the following equality of
meromorphic functions:

k
[1f. o
i=1/ TV

= Z ﬁ*U Pio---o P (Ur(l)(Z) R R Ur(k)(Z)) (x, £) dE, @1)

TEL)
where Xy denotes the group of permutations on k elements.

Proof. Statements 1 and 2 in the theorem follow by induction on k from statements 1
and 2 of Proposition 5. Indeed, Proposition 5 with k1 = ko = 0 yields the theorem for
k = 1. Replacing o7 in Proposition 5by Py o---0 Pr(02 ® - - - 0k41) € CS*’k_l(U) (so
that ko = k — 1 here) then yields the induction step k — k + 1 since
PioPryo---0Pr(01(2) ®02(2) ® -+ Q@ 0p41(2)
=P (ProP3o---0 P (01(2) ®02(2) ® -+ 0k+1(2))) -

m}

Corollary 1. Under the same assumptions and using the same notations as in Theorem
5, we have the following equality of meromorphic maps:

f;UV®£mﬂwd$=f;UV®ﬁmﬂddé

k
=M1}, @ 22)
i=1/ YU
The highest order pole is given by:
Res’ ][ QF_0i(z) dE = ire"’s (@ o) =ﬁ_—lres (o)
z=0 TeU i=1%1 H{.‘zl (xl/(O) X, i=1%1 L 05;(0) x\0;).

Proof. As a consequence of the shuffle relations (21), we have the following equality of
meromorphic functions:

][T*U ®_0i(z) dE = Z Pio-oP(or1)(2) @+ ®0or)(2)) (x,6) dE

X rex /WU

k
-1}, a@w.sde.
i=1Y U
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On the other hand, by the results of Sect. 3 we have a further equality of meromorphic
functions:

fT*U)k ®F_,01(2) dg = ]{T*U)k ®F_,01(2) dt,

which shows that the two regularised integrals {-and £ both coincide on tensor prod-
ucts of holomorphic symbols with the product of the regularised integral of each of the
symbols. The Wodzicki residue formula then follows from Theorem 2. O

5.4. Obstructions to shuffle relations for regularised integrals of general classical sym-
bols. The finite part of a product of meromorphic functions with poles generally does
not coincide with the product of the finite parts. As a result, when the symbols have
non-vanishing residues, taking finite parts of the above shuffle relations on the level of
meromorphic functions does not yield the expected shuffle equations for the correspond-
ing finite parts. However, in that case a renormalisation procedure familiar to physicists
provides the obstruction in terms of counterterms arising in the renormalisation.

Let M (C) denote the algebra of meromorphic functions on C, and let M* (C) denote
the space of meromorphic functions on C with poles of order at most k at z = 0.
Clearly, if fi,..., f € M!(C) then Hle fi € MK(C). Let as before fp.—of =
lim,—o[f(z) — %reszzof(z)] denote the finite part at z = 0 of a function f € M!(C).
Then, in general

k k
[Ttp-cofi@ # o [ ] fi)-

i=1 i=1

A renormalisation procedure taken from physics provides a recursive procedure to com-
pute the obstruction to the equality; when the products Hle fi(z) arise from applying
dimensional regularisation to Feynman type functions in the language of Etingof [E], this
comes down to applying the renormalisation procedure used by physicists for connected
Feynman graphs to a concatenation of disjoint one loop diagrams.

The underlying Hopf algebra ([K2, CK]) in the situation considered here is the sym-
metric algebra H 1= @72, Qk CS(U)? built on the vector space CS(U). Itis in particu-
lar commutative and cocommutative. Although very simple, this toy model is instructive.
The (deconcatenation) coproduct on o = o1 © - - - © o reads:

Ao =0@R1+1R®0c + Z ©0j®©oi.

TJCU,. kb T jed i¢lJ

A regularisation procedure R : ¢ — o(z) induces a map ¢ : CS(U) - M!(C)
defined by

¢(0)(2) 2][ o(z)(x, &) dE.
U

X

2 © denotes the symmetrised tensor product.
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Our previous constructions show it extends to an algebra morphism
O :H— M),

0=010 Qo > o1(2)(x, §1) -+ - ok (2) (x, Ek)dEy - - - dbi.
T*U - xT*U

The Hopf structure on H provides a recursive procedure to get a Birkhoff decomposition
of the corresponding loop ® (o) for any o € H, i.e. a factorisation of the form

®(0) = D_(0)"! D4(0),

where @, (o) is holomorphic at 0. Namely, with Sweedler’s notations Ax = x ® 1 +
1@x+> x' ®x",
®_(0):=—T (q>(a) > <I>_(a/)®(a”)) ,

D.(0) = D(0)+D_(0) + Z d_(c)D ("),

where T is the projection on the pole part. This corresponds to Bogolioubov’s prescrip-
tion by which one first “prepares™ the symbol o

As our Hopf algebra is a symmetric algebra, the picture drastically simplifies in our
situation: indeed H is generated as an algebra by the space CS(U) of its primitive ele-
ments. As both ®_ and &, are algebra morphisms [CK] we get the following explicit
expressions:

k
(01000 = (D[] T(#()), (23)
j=1
k
D01 0--0ox) = [[U = T)(¢()). (24)

j=1

By evaluating &, at z = O we then see that the renormalised value of the quantity
® (01 ©--- ©oy) at z = 01is given by the product of the finite parts of the ¢ (0;)’s,j =
L,... k.

There is another way of describing this renormalisation procedure via a renormalisa-
tion operator R on the space of Laurent series (z1, ..., zx) — f(z1, ..., 2Zx) in several
variables. For this, instead of

(o) 72— 01(2)(x, &1) - - or(2)(x, &) d&y - - - d&,
TFUx--xTFU

let us consider the map

(z1,...,2k) = Symm o1(z)(x, &) - - o (zp) (x, &) d&y - - - dé
T*U - xTFU

which defines a (symmetric) Laurent series in (z1, ..., zx); setting 71 = zo = -+ =
Zk = z gives back the meromorphic function ® (o). Given a nonempty subset J =

3 We borrow this expression and the notations that follow from [CM] but we refer the reader to Kreimer
[K2], see also [CK] for the Hopf algebra that underlies this renormalisation procedure.
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{ir, ..., i)} € {1,...,k}, setting J = {71141, ..., ik} to be its complement in
{1, ..., k}, from such a Laurent series f we build the map
f./ : (Za Zi|1‘+|a .. *Zik) = f(Zl’ e Zik)‘zi=z,\'/i€/'

When f = fi®---® fi (withe.g. fi = ¢(07)) then f;(z; zijyy - 2i) = [1es fi(D)-
Hjej fj(z;). Let us set

RUN@ = f@t o Wi+ D, C(f1G )@
d#I L. k)

which, in the case f = ®f:1 fi considered above reads

k
RE_ @ =[]+ D @ []fi@.

i=1 ¢#J CL,... k) igJ
The counterterm C is defined inductively on the number k of variables by
C(f):=~T (R(f).

where T is the projection onto the pole part of the Laurent series in z. The renormalisation
operator R is then defined by

R(f) = R(f)+C(f)
= (1-T)(R()
which for f = ®f‘:1 fi reads:

R(®_, f) = R@®_, fi) + C(®F_, f)

k
= (l—T)(Hﬁ)+(1—T) > @ ]]f

i=1 JC{L,. kY T #¢ i¢J

To illustrate this construction, let us take k = 2 and compute R(f) with f a Laurent
series in 71, z» in each variable z;. There are only two subsets J C {1, 2} to consider in
the renormalisation procedure J; = {1} and J> = {2} and we set f; := f, so that

R(f) =1 =T)(f) = A =T)(T(f1)+T(f2).
Writing
fena = > aizh s +osup(lzil. |z2D),
—I<i<l;—J<j<l
where I, resp. J is the largest order of the poles at 0 of f1, resp. f> respectively, we get

RH@Q=0-T0 D az%+0()

—I<i<l;—J<j<I

= (1 =T a7 Dy + Qa7 2, 2)

i>0 j>0
= E a; j2 +o(z) — ( E ai j7' + E a; j2'*)
0<i+j i>0,i+j>0 j>0,i+j=0

= apg + o(1).
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In particular, for two meromorphic functions f; and f> with simple poles:

fp.—o (R(f1 ® 12)) (z) = R(f1 f2)(0) = fp,— f1(2) fp,—0 f2(2).
More generally, an induction procedure yields:

Theorem 6. Let (21, ..., zk) — f(21, ..., zk) have a Laurent expansion in each of the
variables z;. The map 7 — R(f)(z) is holomorphic at 7 = 0 and its value at z = 0
coincides with the constant term in the Laurent expansion in (21, ..., Zk)-

In particular, when f = ®ﬁ.‘:1fi where the functions fi,i = 1,...,k are mero-
morphic at z = 0, then R(f)(0) coincides with the product of the finite parts of the
fi’s:

k
fp. o R(/1®-® fi)(2) =R(/1® - ® fi)(0) = prz=ofi(z)-

i=1

Proof. The operator R yields an algebra morphism on the algebra of Laurent series
and takes values in meromorphic functions which are holomorphic at z = 0 [CK]. As
f = R(f)(z) restricted to M(C) takes f to a holomorphic function at 0 with value
R(f)(0) given by the finite part of f at z = 0, on a tensor product fi ® - -+ ® fx —
R(f1 ® --- ® fi)(0) picks up the product of the finite parts of the f;’satz = 0. By a
closure argument, we conclude that the map z — R(f)(z) is holomorphic at z = 0 on
the whole algebra of Laurent series and that its value at z = 0 coincides with the constant
term in the Laurent expansion in (zy, ..., zx). The second assertion is straightforward.
0

Remark 8. As a consequence, if instead of using one complex parameter z, we regula-
rise each o; by o; — 0;(z;) using a different complex parameter z; we can avoid this
renormalisation procedure:

k
fpzl ,,,,, 7k—0 (®{'{:1 ][Ui (Zi)) = fpzl,...,zk—>0(®§=1fi)(zls s Zk) = prz:()ﬁ(z)'

i=1
Applying the above theorem to f; : z — JLT*, v, Oi (z) we get the following description
of the obstructions to shuffle relations for geﬁeral classical symbols:

Corollary 2. Given a regularisation procedure R on CS(U) foranyi = 1,...,k, for
any o; € CS(U),

k R R
[1f. o-> | daariooriwo
i—1/ YU T3 U

TEX)

=fpz=o][ (/1@ fil@) = R(f1® - ® fi)(2)
TpUx--TFU
1 k
i1++ig=0,(1,...,ix ) #0
where as before, o; (i) = o0¢(;) and where the a;’s correspond to the coefficients in
the meromorphic expansion at z = 0 of the cut-off integrals f—T* y oi(z) = (% + a(i) +

a’i z C-ll-o(z). In particular, the shuffle relations therefore hold if all the o; s have vanishing
residue.
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Proof. As in the proof of Corollary 1 we have

k
fp,_ i (2) d&;
P:o [E][T;UU(Z) g}

R
= Z ][T*U d&1P (- P(or)or 1) -~ )0w(2) (Eow(1y (1)

TEXL
R
=S dee | dnonE @,
S v ezl 6l <lé |

On the other hand, Theorem 6 applied to f; : z > f3., 0i(2) yields

L k
fp._ () — R |
{10 o(B,70)

k k R
=1fp,— ][ 0i(2) | — ][ 0i(2)
0[1:[1 v ET;‘UZ

1 k

i1++ixg=0,(i1,...,ix ) 70

which in turn yields the result of the theorem. O

5.5. Feynman graphs and tensor products of symbols. Propagators in quantum field
theory, when considered in momentum space in the euclidean setup and in absence of
infrared divergences, are classical symbols: for example the propagator of a massive
scalar field with mass m is a classical symbol of order —2:

1
&> +m*

Let I be any one-particle-irreducible Feynman diagram with [ internal edges, E external
edges and V vertices. The loop number of I" is defined by:

L:=1-V+1.

o(§) =

Each (internal or external) edge e comes with its propagator o,. The Feynman rules
associate to each 1PI graph (up to a symmetry factor and up to powers of the coupling
constants), together with external momenta (py, ..., pg) € R"E . the following (often
ill-defined) integral:

o= [ awo| [l e

e external edge Vr e internal edge

Here Vr is the affine subspace of dimension R inside the space R/ of internal mo-
menta defined by the vanishing of the sum of momenta at each vertex. The sum of all
external momenta also vanishes:

> =

e external edge
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We can combine tensor products o = ®l-1: 10i considered previously with injective affine

maps B : RAL = Vr ¢ R™ with L < I, which encode the choice of L independent
internal momenta for the integration. One can then build a class of functions

f@r....61) =0 0B, ..., 8L)

in the momenta &1, ..., & which, for a rather large choice of propagators o;’s are of
Feynman type in the language of Etingof [E]. The integral Ir(pi, ..., pg) is given,
up to the external momenta factor, by the integration on R"% of the function o o B
above. A regularisation procedure R on classical symbols as described in paragraph
3.2 gives rise to holomorphic families z — o7 (z) from which we can consider the map
(21, ..,21) P> 0y, = ®1’1:1‘7i (zi). We address here the following open questions:
B being injective, it is reasonable to expect the map

z1,...,21) > ][021,..‘,21 oB(&,..., &) dE - - dEy,

to give rise to a Laurent expansion in the z;’s, on the grounds of work by Speer [S]*
who proves this fact when o; (§) = (|£]* + miz)’1 Vie{l,...,I}and 6 (z) = o!*%.
Alternatively, following a dimensional regularisation type procedure, one can build maps

(z1, .. zL) = /0 oB(&1,....60) (61177 - [EL T dEy - - dEL,

which again can be expected to give rise to Laurent expansions and hence to a mero-
morphic function at 0 when z; = - -- = z;, = z. Etingof’s results on dimensional reg-
ularisation [E] imply this meromorphicity property when o; (§) = (|€|* + ml.z)’1 Vi e
{1, ..., I'} onthe grounds of a theorem by Bernstein but further investigations are needed
to prove the first part of the statement on the existence of a Laurent expansion in several
variables.

Theorem 6 shows that transposing a renormalisation procedure “a la Connes and
Kreimer” to the rather trivial Hopf algebra given by the symmetric tensor algebra of
meromorphic functions (equipped with the symmetrised product and the deconcatena-
tion coproduct) boils down to picking up the constant term in the Laurent expansion

in (z1,...,2zx) in the tensor product fi(z1) ©® -+ ® fx(zk), thus providing the “re-
normalised” value of the tensor product fi(z) ® --- fx(z) at z = 0. The fact that the
“renormalised value” at O can be reached by distinguishing the parameters z1, ..., zk

had already been proved by Speer [S] in the particular case we briefly described above
in relation to his work. Implementing a renormalisation procedure on the symmetric
algebra of meromorphic functions (where the R operation is almost a triviality) as we
do here corresponds in physics to implementing it on regularised Feynman integrals, a
rather elementary procedure which of course does not entail the complexity and subtlety
of the original renormalisation procedure which physicists implement on Feynman dia-
grams. The latter would correspond here to implementing a renormalisation procedure
on the o o B, which is work in progress.

The nested structure of the Feynman integral I+ (py, . .., pg)isreminiscent to Chen’s
iterated integrals; in particular, a formal inductive integration procedure as performed
by physicists shows that each integration w.r.to p; can potentially bring in an extra loga-
rithmic power, just as each nested integral does inside a Chen integral. This analogy has

4 We thank Dirk Kreimer for drawing our attention to this reference. Speer’s results are transposed here to
the euclidean set up.
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been carefully made precise and investigated in [DK, K1, K3]. Although a commutative
associative product analogous to the shuffle product can be built on 1PI graphs (see [K3]
Sect. 2.3), shuffle relations seem to be lost in that context since the boundaries of the
integrals are expressed in terms of decorated rooted trees ([DK] Sect. IV).

6. Relation to Multiple Zeta Functions

We want to adapt the previous results to symbols of operators on the unit circle. But
instead of using an atlas on S! and expressing the symbol of the operators in local charts
(e.g. using stereographic projections), we view S! as the Lie group U(1) seen as the
range of (R, +) under the group morphism:

®:R —> S!
x> el
which has kernel 277 =~ m1(S'). This amounts to identifying S! with the quotient

R/2r7Z. In this picture, the additive group structure on R/27Z is identified with the
multiplicative group structure on S':

Px+y+2mn) = O(x +27k)P(y +27l) Vk,l,n € Z,

an important fact for what follows.

6.1. The symbol of invariant operators on the unit circle. We then identify S! with
R/2n7Z and note the group law additively. The kernel K (x, y) of an invariant operator
P depends only on the difference x — y. It lifts to a 27 -periodic function K on R. The
Fourier transform of K is a linear combination of Dirac masses at the integers, and
can reasonably be taken as a symbol for the operator P. It defines then a S'-invariant
distribution on the cotangent 7*S!. The trace of P, when it exists, will be given by the
integral of the symbol on 7*S!.
We will illustrate this principle on complex powers of the laplacian. The Laplacian

A=-92

on S! has discrete spectrum {n?, n € Z}. The operator A’ := A .1» Where KerAt
denotes the orthogonal space to the kernel, has spectrum {n*; n € Z — {0}} and its square
root 4/ A’ has spectrum

{Inl,n € Z —{0}}

as a consequence of which its zeta function is given by:

tp@ = D Inl
neZ—{0}

=2 0t =2
n=1

where ¢ is the Riemann zeta function.
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e @(z) can also be seen as the canonical trace of the operator +/ A 5o that:
¢y =TR(VAT)
= / oy (x, §)dx d§,
T*S!

where o, is the symbol of +/ A’ (still to be defined). We use the Mellin transform to
express v A’ % in terms of the heat-kernel of A on S':

—Z 1 o0 z 1 A/
VA T = F(Z)/ 1372 gy,
5) Jo

We want to compute its symbol.
Proposition 6. The symbol of v/ A’ %, where A is the Laplacian on S' reads for & € R:

o(x, &)= D KT8 ().

keZ—{0}

Proof. If Hi(x,y) = h;(x — y) denotes the heat-kernel of A on § ! we have for every
f e C®(S!,R) N KerAt:
o0 z
/ 127 hy % f dr.
0

—z 1
V&) 1=

Taking Fourier transforms we get

1 © i~
o, = F(%)/o 127 h.dt,

since m = IT, . f . We therefore need to compute the Fourier transform of 4; and
hence an explicit expression for the heat-kernel of the Laplace operator on S'.

The heat kernel of the corresponding Laplace operator on R at time 7 is given by
Ki(x,y) = ki(x — y) with:

1
ki(x) := NZeT

and when identifying S with R/27Z, the heat-kernel of the Laplacian on S! is given
by

Hy(x,y) = D ki(x = y+2mn).
neZ

The fact that it is “translation invariant modulo 277 enables us to define the symbol
using an ordinary Fourier transform. Setting H;(x, y) = h;(x — y) we have:

eimf=hz*f:>@=;lt]g
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so that the Fourier transform of &, can be intepreted as the symbol of e =2, We first
derive h; using the Poisson summation formula:

D famy =2 Ak / " rpre iy,

nez keZ

Hence

~ X . ~
i) =D k(- +n) (with k(y) =k Q7))
nez

=> ek / ke (2my)e ™Ry dy

keZ -

1 ) +00 -
= oikx / ki(y)e *dy
2 o0
keZ

> [
=——— > ¢ x/ e 7e "dy
2w /4mt iz —o0

1

: 2
— elkxe tk
2

’

keZ

. sz
since for any A > 0 we have ffgz e e~ T dy = */—ge’ﬁgz. Considering any test
function ¢ € C2°(R) and taking Fourier transforms we find:

<ilta(p>=<hla¢>

+00 - kz
/ > e e ™ g(y)dy
—00

keZ

—a2 [T ik s .
= Z e e " @(y) dy (by Fubini’s theorem)
keZ -

= pe v

keZ

On the other hand the orthogonal projection p on Ker A (i.e. the constant functions) is
given by:

pw = [ oy

Its kernel K, is then the constant function on § ' 1 equal to 1. The associated function
K, is the constant function 1 on IR, so the symbol of p is the Dirac mass at 0. From that
we deduce that the symbol of e~ As given by:

Z eitk2 Ok.-

keZ—{0}
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Applying the Mellin transform we finally get:

1 ¥ s —tk?
, €)= 8 d
o 8 =gz 0 X e

> kIS E).

keZ—{0}

6.2. Discrete sums of symbols and the Euler-MacLaurin formula. The symbol o, just
described involves Dirac measures so that we cannot directly apply the results of Sects. 2,
3 and 4 derived for smooth symbols to define its truncated and regularised integrals. The
presence of Dirac measures leads to discrete sums which we need to truncate and reg-
ularise all the same; we therefore focus in this paragraph on truncated and regularised
discrete sums of symbols.

As we shall see, the Euler-MacLaurin formula ([Ha] Chap. 13) builds a bridge be-
tween discrete sums on one hand and continuous integrals of symbols on the other hand.
It enables to transpose the properties derived previously for regularised integrals and
iterated nested integrals to regularised sums and iterated nested sums. Let us consider
symbols (x, &) — o (x, &) of log-polyhomogeneous symbols on R in the class C §**
(see Sect. 1 and Subsect. 2.2) “with constant coefficients”, i.e. independent of the first
variable x. They clearly define symbols on the quotient ! = R/27Z which we also
call o. We drop the first variable x € S! and consider o as a function of a single variable
& € R (here identified with T;*S !for any x € S!). Let us denote by CS**(R) the class
of such symbols and CS**(R) the algebra generated by the union over / € N of these
sets.

There is a discretised version P of the Rota-Baxter P(o)(n) = flé|<\n\ o(§£)dE of
Sect. 4:

P(o)(n) = Z o(k) Yo € CS**R), (25)
k| <In]

which has properties similar to those of P as the following lemma shows.

Lemma 4. For any o € CS*K(R), there is a symbol P(c) € CS**(R) with same
order max(0, a+1) (where o is the order of o) as P (o), which interpolates P (o). More
precisely, P(c)(n) = P(o)(n) Vn € Nand forany o € CS**(R), P(c) — P(o) lies
in CS**(R).

Remark 9. Let o1 and 07 be two classical symbols of order o1, o> respectively. It follows

from the above lemma and Proposition 3 that o P(02) has order o1 + max(0, orp + 1) so
that if ¢} < —1 and ap < —1 it lies in L'(R) N CS*1(R).

Proof. The results of Subsect. 2.1 and the Euler-MacLaurin formula are the essential
ingredients. We set t(¢) := o (¢) + o (—t), so that we have:

Plo)m) = > (j).
j=0
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Let us first recall the Euler-MacLaurin formula (formula (13.6.3) in G.H. Hardy’s mono-
graph [Ha], with adapted notations): Consider the Bernoulli numbers, defined by:

t Bj-

— J

e’—l_z_j!t’
J

so that
By =1, B; =—l, By, = l, B4=—L,...,
2 6 30
and B ;41 = 0 for j > 1. Define for any n the function ¢, by the equation:

-1 n
DN AR (26)

n>1
and define v, as the 1-periodic function equal to ¢, on the interval [0, 1[. We then have
for N € N:

N N
P(U)(N)—P(G)(N)=Zf(M)—/O T(r) dt
=0

1 . By
=T gt M G T @D

with
1 J B,
C; 2/0 T(t)dt + = T(l) — Z G )' 7 @r= 1)(1)
“ajea +2), / V22T (1) di (28)
and
T = gy [, a0 ar
Setting

L By,
P)©) = P0)&) + 57(6) + 2(2 T @+ Ci+ T

then yields a symbol P(o) in CS***1(R). Indeed, we know by Proposition 3 in Sect. 4
that P (o) lies in CS***1(R) and has order max (0, « + 1) where « is the order of o. The
other terms on the r.h.s lie in C $** (R) as a result of the fact that o itself lies in C S* K (R)
and have order < «. Indeed, since 7 lies in C S*K(R), %/*?) also lies in C $**(R) and
the remainder term & +— T |¢| has decreasing order with j.

In particular, we see that P(o) — P(o) lies in CS*’k(R) and has order < max(0, )
(0 is due to the presence of the constant C;) so that P(o') and P (o) have the same order.
O
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Remark 10. Formula (27) applied for k and k + 1 respectively shows Ci4+1 = Cy so that
C stabilises at a constant C for large k.

On the grounds of this result we set the following definition.

Definition 11. For any o € CS**(R) the expression:

N
Do i=1tpy i D, 0k) =10 PO)(R)
keZ k=—N

defines the cut-off sum of o on the integers.

Remark 11. Since P(o) has the same order as P (o), the sum Z,I{VZ

when the corresponding integral fiVN o (&) d& converges, namely when o has order

< —1 in which case we have:
Za(k) = Za(k).
keZ keZ

y 0 (k) converges

Let us now consider holomorphic perturbations of a symbol o € CS**(R) (these are
closely related to the “gauged symbols” of [G2]).

Proposition 7. Let z — o, be a holomorphic family of log-polyhomogeneous symbols
on R of order a(z) = —qz + a(0) with g > 0 that lie in the class CS*K(R).

1. The cut-off sum:

R
> ek = fppsos Y, 02(k) (29)

keZ k=—R

is a meromorphic function of z which coincides with Z}:iofoo o, (k) on the half-plane
Rez > w, with poles in {w, q € N} of order <1+ 1.
2. The difference:

][ 0.(§)dE = 0. (k)
keZ
is a holomorphic function of z.
Proof. As can be seen from the expression of P (o), a holomorphic perturbation of ¢ in

CS*k(R) inducesa holomorphic perturbation P(0)(z) := P(o;) of P(c)inCS £k (R)
which reads:

&1 :
PEI)E) = / ‘ ox(0) di + S .6)

+Z( '~ ‘(2 g tDE) + Cr(2) + T g (2),

where the various terms are obtained by substituting o, to o in the r.h.s. of (27). By
Theorem 1 the integral term [* &1 | Oz shares all properties listed in Proposition 7. The
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term %rz (&) and each term inside the sum yields a holomorphic family in the symbol

class C $**(R). The remainder term & > Ty |¢(2) yields a holomorphic family of sym-
bols of decreasing order according to k. Finally, formula (28) shows that C(z) = Ck(z)
is holomorphic in the half-plane:

Rea(O)—Zk—l}
y .

As this holds for any k, the function C(z) is holomorphic in the whole complex plane,
and Proposition 7 is proven. O

Hy :={ze€C,Rez >

As a fundamental example, consider the holomorphic family:

o:(§) = x®)EI™,

where y is a cut-off function which vanishes around 0 and such that x(¢§) = 1 for
|€] > 1. One gets the expected relation between the cut-off sum of the symbol o, and
the zeta function:

Corollary 3. We have the following equality of meromorphic functions with simple poles
at integer numbers:

> o) =2¢(2).
keZ

Proof. Since the cut-off sum coincides with the ordinary sum of the series when it con-
verges absolutely, the equality holds for z in the half-plane {Re z > 1}. By Item 1 of
Proposition 7 the cut-off sum is a meromorphic function of z, which therefore coincides
with the well-known meromorphic continuation of 2¢. O

Remark 12. A simple computation shows that the cut-off integral of o, reads:

2
][Uz(é)df =1 +h(z),

where  is holomorphic. We then recover from Item 3 of Proposition 7 that ¢ (z) — ——

—1
is holomorphic in the whole complex plane. )

6.3. Discrete Chen sums of symbols. Similarly to the operator P, the operator P satisfies
relations reminiscent of Rota-Baxter relations of weight —1:

P(o)(n) P(r)(n) = P(o P(x)(n) + P(t P(0))(n) + P(o t)(n) Vn € N

with an extra term P (o ) that did not arise in the weight zero Rota-Baxter relations
for integrals we considered previously. We want to build from P discrete Chen sums of
symbols inductively in a similar manner to the way we built continuous Chen integrals
of symbols from P. We first define from P the operators

P;: &/ CSR) - &_ Map(N, ©),
Pi@)ni,...,nj) =P (om,...,nj,") @n)).

On the grounds of Lemma 4 we derive the following result.



48 D. Manchon, S. Paycha

Lemma 5. Let o € &/71CS(R), then
1. P(o); defined by

P©);E1,.... &) =P (o, ..., &, ))E)

lies in &/ CS(R) ® CS*(R).
2. Leto =01 ®--- Qo € ®f=1CS(R), thenPio---0Pr_1(01 ® - - - ® op) defined
inductively by

Pro--oPr_1(01® - Q0%) 2=7’(7720-~-077k—1(01®-~-®6k))

lies in C S* k1 (R) and has the same order as Pyo---0 Pr—1(01 ® - - - ® o), given
by max(0, ..., max(0, max(0, ax + 1) + axg—1 + 1), ...) + a2 + n) + oy, where «; is
the order of o;.

Proof. The first assertion is a direct consequence of Lemma 4. The second assertion
then follows from an induction procedure on j to check that Py_jo---0Pr_1 =
(01 ® --- ®ox) maps ®CS(R) to @ /~1CS(R) ® CS*/(R). The computation of
the order also follows by induction using the fact that by Lemma4, P (o) and P (o) have
the same order derived in Theorem 3. O

We are now ready to define discrete Chen sums of symbols. Combining Lemma 5

with Lemma 4 shows that the cut-off sum of the symbol Py o - - - 0 Pr_1(0] ® - - - ® 0%)
is well defined so that we can set the following definition.

Definition 12. For oy, ..., o0 € CS(R), we call

Chen
20'1@@0]( ::Z'Plo...opk_l(o'l®...®0‘k)

the cut-off Chen sum of 0 ‘=01 ® - -+ Q 0.

Remark 13. Given the expression of the order of Pjo---0Pr_1(01 ® - - ® o) exp-
licited in the above lemma, it converges whenever oy < —1 and o; < —1 forall i # 1
in which case we have that

Chen Chen

is an ordinary discrete Chen sum.

6.4. Multiple zeta functions. We now apply the above results to
o =0y = x (&) &I,

where s1, ..., s; are real numbers and x is a cut-off function which vanishes around
0 and such that x (§) = 1 for |£€] > 1. We want to generalise Corollary 3 to integrals
of tensor products ®f:10i (s;) relating them to multiple zeta functions (investigated in
[H] and [Z], see also [C] or [Wa] for a review on the subject). Applying the results of
the previous paragraph to the o;’s of order —s; leads to the following result which gives
back a known domain of convergence for multiple zeta functions.



Shuffle Relations for Regularised Integrals of Symbols 49

Theorem 7. If s; > 1 and s; > 1 fori =2, ...,k the discrete Chen sum > “"" o, ®
- ® oy, converges and is proportional to the multiple zeta function:

Zasl®~~®ask=2kf(s1,...,sk) =2k Z n ket

I<ng<ng_1=<--=<nj

It extends to all s; € R by a cut-off Chen integral of the type defined above:
Chen
Sty vty SK) :=2—kZ 05 ® - ® 0y,

where we have used the same symbol for the extended mutiple ¢ -function.

Proof. 1t follows immediately from applying the results of the previous paragraph to
o; = oy, of order —s;. O

As a consequence we can also write:
oo
L(s1s0) =D, Pro-o P10y ® -+ ®0y)(n),

where

P(f)(m):= D" f(m), VfeFN,C)

1<n<m
and
P : & Map(N, C) - &/_ Map(N, C)
Pi(f)(ni,....nj) = ﬁ(f(nl,...,nj,-))(nj).

If s1 > 1 and s; > 1 fori # 1 then clearly, we have ordinary sums:
oo
E(st,ns) =D Pro-oPi(o ® - ®0y)(n).

Remark 14. e One can check that the same type of results holds with the usual multiple
zeta functions

s _
(S, ..., S8) 1= Z nk"-nnlsl

1<np<np_1<---<ny

instead of E(sl, ..., 8¢) provided the large inequalities between the |§;|’s and |n;|’s
are replaced by strict ones.

e The above results can be extended® to complex numbers z; instead of real numbers
s; replacing s; > land s; > 1,i # 1 in the convergence assumptions by Re(z;) > 1
and Re(z;) > 1,i # 1.

5 via an extra statement on Chen sums of holomorphic families which we omit here, but which can be
established along the same lines as was the meromorphicity result on Chen integrals of holomorphic families.
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The well known “second shuffle relations” for multiple zeta functions [ENR] come from
the natural partition of the domain:

Pipi={x; > >x; >0} x {xgq1 > -+ > xpqy > 0} CJ0, +00[*

into:
Pa= ] P,
oemix sh(k,l)

where mix sh(k, /) stands for the mixable shuffles, i.e. the surjective maps o from
{1,...k+1} onto {1,...m(c)} (for some m(c) < k+1)such that oy < --- < oy
and 041 < - -+ < Ok4. The domain P, is defined by:

Ps ={(x1, ..., Xks1) [ Xo, > Xo,,, if 0, # 0411 and x, = X471 if 0, = 041}
The second shuffle relations are:

Gt ) Gkl k) = D o) (Zo), (30)

oemix sh(k,l)
where Z, is the m(o)-uple defined by:
Z(0)) = > zi.
ie{l,...k+l}, 0 ()=j

For k = = 1 they read:
$(z1)¢(z2) = ¢ (21, 22) + £ (22, 21) + (21 + 22).

Using the identification JC]R 0,(§)dé = 2¢(z) derived previously we can indeed compute:

2
s = [ £, D)

i=1

:J[ D(o,,) D(oy,) +][ D(oy,) D(o,,)
R |€1<182] R 2] <|&1]

+][ D(o;,) ® D(oz,)
1&11=1&2

= 4¢(z1, 22) +4¢ (22, 21) + 48 (21 + 22).

The verification of the general formula (30) goes along the same lines.
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