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Abstract: In this paper, we prove that the Faddeev energy E1 at the unit Hopf charge
is attainable. The proof is based on utilizing an important inequality called the sub-
stantial inequality in our previous paper which describes how the Faddeev energy splits
into its sublevels in terms of energy and topology when compactness fails. With the
help of an optimal Sobolev estimate of the Faddeev energy lower bound and an upper
bound of E1, we show that E1 is attainable. For the two-dimensional Skyrme model,
we prove that the substantial inequality is also valid, which allows us to greatly improve
the range of the coupling parameters for the existence of unit-charge solitons previ-
ously guaranteed in a smaller range of the coupling parameters by the validity of the
concentration-compactness method.

1. Introduction

Global energy minimizers are important in field theory as they provide leading-order
contributions to the transition amplitudes calculated through functional integrals or parti-
tion functionals for the quantization of fundamental particle systems [9]. Some prototype
examples include kinks, vortices, monopoles, and instantons, which are static solitons
characterized by various topological invariants. Except for the one-dimensional (1D)
kink case which is completely integrable, in all the other cases, global energy minimiz-
ers can only be obtained in the so-called BPS limits. The main difficulty we encounter
in this kind of problems is a lack of compactness because the energy functionals are
all defined over the full Euclidean spaces. For the well-known Skyrme model and the
Faddeev model, the situation is even less transparent because these models do not have
a BPS-limit structure. Therefore, one is forced to study the direct minimization problem
for these models. From an analytic point of view, the first temptation would be to try
to see whether the concentration-compactness method [14] works because this method
is developed to tackle similar minimization problems defined over full spaces which
says that a minimizing sequence converges (hence compactness holds) if after suitable
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translations it concentrates in a local region (that is, if concentration takes place). For
our problems, however, it is not directly possible to establish such a concentration-
compactness picture. In fact, we will have to be forced to study the situation when
concentration-compactness fails and an energy splitting or dichotomy takes place. It
is interesting that the topological structure of these problems now become important
which allows us to deduce concentration-compactness indirectly from an inequality we
call “the substantial inequality” which originates essentially from assuming dichotomy
or energy splitting. We have seen in [12] that this substantial inequality method enabled
us to establish a series of existence theorems for the Faddeev model [6–8] and the 3D
Skyrme model [18–21, 27], which were previously unavailable. In this paper, we will use
this method to establish the much anticipated existence theorem that the Faddeev energy
E1 at the unit Hopf charge is attainable. Besides, we will use the same method to estab-
lish some new existence results for the 2D Skyrme model which considerably improve
the existence result previously obtained in [13] using the concentration-compactness
method.

The rest of this paper is organized as follows. In the next section, we recall the
existence problem of the Faddeev model and prove that the Faddeev energy E1 at the
unit Hopf charge is attainable by using the substantial inequality method. This method
relies on some suitable energy estimates which are consequences of a specific topologi-
cal energy lower bound and an upper estimate for E1, which will be elaborated in detail
in Sect. 3 and Sect. 4. In Sect. 5, we study the 2D Skyrme model and we prove that the
substantial inequality is valid. In particular, we show that the minimization problem of
the 2D Skyrme model has a solution within a suitable (but unknown) topological class.
In Sect. 6, we use the substantial inequality method as we do for the Faddeev model
to show the existence of a least-positive-energy minimizer for the 2D Skyrme model.
We also show that an energy minimizer for the 2D Skyrme model exists at the unit
topological degree when the product of the coupling constants lies in an explicit interval
which greatly improves the interval we obtained in [13] by using the concentration-com-
pactness method directly. We also remark that the values of the coupling constants in
the Faddeev model and Skyrme model are not important for the understanding of their
minimization problems.

2. Minimization for the Faddeev Model

Let n = (n1, n2, n3) : R
3 → S2 be a map (from the Euclidean 3-space to the unit

2-sphere) and Fjk(n) = n · (∂ j n ∧ ∂kn) ( j, k = 1, 2, 3) the induced (Faddeev) magnetic
field. We follow [25] to use the renormalized Faddeev energy

E(n) =
∫

R3

{ ∑
1≤k≤3

|∂kn|2 +
1

2

∑
1≤k<�≤3

F2
k�(n)

}
dx

=
∫

R3

(
|∇n|2 +

1

2
|F|2

)
dx . (2.1)

Here F = F(n) = ( 1
2ε jkk′

Fkk′(n)) = (F23(n),−F13(n), F12(n)). The finite-energy
condition implies that n approaches a constant vector n∞ at infinity of R

3. Hence we
may compactify R

3 into S3 and view the fields as maps from S3 to S2. As a consequence,
we see that each finite-energy field configuration n is associated with an integer, Q(n),
in π3(S2) = Z. In fact, such an integer Q(n) is known as the Hopf invariant which has
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the following integral characterization due to Whitehead [26]: Since the vector field F
is divergence free, we can express F in terms of a vector potential A, F = ∇ ∧ A. Then
the Hopf invariant or charge Q(n) of the map n may be evaluated by the integral

Q(n) = 1

16π2

∫
R3

A · F dx, (2.2)

which is also a Chern–Simons index (see [10] for an interesting discussion from the
point of view of a physicist) and may be interpreted as a linking number.

We are interested in the following topologically constrained minimization problem

Em = inf{E(n) | E(n) < ∞, Q(n) = m}. (2.3)

For m �= 0, the solutions of (2.3) give rise to static solitons known as the Faddeev knots
[8, 2–4]. In [12], we proved the existence of an infinite subset S of the set of all integers
Z such that (2.3) is solvable for any m ∈ S. Moreover, we showed also that m0 ∈ S,
where m0 �= 0 is such that Em0 = inf{Em | m ∈ Z\{0}}. We were unable to further
describe the set S. In this paper, we shall establish the much anticipated result, 1 ∈ S,
for the above Faddeev problem [7]. That is, we shall prove

Theorem 2.1. The Faddeev minimization problem (2.3) has a solution for m = ±1.

The proof of this theorem follows from an inequality we derived in [12], which we
called the “substantial inequality” and some suitable refined energy estimates.

Substantial Inequality [12]. For any m ∈ Z\{0}, there is a decomposition

m = m1 + · · · + m�, ms ∈ S\{0}, s = 1, . . . , �, (2.4)

so that the following sub-additivity relation

Em ≥ Em1 + · · · + Em�
(2.5)

holds.
Note that the two ingredients of (2.4) and (2.5) are that the former expresses a “charge-

conservation” law and the latter says that the total mass of a multiple-particle system is
at least equal to the sum of the masses of the particles that the system is made of plus a
possible amount of binding energy. More precisely, such an energy splitting process may
be compared with the familiar nuclear fission process. Indeed, when a nucleus undergoes
fission spontaneously, it splits into several smaller fragments (or substances). The sum
of the masses of these fragments is less than the original mass of the nucleus and the
“missing” mass has been converted into energy according to Einstein’s equation. With
this interpretation, the substantial inequality may also be called the “mass inequality”
or the “fission inequality.” We thank Michael Kiessling and Zhengchao Han for their
valuable comments on this interpretation.

Lower and Upper Energy Estimates. The following energy lower bound holds:

E(n) ≥ 33/88
√

2π2|Q(n)|3/4. (2.6)

Besides, the energy E1 satisfies the upper estimate

E1 ≤ 32
√

2π2. (2.7)
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Remarks. The lower bound (2.6) was first derived by Vakulenko and Kapitanski [24]
in the form E(n) ≥ C |Q(n)|3/4 with C > 0 an unspecified universal constant. Since
(2.6) is an important inequality for the Faddeev model, we shall go over the details of its
derivation in the next section. When we do this, we give close attention at all the steps to
keeping the optimality of various constants encountered. Other related discussions can
be found in [11, 17]. The upper bound (2.7) was obtained by Ward [25]. In Sect. 4, we
shall follow the steps sketched in [25] to arrive at (2.7).

Proof of Theorem 1.1. Suppose that E1 is not attainable. Then in the minimization
process for E1 concentration does not occur and there holds the nontrivial energy split-
ting in view of the substantial inequality (2.6) by [12]:

E1 ≥ Em1 + · · · + Em�
, (2.8)

1 = m1 + · · · + m�, ms ∈ Z \ {0}, s = 1, . . . , �, (2.9)

with � ≥ 2. Since each Ems > 0 in view of (2.6), we see from (2.8) and the fact E1 = E−1
that ms �= ±1 for s = 1, . . . , �. In view of (2.9), one of the integers, m1, . . . , m�, must be
an odd number. Assume that m1 is odd. Then |m1| ≥ 3. Of course, |m2| ≥ 2. Therefore
(2.7) and (2.6) lead us to

32
√

2π2 ≥ E1 ≥ Em1 + Em2 ≥ 33/88
√

2π2(33/4 + 23/4), (2.10)

which is a contradiction and the proof of the theorem follows.

3. Vakulenko–Kapitanski Inequality

First recall the sharp Sobolev inequality [1, 23] for a scalar function f ∈ W 1,p(Rn): if
1 < p < n and 1/q = 1/p − 1/n, then

C0‖ f ‖q ≤
(∫

Rn
|∇ f |p dx

)1/p

, (3.1)

where the best constant C0 is defined by

C0 = n1/p
(

n − p

p − 1

)1−1/p(
ωn

�( n
p )�(n + 1 − n

p )

�(n)

)1/n

, (3.2)

with ωn the n-dimensional volume enclosed by the unit sphere Sn−1 in R
n , and ‖ f ‖q

denotes the standard Lq(Rn)-norm. Since we need n = 3 and p = 2, we must have
q = 6 and (3.1) and (3.2) give us the sharp Sobolev inequality in 3D (see also [16]):

‖ f ‖6 ≤
(

4

3
√

3π2

)1/3 (∫
R3

|∇ f |2 dx

)1/2

. (3.3)

We now consider the vector fields A and F defined in (2.1) and (2.2). Following [24],
we have ∣∣∣∣

∫
R3

A · F dx

∣∣∣∣ ≤ ‖A‖6‖F‖6/5 ≤ ‖A‖6‖F‖2/3
1 ‖F‖1/3

2 . (3.4)
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Note that we always use ‖A‖p to denote the L p(R3)-norm for magnitude (scalar)
function |A| of the vector field A.

Using (3.3), we have

‖A‖6 = ‖ |A| ‖6 ≤
(

4

3
√

3π2

)1/3 (∫
R3

| ∇|A| |2 dx

)1/2

≤
(

4

3
√

3π2

)1/3 (∫
R3

|∇A|2 dx

)1/2

, (3.5)

where |∇A|2 = ∑ |∇ A j |2. On the other hand, neglecting boundary terms at infinity
when integrating, we have the identity

∫ |∇A|2 = ∫
(∇ · A)2 +

∫ |∇ ∧ A|2 (in [24],
there is an additional erroneous factor 1/2 on the right-hand side of this relation). Hence
restricting to divergence-free vector field A as in [24] and using the relation F = ∇ ∧ A,
we see that (3.5) becomes

‖A‖6 ≤
(

4

3
√

3π2

)1/3

‖F‖2. (3.6)

Inserting (3.6) into (3.4), we obtain

∣∣∣∣
∫

R3
A · F dx

∣∣∣∣ ≤
(

4

3
√

3π2

)1/3

‖F‖2/3
1 ‖F‖4/3

2 . (3.7)

We now estimate ‖F‖1 and ‖F‖2 in terms of the Faddeev energy E(n) given in (2.1).
For convenience, we make the decomposition E = ED + ES where

ED(n) =
∫

R3
|∇n|2 dx and ES(n) = 1

2

∫
R3

|F|2 dx (3.8)

stand for the Dirichlet-type energy and Skyrme-type energy, respectively.
Specializing the argument of Ward [25] based on a paper of Manton [15] using

symmetric polynomials, we have |F| ≤ |∇n|2/2. In fact, let λ1, λ2, λ3 be the eigen-
values of the symmetric matrix (∇n j · ∇nk). Then there holds the identity

λ1λ2 + λ2λ3 + λ1λ3 =
3∑

1≤ j<k≤3

det

(∇n j · ∇n j ∇n j · ∇nk
∇nk · ∇n j ∇nk · ∇nk

)

=
3∑

1≤ j<k≤3

|∂ j n ∧ ∂kn|2 = |F|2. (3.9)

It can be directly checked that n lies in the nullspace of the matrix (∇n j · ∇nk).
Therefore this matrix has a zero eigenvalue. Assume λ3 = 0. We get from (3.9) that
|F| = √

λ1λ2 ≤ 1
2 (λ1 + λ2) = 1

2 the trace of (∇n j · ∇nk) = 1
2 |∇n|2 as stated.
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Hence ‖F‖1 ≤ 1
2

∫ |∇n|2 = 1
2 ED(n). Besides, it is obvious that ‖F‖2

2 = 2ES(n). As a
consequence, we can update (3.7) into the form

∣∣∣∣
∫

R3
A · F dx

∣∣∣∣ ≤
(

4

3
√

3π2

)1/3(1

2
ED(n)

)2/3

(2ES(n))2/3

≤
(

4

3
√

3π2

)1/3(1

2
E(n)

)4/3

= (12
√

3π2)−1/3(E(n))4/3, (3.10)

which establishes (2.6).

4. An Upper Estimate for E1

In this section, we follow the steps sketched in Ward [25] to derive (2.7). Note that an
intermediate result (see (4.18) below) we obtain is different from that stated in [25] due
to our choice of the stereographic projection for the 3-sphere. However, this result does
not affect the final estimate (2.7).

Energy of the Hopf Map from S3
R into S2. Consider the spheres in R

4 and R
3 given in

terms of their respective coordinate variables by

S3
R =

{
(x1, x2, x3, x4) ∈ R

4 | x2
1 + x2

2 + x2
3 + x2

4 = R2
}

,

S2 =
{
(y1, y2, y3) ∈ R

3 | y2
1 + y2

2 + y2
3 = 1

}
.

The Hopf map 	 : S3
R → S2, 	(x1, x2, x3, x4) = (y1, y2, y3), may be defined by

y1 = 2

R2 (x1x3 + x2x4), y2 = 2

R2 (x2x3 − x1x4), y3 = 1

R2

(
x2

4 + x2
3 − x2

2 − x2
1

)
.

(4.1)

This map has the Hopf index one. Using the “Hopf” coordinates (θ, s, t) for which

x1 = R sin

(
θ

2

)
sin s, x2 = R sin

(
θ

2

)
cos s, x3 = cos

(
θ

2

)
sin t,

x4 = cos

(
θ

2

)
cos t, 0 ≤ θ ≤ π, −π ≤ s ≤ π, −π ≤ t ≤ π, (4.2)

the Hopf map can be represented in view of (4.1) and (4.2) simply as

	(θ, s, t) = (sin θ cos(s − t),− sin θ sin(s − t), cos θ). (4.3)

So |	θ |2 = 1, |	s |2 = sin2 θ , and |	t |2 = sin2 θ . Besides, with the notation x =
(x1, x2, x3, x4) and the coordinate representation (4.2), we can calculate the induced met-
ric components for S3

R directly: gθθ = R2/4, gss = R2 sin2(θ/2), gtt = R2 cos2(θ/2),
and gθs = gθ t = gst = 0. Consequently, gθθ = 4/R2, gss = 1/R2 sin2(θ/2),
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gtt = 1/R2 cos2(θ/2), gθs = gθ t = gst = 0, and the Dirichlet energy density of
the Hopf map over S3

R , ED(	; S3
R) takes the constant value,

ED

(
	; S3

R

)
= g jk∂ j	 · ∂k	 ( j, k = θ, s, t) = 8

R2 , (4.4)

as stated in [25]. Similarly, we can evaluate the Skyrme energy density, ES(	; S3
R). We

easily see in view of (4.3) that the respective components of the Faddeev magnetic field
Fjk(	) = 	 · (∂ j	 ∧ ∂k	) are Fθs(	) = − sin θ, Fθ t (	) = sin θ , and Fst (	) = 0.
Therefore

ES

(
	; S3

R

)
= 1

4
g j�gkm Fjk(	)F�m(	) = 8

R4 , (4.5)

also as stated in [25]. Integrating (4.4) and (4.5) over S3
R and using the fact that the total

volume of S3
R is 2π2 R3, we arrive at the following Ward’s number [25] for the intrinsic

Faddeev energy of the Hopf map 	 : S3
R → S2:

E
(
	; S3

R

)
≡

∫
S3

R

(
ED(	; S3

R) + ES

(
	; S3

R

))
dVS3

R
= 16π2

(
R +

1

R

)
, (4.6)

where we use dVS3
R

to denote the canonical volume element of S3
R .

Stereographic Coordinates. We need the stereographic projection from S3
R to R

3 so that
the inverse of this projection can be viewed as a specific coordinate chart for S3

R :

x1 = 2R2

r2 + R2 ξ, x2 = 2R2

r2 + R2 ζ, x3 = 2R2

r2 + R2 η, x4 =
(

r2 − R2

r2 + R2

)
R,

(ξ, ζ, η) ∈ R
3, r2 = ξ2 + ζ 2 + η2. (4.7)

In terms of this coordinate system, we see that the respective components of the
canonical metric tensor of S3

R become gξξ = gζ ζ = gηη = 4R4/(r2 + R2)2 and
gξζ = gξη = gζη = 0. Consequently, dVS3

R
= (8R6/(r2 + R2)3)dξdζdη, gξξ = gζ ζ =

gηη = (r2 + R2)2/4R4, and gξζ = gξη = gζη = 0. Now let n : R
3 → S2 be a map

of finite Faddeev energy, which may be viewed as a map from S3
R into S2 represented

through the above stereographic coordinates. We have

ED(n; S3
R) ≡

∫
S3

R

g jk∂ j n · ∂kn dVS3
R

( j, k = ξ, ζ, η)

=
∫

R3

2R2

r2 + R2 |∇n|2 dξdζdη

→ 2
∫

R3
|∇n|2 dξdζdη as R → ∞, (4.8)
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which is twice the standard Dirichlet energy over R
3. Similarly, for the Skyrme energy

part, we have

ES(n; S3
R) ≡

∫
S3

R

1

4
g j�gkm Fjk(n)F�m(n) dVS3

R
( j, k = ξ, ζ, η)

= 1

2

∫
R3

(r2 + R2)

R2

(
1

4
δ j�δkm Fjk(n)F�m(n)

)
dξdζdη

→ 1

4

∫
R3

|F(n)|2 dξdζdη as R → ∞, (4.9)

which is half of the standard Skyrme energy over R
3. Hence we arrive at the weighted

limit

E(n) = lim
R→∞

{
1

2
ED

(
n; S3

R

)
+ 2ES

(
n; S3

R

) }
. (4.10)

Note that the above weighted limit is a result of our choice of the stereographic
projection (4.7) which maps S3

R onto the extended plane through its equator. How-
ever, when we use the stereographic projection which maps S3

R onto the extended plane
tangential to its north pole, we shall not need to place weights and we get the same
intermediate result as that stated in Ward [25], instead of (4.18) below.

Upper Bound by Rescaling/Dilation. From (4.6), we see that we cannot take the R → ∞
limit directly for the Hopf map. On the other hand, however, the limit (4.10) suggests that
for a suitably chosen map, the limit R → ∞ taken over S3

R may allow us to recover the
Faddeev energy over the Euclidean space R

3. In the following, we use a rescaling/dila-
tion argument of Ward [25] to get a suitable Hopf map over S3

R which allows us to take
the R → ∞ limit. In this way, we arrive at the upper bound (2.7) stated for E1 in [25].

We again use (ξ, ζ, η) to denote the stereographic coordinates defined in (4.7) and 	

the Hopf map from S3
R to S2 defined in (4.1). We introduce the deformed (dilated) map

	λ : S3
R → S2 given by

	λ(ξ, ζ, η) = 	(λξ, λζ, λη) = (y1, y2, y3) ∈ S2, (4.11)

where, in view of (4.1) and (4.7), the image coordinates y1, y2, y3 are given by

y1 = 4λR

(λ2r2 + R2)2 (2λRξη + [λ2r2 − R2]ζ ),

y2 = 4λR

(λ2r2 + R2)2 (2λRζη − [λ2r2 − R2]ξ),

y3 = 1 − 8λ2 R2

(λ2r2 + R2)2 (η2 − r2). (4.12)
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Let R = λa. Then the above representation simplifies to

y1 = 4a

(r2 + a2)2 (2a ξη + [r2 − a2]ζ ),

y2 = 4a

(r2 + a2)2 (2a ζη − [r2 − a2]ξ),

y3 = 1 − 8a2

(r2 + a2)2 (η2 − r2), (4.13)

which is the Hopf map from S3
a to S2. This property allows us to evaluate the energy

densities on S3
R easily. Indeed, we have in view of the conformality of the stereographic

coordinates and (4.13) the relations

ED

(
	λ; S3

R

)
= (r2 + R2)2

4R4 · 4a4

(r2 + a2)2 ED

(
	; S3

a

)

=
(

r2 + R2

r2 + a2

)2

· a4

R4 · 8

a2 , (4.14)

ES

(
	λ; S3

R

)
=

(
(r2 + R2)2

4R4

)2

·
(

4a4

(r2 + a2)2

)2

ES

(
	; S3

a

)

=
(

r2 + R2

r2 + a2

)4

· a8

R8 · 8

a4 . (4.15)

Hence, integrating (4.14) and (4.15) against the volume element dVS3
R

= (8R6/(r2 +

R2)3)dξdζdη over the (ξ, ζ, η)-space R
3, we obtain

ED

(
	λ; S3

R

)
= 64π2λR

(1 + λ)2 , ES

(
	λ; S3

R

)
= 8π2(1 + λ2)

λR
. (4.16)

It can be checked that, as a function of λ > 0, the global minimum of

Ẽ
(
	λ; S3

R

)
= 1

2
ED

(
	λ; S3

R

)
+ 2ES

(
	λ; S3

R

)
(4.17)

is

min
{

Ẽ
(
	λ; S3

R

)
| λ > 0

}
= 32

√
2π2 − 32π2

R
, (4.18)

which is achieved at

λ = λR ≡ R√
2

− 1 +

√
1

2
R2 − √

2R. (4.19)

With this choice of the dilation parameter λ = λR , the Hopf map (4.12) under the
(ξ, ζ, η)-coordinates can be rewritten as

y R
1 = 4(R/λR)

(r2 + (R/λR)2)2 (2(R/λR)ξη + [r2 − (R/λR)2]ζ ),

y R
2 = 4(R/λR)

(r2 + (R/λR)2)2 (2(R/λR)ζη − [r2 − (R/λR)2]ξ),

y R
3 = 1 − 8(R/λR)2

(r2 + (R/λR)2)2 (η2 − r2). (4.20)
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Using (4.19) in (4.20), we see that, as R → ∞, the map y R = (y R
1 , y R

2 , y R
3 ) : R

3 → S2

converges rapidly to � ◦ P−1 ≡ N : R
3 → S2, where � is the Hopf map from S3

1/
√

2
to

S2 defined in (4.1) and P : S3
1/

√
2

→ R
3 is the stereographic projection defined in (4.7),

respectively, with R = 1/
√

2. Hence, setting λ = λR in (4.17) and letting R → ∞, we
obtain by virtue of (4.18) that

E(N) =
∫

R3

{
|∇N|2 +

1

4
δ j�δkm Fjk(N)F�m(N)

}
dξdζdη

= lim
R→∞

∫
R3

{
R2

r2 + R2 |∇ y R |2 +
(r2 + R2)

R2 · 1

4
δ j�δkm Fjk(y R)F�m(y R)

}
dξdζdη

= lim
R→∞

{
1

2
ED

(
	λR ; S3

R

)
+ 2ES

(
	λR ; S3

R

) }
= 32

√
2π2. (4.21)

Of course, Q(N) = 1. Therefore the upper bound (2.7) follows.

5. Two-Dimensional Skyrme Model

With the notation in [13], the two-dimensional Skyrme energy functional governing a
configuration map u : R

3 → S2 is given by

E(u) =
∫

R2

{
1

2
|∇u|2 +

λ

4
|∂1u ∧ ∂2u|2 +

μ

16
|n − u|4

}
dx, (5.1)

where n = (0, 0, 1) is the north pole of S2 in R
3, and λ,μ are positive coupling

constants. Finite-energy condition implies that u tends to n as |x | → ∞. Therefore u
may be viewed as a map from S2 to itself which defines a homotopy class in π2(S2) = Z,
whose integer representative is the Brouwer degree of u with the integral representation

deg(u) = 1

4π

∫
R2

u · (∂1u ∧ ∂2u) dx . (5.2)

Like before, we are interested in the minimization problem

Ek = inf{E(u) | E(u) < ∞, deg(u) = k}, (5.3)

where k ∈ Z. Of course, Ek = E|k| for all k ∈ Z. The main existence result of [13]
states that if the coupling constants λ and μ satisfy

λμ ≤ 48, (5.4)

then the minimization problem (5.3) has a solution for k = ±1.
A direct consequence of the form of the energy (5.1) and the topological integral

(5.2) is the following standard topological energy lower bound:

1

2

∫
R2

|∇u|2 dx ≥ 4π | deg(u)|. (5.5)
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Hence, it follows from (5.5) that if deg(u) �= 0, then

E(u) > 4π | deg(u)|. (5.6)

Besides, using stereographic projection of S2 as a trial field configuration, it can be
shown [13] that there holds the following upper estimate for E1:

E1 ≤ 4π

(
1 +

1

2

√
λμ

3

)
. (5.7)

Minimization and Concentration-Compactness. Let {un} be a minimizing sequence of
the problem (5.3). Then, passing to a subsequence if necessary, we may assume that
un → some u weakly in a well-understood sense and (cf. [5, 22])

E(u) ≤ lim inf
n→∞ E(un) = Ek . (5.8)

Hence, in order to show that (5.3) is solved by the map u, it remains to show that u
carries the same topology, deg(u) = k, which is the main difficulty one encounters in
this type of problems.

For the minimizing sequence {un}, set

fn(x) =
(

1

2
|∇un|2 +

λ

4
|∂1un ∧ ∂2un|2 +

μ

16
|n − un|4

)
(x), n = 1, 2, . . . . (5.9)

Then fn ∈ L1(R2), ‖ fn‖L1 ≥ 4π |k|, and we can assume ‖ fn‖L1 ≤ Ek + 1 (say),
n = 1, 2, . . ..

Use D(y, R) to denote the disk in R
2 centered at y and of radius R > 0: D(y, R) =

{x ∈ R
2 | |x − y| < R} (we also use the simplified notation DR = {x ∈ R

2 | |x | < R}).
Then, according to Lions [14], one of the following three situations must occur (principle
of concentration-compactness):

(a) Compactness: There is a sequence {yn} in R
2 such that, for any ε > 0, there exists

an R > 0, such that

sup
n

∫
R2\D(yn ,R)

fn(x) dx ≤ ε. (5.10)

(b) Vanishing: For any R > 0,

lim
n→∞

(
sup
y∈R2

∫
D(y,R)

fn(x) dx

)
= 0. (5.11)

(c) Dichotomy: There is a sequence {yn} ⊂ R
2 and a positive number t ∈ (0, 1) such

that for any ε > 0, there is an R > 0 and a sequence of positive numbers {Rn} satisfying
limn→∞ Rn = ∞ so that

∣∣∣∣
∫

D(yn ,R)

fn(x) dx − t‖ fn‖L1

∣∣∣∣ ≤ ε,

∣∣∣∣
∫

R2\D(yn ,Rn)

fn(x) dx − (1 − t)‖ fn‖L1

∣∣∣∣ ≤ ε. (5.12)
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It is not hard to show that if (a) is the case, then (5.3) has a solution. Besides, it can
also be shown that (b) does not happen for k �= 0. See [13]. Therefore, we are left with
the remaining case (c) to consider.

The Substantial Inequality Implied by a Technical Lemma. Let � be a subdomain in R
2

and define

E(u;�) =
∫

�

{
1

2
|∇u|2 +

λ

4
|∂1u ∧ ∂2u|2 +

μ

16
|n − u|4

}
dx . (5.13)

In [13], we proved the following technical lemma for the functional E(u;�):

Lemma 5.1. For any ε ∈ (0, 1) and R ≥ 1, let u : D2R \ DR → S2 satisfy

E(u; D2R \ DR) < ε. (5.14)

Then there is a map ũ : D2R \ DR → S2 such that

(i) ũ|∂ DR = u,

(ii) ũ|∂ D2R = n,

(iii) E(ũ; D2R \ DR) < Cε1/2 where C > 0 is an absolute constant independent of R,

ε, and u.

Likewise,one can also obtain a modified map ũ : D2R \DR → S2 such that ũ|∂ DR =n,

ũ|∂ D2R = u, and (iii) holds as well.

The above lemma seems to be naturally true for higher dimensional problems such
as the Faddeev problem and the (classical 3D) Skyrme problem. However, we are only
able to prove it in our 2D situation here. It will be seen that this lemma is crucial in
our proof of the substantial inequality for the 2D Skyrme model as stated in the next
theorem.

Theorem 5.2. Let k be a nonzero integer and {un} a minimizing sequence of the problem
(5.3). Then either (a) holds (hence a subsequence of {un} converges weakly to a solution
of (5.3)) or there are nonzero integers k1 and k2 such that

k = k1 + k2 and Ek ≥ Ek1 + Ek2 . (5.15)

As a consequence, if S denotes the subset of Z \ {0} for which every member k ∈ S

makes (5.3) solvable, then S �= ∅. In particular, for any k ∈ Z \ {0}, there are integers
k1, . . . , k� ∈ S such that

k = k1 + · · · + k� and Ek ≥ Ek1 + · · · + Ek�
. (5.16)

Proof. Suppose (c) (dichotomy) occurs. Then, after making translations, we may assume
that there is a number t ∈ (0, 1) such that for any ε > 0 there is an R > 0 and a sequence
of positive numbers {Rn} satisfying limn→∞ Rn = ∞ so that∣∣∣∣

∫
DR

fn(x) dx − t E(un)

∣∣∣∣ < ε, (5.17)

∣∣∣∣∣
∫

R2\DRn

fn(x) dx − (1 − t)E(un)

∣∣∣∣∣ < ε. (5.18)

Without loss of generality, we may assume that Rn > 2R for all n.
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From (5.17), (5.18), and the decomposition

E(un) =
∫

DR

fn(x) dx +
∫

R2\DRn

fn(x) dx + E(un; DRn \ DR), (5.19)

we have

E(un; D2R \ DR) ≤ E(un; DRn \ DR) < 2ε. (5.20)

Using (5.20) and Lemma 5.1, we can find maps vn and wn from R
2 into S2 such that

vn = un in DR, vn = n in R
2 \ D2R, E(vn; D2R \ DR) < Cε1/2,

wn = un in R
2 \ DRn , wn = n in DRn/2, E(wn; DRn \ DRn/2) < Cε1/2,

where C > 0 is a constant independent of R, un , and ε. Therefore, with the notation
F(u) = u · (∂1u ∧ ∂2u), we have

4π |deg(un) − (deg(vn) + deg(wn))|
≤

∫
DRn \DR

|F(un)| dx +
∫

D2R\DR

|F(vn)| dx +
∫

DRn \DRn/2

|F(wn)| dx

≤ E(un; DRn \ DR) + E(vn; D2R \ DR) + E(wn; DRn \ DRn/2)

≤ 2ε + 2Cε1/2.

Since ε can be made arbitrarily small and deg(un), deg(vn), and deg(wn) are integers,
we may assume

k = deg(un) = deg(vn) + deg(wn), ∀n. (5.21)

On the other hand, since

4π | deg(vn)| ≤ E(vn) = E(un; DR) + E(vn; D2R \ DR)

≤ E(un) + Cε1/2 ≤ (k + 1) + Cε1/2,

we see that {deg(vn)} is bounded.
We claim that deg(vn) �= 0 for n sufficiently large. Indeed, if deg(vn) = 0 for infi-

nitely many n’s, then by going to a subsequence when necessary, we may assume that
deg(vn) = 0 for all n. Thus in view of (5.21) we see that deg(wn) = k for all n and

E(wn) ≤ E(un; R
2 \ DRn ) + Cε1/2 =

∫
R2\DRn

fn(x) dx + Cε1/2. (5.22)

Using (5.18) and (5.22), we arrive at

Ek ≤ lim sup
n→∞

E(wn) ≤ (1 − t) lim
n→∞ E(un) + ε + Cε1/2 ≤ (1 − t)Ek + ε + Cε1/2.

(5.23)

Since 0 < t < 1 and ε can be made arbitrarily small, (5.23) implies Ek = 0 which
contradicts the topological lower bound Ek ≥ 4π |k| as stated in (5.6).
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Similarly, we see that the sequence {deg(wn)} is also bounded and deg(wn) �= 0 for
n sufficiently large.

Hence, by going to subsequences if necessary, we may assume that there are integers
k1 �= 0 and k2 �= 0 such that

deg(vn) = k1 and deg(wn) = k2 ∀n. (5.24)

Now we have

E(vn) + E(wn)

= E(un; DR) + E(un; R
2 \ DRn ) + E(vn; D2R \ DR) + E(wn; DRn \ DRn/2)

≤ E(un) + 2Cε1/2. (5.25)

Therefore, it follows from (5.25) directly that

Ek1 + Ek2 ≤ lim
n→∞ E(un) + 2Cε1/2 = Ek + 2Cε1/2. (5.26)

Combining (5.21), (5.24), and (5.26), we see that (5.15) is established.
If (a) (compactness) does not occur at k = k1 or k = k2 for the minimization

problem (5.3), we can continue our splitting in the above fashion. This splitting proce-
dure will have to stop after finitely many steps because Ek is a finite number and the
splitting cannot go on forever. In other words, we will have to stop at an inequality of the
type Ek ≥ Ek1 + · · · + Ek�

with k = k1 + · · · + k� (ks �= 0, s = 1, . . . , �) and no splitting
of the energies Ek1 , . . . , Ek�

will be possible. Therefore, (a) (compactness) must occur
for the minimization problem (5.3) for k = k1, . . . , k = k�. In other words, (5.3) is
solvable for k = k1, . . . , k = k� and (5.16) is established as well.

6. Least-Positive-Energy and Unit-Charge Solitons

Using the inequality Ek ≥ 4π |k| (cf. (5.6)), we see that {Ek}k∈Z\{0} ⊂ [4π,∞) and that
there is an integer k0 ≥ 1 such that

Ek0 = min{Ek | k ∈ Z \ {0}}. (6.1)

That is, Ek0 is the least possible positive energy of the 2D Skyrme model (5.1). For this
energy value, we have

Theorem 6.1. The least positive energy Ek0 of the 2D Skyrme model is attainable. In
other words, for k = k0, the minimization problem (5.3) has a solution.

Proof. We use Theorem 5.2. If (a) (compactness) does not occur when taking k = k0
in the minimization problem (5.3), then in view of Theorem 5.2 we can find two non-
zero integers k1 and k2 such that Ek0 ≥ Ek1 + Ek2 , which is false because Ek1 ≥ Ek0 ,
Ek2 ≥ Ek0 , and Ek0 > 0.

Next, we use Theorem 5.2 to study the attainability of E1 for the 2D Skyrme model
following the substantial inequality method used in Sect. 2 for the Faddeev model.

We can state
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Theorem 6.2. For the 2D static Skyrme model (5.1), the energy E1 is attainable pro-
vided that the coupling constants λ and μ satisfy the bound

λμ ≤ 192. (6.2)

In other words, the minimization problem (5.3) is solvable for k = ±1 under the con-
dition (6.2).

Proof. First recall that we established [13] a stronger version of the topological lower
bound (5.6) which states that there is a positive constant C(λ, μ, k) (i.e., the constant
only depends on the coupling parameters λ and μ and the nonzero integer k) such that
E(u) ≥ 4π | deg(u)| + C(λ, μ, deg(u)) (deg(u) �= 0). In particular, we have

Ek > 4π |k|, k �= 0. (6.3)

Now assume (6.2). If for k = 1 the compactness (the alternative (a)) for a minimizing
sequence of (5.3) does not occur, then by Theorem 5.2 there are nonzero integers k1 and
k2 so that 1 = k1 + k2 and

E1 ≥ Ek1 + Ek2 . (6.4)

Since Ek1 > 0 and Ek2 > 0, we see from (6.4) that k1 �= ±1 and k2 �= ±1. However,
one of the k1 and k2 must be odd. Assume k1 is odd. Then |k1| ≥ 3. Since k2 must be
even, so |k2| ≥ 2. Using these facts, (5.7), (6.4), and (6.3), we get

4π

(
1 +

1

2

√
λμ

3

)
≥ E1 > 4π(3 + 2), (6.5)

which contradicts the condition (6.2).

Note that (6.2) enlarges the range of the product of the coupling parameters λ and
μ stated in (5.4) (obtained earlier in [13]) by three times. Thus we see again that the
method of substantial inequality is rather powerful.

It may be interesting to know whether the minimization problem for the Faddeev
model or the Skyrme model in 3D may be modified by introducing coupling parameters
in the energy functional as in the 2D Skyrme model. To answer this question, we use the
notation (3.8), modify the Faddeev energy as

Eλμ(n) = λED(n) + μES(n), (6.6)

where λ,μ > 0 are constants, and consider the minimization problem

(Eλμ)m = inf{Eλμ(n) | Eλμ(n) < ∞, Q(n) = m}. (6.7)

Then, using the conformal properties of ED(n) and ES(n), we can establish the
factorization relation (Eλμ)m = √

λμEm , where Em denotes the energy infimum stated
in (2.3). In other words, the effect of the coupling constants can always be factored away
for the minimization problem.

Note that the same relation is also valid for the classical 3D Skyrme model.

Acknowledgements. Fanghua Lin was supported in part by NSF grant DMS–0201443. Yisong Yang was
supported in part by NSF grant DMS–0406446.



152 F. Lin, Y. Yang

References

1. Aubin, T.: Problemes isoperimetriques et espaces de Sobolev. J. Diff. Geom. 11, 573–598 (1976)
2. Battye, R.A., Sutcliffe, P.M.: Knots as stable solutions in a three-dimensional classical field theory.

Phys. Rev. Lett. 81, 4798–4801 (1998)
3. Battye, R.A., Sutcliffe, P.M.: Solitons, links and knots. Proc. Roy. Soc. A 455, 4305–4331 (1999)
4. Cho, Y.M.: Monopoles and knots in Skyrme theory. Phys. Rev. Lett. 87, 252001 (2001)
5. Evans, L.C.: Weak Convergence Methods for Nonlinear Partial Differential Equations. Regional Confer-

ence Series in Math. No. 74, Providence, RI: A. M. S., 1990
6. Faddeev, L.: Einstein and several contemporary tendencies in the theory of elementary particles. In:

Relativity, Quanta, and Cosmology, Vol. 1, edited by M. Pantaleo, F. de Finis, Newyork: Johnson Reprint
Co., 1979, pp. 247–266

7. Faddeev, L.: Knotted solitons. In: Proc. Internat. Congress Mathematicians, Vol. I, Beijing: Higher Ed.
Press, 2002, pp. 235–244

8. Faddeev, L., Niemi, A.J.: Stable knot-like structures in classical field theory. Nature 387, 58–61 (1997)
9. Jackiw, R.: Quantum meaning of classical field theory. Rev. Mod. Phys. 49, 681–706 (1977)

10. Jackiw, R.: Chern-Simons integral as a surface term. http://arxiv.org/list/ math-ph/0408051, 2004
11. Kundu, A., Rybakov, P.: Closed-vortex-type solitons with Hopf index. J. Phys. A Math. Gen. 15, 269–275

(1982)
12. Lin, F., Yang, Y.: Existence of energy minimizers as stable knotted solitons in the Faddeev model. Com-

mun. Math. Phys. 249, 273–303 (2004)
13. Lin, F., Yang, Y.: Existence of two-dimensional Skyrmions via the concentration-compactness method.

Comm. Pure Appl. Math. LVII, 1332–1351 (2004)
14. Lions, P.L.: The concentration-compactness principle in the calculus of variations. Part I. Ann. Inst. H.

Poincar’e – Anal. non linéaire 1, 109–145 (1984); Part II, ibid 1, 223–283 (1984)
15. Manton, N.S.: Geometry of skyrmions. Commun. Math. Phys. 111, 469–478 (1987)
16. Rosen, G.: Minimum value for c in the Sobolev inequality ‖φ3‖ ≤ c‖∇φ‖3∗. SIAM J. Appl. Math. 21,

30–32 (1971)
17. Shabanov, S.V.: On a low energy bound in a class of chiral field theories with solitons. J. Math. Phys. 43,

4127–4134 (2002)
18. Skyrme, T.H.R.: A nonlinear field theory. Proc. Roy. Soc. A 260, 127–138 (1961)
19. Skyrme, T.H.R.: Particle states of a quantized meson field. Proc. Roy. Soc. A 262, 237–245 (1961)
20. Skyrme, T.H.R.: A unified field theory of mesons and baryons. Nucl. Phys. 31, 556–569 (1962)
21. Skyrme, T.H.R.: The origins of Skyrmions. Internat. J. Mod. Phys. A 3, 2745–2751 (1988)
22. Tartar, L.: Compensated compactness and applications to partial differential equations. In: Nonlinear

Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV, edited by R.J. Knops, London: Pitman, 1979,
pp. 136–212

23. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 352–372 (1976)
24. Vakulenko, A.F., Kapitanski, L.V.: Stability of solitons in S2 nonlinear σ -model. Sov. Phys. Dokl. 24,

433–434 (1979)
25. Ward, R.S.: Hopf solitons on S3 and R3. Nonlinearity 12, 241–246 (1999)
26. Whitehead, J.H.C.: An expression of Hopf’s invariant as an integral. Proc. Nat. Acad. Sci. 33, 117–123

(1947)
27. Zahed, I., Brown, G.E.: The Skyrme model. Phys. Rep. 142, 1–102 (1986)

Communicated by H.-T. Yau



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


