
Digital Object Identifier (DOI) 10.1007/s00220-006-0105-2
Commun. Math. Phys. 268, 673–686 (2006) Communications in

Mathematical
Physics

On the Structure of Eigenfunctions Corresponding
to Embedded Eigenvalues of Locally Perturbed Periodic
Graph Operators

Peter Kuchment1, Boris Vainberg2

1 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.
E-mail: kuchment@math.tamu.edu

2 Mathematics Department, University of North Carolina, Charlotte, NC 28223, USA.
E-mail: brvainbe@email.uncc.edu

Received: 27 November 2005 / Accepted: 7 June 2006
Published online: 24 August 2006 – © Springer-Verlag 2006

Abstract: The article is devoted to the following question. Consider a periodic self-
adjoint difference (differential) operator on a graph (quantum graph) G with a co-
compact free action of the integer lattice Z

n . It is known that a local perturbation of the
operator might embed an eigenvalue into the continuous spectrum (a feature uncommon
for periodic elliptic operators of second order). In all known constructions of such exam-
ples, the corresponding eigenfunction is compactly supported. One wonders whether this
must always be the case. The paper answers this question affirmatively. What is more
surprising, one can estimate that the eigenmode must be localized not far away from the
perturbation (in a neighborhood of the perturbation’s support, the width of the neighbor-
hood dependent upon the unperturbed operator only). The validity of this result requires
the condition of irreducibility of the Fermi (Floquet) surface of the periodic operator,
which is known in some cases and is expected to be satisfied for periodic Schrödinger
operators.

1. Introduction

Difference equations on graphs and differential equations on quantum graphs, even when
they resemble Laplace or Schrödinger operators in many regards, lack one important
property of second order elliptic operators, namely uniqueness of continuation. Unique-
ness of continuation states that any solution of an elliptic second order equation Au = 0
that vanishes on an open set, is identically zero. It is known to be extremely important
and has many implications, in particular in spectral theory. It is also known that elliptic
equations of higher orders do not necessarily possess such a property [27], which leads
to some weird spectral examples as well (e.g., [18, 19]).

This absence of uniqueness of continuation for graph operators leads for instance to
the following possibility: a periodic “elliptic second order” operator on a graph (quan-
tum graph) with a co-compact action of an abelian group can have non-empty pure
point spectrum (bound states) [17]; this is an absolute no-no in the continuous case,
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see [18, 29, 33] and references therein. It is easy to explain this effect for instance as
follows. Assume that one has a compact graph with an eigenfunction of the discrete
Laplacian that vanishes at a vertex. Then one can attach this graph by that vertex to
any other graph and extend the function as zero, still keeping it as an eigenfunction.
This attachment can also be done in a periodic manner. Such constructions yield these
“strange” eigenfunctions generated by compactly supported ones. Indeed, it has been
shown that all such bound states on periodic graphs are in fact generated by the compactly
supported eigenfunctions [17, 24]. It is interesting to note that the Laplace operator on
the Cayley graph of an infinite discrete group can even have solely pure point spectrum
[7, 12].

Using the described above attachment procedure, one can also easily construct exam-
ples when a localized perturbation of a periodic difference operator does embed an
eigenvalue into absolutely continuous spectrum, which is also expected to be impossi-
ble in the continuous situation.1 The aim of this paper is to see what can be said about the
eigenfunctions corresponding to such embedded eigenvalues. We show not only that such
an eigenfunction must be compactly supported, but that its support must be contained
in a finite width neighborhood of the support of the perturbation, the width dependent
on the unperturbed operator only. Thus, effect of a localized impurity seems to be of
an extremely short range, when on the absolutely continuous spectrum of the periodic
background.

In the next section, we introduce the necessary notions and state and prove the main
result for the case of periodic combinatorial graphs (Theorem 5). The following section
contains formulation and the proof of the analogous result for the quantum graph case
(Theorems 10 – 12). The paper ends with a brief section containing some final remarks.

2. Combinatorial Graph Case

Consider an infinite combinatorial graph � with the set of vertices V and a faithful
co-compact action of the free abelian group G = Z

n (i.e., the space of G-orbits is a
finite graph). In fact, in this section we can think of � just as of a discrete set V of ver-
tices. The graph structure is not truly relevant here, albeit the main operators of interest
usually come from graphs (e.g., graph Laplacian [5]). Without loss of generality, the
reader may think of the graph as a discrete subset of R

n invariant with respect to all
integer shifts. We also consider a G-periodic finite difference operator A of a finite order
acting on l2(V ). Here l2(V ) is the space of all square summable functions on � (i.e., on
V ). The words “finite difference operator of a finite order” mean that the value of Au at
any vertex v involves the values of u at finitely many other vertices (due to periodicity,
the number of these vertices is uniformly bounded). This can be easily expressed in
terms of the matrix representation of the operator. Indeed, if v j ∈ V are the vertices of
�, then operator A can be represented by a matrix A = (ai j ). The finite order condition
in the periodic case is equivalent to this matrix having finitely many entries in each row.
Such periodic operators are clearly bounded in l2(V ).

We will fix a (finite) fundamental domain W for the action of G = Z
n on V .

Consider for instance the Z
2-periodic sub-graph of R

2 shown in Fig. 1, with the fun-
damental domain W indicated. An example of a periodic difference operator here could
be the version of the Laplace operator that subtracts from the value of a function at a

1 This is completely proven in dimensions one only [30, 31] with just a single result in higher dimension
available [25, 26].
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Fig. 1. A periodic graph

vertex its average value at all vertices adjacent to this one:� f (v) = f (v)− 1
dv

∑

u∼v
f (u),

where dv is the degree of the vertex v. This operator is clearly a finite difference operator,
periodic with respect to the group action.

We will need to measure the sizes of finite subsets S ⊂ � by the number and locations
of the shifts of the fundamental domain W that are needed to cover S. Given a finite
subset S of �, we will call its radius the number

r(S) = min

{

N ∈ Z
+ | S ⊂ ∪

γ∈[−N ,N ]n⊂Zn
γW

}

. (1)

We will also need to define two notions of support of a finite difference periodic
operator A. First, let v be a vertex of �. Then we introduce the notion of the v-support
of A as follows

suppv(A) = {u ∈ V | (Aδu)(v) �= 0} . (2)

Here δu is the delta function on V supported at the vertex u, i.e. δu(v) = δu,v for u, v ∈ V .
To put it differently, the v-support of A consists of all points u, values at which of a
function ψ influence the values of Aψ at v. In the terms of the matrix A = (ai j ), one
has suppvi (A) = {v j ∈ V | ai j �= 0}.

We also define the W -support of A as

suppW (A) = ∪
v∈W

suppv(A)

= {u ∈ V | Aδu |W �= 0} . (3)

In other words, the W -support of A consists of all points u values at which of a function
ψ influence the values of Aψ on W .

As always, dealing with a periodic problem, it is advantageous to use the basic
transformations of Floquet theory (e.g., [18, 29]). Namely, for any compactly supported
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(or sufficiently fast decaying) function f (v) on V , we define its Floquet transform as
follows:

f (v) �→ f̂ (v, z) =
∑

g∈Zn

f (gv)z−g, (4)

where gv denotes the action of g ∈ Z
n on the point v ∈ v, z = (z1, . . . , zn) ∈ (C∗)n =

(C\0)n , and zg = zg1
1 ×· · ·× zgn

n . This is clearly just the Fourier transform on the group
G of periods.

One can notice the easily verifiable cyclic (or Floquet) identity

f̂ (gv, z) = zg f̂ (v, z) (5)

satisfied for any v ∈ V and g ∈ G. The vector z is sometimes called Floquet multiplier,
and if it is represented as z = eik = (eik1 , eik2 , . . . , eikn ), the vector k is said to be the
quasi-momentum (e.g., [2, 18, 29]).

Relation (5) implies that in order to know all the values of the function f̂ (v, z), it
is sufficient to know them for only one representative v from each G-orbit, i.e. for v
from a fundamental domain of the G-action2. Thus, we fix such a fundamental domain
W (which is a finite set (graph)) and consider only v ∈ W in f̂ (v, z). We will also
denote f̂ (v, z) by f̂ (z), where the latter expression is a function on W depending on the
parameter z.

The following statement is immediate:

Lemma 1. The images under the Floquet transform of the compactly supported func-
tions on � are exactly all finite Laurent series3 in z with coefficients in C

|W |. Moreover,
for a compactly supported function f , the Laurent series of f̂ includes only powers zg

that satisfy

‖g‖∞ := max(|g j |) ≤ r(supp( f )), (6)

where r(S) is the radius of a set S introduced in (1).

We will also need the unit torus

T
n = {z ∈ C

n | |z j | = 1, j = 1, . . . , n} ⊂ C
n .

It is well known and easy to prove [8, 18, 29] that the Floquet transform (4) extends to
an isometry (up to a possible constant factor) between l2(V ) and L2(T

n,C|W |).
After the Floquet transform, A becomes the operator of multiplication in L2(T

n,C|W |)
by a rational |W | × |W | matrix function A(z). To make this clearer, let us consider the
Laplace operator � for the graph shown in Fig. 1. We compute the value of �u on a
function u that satisfies the cyclic condition (5). We notice that for such a function, one
has u( f ) = z2u(c), u(g) = z1u(d), u(h) = z−1

2 u(a), u(e) = z−1
1 u(b). Thus, writing

the values of u as a vector (u(a), u(b), u(c), u(d))t , the action of � on u|W becomes
multiplication by the matrix A(z),

⎛

⎜
⎜
⎝

1 −1/3 −1/3z2 −1/3
−1/3 1 −1/3 −1/3z1

−1/3z−1
2 −1/3 1 −1/3

−1/3 −1/3z−1
1 −1/3 1

⎞

⎟
⎟
⎠ . (7)

2 In some cases one has to take a more sophisticated approach and treat f̂ (v, z) as a section of a naturally
defined (depending on z) line bundle over �/G.

3 By Laurent series we mean here expansions into powers zg with g ∈ G = Z
n .
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In other words, A(z) is the restriction of A to the space of all (not square summable)
functions f satisfying the cyclic condition (5).

To formulate our result, we need to introduce another notion.

Definition 2. Let λ ∈ C. We call the Floquet surface�A,λ ⊂ (C∗)n of the operator A
at the energy λ the set of all z ∈ (C∗)n, such that the matrix A(z)− λ is not invertible
(i.e., det(A(z)− λ) = 0).

The term Floquet surface is non-standard. If one considers quasi-momenta k instead
of the Floquet multipliers z, one arrives at the standard in solid state physics and theory
of periodic equations notion of Fermi surface FA,λ [2, 18]. So, the Floquet surface is the
Fermi one with the natural periodicity with respect to quasimomenta k being factored
out.

It is clear from the definition that the Floquet surface for a periodic difference oper-
ator is an algebraic subset4 of dimension n − 1 in C

n . We also look at its intersection
with the torus T

n ,

�R
A,λ = �A,λ ∩ T

n,

which we will call the real Floquet surface. The name comes from the fact that it cor-
responds to real quasimomenta from the Fermi surface.

The following standard fact [8, 18, 29] is easy to prove:

Lemma 3. The pointλ belongs to the spectrum of the operator A if and only if�R
A,λ �= ∅.

We will also need to introduce some additional notions originating from the solid
state physics [2]. Consider for any z ∈ T

n the defined above finite dimensional self-
adjoint operator A(z). It has a finite spectrum {λ j (z)}, which can be considered as the
graph of a multiple-valued function σ(A(z)). This function is said to be the dispersion
relation and its graph the dispersion curve. The preceding lemma says that the range of
this function coincides with the spectrum of A in l2(�). Arranging the eigenvalues in
non-decreasing order splits this curve into continuous (in fact, piecewise-analytic [18,
29, 35]) branches λ j (z). Their ranges are finite closed segments of the spectral axis
called spectral bands, union of which comprises the whole spectrum σ(A). This is the
so-called band-gap structure of the spectrum [8, 18, 29].

The (complex) Floquet surface �A,λ is never empty. When λ changes, it moves
around. The lemma says that, whenever �A,λ hits the torus T

n , λ belongs to the spec-
trum. It is natural to expect that when λ is a generic point in the interior of the spectrum,
then the real Floquet surface will be a variety of the maximal possible real dimension
n − 1 in the torus. This is confirmed by the following statement.

Lemma 4. If λ belongs to the interior of a spectral band of the operator A, then the real
Floquet surface �R

A,λ has a part that is a smooth n − 1-dimensional hyper-surface in
T

n.

Proof of the Lemma. Let λ belong to the interior of the band formed by the branch λ j (z).
Then function λ j (z)−λ changes sign on T

n . Thus, the real Floquet surface separates T
n .

Since the Floquet surface is an analytic set5, this implies the conclusion of the lemma
(see more details of this simple part of the argument in [25]). ��

4 Its analog for quantum graphs will be only analytic, not algebraic.
5 In fact, in the case of a discrete graph that we currently consider, it is even algebraic. This, however, will

change to analyticity only in the case of quantum graphs.



678 P. Kuchment, B. Vainberg

In what follows, we will need to assume that the Floquet surface �A,λ is irreducible
as an analytic variety6. This condition does not necessarily hold in general, but it has
been conjectured that it is always true if A is the discrete Schrödinger operator on Z

2

with a potential periodic with respect to a sublattice [11]. This is probably also true in any
dimension. It was shown in [11] that in 2D irreducibility holds for all but finitely many
values of the spectral parameter λ. Examples of some separable cases when irreducibility
has been proven can be found in [3, 11, 25, 26].

After all this preparation, let us now move to the formulation of the main problem
being addressed in this paper. Consider any local difference operator B, i.e. such that
its action on a function u involves only the function’s values on a finite set S ⊂ � and
the resulting function Bu is supported on S as well. In terms of the matrix B = (bi j )

this means that it has only finitely many non-zero entries. We are interested in the per-
turbation of the spectrum of A that occurs when the operator is perturbed by adding
B: A + B. If we assume at this point that A is self-adjoint, it is a general fact that an
additional point spectrum might arise (e.g., [29]). In the case of second order elliptic
periodic PDEs, it is also the common expectation that this impurity spectrum should
not be embedded into the continuous spectrum of A. This is proven for localized per-
turbations of a homogeneous background (see the book [9] for a detailed survey, as
well as [6]). In the case of localized perturbations of a periodic background, absence
of embedded eigenvalues is proven for periodic Schrödinger operators in 1D [30, 31].
Albeit the same must surely be true in any dimension, the problem in dimensions higher
than 1 is hard and only one limited result is known [25, 26]. In the discrete (graph) situ-
ation, embedded eigenvalues can arise, due to non-trivial graph topology. Examples of
such compactly supported eigenfunctions can be easily constructed using the attachment
procedure described before. One might want to ask whether compactness of support of
the eigenfunctions corresponding to embedded eigenvalues is the only possibility, and
if yes, whether there are any a priori bounds on the size of their supports. A somewhat
surprising answer is given by the following result.

Theorem 5. Let B be a local perturbation supported on a finite set S ⊂� (i.e., supp(B f )
⊂ S for any f ) of a periodic operator A. Let λ belong to the interior of a spectral band of
A, the corresponding Floquet surface be irreducible, and λ be an embedded eigenvalue
for A + B. Then the corresponding eigenfunction f ∈ l2(V ) of A + B is compactly
supported and moreover,

r(supp f ) < r(S) + r(suppW (A))(2|W | + 1)).

Here suppW (A) is defined in (2).

So, the effect of the impurity seems to be of very short range. This theorem will be
deduced from the following more general statement:

Theorem 6. Let λ belong to the interior of a spectral band of A, the corresponding
Floquet surface be irreducible, and ψ be a compactly supported function on the graph.
Assume that the equation Au−λu = ψ has an l2-solution u. Then u ∈ l2(V ) is compactly
supported and moreover,

r(supp f ) < r(suppψ) + r(suppW (A))(2|W | + 1)).

6 We remind the reader what this means: it cannot be represented as the union of two strictly smaller analytic
varieties.
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Remark 7. The constant r(suppW (A))(2|W | + 1)) in the previous two theorems can be
often improved for specific periodic difference operators A.

Proof of Theorem 6. Since function ψ is compactly supported, its Floquet transform
ψ̂(v, z) = ∑

ψgzg is a Laurent polynomial with degrees g bounded by ‖g‖∞ :=
max

i
|gi | ≤ r := r(supp(ψ)). Let us denote by e the vector (1, . . . , 1) ∈ Z

n and intro-

duce R := r(suppW (A)). We can represent ψ̂(z) as z−reφ(z), where φ(z) = zreψ̂(z)
is a polynomial that involves only (non-negative) degrees g ∈ Z

n with ‖g‖∞ ≤ 2r .
Taking the Floquet transform in Eq. (10), we rewrite it as

(A(z)− λ) f̂ (z) = z−reφ(z). (8)

We can rewrite the Laurent matrix function A(z)−λ as z−Re A1(z, λ), where the matrix
function A1(z, λ) is a polynomial in z involving only the powers zg with ‖g‖∞ ≤ 2R.
Then its inverse can be represented as zRe B(z)

�(z) , where B(z) is a matrix polynomial (trans-
posed to the co-factor matrix of A1) and �(z) is a scalar polynomial (determinant of
A1), which vanishes exactly on the Floquet surface. Thus,

f̂ (z) = z(R−r)e B(z)φ(z)

�(z)
. (9)

Notice that B involves only powers zg with ‖g‖∞ ≤ 2R(|W | − 1). We know that f̂ (z)
is an L2-function on T

n . On the other hand, the right hand side of (9) is, up to the fac-
tor z(R−r)e, the ratio of two holomorphic polynomials in C

n . We also know that zeros
of the denominator �(z) in (C∗)n are irreducible and intersect the torus T

n over an
(n − 1)-dimensional variety. This means that unless the numerator Bφ vanishes on T

n

at these zeros to their degrees, the ratio has a singularity that is not square integrable
on the torus. Thus, the numerator vanishes to that degree, and due to the irreducibility
of zeros, the same is true for all zeros in (C∗)n (see [25] for the details of this simple
argument). If there were no zeros of the denominator in C

n\(C∗)n , then, as a corollary of
Hilbert’s Nullstellensatz, the ratio would be a holomorphic polynomial of z. We cannot,
however, exclude existence of a factor like zq , q ∈ (Z+)n in �(z). If it does exist, we
have ‖q‖∞ ≤ 2R|W | (since each term in � is like that). Factoring this power out, we
represent � as zq�1(z), where zeros of � and �1 in (C∗)n are the same (including
their orders), and thus our ratio is a holomorphic polynomial times z−q . Notice that
division does not increase the degree of a polynomial with respect to any variable. The
degree of φ(z) has been estimated as ‖g‖∞ ≤ 2r . The additional degree acquired during
multiplication by B and division by �1 does not exceed 2R(|W | − 1). Thus, the ratio
Bφ/�1 is a polynomial involving the degrees zg with ‖g‖∞ ≤ 2r + 2R(|W | − 1) only.
One calculates now that the effect of the outside factor of z(R−r)e and of z−q coming
from the denominator is to reduce the expression to a Laurent polynomial with degrees
zg, g ∈ Z

n such that ‖g‖∞ ≤ r + R(2|W |+1). We see that f̂ (z) is a Laurent polynomial
which contains powers of z estimated by r(ψ)+ r(suppW (A))(2|W |+ 1). Reversing the
Floquet transform, we get the statement of the theorem. ��

Let us now address the proof of Theorem 5, which is rather simple. Indeed, the
conditions of the theorem imply the equality A f + B f = λ f , or in a form more conve-
nient for us,

(A − λ) f = −B f := ψ. (10)

The function ψ(v) is supported on S. Thus Theorem 6 applies and proves the statement.
��
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3. Quantum Graph Case

We now switch to the case of a perturbed periodic quantum graph. We will remind of
the reader of the main definitions concerning quantum graphs7. A quantum graph �
has each its edge e equipped with a coordinate xe (when no confusion is possible, we
use just x instead). This coordinate identifies e with a segment [0, le] of the real line.
We will also assume that a Schrödinger operator H = − d2

dx2 + V (x), V ∈ L2
loc(�) with

appropriate vertex conditions (all such self-adjoint conditions are described in [14, 16,
22]) is defined on �. The results of this section hold for any such conditions, however
just for simplicity of presentation we will assume that the conditions at each vertex are
the “standard” Neumann-Kirchhoff ones:

f is continuous and
∑ d f

dxe
= 0 at each vertex, (11)

where the sum is taken over all edges incident with the vertex and the derivatives are
taken away from the vertex.

As in the previous section, we assume that the graph is acted upon freely and co-com-
pactly by the group G = Z

n that leaves the graph structure (including edges’ lengths)
and the Hamiltonian H invariant. We use the same letter W as before for a fundamental
domain of this action.

One can now introduce the notions of the Floquet transform and Floquet variety of
H analogously to the way it was done in the previous section. For instance,

Definition 8. Let λ ∈ C. We call the Floquet surface �H,λ ⊂ (C∗)n of the operator
H at the energy λ the set of all z ∈ (C∗)n such that the equation (H − λ)u = 0
has a non-trivial solution u that is cyclic with the Floquet multiplier z, i.e. such that
u(gx) = zgu(x), where x ∈ � and g ∈ Z

n. Here, as before, C
∗ = C\{0}.

The following statement is standard in Floquet theory and can be proven the same
way as for elliptic periodic PDEs [18] (or by reduction to the discrete case, as described
below).

Lemma 9. The Floquet surface �H,λ is an analytic subset of (C∗)n.

Due to this lemma, the notion of irreducibility of the Floquet surface makes sense.
The main result of this section is the following quantum graph analog of Theorem 5:

Theorem 10. Let w(x) ∈ L2(�) be supported on a finite set S of edges. Let λ belong to
the interior of a spectral band of H, the corresponding Floquet surface be irreducible,
and λ be an embedded eigenvalue for H + w. Then the corresponding eigenfunction
f ∈ L2(�) of H + w is compactly supported and moreover,

r(supp f ) < r(S̃) + C.

Here C is a constant depending on the unperturbed operator H only and for any set of
vertices S we define S̃ as the set of all vertices that are either in S, or adjacent to the
ones in S.

It is possible to give some explicit estimates for the constant C , similarly to how it
was done for the discrete case. However, the situation depends on whether or not λ is
the Dirichlet eigenvalue of H on an edge of the graph. Here by a Dirichlet eigenvalue
of H on an edge e we mean an eigenvalue of the operator − d2

dx2 + V (x) on [0, le] with
zero Dirichlet conditions at the ends.

7 One can find more details in [16, 20–24, 28].
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Theorem 11. Let w(x) ∈ L2(�) be supported on a finite set S of edges. Assume that λ
belongs to the interior of a spectral band of H and is not a Dirichlet eigenvalue on any
of the edges, the corresponding Floquet surface is irreducible, and λ is an embedded
eigenvalue for H + w. Then the corresponding eigenfunction f ∈ L2(�) of H + w is
compactly supported and moreover,

r(supp f ) < r(S̃) + r(W̃ )(2|W̃ | + 1).

Here we consider W as a set of vertices.

In the case when λ does belong to the Dirichlet spectrum of at least one of the edges,
the situation is different, and one needs to modify the graph somewhat. We would like
to guarantee that λ does not belong to the Dirichlet spectra of H and of H + w on
any of the edges of the graph. This is easy to achieve by introducing “fake” vertices.
Indeed, if all the edges are sufficiently short, this condition is satisfied. Now, modulo the
periodicity, there are only finitely many edges in the graph. Hence, one can introduce a
finite set of periodic families of interior points on the edges, such that including these
points as new vertices of degree two, one makes the lengths of all edges sufficiently
small, so λ is below the Dirichlet spectra of both operators on any edge. If one imposes
Neumann-Kirchhoff conditions (11) at these new vertices, which in the case of a vertex
of degree two just means enforcing continuity of the function and its derivative, these
additional vertices do not influence the spectra of H and of H + w at all. This reduces
the situation to the case of Theorem 11, however with an increased number of vertices in
the fundamental domain. Let us call this new set of vertices in the fundamental domain
W1. Then Theorem 11, if proven, implies the next theorem, and thus also Theorem 10:

Theorem 12. Let w(x) ∈ L2(�) be supported on a finite set S of edges. Assume that λ
belongs to the interior of a spectral band of H and is not a Dirichlet eigenvalue on any
of the edges, the corresponding Floquet surface is irreducible, and λ is an embedded
eigenvalue for H + w. Then the corresponding eigenfunction f ∈ L2(�) of H + w is
compactly supported and moreover,

r(supp f ) < r(S̃) + r(W̃1)(2|W̃1| + 1).

Proof of Theorem 11. (and therefore also of Theorems 12 and 10) is based upon its
reduction to its discrete version given in Theorem 5.

Assume that one solves the following problem on the graph:
{

− d2 f
dx2 + V (x) f = λ f on each edge

f is continuous and
∑ d f

dxe
= 0 at each vertex.

(12)

Since we are guaranteed that a neighborhood of λ is free of Dirichlet spectra of individual
edges, one can use the standard procedure of reducing the spectral problems for H and
for H + w for the quantum graph to the one for a combinatorial one (e.g., [1, 4, 10, 22,
24]). This is how this is done. Consider an edge e and identify it with the segment [0, le].
Since λ is not in the Dirichlet spectrum on the edge, one can solve uniquely the first
equation of (12) on this edge, assuming that the values f (0), f (le) of the function f at
the ends of the edge are known. The resulting function along the edge can be represented
as

f (x) = f (0)g0(λ, x) + f (le)g1(λ, x), (13)
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where g0 (g1) takes value 1 at 0 and 0 at le (correspondingly 0 at 0 and 1 at le). The
functions g j (λ, x) are meromorphic with respect to λ with singularities at the Dirichlet
spectrum of the edge only. In particular, they are analytic in the region of our interest.
Now one obtains the derivatives of the function f at the vertices incident to e as follows:

f ′(0) = f (0)g′
0(λ, 0) + f (le)g′

1(λ, 0),
f ′(le) = f (0)g′

0(λ, le) + f (le)g′
1(λ, le).

(14)

One can do this on each edge. If now f is defined on each edge according to the formu-
las (13), then the edge equations in (12) are satisfied. The only condition in (12) to be
satisfied is the one requiring that the outgoing derivatives at each vertex add up to zero.
Substituting into this condition the expressions of the derivatives from (14), one obtains
an equation on the vertex values f (v) of the form

∑

v∼u

au,v(λ) f (v) = 0, (15)

where functions au,v(λ) are meromorphic with poles at the edges’ Dirichlet eigenvalues
and are non-zero for adjacent pairs of vertices (u, v) only. One sees that this can be
written as a second order difference equation A(λ) f = 0 on the combinatorial graph.

To make this clearer, let us consider an example of a graph whose edges are all of
the same length l and assume zero potential V (x) in (12). Then (13) and (14) take the
following forms correspondingly:

f (x) = 1

sin λl
( f (0) sin λ(l − x) + f (l) sin λx) , (16)

f ′(0) = λ

sin λl
(−f (0) cos λl + f (l)) . (17)

Thus, the whole problem (12) boils down to the equation

λ

sin λl

(

dv cos λl f (v)−
∑

u∼v
f (u)

)

= 0 (18)

satisfied at each vertex v, where ∼ denotes adjacency of vertices. Thus, in this case
the only non-zero matrix elements of A(λ) are: avv = dvλ cot λl for any vertex v and
avu = − λ

sin λl for adjacent vertices u and v.
Notice that the matrix A(λ) is not algebraic, but analytic with respect to λ. This

construction also shows that suppW (A(λ)) ⊂ W̃ .
Analogously, the perturbed equation can be rewritten as A1(λ) f = 0. This leads to

the two combinatorial counterparts of our periodic and perturbed spectral problems:

A(λ) f = 0, A1(λ) f = 0. (19)

In order to prove the theorem, we will need some simple auxiliary statements collected
in the following:

Lemma 13. 1. If a function f on the quantum graph satisfies H f = λ f (resp. (H +
w) f = λ f ), then its vertex values satisfy the difference equations A(λ) f = 0 (resp.
A1(λ) f = 0). Conversely, if a vector f of vertex values satisfies A(λ) f = 0 (resp.
A1(λ) f = 0), it can be uniquely extended to a solution of H f = λ f (resp. (H +
w) f = λ f ).
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2. If the values of such a solution f at both vertices of an edge are equal to zero, then f
is zero on this edge. In particular, f is compactly supported if and only if its vertex
values are compactly supported, and both supports are of equivalent sizes (i.e., their
radii are the same).

3. The operator A(λ) is periodic.
4. The difference operator B = A1(λ) − A(λ) is supported only on the vertices that

are incident to the edges where w has a non-empty support. In particular, A1(λ)

is a compactly supported perturbation of A(λ) with the size of the support of the
perturbation controlled by the size of the support of w.

5. The Floquet surfaces satisfy the following relation:

�H,λ = �A(λ),0. (20)

The proof of the lemma is rather straightforward. Indeed, the way the operators A and
A1 are defined, implies the direct part of the first claim of the lemma. The converse part
is also simple. Indeed, if a vector f of vertex values satisfies A(λ) f = 0, let us solve the
equation Hu = λu on each edge taking f as Dirichlet boundary values (this is possible
due to our avoidance of Dirichlet spectra). The resulting function satisfies the equations
on the edges and continuity condition by construction. The Neumann condition at the
vertices is now equivalent to A(λ) f = 0.

The second claim of the lemma follows from the same avoidance of the Dirichlet
spectra.

The third statement follows from periodicity of H .
The fourth statement is straightforward from the definitions of A(λ) and A1(λ).
Let us prove the important (albeit still simple) last statement. If z ∈ �H,λ, this means,

by the definition of�H,λ, that there exists a non-zero function f satisfying the equation
H f = λ f and such that f (gx) = zg f (x) for any g ∈ Z

n . Thus, as explained before
the lemma, the vector u of vertex values of f satisfies the equation A(λ)u = 0. The
cyclic relation f (gx) = zg f (x) in particular holds at the vertices, which implies that
z ∈ �A(λ),0. Conversely, if z ∈ �A(λ),0, then there is a cyclic vertex function u with the
Floquet multiplier z such that A(λ)u = 0. Let us use it as Dirichlet data on each edge to

solve − d2 f
dx2 + V (x) f = λ f on each edge. The first claim of the lemma guarantees that

we get a solution f of H f = λ f . We claim that f is cyclic with the Floquet multiplier
z. Indeed, for any g ∈ Z

n the functions f (gx) and zg f (x) satisfy the same equation

− d2 f
dx2 + V (x) f = λ f on each edge and have the same Dirichlet data. Since we avoided

Dirichlet spectrum, we conclude that f (gx) = zg f (x). This proves the lemma. ��
We can now finish the proof of the Theorem 11. Indeed, the previous lemma guarantees

that switching from the differential periodic and perturbed problems H f = λ f and
(H + w) f = λ f to the combinatorial problems A(λ) f = 0 and A1(λ) f = 0, one
lands in the conditions of Theorem 5. Now the same lemma implies that the conclusion
of Theorem 5 about the vertex values implies the conclusion of Theorem 10 about the
whole function f . ��

4. Remarks

• The notion of the “radius” r(S) of a finite set in � depends on the choice of a fun-
damental domain W . Indeed, choosing W further away from S increases r(S). Thus,
the optimal way to use the estimates of the main theorems is to choose a fundamental
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domain W in such a way that r(S) is the smallest possible for a given support S of
the perturbation. This would lead to the best localization estimate for the embedded
eigenfunctions.

• As it has already been mentioned in the previous section, the Neumann-Kirchhoff
conditions (11) are chosen for simplicity of exposition sake only. Since the results
concerning combinatorial graphs are obtained under very general conditions on the
periodic operator A, the statement of Theorem 10 and its proof carry through for
the general self-adjoint vertex conditions (described for instance in [14, 16, 22]).
One might have to deal with matrix difference operators A though, which causes no
problem. However, the specific estimates of the constant C of Theorem 10 given in
Theorems 11 and 12 will have to change depending on the vertex conditions.

• A deficiency of the results of this paper (as well as of the results of [25, 26]) is that our
technique does not let us treat the case of eigenvalues embedded at spectral edges.

• It is clear from both this paper and [25, 26] that question of irreducibility of the
Floquet surface (equivalently, of the Fermi surface, modulo natural periodicity) is
intimately related to the problem of existence and behavior of embedded eigenvalues
and corresponding eigenfunctions. This does not look like an artifact of the tech-
niques used. It is clear that not arbitrary periodic difference operator satisfies this
condition (also higher order periodic elliptic differential operators do not necessarily
do [18]). As we have mentioned before, the book [11] contains both positive results
and conjectures concerning irreducibility.
Irreducibility is also known for operators (both discrete and continuous) with sepa-
rable potentials [3, 11] (see also [25]). For instance, in dimension three it is sufficient
that the potential separates as V1(x1) + V2(x2, x3) [3, 11, 25]. This can be deduced
from the known results on irreducibility of Bloch variety in dimension two [15].
An advantage of dealing with a difference operator is a possibility of sometimes
explicitly computing the determinant �(z) and thus checking its irreducibility.
In fact, examination of the proofs of this text, as well as of [25, 26] shows that we
do not need complete irreducibility. What is truly required, is that every irreducible
component of the Floquet variety intersects the torus T

n over an n−1 dimensional set.
However, it is not clear how to control this property, and thus it is doubtful that such
a weaker condition will work better in specific examples, than the full irreducibility.

• As it has been mentioned already, pathologies like pure point spectrum of periodic
operators and embedded eigenvalues might and do sometimes appear in a discrete
or quantum graph situation. However, they do not necessarily have to. Indeed, it is
known [17] that the discrete Schrödinger operator −� + V (x) on the lattice Z

n with
a potential periodic with respect to a sublattice, has absolutely continuous spectrum.
This can be proven by L. Thomas’ standard argument [33]. Similarly, there are some
cases when one can prove that embedded eigenvalues do not arise from local pertur-
bations of periodic discrete operators. Assume for instance that a difference operator
P on the integer lattice Z

n (the operator could in particular be our perturbed operator
A + B) has the following property: there exists an oriented hyperplane L in R

n such
that for any point y ∈ � there exists a point x ∈ � such that suppx (P) contains the
point y and lies completely on the “positive” side of the parallel shift L y to the point
y, with the only intersection with L y at y. Then the equation P f = 0 has no com-
pactly supported solutions. Indeed, if there were such a solution f , consider a support
hyperplane L y to supp( f ) such that the whole supp( f ) is on the negative side of
L y and y ∈ supp( f ). Consider the point x that serves y as described above. Then
the equality (P f )(x) = 0 clearly implies that f (y) = 0, which is a contradiction.
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This in particular proves the quoted above statement about absence of point spectrum
for periodic Schrödinger operators on integer lattices.

• It would be interesting to understand how much the assumption of commutativity of
the group of periods influences the validity of the results of this paper. We do not
know the answer to this question, but one probably should not expect to be able to go
beyond the class of groups of polynomial growth (and hence, according to M. Gro-
mov’s result [13], virtually nilpotent ones). Indeed, the results already quoted about
the unusual spectral behavior of the lamplighter group (which is of an intermediate
growth) [7, 12] show that one might expect surprises there.

• The approach used in this work has been previously used by the authors in different
circumstances in [25, 26] (see also [32]). Its idea originates from the paper [34] of
the second author.
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