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This paper is dedicated to the memory of Hope Machedon

Abstract: We provide a uniform decay estimate for the local energy of general solutions
to the inhomogeneous wave equation on a Schwarzschild background. Our estimate im-

plies that such solutions have asymptotic behavior |φ| = O

(
r−1

∣∣t − |r∗|∣∣− 1
2

)
as long

as the source term is bounded in the norm (1− 2M
r )

−1 ·(1+t +|r∗|)−1L1
(
H3
�(r

2dr∗dω)
)
.

In particular this gives scattering at small amplitudes for non-linear scalar fields of the
form �gφ = λ|φ|pφ for all 2 < p.

1. Introduction

In this paper our goal is to give a somewhat elementary discussion of the global decay
properties of general solutions to the scalar wave equation on the exterior of a Schwarzs-
child black hole. That is, we consider the manifold with boundary:

M = R × [2M,∞)× S
2, (1)

with Lorentzian metric:

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1

dr2 + r2dω2, (2)

and we look at smooth functions φ which do not touch the boundary of (1) for each fixed
value of the parameter t and which satisfy the inhomogeneous wave equation:

�gφ = ∇α∂αφ = G.

� The second author would like thank MSRI and Princeton University, where a portion of this research was
conducted during the Fall of 2005. The second author was also supported by a NSF postdoctoral fellowship.
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The main question we would like to answer here is: How quickly does the local energy
of the wave φ dissipate over compact sets in the r coordinate, and how precisely does
the dissipation depend on the source G?

In the special case of Minkowski space, M = 0, a quite satisfactory answer to this
question is known. Here one has the classical uniform local energy decay estimate of C.
Morawetz:

∫
R3×{t}

(
(1 + u2)|Lφ|2 + (1 + u2)|Lφ|2 + (1 + u2 + u2)| /∇φ|2 +

1 + u2 + u2

r2 |φ|2
)

dx

�
(∫ t

0
‖ (1 + |u| + |u|)G(s) ‖L2(dx) ds

)2

+
∫

R3×{0}
(1 + r2)|∇t,xφ|2 dx . (3)

Here one sets u = (t −r), u = (t +r), L = 2∂u , and L = 2∂u . For the original proof see
the paper of Morawetz [10], and for an alternative proof as well as many generalizations,
see the recent work [7].

The beauty of the estimate (3) is that it gives one a huge amount of information about
the global dispersive properties of the function φ. For one, it produces a pointwise in
time decay of the L2

loc norm as well as the local energy. What’s more, this local decay
is given in such a way that it is clear what is happening on the whole of each time slice
t = const., even very far away from the origin r = 0. In fact, using Sobolev embeddings
and only rotations, the Morawetz estimate is good enough to provide uniform decay at
the rate of (1 + t)−1. However, perhaps the most important property of the estimate (3)
is that it turns out to be incredibly useful when dealing with non-linear problems. This
is because it places very simple conditions on the source term G, the kind which are
relatively straightforward to recover in bootstrapping arguments given the form of the
left-hand side of (3). For instance, (3) makes dealing with the global existence problem
for small amplitude non-linear scalar fields of the form:

�φ = λ |φ|pφ, (4)

essentially trivial in the case where 2 < p. All one has to do is to combine (3) with
appropriately localized Sobolev embeddings to yield the decay estimate:

|φ| � (1 + r)−1 · min

{
r

1
2

1 + |t − r | ,
1

1 + |t − r | 1
2

}
,

which is enough to integrate the nonlinearity on the right-hand side of (4) when it appears
on the right-hand side of (3). In fact, if one takes into account characteristic estimates
of the form (3), see again [7], then it is possible to push the exponent p to certain values
p � 2. We will not discuss such refinements here.

What we will show here is that for the more general case of M �= 0, an estimate
which is essentially of the form (3) holds in the case of general Schwartz (on each fixed
time slice) functions φ. The proof we give is a relatively straightforward integration by
parts, similar in spirit to how one proves (3). In the final section of the paper, we indicate
how our estimates can be used to give a short proof of global existence and decay for
non-linear scalar fields of the form (4) when 2 < p.
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To state our main theorem, we will use the following notation. We first reparametrize
the radial variable in the usual way:

r∗ = r + 2M ln(r − 2M), (5)

and then introduce the optical functions and null-generators for the coordinates (t, r∗, ω):

u = (t + r∗), u = (t − r∗), (6a)

L = ∂t + ∂r∗ , L = ∂t − ∂r∗ . (6b)

We will prove that:

Theorem 1.1 (Uniform Local Energy Decay for the Scalar Wave Equation on Schwarzs-
child Space). Let (t, r∗, ω) be the coordinates (as defined above) on the manifold M (1)
with metric (2). Let φ be a smooth function compactly supported on each hypersurface
t = const. and set:

�gφ = G.

Then one has the following global estimate:
∫

R×S2×{t}

(
(1 + u2)(L(rφ))2 + (1 + u2)(L(rφ))2

+(1 + u2 + u2)
(

1 − 2M

r

)
·
[

1

r2 | /∇ω(rφ)|2 +
M

r3 (rφ)
2
] )

dr∗dω

�
(∫ t

0
‖ (1 + |u| + |u|)

(
1 − 2M

r

)
r ·

(√
1 −	sphG

)
(s) ‖L2(dr∗dω) ds

)2

+
∫

R×S2×{0}
(1 + (r∗)2)

[∣∣∇t,r∗
√

1 −	sph(rφ)
∣∣2

+

(
1 − 2M

r

)(
1

r2

∣∣ /∇ω(
√

1 −	sph (rφ))
∣∣2 +

M

r3 (
√

1 −	sph(rφ))
2
)]

dr∗dω,

(7)

where the implicit constant depends only on the mass M. Here	sph is the Laplacian in
the angular variable ω, and /∇ω is the associated gradient.1

Remark 1.2. Let us first give a heuristic summary of the content of the estimate (7) and
how it contrasts to the situation of flat space M = 0. Roughly speaking, the Schwarzs-
child space can be split into three pieces where one sees qualitatively different behavior
in solutions to the wave equation.

The first region is very close to the boundary r = 2M . For the static space–time we
are considering, this is quite easy to understand. Here wave propagation looks essentially
trivial in that one has φ ∼ F1(t + r∗, ω) for some smooth decaying function F1 on the
space R × S

2. That is, wave propagation near the boundary r = 2M is essentially just
transport in the variable u = t + r∗. The caveat is that this variable is the only one in

1 This should not be confused with /∇ from line (3) which is the covariant derivative on spheres of radius
r . Of course these two only differ by the factor of r−1.
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which it is possible to get decay for this region because F1(0, ω) does not need to be
small.

We would like to call the reader’s attention to the fact that the precise decay of the
function F1 in the first variable seems to be quite a delicate issue, and we will only

obtain |F1(u, ω)| � (1 + |u|)− 1
2 . Of course, this is all one should expect given that

the right-hand side of (7) is consistent with initial data decaying at this rate. Since this
estimate does not ask for a lot of information, which is actually its strength in treating
non-linear problems, it does not give a lot of information in return. For a much more
precise asymptotic in the case of spherical symmetry, and for the more difficult case of
dynamic space-times (for the spherically symmetric coupled scalar field), we refer the
reader to the very deep recent work of Dafermos-Rodnianski (see [5, 6]).

The second region is in the “far exterior” t � r∗ where things look essentially flat.
This is also fairly easy to understand. Here one expects that things look very similar to
the well known case of Minkowski space.

The third region is “the boarder” close to r = 3M , which in Regge–Wheeler coor-
dinates (5) we extend to the region |r∗| � 1

2 t . This is by far the most difficult region to
understand, and where one loses regularity in the estimate (7). This loss of regularity is in
sharp contrast to the estimate (3) in the case of Minkowski space, and is also something
one sees only by looking at the non-spherically symmetric (functions) situation. What
is happening here is that the geometry is pulling the radiation apart into the two regions
just mentioned, and there is a danger that this “splitting” could allow some fairly large
residual portion of the radiation to linger for a long amount of time in the transition
region r∗ ∼ 0.

Now it turns out that this effect can only happen (and it does happen!) if the wave φ
has a very high angular momentum. In this case it can concentrate on a very small set for
each fixed time in the ω variable, and it will essentially rotate around the sphere r = 3M
for a long while before dispersing. This behavior can be understood by observing that
null geodesics tangent to the surface r = 3M will remain tangent to this surface [9], and
that high angular momentum solutions to the wave equation will closely follow these
geodesics for a long period of time before dispersing.

This slow dispersion can also be understood by conformally changing the metric (2)
by the factor (1 − 2M

r ). Since the coefficient of dt2 is constant on this new manifold, the
corresponding wave equation describes the time evolution of a wave on a three dimen-
sional Riemannian manifold with metric given by the spatial portion of the conformal
Lorentzian metric. A simple calculation shows that this Riemannian manifold has a
totally geodesic sphere (and hence closed geodesics) at the value r = 3M . Now, the
original wave equation is equivalent to the wave equation with respect to the confor-
mal metric modulo a smooth potential. For very high frequencies this potential cannot
compete with the principle part of the conformal wave operator, so it is not difficult to
construct coherent state solutions which concentrate near the closed geodesics sitting at
r = 3M for a long amount of time. Therefore, from this point of view, one should look
at (7) as a sort of “cheap” dispersive estimate, and it is well known that such estimates
lose regularity when the underlying geodesic flow is not well behaved in the sense of
spreading of the classical trajectories.

We further remark here that the nature of the surface and geodesics at r = 3M can be
a little confusing to discuss in the relativistic terminology. The null geodesics at r = 3M
which orbit the black hole form a helix in four dimensional space-time with an axis in
the time direction. Although their projections onto the three dimensional coordinates
(r, ω) is closed, because the t coordinate is constantly increasing they are not closed
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null geodesics. Also, while it is true that the hypersurface r = 3M is foliated by null
geodesics it is not itself a null hypersurface, which is one with a null normal direction
(see [8]). Note that a normal to r = 3M is ∂r∗ which is space like.

As far as our analysis is concerned, the presence of null geodesics at r = 3M mani-
fests itself through trapping terms which are positive for r ∼ 3M . For a wave equation
with a potential Q, we refer to �x ·∇Q +2Q as the trapping term. This expression appears
as a contribution governing the growth of the conformal (Morawetz) energy. It can be
seen as the main “error” which is generated by the divergence of the conformal energy
density, and is given by the first two terms on the right-hand side of Eq. (50) below. This
identity was first derived using a somewhat different formalism in the dissertation of the
first author (see [1]).

Remark 1.3. Our proof of the bound (7) will be very general in the sense that we derive it
from a fairly generic family of estimates that holds for 1-D wave equations with “strongly
repulsive” potentials. It is to be hoped that this procedure can be used to accommodate
other situations, such as higher spin equations on Schwarzschild space and possibly
other space-times where spherical harmonic decompositions make sense. We will leave
these discussions to further work.

The approach we take here is based on the previous works [2, 3] which proved space-
time Morawetz type estimates on Schwarzschild-like manifolds, and the thesis [1] which
proved a version of the conformal (Morawetz) energy estimate (7) with growing right-
hand side. In the estimate contained in [1], the trapping term (described previously)
appears integrated in space-time against the quantity t (φ)2, where φ is the scalar field.
If the factor of t were not present and if the field φ were restricted to a single spheri-
cal harmonic, then the Morawetz estimate from [2] would be sufficient to control this
space-time integral. However, due to the fact that the reduction to individual spherical
harmonics leads to trapping terms which grow quadratically according to the angular
frequency, both an additional angular derivative and the factor of t must be controlled.

In this paper, we present a simple argument which allows one to absorb the trapping
term with the factor of t , and hence prove (7). In the dissertation [1] and the forthcoming
work [4], a more involved phase space analysis is used to reduce the loss of angular
regularity in the space-time Morawetz estimate and in the analogue of (7) to only ε
powers of the operator 1 −	sph . We leave the combination of these two techniques to
future work.

2. Preliminary setup

In this section we will set up some preliminary notation and ideas from one dimensional
wave equations on Minkowski space. This material is for the most part entirely standard,
and we make no claim of originality for the basic concepts. Now, it turns out that The-
orem 1.1 is actually a special case of a family of estimates which holds in the following
general situation. We consider 1-D wave equations of the form:

�ψ − Q(x)ψ = H, (8)

where � = −∂2
t + ∂2

x and Q(x) is some smooth real valued function which we assume
is general for the time being. When the source term H vanishes the field (8) comes from
a Lagrangian with energy momentum tensor:

Tαβ [ψ] = ∂αψ∂βψ − 1

2
gαβ

(
∂γ ψ∂γψ + Q(x) · (ψ)2

)
. (9)
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A quick calculation using Eq. (8) shows that one has the divergence identity:

∂αTαβ [ψ] = −1

2
∂β(Q) · (ψ)2 + H · ∂βψ. (10)

Also, the trace identity:

gαβTαβ [ψ] = −Q(x) · (ψ)2
follows immediately, where g = diag(−1, 1) is the 1-D Minkowski metric.

The utility of the tensor (9) is that it keeps track of how the field (8) reacts to the
flow of various vector-fields X = Xα∂α on R × R. In general, we form the momentum
density associated to X :

(X)Pα = TαβXβ, (11)

and we compute from (10) the divergence:

∂α (X)Pα = −1

2
X (Q) · (ψ)2 +

1

2
Tαβ

(X)παβ + H · X (ψ), (12)

where (X)π is the deformation tensor:
(X)παβ = ∂αXβ + ∂βXα.

In the next section we will use this setup to prove the following general 1-D uniform
local energy decay estimate:

Theorem 2.1 (1-D Morawetz Estimate for Positive Strongly Repulsive Potentials). Let
ψ be a function on (1 + 1)Minkowski space which is compactly supported for each fixed
value of the time variable t . Suppose ψ satisfies Eq. (8) for some smooth real valued
function Q(x) which satisfies all of the following conditions:

0 � Q, (Positivity) (13)

0 � − x∂x (Q), (Repulsive1) (14)

x∂x (Q)(x) + 2Q(x) � −Csgn(x) ∂x (Q)(x), x /∈ B1, (Repulsive2) (15)

x∂x (Q)(x) + 2Q(x) � C |x |−1 Q(x), x /∈ B2, (Homogeneity) (16)

(1 + λ2)x2 � −Cx∂x (Q)(x), x ∈ 2B1, (Critical Point) (17)

C−1 � Q(x) � C(1 + λ2), x ∈ 2B1, (Local Bounds) (18)

where C and λ are fixed non-negative constants2 with C strictly positive, and the Bi are
compact intervals containing the origin. Then the following uniform local energy decay
estimate of Morawetz type holds:∫

R×{t}

(
(1 + u2)(Lψ)2 + (1 + u2)(Lψ)2 + (1 + u2 + u2)Q(x) · (ψ)2

)
dx

� (1 + λ2)E(ψ(0))

+
∫ t

0
‖ (1+|u|+|u|)(1+λ)H(s) ‖L2(dx) · ‖ (1+λ)(|∇t,xψ |+ Q

1
2 · |ψ |)(s) ‖L2(dx) ds,

+
∫ t

0
‖ (1 + |u| + |u|) H(s) ‖L2(dx) · E

1
2 (ψ(s)) ds. (19)

2 It is important for us to point out here that while λ is a constant in this theorem, it will later be used as a
parameter. Thus, one of the main points is to have bounds which are uniform in the size of (large) λ.
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Here we have set:

u = t + x, u = t − x,
L = ∂t + ∂x , L = ∂t − ∂x ,

and

E(ψ(s)) =
∫

R×{s}

(
(1 + u2)(Lψ)2 + (1 + u2)(Lψ)2 + (1 + u2 + u2)Q(x) · (ψ)2

)
dx.

(20)

The implicit constant in estimate (19) depends only on the constant C and the size of the
two intervals Bi , and not on the value of t or λ or any other property of the potential
Q(x) than those listed above.

2.1. The case of Schwarzschild Space. Before moving on to prove the estimate (19),
let us first briefly indicate how this can be used to prove the bound (7). In the (t, r∗, ω)
coordinates one writes the wave operator |g|− 1

2 ∂αgαβ |g| 1
2 ∂β as:

(
1 − 2M

r

)−1 (
−∂2

t φ + r−2∂r∗(r2∂r∗φ)
)

+
1

r2	sphφ = G.

Here 	sph is the Laplacian in the ω variable. Introducing now the quantities ψ = rφ
and H = (1 − 2M

r )rG this last line becomes:

−∂2
t ψ + ∂2

r∗ψ − r−1∂2
r∗(r)ψ +

(1 − 2M
r )

r2 	sphψ = H . (21)

We now follow the usual procedure of projecting this equation onto individual spher-
ical harmonics. Since all of our estimates are both L2 and rotation invariant, there is
absolutely no harm in doing this. We write:

ψ =
∑
λ,i

ψλ,i Y
i
λ,

where the Y i
λ form an orthonormal basis for the space 	sphYλ = −λ2Yλ. On each

harmonic Eq. (21) becomes:

−∂2
t ψλ,i + ∂2

r∗ψλ,i − r−1∂2
r∗(r)ψλ,i − λ2(1 − 2M

r )

r2 ψλ,i = Hλ,i . (22)

Dropping the (λ, i) indices, labeling r∗ = x , and using the notation:

Qλ = r−1∂2
r∗(r) +

λ2(1 − 2M
r )

r2 , (23)

Eq. (22) becomes:

−∂2
t ψ + ∂2

xψ − Qλ(x)ψ = H.

We now wish to apply the estimate (19) to each of these equations, after we apply a spa-
tial translation by a quantity x0(λ)which will be determined in a moment. The resulting
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family of estimates can then be safely added to obtain the full estimate (7) as long as one
can produce a single point x0(∞) such that x0(λ) → x0(∞), and a single set of objects
(C,B1,B2) such that the conditions (13)–(18) hold for (C,B1 + x0(λ),B2 + x0(λ)).
Luckily, for the family of potentials (23) where 0 � λ is any real number, this is easy to
show. The reader should keep in mind that the reason this is possible is that the conditions
(13)–(18) are not really size conditions on the potential Qλ, but are actually conditions
on the sign of Qλ and its first derivative. This type of condition is very stable under
multiplication by large positive constants, so it is not hard to get uniform behavior for
large λ. We will state this result as follows:

Lemma 2.2. Let Qλ be the family of potentials defined on line (23) above, and set
x0(∞) = 3M. Then there exists a constant C, a pair of sets B1,B2, and a family of
points x0(λ) → x0(∞) such that the potentials Qλ (x + x0(λ)) satisfy the conditions
(13)–(18) for the triple (C,B1 + x0(λ),B2 + x0(λ)). All of these objects are completely
determined by the value of M.

Proof. First, notice that condition (13) is immediate. Next, recall that in the current
notation we have x = r(x) + 2M ln(r(x)− 2M). We now write:

Qλ(x) =
(

1 − 2M

r

) (
2M

r3 +
λ2

r2

)
. (24)

The proof centers around showing that Qλ has an isolated critical point. We compute
the first derivative:

Q′
λ = 2M

r2 (1 − 2M

r
)

(
2M

r3 +
λ2

r2

)
− (1 − 2M

r
)2

(
6M

r4 +
2λ2

r3

)
,

= − 2

r5
(1 − 2M

r
) ·

[
λ2r2 − 3M(λ2 − 1)r − 8M2

]
. (25)

The polynomial on the right-hand side of this last expression has exactly one root for
positive values of r . This is given by the quadratic formula:

r(λ) = 3M(λ2 − 1) + M
√

9(λ2 − 1)2 + 32λ2

2λ2 . (26)

We now show that this positive root is trapped inside the interval [ 8M
3 , 3M]. Since it

is clear from (26) that asymptotically r(λ) → 3M , it suffices to show that r(λ) is an
increasing function for 0 � λ. This follows at once from differentiating the polynomial
on line (25) with respect to the parameter λ which yields the identity:

ṙ(λ) = 6Mλr − 2λr2

2λ2r − 3M(λ2 − 1)
.

A simple calculation shows that this quantity is indeed positive whenever r ∈ [ 8
3 M, 3M].

Therefore, we shall pick our sequence of points x0(λ) according to the rule r(x0(λ)) =
r(λ). This immediately gives the condition (14) for the family of translated potentials
Qλ(x + x0(λ)). Also, note that the pointwise bound (18) is immediate for any compact
interval B1.



Decay for Scalar Fields on Schwarzschild Space 489

We now show the critical point behavior (17). This boils down to the fact that the
polynomial on line (25) has a simple root at r(λ). In fact, taking the second derivative
of the potential Qλ with respect to x and evaluating at the point x0(λ) we have that:

Q′′
λ(x0(λ)) = − 2

r5(λ)

(
1 − 2M

r(λ)

)2

·
[
2λ2r(λ)− 3M(λ2 − 1)

]
.

Notice that this quantity never vanishes, and is O(λ2) as λ → ∞, so one has (17) for
any compact set B1 given a suitable constant C , independent of the value of λ.

It remains for us to show the “strongly repulsive” conditions (15)–(16) hold for a
uniform constant C and pair of sets Bi . This follows from direct inspection of the for-
mulas (24) and (25). We consider the cases of x → ±∞ separately. In the case of
x → ∞ we also have that r → ∞, and we have the two asymptotic formulas (with
uniform constants in λ depending only on the mass M):

(x − x0(λ)) · Q′
λ(x) = −2λ2

r2 − 6M

r3 + O

(
λ2

r3

)
+ O

(
1

r4

)
+ {something negative},

2Qλ(x) = 4M

r3 +
2λ2

r2 + {something negative}.

Notice that the {something negative} terms on the right-hand side of the first line above
contain logarithmic corrections of the form ln(x)/x4 and λ2 ln(x)/x3, which come from
the second summand on the right-hand side of (5). It is important these come with a
good sign. Now, combining these last two lines we have that as x → ∞:

(x − x0(λ)) · Q′
λ(x) + 2Qλ(x) � −2M

r3 + O

(
λ2

r3

)
+ O

(
1

r4

)
.

This is enough3 to imply (15)–(16) because as x → ∞ we also have the following strict
lower bounds:

1
2λ

2

x3 � −Q′,
1
2λ

2

x3 � 1

x
Qλ(x).

Finally, we deal with the bounds (15)–(16) as x → −∞. This is even easier to
treat. Notice simply that both Q and ∂x (Q) are O

(
(1 + λ2)(1 − 2M

r )
)
, while the factor

(x − x0(λ)) goes to −∞. This means that the first term on the left-hand side of both
(15)–(16) is a very large negative multiple of the second. Therefore, the bounds (15)–
(16) are trivial because the left-hand side is asymptotically negative. This completes our
demonstration of Lemma 2.2. �

To wrap things up for this section, let us just mention briefly how one can sum the
estimate (19) over the angular frequency localized piecesψλ,i . The key thing here is that
the estimate (19) has been set up in such a way that one can use the Cauchy–Schwartz
inequality to deal with the terms on the right-hand side of (19). Specifically, summing

3 The reader should note that since r in Eq. (25) is an implicit function of x , that computing a precise and
optimal value for the size of the Bi would be rather tedious. Suffice it to say, if M = 1, then one should be
able to take 1000 = |Bi | in the above argument.
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this bound over (λ, i) indices and using the fact that the {Y i
λ} form an orthonormal system

on the sphere S
2 we have that:

sup
0�s�t

E(φ(s)) = sup
0�s�t

∫
R×S2×{s}

(
(1 + u2)(L(rφ))2 + (1 + u2)(L(rφ))2

+(1 + u2 + u2) ·
( | /∇ω(rφ)|2

r2 +
M

r3 (rφ)
2
))

dr∗dω

�
∑
λ,i

[
(1 + λ2)E(0)(ψλ,i )

+
∫ t

0
‖ (1 + |u| + |u|)(1 + λ)Hλ,i (s) ‖L2(dr∗) · ‖ (1 + λ)(|∇t,r∗ψλ,i |

+

(
1 − 2M

r

) 1
2
(
λ2

r2 +
M

r3

) 1
2

|ψλ,i |)(s) ‖L2(dr∗) ds

+
∫ t

0
‖(1 + |u| + |u|) Hλ,i (s)‖L2(dr∗) · E

1
2 (ψλ,i (s)) ds

]
, (27)

where we are defining:

E(ψλ,i (s)) =
∫

R×{s}

(
(1 + u2)(Lψλ,i )

2 + (1 + u2)(Lψλ,i )
2

+ (1 + u2 + u2)

(
1 − 2M

r

) (
λ2

r2 +
M

r3

)
· (ψλ,i )2

)
dr∗.

Now, bringing the sum under the integral sign in the two terms on the right-hand side of
(27) above and then using the L1–L∞ Hölder inequality yields the bound:

sup
0�s�t

E(φ(s)) � E((1 −	sph)
1
2 φ(0))

+ sup
0�s�t

[
E(φ(s)) + E((1 −	sph)

1
2 φ(s))

] 1
2

·
∫ t

0
‖ (

1+|u|+|u|)
(

1− 2M

r

)
r ·

(√
1−	sph G

)
(s)‖L2(dr∗dω)ds,

(28)

where the usual energy is given by:

E(φ(s)) =
∫

R×S2×{s}

(
|∇t,r∗(rφ)|2 +

(
1 − 2M

r

)( | /∇ω(rφ)|2
r2 +

M

r3 (rφ)
2
))

dr∗dω.

The estimate (7) now follows from (28) and taking an angular (momentum) derivative
of the basic energy estimate (see the next section for a proof):

sup
0�s�t

E(φ(s)) � E(φ(0)) +

(∫ t

0
‖

(
1 − 2M

r

)
rG ‖L2(dr∗dω) ds

)2

.
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3. Proof of the Main Estimate

We now turn to the proof of Theorem 2.1. This will be accomplished in a series of three
steps, each of which represents a tightening of the usual energy estimate. These are:

(1) Usual conservation of energy.
(2) Weak local decay of energy.
(3) Strong uniform local decay of energy.

Steps (1) and (3) involve a direct use of the energy-momentum tensor identities recorded
in the previous section applied to various vector-fields X which are associated with the
various types of decay as just listed. To prove item (2) above we use a Soffer–Morawetz
type multiplier similar to what was done in [2, 3].

Step 1. Conservation of energy. This is well known. In the current setup it comes from
setting X = T = ∂t in (11). Because Q(x) is time independent and since T is Killing
we end up with an essentially divergence free quantity:

∂α(T )Pα = H · ∂t (ψ).

Integrating this over a time slab we arrive at the energy estimate:
∫

R×{t}

(
(Lψ)2 + (Lψ)2 + Q(x) · (ψ)2

)
dx

�
∫ t

0
‖ H(s) ‖L2(dx) · ‖ ∂tψ(s) ‖L2(dx) ds

+
∫

R×{0}

(
(Lψ)2 + (Lψ)2 + Q(x) · (ψ)2

)
dx, (29)

where the implicit constant is fixed and does not depend on Q (it is easy to calculate but
we will not bother).

Step 2. Weak Local Decay of Energy. In this subsection, we prove that the local L1

norm of the quantity Q · (ψ)2 decays sufficiently fast in an average sense. Our bound
will be rather weak in that we allow the right-hand side of the estimate to grow like λt .
However, this weak bound will be precisely what we need in the next subsection when
we prove the strong uniform local decay of energy. What we propose to show is the
following estimate for integers 1 � N :

∫ t

0

∫
B1

(1 + s)Q · (ψ)2dxds −
∫ t

0

∫
R\B1

(1 + s)χ1

(
10x

1 + s

)
sgn(x)∂x (Q) · (ψ)2dx ds

� sup
0�s�t

N−1 E(s) + N (1 + λ2)E(0) + N
∫ t

0

∫
R

‖ (1 + s)(1 + λ)H(s) ‖L2(dx)

·‖ (1 + λ)(|∇t,xψ | + Q
1
2 · |ψ |) (s) ‖L2(dx) ds. (30)

Here the implicit constant depends only on the constants C and the lengths of the interval
B1 from lines (13)–(18). We are defining E as the Morawetz type energy from line (20)
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above. Finally, χ1 denotes a smooth bump adapted to the interval [−1, 1], and E denotes
the basic energy from Eq. (29) above.

In our proof of (30) it will be convenient for us to make the assumption that the local
bound (17) drastically improves if we restrict to very small sets containing x = 0. In
particular, we will assume that:

ε−4

C
· x2 � −x∂x (Q)(x), |x | � cB1ε, (31)

for some sufficiently small parameter ε which will be chosen in a moment. It is crucial
for us to point out here that our choice of ε will only be dictated by the constant C and
the size of B1, and will not depend on any other property of Q. Also, it is immediate
that the assumption (31) in fact involves no loss of generality. This is because Eq. (8)
rescales as follows:

ψ(t, x) � ψ(ε−1t, ε−1x), Q(x) � ε−2 Q(ε−1x), H(x) � ε−2 H(ε−1t, ε−1x).

Notice that the conditions (13)–(18) adapt to the rescaled situation in obvious ways. In
particular one has (31) on the set B̃1 = ε · B1. For the rest of this subsection we will
work in the rescaled situation where we assume all of (13)–(18) as well as (31). Of
course once one has (30) in this rescaled situation, one can recover the same bound for
the original potential Q by scaling back. This will create constants which depend on
ε, but we choose this parameter only to overcome two things. The first is the possibly
large constant C on the right-hand side of (17) (which is actually only a problem when
λ is small). The second is the fact that the original B1 may be small, so the constant
cB1 on Eq. (31) where our improved bound holds is also small. Of course both C and
cB1 are fixed no matter how much we rescale, so these can be made up for by taking ε
sufficiently small. The main thing to keep in mind here is that our rescaling will never
create constants in our estimates which depend in other ways on the shape of Q, other
than the original assumptions we have made (13)–(18).

To prove (30), we use the following growth multiplier of Soffer–Morawetz type:

A(s, x)ψ = (1 + s)χ1

(
10x

1 + s

)
[ϕ∂xψ + ∂x (ϕψ)] ,

where ϕ is defined as follows:

ϕ(x) =
∫ x

0

1

(1 + |y|)k dy, (32)

where 1 < k is a fixed constant. In practice the smaller the value of k the more favorable
the estimates, so the reader may assume that k = 2. However, we will do all of our
calculations in the general case so the overall structure is more apparent. The estimate
(30) will follow from the usual procedure of directly calculating the integral:

I = −
∫ t

0

∫
R

H · A(s, x)ψ dx ds,

=
∫ t

0

∫
R

∂2
t ψ · A(s, x)ψ dx ds +

∫ t

0

∫
R

(
−∂2

xψ + Qψ
)

· A(s, x)ψ dx ds,

= I1 + I2, (33)
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and then using a Poincaré type lemma near the critical point of Q(x) to get rid of the
factor −x∂x (Q) in favor of Q. We now compute the terms Ii separately and in order.
The first term I1 is the pure error. We first integrate by parts with respect to ∂t which
yields the identity:

I1 = −
∫ t

0

∫
R

∂tψ · A(s)(∂tψ) dx ds −
∫ t

0

∫
R

∂tψ · Ȧ(s)(ψ) dx ds

+
∫

R×{t}
∂tψ · A(t)(ψ) dx −

∫
R×{0}

∂tψ · A(0)(ψ) dx . (34)

Here the operator Ȧ(s) is given by:

Ȧ(s)ψ =
[
χ1(

10x

1 + s
)− 10x

1 + s
χ ′

1(
10x

1 + s
)

]
·
(

2ϕ∂xψ +
1

(1 + |x |)k ψ
)
.

Also, one has the adjoint formula:

A∗(s)ψ = −Aψ − 20χ ′
1(

10x

1 + s
)ϕ · ψ.

Therefore, a bound for the absolute value of the right-hand side of (34) above is:

|I1| �
∫ t

0

∫
R

χ̃1(
10x

1 + s
) ·

(
(∂tψ)

2 + (∂xψ)
2 +

1

(1 + |x |)2k
(ψ)2

)
dx ds

+ sup
0�s�t

∫
R×{s}

(1 + s)χ̃1(
10x

1 + s
) ·

(
(∂tψ)

2 + (∂xψ)
2 +

1

(1 + |x |)2k
(ψ)2

)
dx,

(35)

where χ̃1 is another [−1, 1] adapted smooth bump. To deal with the terms involving the
inverse |x | weight we use the Poincaré type estimate:∫ x0

−x0

1

(1 + |x |)2 (ψ)
2 dx � (ψ)2(0) +

∫ x0

−x0

(∂xψ)
2 dx . (36)

This follows at once from evaluation of the integral:

1

(1 + |x0|)
(
(ψ)2(x0) + (ψ)2(−x0)

)
− 2(ψ)2(0)

=
∫ x0

−x0

sgn(x)∂x

[
1

(1 + |x |) (ψ)
2
]

dx,

and using the Cauchy–Schwartz inequality. Using now (36) and the condition (18) it is
easy to bound:∫

R

χ̃1(
10x

1 + s
)· 1

(1 + |x |)2k
(ψ)2 dx �

∫
R

χ̃1(
5x

1 + s
)·

(
(∂xψ)

2 + Q · (ψ)2
)

dx, (37)

by using a partition of unity on B1 and R \ B1.
Our next step is to use the bound:∫

R

(1 + s)χ̃1(
5x

1 + s
) ·

(
(∂tψ)

2 + (∂xψ)
2 + Q · (ψ)2

)
dx � (1 + s)−1 · E(s),
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where the right-hand side is the Morawetz type energy from Eq. (20) above. This and
the bound (35) allows us to estimate:

|I1| �
∫ t

N (1+λ)
(1 + s)−2 · E(s) ds + sup

N (1+λ)�s�t
(1 + s)−1 · E(s)

+
∫ N (1+λ)

0
E(s) ds + sup

0�s�N (1+λ)
(1 + s) · E(s),

� sup
0�s�t

(N (1 + λ))−1 E(s) + sup
0�s�t

N (1 + λ)E(s).

Using now the energy inequality (29) to deal with the second term on the right-hand side
of this last line we arrive at the bound:

|I1| � (1 + λ)−1(R.H.S.)(30). (38)

In a moment we will need to multiply all of our estimates through by the factor (1 + λ),
so (38) is of the correct form.

Before moving on to the second integral on Eq. (33) above, we mention briefly
how to take care of the first integral on the right-hand side immediately above that line.
Applying the Cauchy–Schwartz inequality we have the bound:

∫ t

0

∫
R

|H(s)| · |A(s)ψ | dx ds

�
∫ t

0
‖ (1 + s)H(s) ‖L2(dx) · ‖ (|∂xψ | + χ1 (1 + |x |)−k |ψ |)(s) ‖L2(dx) ds . (39)

Using now a Poincaré type estimate of the form (37) to deal with the last term on the
right-hand side of (39) easily yields:

(L.H.S.)(39) � (1 + λ)−2 (R.H.S.)(30),

which is sufficient for our purposes.
Finally, we deal with the integral I2 on Eq. (33). After several integration by parts

(this is an essentially well known calculation) we arrive at the identity:

I2 =
4∑

j=1

K j ,

where the integrals Ki are:

K1 =
∫ t

0

∫
R

10χ ′
1(

10x

1 + s
)
[
ϕ∂xψ + ϕ′ψ

] · ∂xψ dx,

K2 = −
∫ t

0

∫
R

5χ ′
1(

10x

1 + s
) ϕ′′ (ψ)2 dx,

K3 = −
∫ t

0

∫
R

10χ ′
1(

10x

1 + s
) ϕ Q · (ψ)2 dx,

K4 =
∫ t

0

∫
R

(1 + s)χ1(
10x

1 + s
)

[
2ϕ′(∂xψ)

2 − ϕ∂x (Q) · (ψ)2 − 1

2
ϕ′′′(ψ)2

]
dx .
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Bounding the first three terms above is essentially the same as what we have just done
for the term I1 above. One simply uses Cauchy–Schwartz, the Poincaré estimate (36),
and the definitions of the two energies E and E to prove that:

|K1| + |K2| + |K3| � sup
0�s�t

(N (1 + λ))−1 E(s) + sup
0�s�t

N (1 + λ)E(s). (40)

Therefore, the heart of the matter now is to obtain a positive lower bound for the quantity
K4 in such a way that we can estimate the left-hand side of (30).

Before continuing with the proof, let us make a further simplification. Without loss
of generality we may assume that the cutoff function χ1 is the square of yet another
smooth cutoff function, say χ̃1. This allows us to replaceψ by χ̃1ψ in K4 above modulo
a term involving [∂x , χ̃1] = O( 1

1+s ) which is also cutoff where |x | � 10−1t . It is clear
that this will again be of the form (1 + λ)−1(R.H.S.)(30), so we can just tack this error
on to (40) above.

Thus, what we will need to show is that there exists a sufficiently small constant c
such that the following reverse bound holds for compactly supported functions ψ :

∫
R

[
2ϕ′(∂xψ)

2 − ϕ∂x (Q) · (ψ)2 − 1

2
ϕ′′′(ψ)2

]
dx

� c
∫

R

[
ϕ′(∂xψ)

2 − 1

2
ϕ∂x (Q) · (ψ)2

]
dx . (41)

Once this is established, the bound (30) will follow from combining the bounds (38)
and (40) with (41) and the following estimate which also holds for smooth compactly
supported functions ψ :

∫
B1

Q · (ψ)2 dx −
∫

R\B1

sgn(x)∂x (Q) · (ψ)2 dx

� (1 + λ)
∫

R

[
ϕ′(∂xψ)

2 − 1

2
ϕ∂x (Q) · (ψ)2

]
dx . (42)

We first prove (41). The overall strategy for this is very simple. The main thing we
will establish is that the form of the weight function (32) reduces everything to having
a “good” bound for the function ψ at x = 0 in terms of the left-hand side of (41). This
latter task is relatively easy to accomplish because assumption (31) essentially means
that −x∂x (Q) ∼ ε−1δ0, where δ0 is the unit mass at the origin. This means that the
potential term on the right-hand side of (41) will give us a bound on ψ(0) with an

O(ε
1
2 ) constant. The details of this procedure are as follows. We first compute:

0 =
∫

R

∂x

[
ϕ′′ (ψ)2

]
dx,

=
∫

R

ϕ′′′ (ψ)2 dx + 2
∫

R

ϕ′′ ψ∂xψ dx . (43)

It will now be useful to have the identities:

ϕ′′(x) = −k · sgn(x)

(1 + |x |)k+1 , ϕ′′′(x) = −2kδ0 +
k(k + 1)

(1 + |x |)k+2 .
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Therefore, the right-hand side of (43) and a Cauchy–Schwartz gives us the bound:∫
R

k(k + 1)

(1 + |x |)k+2 (ψ)
2 dx,

� 2

(
k

k+1

) 1
2
(∫

R

1

(1+|x |)k (∂xψ)
2 dx

) 1
2 ·

(∫
R

k(k+1)

(1+|x |)k+2 (ψ)
2 dx

) 1
2

+2k(ψ)2(0),

= 2

(
k

k + 1

) 1
2

A
1
2 · B

1
2 + C.

We may now assume without loss of generality that in this last bound we have C � B,

otherwise there is nothing to prove on Eq. (41). Therefore, dividing through by B
1
2 and

squaring this last line we arrive at the bound:

∣∣∣∣
∫

R

ϕ′′′ (ψ)2 dx

∣∣∣∣ = B − C � 4
k

k + 1
A + 4

(
k

k + 1

) 1
2

A
1
2 · C

1
2 . (44)

The dangerous term is now the second one on the right-hand side above. This needs to
be controlled in terms of a sufficiently small constant. In fact, we will show that it is

O(ε
1
2 ) times the (R.H.S.)(41), which implies that it may be safely absorbed into half of

the remaining portion of A and a small amount of the potential term on (R.H.S.)(41).
The bound which allows us to do this is the following:

(ψ)2(0) � ε

(∫
R

1

(1 + |x |)k (∂xψ)
2 dx +

∫
R

−ϕ∂x (Q) · (ψ)2 dx

)
.

From assumption (31), this last estimate follows from:

(ψ)2(0) � ε

(∫
R

1

(1 + |x |)k (∂xψ)
2 dx + ε−4

∫
R

x2χ(ε−1x) · (ψ)2 dx

)
, (45)

where χ is some smooth O(1) bump function whose support depends on the size of the
set B1 from Eq. (17). Estimate (45) is essentially scale invariant, so it suffices to show
that:

(ψ)2(0) �
∫

R

1

(1 + ε|x |)k (∂xψ)
2 dx +

∫
R

x2χ(x) · (ψ)2 dx . (46)

This, in turn, follows from cutting things off and using the usual Sobolev embedding
once we have the bound:

‖ χ̃ 1
2ψ ‖2

L2 �
∫

R

1

(1 + ε|x |)k (∂xψ)
2 dx +

∫
R

x2χ(x) · (ψ)2 dx, (47)

for some slightly smaller cutoff function χ̃ . This last bound can be proved in two steps.
We first show the estimate:

‖ |x | 1
2 ˜̃χ 1

2ψ ‖2
L2 �

∫
R

1

(1 + ε|x |)k (∂xψ)
2 dx +

∫
R

x2χ(x) · (ψ)2 dx, (48)

for some intermediate cutoff ˜̃χ . This bound follows at once from evaluating the integral:

0 =
∫

R

sgn(x) ∂x

[
x2 ˜̃χ · (ψ)2

]
dx,
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and using the Cauchy–Schwartz inequality to bound the error terms by (R.H.S.)(48).
Having now established (48) we can prove (47) by applying the same procedure to the
integral:

0 =
∫

R

∂x

[
x χ̃ · (ψ)2

]
dx .

This completes our proof of (45), and hence our demonstration of the main commutator
estimate (41).

Having now dealt with the bound (41), the only thing left for us to do in our proof
of (30) is to show the bound (42). Notice that the bound for the second term on the left-
hand side of that estimate follows at once from the fact that sgn(x) � ϕ(x) whenever
x ∈ R \ B1. Therefore, it remains to bound the first term on the left-hand side of (42).
This is where we pick up the extra factor of (1 + λ). The proof is essentially identical to
what was done to establish (47) above. Using the two conditions (17)–(18), it suffices
to multiply through the following estimate by the quantity (1 + λ)2:

‖χ
1
2
B1
ψ ‖2

L2 � ‖ |x |χ
1
2
B1
ψ ‖L2 · ‖χ

1
2
B1
∂xψ ‖L2 + ‖ |x |χ̃

1
2
B1
ψ ‖2

L2 . (49)

Here the functions χB1 and χ̃B1 are cutoffs which are ≡ 1 on the set B1 and which
vanish outside of 2B1. The bound (49) follows from evaluation of the integral:

0 =
∫

R

∂x

[
x χB1 · (ψ)2

]
dx,

and using Cauchy–Schwartz as well as the bound |xχ ′
B1

| � x 2̃χB1 for a suitable cutoff
χ̃B1 . We have now finished our proof of the weak local energy decay estimate (30).

Remark 3.1. We note here that it is possible to prove (30) without rescaling the potential
Q into the condition (31). This can be accomplished by using the weight function:

ϕε(x) =
∫ x

0

1

(1 + ε|y|)k dy,

in place of (32) above. This yields a small factor in front of |ψ |(0) when it appears in

the C
1
2 term on the right-hand side of line (44) above, so one can proceed directly to the

estimate (46) to control things. We leave the details to the interested reader.

Step 3. Strong Uniform Decay of Local Energy. We are now ready to prove the main
Morawetz estimate (19). With the assumptions (13)–(18) in hand, as well as the weak
local energy decay estimate (30), this becomes an essentially standard calculation. We
will contract the energy-momentum tensor (9) with the conformal Killing vector-field:

K0 = (t2 + x2)∂t + 2t x∂x = 1

2
u2L +

1

2
u2L.

The deformation tensor of this is computed to be:

(K0)π = 4tg.
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Therefore, we may form the momentum density (K0)Pα = TαβK β
0 and from Eq. (12) we

compute the divergence:

∂α (K0)Pα = −t x∂x (Q) · (ψ)2 − 2t Q · (ψ)2 + K0(ψ) · H. (50)

By simply integrating this last line over various time slabs of the form 0 � s � t and
using the Cauchy–Schwartz inequality we arrive at the bound:

sup
0�s�t

(K0)P0(s) �
∫ t

0

∫
R

|H(s)| · |K0(ψ)(s)| dxds + (K0)P0(0)

+
∫ t

0

∫
R

[
sx∂x (Q) · (ψ)2 + 2s Q · (ψ)2

]
dx ds. (51)

Using now the identity:

(K0)P0 = 1

4
u2(Lψ)2 +

1

4
u2(Lψ)2 +

1

4
(u2 + u2)Q · (ψ)2,

we see that (51) in conjunction with the energy estimate (29) implies the bound:

sup
0�s�t

E(s) �
∫ t

0

∫
R

‖ (1 + |u| + |u|)H(s) ‖L2(dx) · E
1
2 (s) ds + E(0)

+
∫ t

0

∫
R

[
sx∂x (Q) · (ψ)2 + 2s Q · (ψ)2

]
dx ds. (52)

The last thing we need to do here is to bound the last term on the right-hand side of the
previous expression. We will show the bound:∫ t

0

∫
R

[
sx∂x (Q) · (ψ)2 + 2s Q · (ψ)2

]
dx ds

� sup
0�s�t

N−1 E(s) + N (1 + λ2)E(0) + N
∫ t

0

∫
R

‖ (1 + s)(1 + λ)H(s) ‖L2(dx)

·‖ (1 + λ)(|∇t,xψ | + Q
1
2 · |ψ |) (s) ‖L2(dx) ds, (53)

where the implicit constant is independent of the large parameter N . Notice that this
bound substituted into (52) immediately implies (19) for sufficiently large N .

To prove (53) we will chop the left-hand side up into three pieces. The first is the
“bad” set B1. This is where most of the positivity of (L.H.S.) (53) can be found. The
second set is where x /∈ B1 and |x | � 1

20 t . Here we use the strongly repulsive condition
(15). Finally, in the exterior of the influence of the potential when t � |x | we can simply
integrate things using the homogeneity bound (16). The details of this procedure are as
follows:

On the set B1 we use the repulsive condition (14) and the first term on the left-hand
side of (30) to bound:∫ t

0

∫
B1

[
sx∂x (Q) · (ψ)2 + 2s Q · (ψ)2

]
dx ds ,

�
∫ t

0

∫
B1

(1 + s)Q · (ψ)2 dx ds,

� (R.H.S.)(53).
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Next, we work in the set R \ B1 but cutoff according to how large t is. Here we make
use of the condition (15):

∫ t

0

∫
R\B1

χ1

(
10x

1 + s

) [
sx∂x (Q) · (ψ)2 + 2s Q · (ψ)2

]
dx ds,

� −
∫ t

0

∫
R\B1

(1 + s)χ1

(
10x

1 + s

)
sgn(x)∂x (Q) · (ψ)2 dx ds,

� (R.H.S.)(53).

Finally, in the exterior where t � |x | we use the condition (16) and the following bound
which holds for parameters N such that |B2| � N (where the implicit constant of course
depends on |B2|):∫ t

0

∫
R

(
1 − χ1

(
10x

1 + s

))[
sx∂x (Q) · (ψ)2 + 2s Q · (ψ)2

]
dx ds,

�
∫ 20|B2|

0

∫
R

2s Q · (ψ)2 dx ds +
∫ N

0

∫
R

Q · (ψ)2 dx ds +
∫ t

N

∫
R

Q · (ψ)2 dx ds

� N sup
0�s�t

E(s) + N−1 sup
0�s�t

E(s),

� (R.H.S.)(53).

This completes our demonstration of (53), and hence our proof the main estimate (19).

4. Scattering for Small Amplitude Non-Linear Scalar Fields

We will be brief here and leave many of the details to the reader. The main result of this
section is the following:

Theorem 4.1 (Scattering for Scalar Fields). Consider the Cauchy problem:

�gφ = λ|φ|pφ, φ(0) = f, ∂tφ(0) = g, (54)

for compactly supported functions ( f, g). Define the regularity space:

‖φ ‖2
Hk
�

= E
(
(1 −	sph)

k
2 φ

)
,

where E is the Morawetz type energy from Eq. (7). Then if 2 < p, there exists a universal
set of positive constants E and C depending only on p such that if:

‖φ(0) ‖H3
�

� E ,

then a unique solution to the problem (54) exists for all values of the variable t and it
obeys the bound:

‖φ(t) ‖H2
�

� CE.

In particular, one has the following uniform point-wise bounds:

|φ| � E r−1 · min{ 1,
∣∣t − |r∗|∣∣− 1

2 }. (55)
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A previous result of this type was recently obtained by Dafermos and Rodnianski in the
case of spherical symmetry and powers 3 < p (see [6]).

To prove Theorem (4.1) we need four ingredients. The first is the Morawetz estimate
(7). The second is a Poincaré type estimate which will allow us to control the L2 norm of
our function in terms of the energy E . The third is a paraproduct bound which allows us
to concentrate all of our angular derivatives on a single term of the non-linearity λ|φ|pφ.
And the final is a global Sobolev inequality which will give us the bound (55) in terms
of our energy space H2

�. We now state the last three of these in order:

Lemma 4.2 (Poincaré type estimate for the weights u and u). Let ψ be a function of
the variables (t, r∗), and define the weights u and u as on Eqs. (6). Then the following
estimate holds: ∫

R

(ψ)2 dr∗ �
∫

R

(
u2(Lψ)2 + u2(Lψ)2

+
(1 + u2 + u2)(1 − 2M

r )

r3 (ψ)2
)

dr∗. (56)

Lemma 4.3 (Paraproduct bounds). On the sphere S
2 the following estimates holds:

‖ (1 −	sph)
k
2 (|F |p F) ‖L2(S2) � ‖ F ‖p

L∞(S2)
· ‖ (1 −	sph)

k
2 F ‖L2(S2), (57)

for all test functions F and integers 0 � k � p + 1.

Lemma 4.4 (A global Sobolev inequality). Let φ be a function of the variables (r∗, ω).
Then one has the following global bounds:

|rφ| � min{ 1, r
1
2 (1 − 2M

r
)−

1
4
∣∣t − |r∗|∣∣−1

,
∣∣t − |r∗|∣∣− 1

2 } · ‖φ ‖H2
�
. (58)

We now give short proofs of these three lemmas:

Proof of Estimate (56). The proof will follow from cutting the function ψ into three
pieces. We write:

ψ = χr∗<−1ψ + χ−1<r∗<1ψ + χr∗>1ψ,

where the χ form a smooth partition of unity such that the ∂r∗χr∗<±1 are supported on
the interval [−2, 2]. For the left-hand portion we compute that:

0 =
∫

R

∂r∗
[
(t + r∗)χr∗<−1(ψ)

2
]

dr∗ =
∫

R

χr∗<−1(ψ)
2 dr∗

+
∫

R

(t + r∗)χ ′
r∗<−1(ψ)

2 dr∗ + 2
∫

R

(t + r∗)χr∗<−1ψ∂r∗ψ dr∗.

Collecting terms and applying the Cauchy–Schwartz inequality we arrive at the bound:

∫
R

χr∗<−1(ψ)
2 dr∗ �

∫
R

(1 + u2 + u2)(1 − 2M
r )

r3 (ψ)2 dr∗

+

(∫
R

χr∗<−1(ψ)
2 dr∗

) 1
2 ·

(∫
R

u2 χr∗<−1(∂r∗ψ)2 dr∗
) 1

2

.
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This easily proves (56) for the left-hand portion of things because here one has the
bound:

u2 χr∗<−1(∂r∗ψ)2 � u2(Lψ)2 + u2(Lψ)2. (59)

The proof of (56) for the right-hand term χr∗>1ψ follows from an identical argument.
We leave this to the reader. �
Proof of Estimate (57). Because k is chosen to be an integer, it is easy to reduce this
estimate to the case of Euclidean space. First of all, note that one has the following
bound:

‖ (1 −	sph)
k
2 (|F |p F) ‖L2(S2) �

∑
|α|�k

‖�αi j (|F |p F) ‖L2(S2),

where α is a multiindexing of the rotation generators {�i j }. Via a partition of unity, the
desired bound easily reduces to proving that for k ∈ N one has:

‖ |F |p F ‖Hk � ‖ F ‖p
L∞ · ‖ F ‖Hk , 0 � k � p + 1.

Estimates of this type are well known and easy to prove (see e.g. [11]). �
Proof of Estimate (58). We first make a preliminary reduction. Because we are includ-
ing two angular (momentum) derivatives in the norm H2

�, via the Sobolev embedding
on the sphere S

2 it suffices to prove the following global Sobolev estimate for functions
ψ of the variable r∗:

|ψ | � min{ 1, r
1
2 (1 − 2M

r
)−

1
4
∣∣t − |r∗|∣∣−1

,
∣∣t − |r∗|∣∣− 1

2 } · ‖φ ‖H, (60)

where H is the Hilbert Space:

‖ψ ‖2
H =

∫
R

[
(1 + u2)(Lψ)2 + (1 + u2)(Lψ)2 + (1 + u2 + u2)

(1 − 2M
r )

r3 (ψ)2

]
dr∗.

Using now the Poincaré estimate (56) and bounds of the form (59) we see that we have:

∫
R

[
(1 + (t − |r∗|)2)(∂∗

r ψ)
2 + (ψ)2 + (1 + u2 + u2)

(1 − 2M
r )

r3 (ψ)2

]
dr∗ � ‖ψ ‖2

H.

(61)

The first two terms on the left-hand side of this last expression are enough to get the
basic weight in the estimate (60). Specifically, one has the bound:

(1 + (t − |r∗|)2) 1
2 (ψ)2 �

∫
R

[
(1 + (t − |r∗|)2)(∂∗

r ψ)
2 + (ψ)2

]
dr∗.

The proof of this kind of estimate is completely standard and reduces to the usual Sobo-
lev bound after decomposing things via cutoffs on intervals of dyadic sizes according to

the value of the weight (1 + (t − |r∗|)2) 1
2 . See [7] for details on this procedure.

It remains for us to prove the estimate (60) for the more refined weight. It is clear
from the form of the energy (61) that this bound holds when r∗ ∈ [−1, 1]. Therefore we
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only need to establish it for the cases r∗ < −1 and r∗ > 1. We will do this separately by
directly evaluating some weighted integrals similar to what we have done many times
now. For values t < r∗

0 < −1 we compute that (note that the weight r is essentially a
constant here so we can safely disregard it):

(1 − 2M

r
)

1
2 (t + r∗

0 )
2(ψ)2(r∗

0 )

= −
∫ 0

r∗
0

∂r∗
[
(1 − 2M

r
)

1
2 (t + r∗)2(ψ)2

]
dr∗ + (1 − 2M

r
)

1
2 t2 (ψ)2(0).

By collecting terms and using the Cauchy–Schwartz inequality this gives us the bound:

(1 − 2M

r
)

1
2 (t + r∗

0 )
2(ψ)2(r∗

0 ) � (1 − 2M

r
)

1
2 t2 (ψ)2(0)

+ ‖ (1 − 2M

r
)

1
2 (t + r∗)ψ ‖L2([0,r∗

0 ]) · ‖ (t + r∗)∂r∗ψ ‖L2([0,r∗
0 ]) .

The crucial thing to notice here is that when the derivative falls on the weight (1 −
2M
r )(t + r∗)2 it creates a positive term which can be collected with the left-hand side.

This last line gives us the desired bound because all the L2 type norms are covered by
the energy H, and so is the bound for ψ at the origin.

To wrap things up here we need to prove the refined bound in (60) for the region
where 1 � r∗. Notice that it suffices to do this for r∗ � t because otherwise the simpler
weight on the right-hand side of (60) is favorable. Also, in this case we may safely ignore
the weight (1 − 2M

r ) because it is essentially a non-zero constant. The desired bound
will drop out from computing the following integral for fixed points 0 � r∗

0 � t :

r−1(t − r∗
0 )

2(ψ)2(r∗
0 ) =

∫ r∗
0

0
∂r∗

[
r−1(t − r∗)2(ψ)2

]
dr∗ + r−1 t2 (ψ)2(0).

Computing the integral on the right-hand side of this last expression, throwing away only
the term which results when the derivative falls on the weight (t − r∗)2, collecting the
terms of like sign to the left-hand side, and applying the Cauchy–Schwartz inequality
we arrive at the bound:

r−1(t − r∗
0 )

2(ψ)2(r∗
0 ) + ‖ r−1(t − r∗)ψ ‖2

L2([0,r∗
0 ]) � r−1 t2 (ψ)2(0)

+ ‖ r−1(t − r∗)ψ ‖L2([0,r∗
0 ]) · ‖ (t − r∗)∂r∗ψ ‖L2([0,r∗

0 ]).

From this one easily derives the bound:

r−1(t − r∗
0 )

2(ψ)2(r∗
0 ) � r−1 t2 (ψ)2(0) + ‖ (t − r∗)∂r∗ψ ‖L2([0,r∗

0 ]),

which is itself bounded by the energy H. This completes our proof of the estimate (60),
and hence our demonstration of the global Sobolev bound (58). �
Proof of Theorem 4.1. We now use the previous three lemmas and the main decay esti-
mate (7) to prove the global regularity result. This will follow by bootstrapping the usual
local existence theorem. We will not state or prove this local result here because even
in this context it is an elementary application of Picard iteration and energy estimates
(in fact, one can use the estimates developed here to set up a global Picard iteration
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because the precise structure of the non-linearity does not need to be preserved). Now,
our theorem will follow if we can show that for each fixed time t up to which we have
existence the weak bound sup0�s�t ‖φ(s) ‖H2

�
� 2CE implies the stronger bound

sup0�s�t ‖φ(s) ‖H2
�

� CE. From the estimate (7), we see that we can provide this as
long as we can show the bound:

∫ t

0
‖ (1 + |u| + |u|)(1 − 2M

r
) r · (√1 −	sph)

3
2 (|φ|pφ) (s) ‖L2(dr∗dω) ds

� sup
0�s�t

‖φ(s) ‖p+1
H2
�

. (62)

To compute the integral on the left-hand side, we use the paraproduct estimate (57)
which gives us the bound:

‖ (√1 −	sph)
3
2 (|φ|pφ) (s) ‖L2(dω) � ‖φ(s) ‖p

L∞
ω

· ‖ (√1 −	sph)
3
2φ (s) ‖L2(dω).

Using now the definition of the energy H2
� and the Poincaré estimate (56) to control the

L2 norm of the zero harmonic of φ, we see that we can bound:

(L.H.S.)(62) � sup
0�s�t

‖φ(s) ‖H2
�

·
∫ t

0
‖ (1 + |u| + |u|)(1 − 2M

r
)

1
2 |φ|p (s) ‖L∞

(r∗,ω)ds.

The claim (62) will now follow once we can show the fixed time bound:

‖ (1 + |u| + |u|)(1 − 2M

r
)

1
2 |φ|p (s) ‖L∞

(r∗,ω) � (1 + s)−1− 1
2 (p−2)‖φ(s) ‖p

H2
�

. (63)

This last bound follows easily from the global Sobolev estimate (58). To see this, it is
convenient to split things into the three regions:

R1 = {r∗ < −1

2
s}, R2 = {|r∗| � 1

2
s} R3 = {1

2
s � r∗}.

In the region R1 the bound on (63) is completely trivial. Here the non-linear interac-
tion breaks down entirely. All one has to do is to use the bound:

(1 − 2M

r
) � e

1
2M r∗

, r∗ � 0,

and the fact that the φ are uniformly bounded (which is the best we can do!).
In the transition region R2, we use the fine bound contained on the right-hand side

of (58). This gives us that:

(1 − 2M

r
)

1
2 |φ|2 � (1 + s)−2.

Taking on the weight (1 + |u| + |u|) which is ∼ (1 + s) in this region, and using the fact

that |φ|p−2 � (1 + s)− 1
2 (p−2) in R2 we again have (63).

Finally, in the Minkowski like region R3 we have from (58) the uniform decay esti-
mate |φ| � (1 + t + r∗)−1. This easily implies (63). This completes our proof of the
bootstrapping estimate (62) and hence our demonstration of Theorem 4.1. �
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