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Abstract: We study the final problem for the nonlinear Schrédinger equation
: 1 2
i0ru + zAu = Au|nu, (t,x) € RxR",

where A € R,n = 1,2, 3. If the final data u, € H** = {¢ e L*: (1 + [x|)* ¢ € L?}
with 7 < o < min (n, 2,1+ %) and the norm ||iz; ||~ is sufficiently small, then we

prove the existence of the wave operator in L2. We also construct the modified scattering
operator from H® to H*? with 5<é<a.

1. Introduction

In this paper we consider the modified wave operator for the nonlinear Schrodinger
equation

1
ia,u+§Au=A|u|%u, (t,x) € R x R", (1.1)
where A € R, n =1, 2, 3. Denote by F¢ or <13 the Fourier transform of ¢,

F@) = @m) / D (x)dx,

Rn

the inverse Fourier transform is denoted by F~!. Our purpose is to find the solutions of

(1.1) satisfying
nilx? . . %
lim (u(t) — Gt e (-) exp (—ik i (-) logt)) —0 (12
t—+00 t t
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in L2 under the conditions that the final data
2
u, € H*  with % < o < min [n,Z, 1 +—]
n

and the norm ||ii3 |1~ is sufficiently small. Also we show the existence of the modified
n

scattering operator from H®¢ to H-? ;5 < 8 < a, under the smallness condition in
HOe,

Notation and function spaces. Welet d; = 9/0x;, ol = 8{1 e 8,1{', e (NU{OD™ .U (1)
is the free Schrodinger evolution group defined by

Uty = Qrin)™* /e%'ﬁ’% (y)dy = F e’ Fg
Rn
=M@@)D@)FM(@),

where M = M (t) = exp (’lg—tlz) and D(¢) is the dilation operator

(D)) (x) = (i1)"3 ¢ (’t—‘) .
‘We note that

U(—t) =M (—0)i"F~'D (%) M (=),

since (D (1))~! = i"D (%) . By using the above identities we easily see that

T =U@)xU(—t) = M () itVM (—t) = x +itV
and

B

TP @) =U @) P U (1) = P M (1) (=8)% M (=1)

for 8 > 0.
We introduce some function spaces. The Lebesgue space L” = {¢ e S ol < oo},
1/p .
where [$lly = (fpr 617 dx)"” if 1 < p < 00 and [lly = ess.sup{|¢(x)] ;
x € R"}if p = 0o. We denote by W),“ the weighted Sobolev space
Wyt = [ €8’ |0 (i8.)" 6], < o0)

1
for any s,a € R,1 < p < oo, where (x) = (1+ |x|2)2 . In particular, we denote
H* = W3 R"), W), = W;’O and H* = W}. By B; ; We denote the homogeneous
Besov space with the semi-norm

00 1/q

Iolg, = / 2 sup D[y — )| dx |
0

V1= 191<[s]

where s = [s]+0,0 <o < 1, ¢y(x) = ¢(x +y) and [s] is the largest integer less than
s. We let C(I; E) be the space of continuous functions from an interval I to a Banach
space E. Different positive constants might be denoted by the same letter C.

‘We now state our results in this paper. In the next theorem we prove the existence of
the modified wave operator

Wy :uy € H*® — ug € HP,
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Theorem 1. We assume that u, € H> and x|l = &, where ¢ is sufficiently small
and 5 < a < min (n, 2,1+ %) . Then there exists a unique global solution u of (1.1)

satisfying
uec(10,00:1%), |7 uec(10,00:1?),
where 5 < B < a. Moreover the estimate is true

cn ik e .
HL{ (—1) (u (1) —(t)y " 2e 2 uy (;) exp (—l)»

7 ;) o)

forallt > 0, where )0 <§ <, u>0.
Next we show the existence of the operator W= such that
wol: uy € H? ¢ HO"S,
where 5 < § < f < min (2, 1+ %) . Therefore we have the modified scattering operator
Se=WI'W, i HY — HO,

where % < 4§ < a < min (n 2,1+ %) , provided that the norm ||u4 ||go.« is sufficiently
small.

Theorem 2. We assume that ug € H*# and luollgo.s = &, where ¢ is sufficiently small
an4 3 < B<l1l+ % Then there exist unique functions u_, h_ € H® with 5<8<p
satisfying

1
H(J”:U(—t)u)exp(ik(h_+|t|_X)"10g|t|)—17: <Cei T (13)

H

forallt < 0, with some p > 2y > 0, where u (t) is a solution of (1.1) such that
ueC((=00,0:L7), 1717 u e € ((—o00,00:L7).
Furthermore the asymptotic representation is true

i (wresn (i - ;) 1) i) <o ()]

< Cel*i 5 (1.4)

forallt <0, where 5 < n < B with some > 0.

Our results are improvements of papers [3, 5, 9]. In Theorem 2 of [9], it was shown
that for any u; € H3 N H"? with smallness condition on llitx]lgeo, Eq. (1.1) has a
unique solution u € C ([0, co) ; H"*?) such that

(7)) oet)

b
<Ct 2,
H!.0

L e .
u()—(it) " 2e 2 uy (;) exp (—l)»
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with 1 < b < 2 in the one dimensional case n = 1. In [3], the result of [9] was improved
as follows: it was shown that for any u, € H%3 N H"? with smallness condition on
[l I, Eq. (1.1) has a unique solution u € C ([0, o0) ; H!:9 N H*!) such that

6 ()fn)

< ct! log3 t,
Hl,O

ixz .
W (t) — ()3 e i (;) exp (—i)\

and

<Cr 'log 1.
HO,I

L1l i .
HL{(—t) (u (1) — (i 2 e iy (;) exp (—u\

() ve)

The last estimate and the result of [7] enable us to define the modified scattering operator
S, : H3 nH"“2 — L? (see Corollary 2 in [3]). Their results required more smooth-
ness conditions than those of ours since their methods are based on the substitution of
an approximate solution

iz _ -
(it)_% e 2 uy (;) exp (—ik

- ()fn)

to the free Schrodinger equation which implies the second differentiability of ity (;)

Note that by the method of paper [9] the condition u#, € H%? only is required for con-
structing the modified wave operator. In order to get the result of Theorem 1 we use the

factorization of I/ (—t) and take U (t) F~ iy exp (—ik |ﬁ1|% log t) as an approximate

2
o~ _ nl l‘
() e

+MDF (M — 1) F~ ity exp (—m @37 log t)

solution of u. By the identity

n ixz .
U F'a exp(—m |37 log t) —(n e i (;) exp (—ik

we can see that the difference between the two approximate solutions is
MDF (M — 1) F'its exp (—i)\ Mk logt) .

In the proof of Theorem 2 we take a modified approximate solution
U @) F i~ exp (—i,\ (h_+ |t|—><)% log |z|)

to avoid the loss of the differentiability. The rest of the paper is organized as follows. In
Sect. 2 we prove some preliminary estimates of the nonlinearity in the Sobolev space.
Section 3 is devoted to the proof of Theorem 1. Then we prove Theorem 2 in Sect. 4.
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2. Lemmas
First we state the Sobolev imbedding inequality (see [4]).

Lemma 3. Let g, r be any numbers satisfying 1 < q,r < oo, and let j, m be any
numbers satisfying 0 < j < m. If ¢ € W' N LY, then

[CISEY Rl [CONER] W T

where % = ﬁ +a (% - %) + 1%"for all a in the interval % <a <1, where C is a
constant depending only on n,m, j, q,r, a, with the following exception: if m — j —

is a nonnegative integer, then the above estimate holds for a = #

n
P

We denote the fractional partial derivative E)fj forp >0, j=1,2,...,n,asfollows
00
0f ¢ (x) = 1,(12—71@)/8,’5] (¢y, — ¢) y].‘l‘@dyj,
0
where k =[], 0 = B—k € (0.1), ¢y, = ¢ (x1,....xj+yj.....x,), T is the

Euler gamma function (see [1, 11]).

Lemma 4. Let % < B < min (n 2,1+ r%) . Then the estimates are true

2
i = C ol ¢l -

|6 1017

2
2 2 .
[oexp (i 1617 10g7) | <€ + 10l doz ) ) 1ol
j=

and

[lere—1wPv| = (I813x +1vIE<) 19 - ¥l
+C (19l + 19 lo) 19 = ¥ leos 1o
ifn=1.Also

2 2
[ie17 o —1wii v,
Z 1
< Clglw (19 = il +5" 6 = Vlin)
+C 1o =¥l (1 lgs +5' 7 1/l )
2 2 2
+Csi? (||¢||;{;+y Ipllas + 111y, 1 lgs + 111y, ||¢||Hﬁ)

foralls > 0ifn =2,3 where ) < y < min (/3 - 3.5 (1 + % — ,B)) , provided that
the right-hand sides are finite.
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Proof. By the Taylor expansion

1
exp (i |¢|% logt) —1=i |¢|% logt/exp (i@ |¢>|% logr) do.
0

Let us estimate

2 . 2

|9 1617 exp (i€ 917 log ) |
for 8 > 1 and n = 2, 3. By a direct computation
2 2 2
V (#1617 exp (i6 1917 log 7)) = 7 (¢ exp (i 917 logT).
where
F@ =|—+1)I¢1" Vo+ -9 1p" > Vo +—Igl" > ¢ (§V +$V§) log .

By the Holder inequality we find

Hf (¢y,) exp (i@ 6| logr) — f @)exp (01617 log)
L2

2
<C|f(¢y;) = f @D+ Clogz ¢y, — L I @i

with £ + L = 1. Therefore
p P

|7 @) exp (101617 1og)

RO
B2,2

1
o0 2

sc ([ s @)~ @ a
0 <x

0 ) 3
+Clogt /f”” sup ¢y, —d)" If (@)lf,dx
5 lk|<x Lt

for 0 < o < 1. Since the norm of the homogeneous Sobolev space HY is equivalent to
that of the homogeneous Besov space B , (see [2]), then the first two estimates of the
lemma follow by the method of proof of Lemma 3.4 in paper [6].

We now prove the last two estimates of the lemma. Since the norm of the homoge-

neous Sobolev space H? is equivalent to that of the homogeneous Besov space ]'32’3’2 (see
[2]), we have

1
oo 2

I61as < Cllglyg, = ( [+ sup loy — ol dx] .
7 0

lyl=x
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where 0 < B < 1, ¥, (x) = ¥ (x + ). Forn = 1 we represent

03> & = [P vy — 0P @ + 1P v

< C (o] + [y | + 161+ 19D (|(@y — ¥y) — @ — ¥ + |wy — ¥]).
then we get
R
sc( [ s lonf ol v -
0

= C (Il + ||w||iw) 16— ¥l + € (Ipllnoe + 1 l0e) 16— ¥ lluoe 1 gy -

Thus the third estimate of the lemma is true.
To prove the last estimate of the lemma we represent

o, (1017 ¢ — 101 v) = (1 + %) (1917 0, @ =) + (1917 = 1w17) 01, v/)

forn = 2, 3. Then we get

o[ (1917 01, 0 = )|

=c|iol? [ o, (@ =) - @ v) 37 e,

0

7 2
+/ (‘¢Yj !
0

- |¢|3) ax,- ((byj - l/fyj) y]_ﬁdyj

L2
2
<Clol{x ¢ — ¥ligs
[e¢)
2 2 -B
¢ |y, |" = Il ) Bx; (&3, — ¥y;) LY dy;.
L
By Lemma 3 we obtain
2 2 2
”(|¢yl "= |¢|”) axjﬁo =C H|¢yj "= o eligs
L2 LA-1

2 2y4B-1 2
= C |y, = ¢[ o lolas = Cyf Iel s, Il 2.1)
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whereo =5 —5(B—1) >0, O<y5min(ﬂ—%,%(l+%—ﬁ)),forn=2,3.

Therefore we find
[o/e]
/(i
0
N

2 2,1 2 7 _B
<Clglly,, ||<o||Hﬂ/y; dy; +C Ill{~ ||¢||H1/yj dy;
0 K

2 2 -8
"=l ) oxe| vy tdy;
L2

2 2 2
2 1—
< Csn” ”d)”;ﬁ lelgs + Cs' P llgll{o el

+y

for all s > 0 so that

o P (1617 ., (9 — )

2 2
+Csn? |I¢II;%+V lé — Yligs -
In the same manner

1o 77" (1017 = 1w17) ;v

= (1817 ~1w1) [ oy, (0= )5 ay
0

L2

1.2

7 2 2 2 2 .y
+C 1617 — |y, |" = [wln + [y, [ ) 0,9y, 97 "y,
0 1.2
For the first summand we have
o0
2 2 —B
(1015 = 1w17) [ 0, (0 = ,) v; Py,
0 L2
2 2 %
sclielf —wiF| 1wl = Clle = vl vl

Asin (2.1) we obtain

o
2 2 2 2 —B
|7 _|¢Yj ! _|¢|”+|Wyj|" I ¥y, ;7 dy;
0 L2
N
: : !
<C (“(p”Hgﬂ’ + ”l/j“}ﬁﬂ/) ||'§”||Hﬁ/y] dyj

0
0

2 —
+CUo = Vi Wl [ 377,

N

2% 2ty

2 2 2
< Csn? (||¢||I'.'{n + ||1/f||1'f{a

2
) 1¥llggs + Cs" P llp — Y llfoo 1V g -

2
L = CllE (16 =¥l +5' 7 16 = vl )

2.2)



485

Domain and Range of the Modified Wave Operator

Then we find

o 1P~ (1017 = 1913) )|, = €19 = Wi (101 +5 10

2 2 2
;)/ n n .
+Cs (||¢||H%+y+||w||ﬁg+y) 1l
(2.3)

O

By (2.2) and (2.3) the last estimate of the lemma follows. Lemma 4 is proved.

3. Modified Wave Operator
We denote the first approximation for the solutions of (1.1) by

ui () = M@OD @)D 1), B () = ity exp (—i,\ iy |7 logt) .

The free Schrédinger evolution group can be decomposed as

UMY p=MDD () d+R (1),

where R (t) = M (1) D (t) F (M (1) — 1) F~L.
To prove Theorem 1 we define the following function space:

X={pec(I7.00:17):16 1) — 11 Wlx < o}

with the norm
B

19lx = sup (1519 Ollz + 1 [|71P9 0] 2)

te[T,00)

where 2 < B <a <min(n,2,1+2), a =B > pu > 0is sufficiently small.

2
Multiplying both sides of (1.1) by FU (—t) , we obtain

19, (FU (=t) u) = AFU (1) |ul" u. 3.1)
Note that w (f) = ity eXp (—ik |IZ:_|% log t) satisfies the equation
h~ A2
10w = n |w|= w. 3.2)
By (3.1) and (3.2) we have
i0; (FU(=t)u — w)
2 1 2 12
= AFU (—1) (|u|n u— ?M’D|w|n w— ;R|w|n w)
3.3)

2 2 A 2
— AFU (1) (Iuln " — |uy |7 ul) ~ ZFUDRIBI D,

Since

FU(Du—w =FU(—t) (u—u; —Rw),
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by integrating (3.3) in time and by using condition (1.2) we obtain

o0

2 2
w(t) —up (1) = —M/u(t — (|u|ﬁu — |y ul)dr

t

oo
~ . 2 _drt
+Rw+zk/U(l—r)R(r)|w|n w—.
T
t

(3.4)

Equation (3.4) is the integral equation for (1.1) with condition (1.2). Let us consider the

linearized version of (3.4),

]

2 2
w () — uy (1) = —i/\/Z/{(t — 1) (|v|ﬁv — uyln ul)dr

t

. T 2 _drt
+Rw+lk/U(t—t)R(t)|w|n w—,
T

i

where v € X, = {¢ € X; [¢llx < p} and p < C |Jus|lgoe -

(3.5)

Since R = MDF (M — 1) F~!, by Lemma 4 the remainder terms are estimated as

[Rocatal, = o necatal,
< €172 | Bllge < Cpt~ 7" log?t

and

oo

d a=
i A Ces%,o/t*l*T(S log2 tdt
T

w

/ooﬂn(n(—m? @l
t

t

2 _a=d 2
< Cenpt™ 2 log-t,
where 0 < § < B8 < «. Also by virtue of Lemma 3 we obtain

vl < llv —uillLee + [lu1flLee

N

n
-5 26 ) _n
<Cr 3 IT1F @ —un| v —uill, ” +Cr% @l

<Ct3 (,ot_" +8)

(3.6)

3.7)
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since v € X,,. Then by (3.5) the L2-norm can be estimated as

oo
2 2
llu (1) —ur (D2 = C/ (”U”]’:oo + ||M1||ﬁoo) lv—uill2dr
13

drt

L2 T

o0
+IR@ |y +c/ HR(r) B|r

t
o0 o
<C 2 dt c 2 dt
< Ce ||v—u1|IL27+ 14 ||v—u1||LzT1—+M
t t
a B
+Cpt~2log?t < Cpt~27H (3.8)

forallt > T if T > 0 is sufficiently large.
Note that | 7| R (t) = R (t) (=A)7 . Then multiplying (3.5) by |7|f = tP M (1)
(—A)g M (—t), we obtain

o0

T @@ = 0) = =in [ U@ =0 (1T @F (wlF v =l ) ) e
t

B . g 2 _dt
+R (1) (—=A)?2 w+zk/M(t—t)R(t)(—A)2 |w| 7 .

t

Then by (3.6) and (3.7) we find

oo
2 2 _o B
I @ = @l = [ 170 (10 0=l ) | de+ cor2 tog s
t

(3.9)

Applying Lemma 4 we have

[0 (1P v = ) |
=CtP H,/\_/lv |mv|2 —Mlﬂ |ﬂu1|2H .
HA

< Cpt ' (e+pt ) (JITVP 0 =) |2+ v — e lly0e)
< Cpt™' 7 (e + pT7H) (3.10)
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in the case n = 1 and also

B 2 2
717 (1017 v = Jar |7 1)

1.2

I J— 2
— Mu, |./\/lu1i"

=cCt’ H/\_/lv M

HA
2 2
< Cllfe 1TV @ =up) |2+ Cllv —uillfo |||J|ﬂu1||Lz

+Cs!Peh! (nvnm 1T (v —un)llpz + llv —u1|| ||Ju1||Lz)

2 2 n
cesire i (i s

v+ HIJI ™y

) >
* Hljwul "
L2

|j|ﬂu1HL2) (3.11)

foralls > 0ifn = 2,3, where 0 < y < min(ﬂ—
by using the estimates

,%(1+%—ﬁ)).8incevexp,

(ST

1— 2
v —uillpe < Ct~ ZIIIJIﬂ(v—ul)II llo = ull, ™

< Cpr-i-n-3(6-3

and | J (v —u)|ly2 < Cpt™#~ 5 , we get from (3.11)

1.2

[T (1017 v = 17 )
< Cpr~'7H (s% +,0%r_“) + C,ol+% 1=qu=i (=%
e CpEetper (i 1B 0-D)
+Cp1+%s%”t717%7 < Cpt~'7H (8% +p%1’7“) (3.12)
ifwetake s = 'V, yv > npand (B — v +2u < % (,8 — %) in the cases n = 2, 3.

(For example, we can choose v = % and p = v?2))
Then by virtue of (3.10) and (3.12) we find from (3.9),

o0
1T O1F @ @) = ur )]s < Cp/r—l—“ (7 + pFe ) dr + Cpr= 2 log?t
t

< Cpr M. (3.13)

In view of (3.8) and (3.13) we find that there exists a time T such that u € X,,. In the
same manner we can prove the estimate

~ 1 ~
e —ullx = 5 llv=lix,
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where u is defined by (3.5) with v replaced by v. Therefore (3.5) defines a contraction
mapping. Hence there exists a unique global solution u € C([T, o0) ; L?) of the integral
equation (3.4) satisfying the estimate

lu (6 = ur ()2 < Cr %74,
Arguing in the same way as in the proof of [12] we can extend the existence time to
zero. Theorem 1 is proved.
4. Modified Scattering Operator
To prove Theorem 2 let us consider the Cauchy problem for Eq. (1.1) with initial data
uy € HO# with % <B <1+ % and with sufficiently small norm ¢ = ||ug|go.s. In

[7] it was proved that there exists a unique global solution u of the Cauchy problem for
Eq. (1.1) satisfying

U (=1 e C((~00,01;HF),
and the following estimates:
lu Oz < luollyz, [IT OF u @), < Ce el (4.1)
forall + <0, where € = CS% > (0 is small. From estimates (4.1) and the identity
u(t) = MDFU (=) u () + MDF (M — 1)U (—t) u (1)
by Lemma 3 it follows that
lullgee < Ct72 | FU(—1) g0
+C173

(=85 FM = DU o ul T 1F M= DU (=) uly

_n _n_B(i_n s -
< Ct7 3 |FU (=) ullpe + Ct 2 (1-45) TPl 5 NP (=) uf, ™
_n _n_B§B
<Ct 2 | FU (D ullpe +Ct7872 || TP ul|, - 4.2)
By (3.1) we have for the function w (¢) = FU (—1t) u (¢),
W+ R + Ry, 4.3)
where the remainder terms
ir 2 2 o
R = s (If/\/lw|n FMw — |w]n w)
and

Ry = —Tf(/w‘ _ 1)f*‘ \FMuw|* FMuw.
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490

By using Lemma 4 we have
2 ~2 <
IRl = 11" ||l F Ml FMw — ()
< Cl™ (IFMwlEe + 181 ) 17 (M = D wlg
+C ™" IFMuwlse + [l I1F (M = D wilgse 1@

< Clel M M = Dwligos |17V ] 2y lull
+C|r|—1||(M Dwld, M = Dwly,?
x |||J|ﬂu|| Jull;» 2’* |||;7|ﬂu||Lz ey

< C8|[|_ —ﬁT+(1+E)€

if n = 1. Also
2 A~ = A
IR g = Cle]™! H|]—"Mw|z FMw —

2
= ClT IFMwIf (KM = D wligos +5' 1M = D wligo. )

2
+ClTIFE M = Dwlifs (Iwlgos +5' 7 wlgos)

1
+C ™ S"VIIWII o5 1w lleos

’

(1+2 — B)). Then using the

n
2

[T

foralls > 0if n = 2,3, where 0 < y < min (8 —

estimates

IFMw|pe < Ce ¢, [FM—1Dwlpe < Ce |f|_7(1 71) ,
lwllgoe < Celt]FS, M — D wljoe < Celt]™ 2

for0 <a < B we get
1 n 2
IR g = C 1t 71572 4 C e 7142 (51 175 P=8) 4577

-
+C|t| 1 nv+2€

<cl -5

leg_n
if wetake s = ¢t7V, withv = ﬁ(ﬁl 2)

Also by using Lemma 4 we have
|R2lls = Cle ™" | (M7 = 1) 77 IF Ml
188 2 _1_B=3 2
< Clr™ =5 |iEMuli FMw| < C il IFMwllf o

- 140 2_n
< CUl=E N w3 s ?

” ,_ﬂ

1,7
=Cltl™ IIwIIHOﬁ lwiy, *

<Cs |t|717ﬂ2;5+(1+g)e
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Thus we have
I Rillygs + I R2llggs < Ce [t (4.4)
for5 <8 < Bandsome0 < pu < ?

Multiplying both sides of Eq. (4.3) by W and taking the real part of the result we get
for h (1) = [ (1),

h; =2Re (W (R; + R2)) .

hence integrating with respect to time we find

t

h(t) —h(s)= 2Re/ (W (R1 + Ry)) dr.

S
By estimate (4.4) we have

!
| @) =h ()] < C82/ 7|~ dr < Ce? 1|
b
forall ' <t < —1. Then we see that there exists a unique limit #_ € H® such that
I (#) = h—|lgs < Ce? []°™" (4.5)
forallt < —1.
Multiplying both sides of Eq. (4.3) by E (¢) = exp (ik (h—+ |t|_X)% log |t|), with
asmall x > 0 we get
9 (WE) =F, (4.6)

where
1
F()=—ix (r—‘ |h (t)|% -9 ((h_ +1t]7%) " log |z|)) WE + (R +Ry) E.

Note that by Lemma 4 we find

IF @l = C H (t‘l I ()] — 3 ((h_ + Itl‘X)% log Itl)) wE

HS
142 | —1—p+2x+e
+[[(Ri + R2) Ellgs = Ce " n 1] :
Therefore integrating (4.6) with respect to time, we obtain

t

/F(r)dr

t HS

[ () E () =@ @ E )

IA

t
2
C81+Z/|T|_1_M+2X+edf
t

< Cel*i |g|Prren 4.7)
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forall#’ <t < —1. Since the norm ||ug||go.s is sufficiently small, then we see that there
exists a unique function 7~ € H? such that

~ o~ 2 _
D (1) E (1) — a=|lgs < Ce'*in |¢]22¥eH

for all + < —1. This implies (1.3). Furthermore the asymptotic representation (1.4) is
true. Theorem 2 is proved.
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