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Abstract: In this paper we provide a new proof that the Grosse–Wulkenhaar
non-commutative scalar �4

4 theory is renormalizable to all orders in perturbation the-
ory, and extend it to more general models with covariant derivatives. Our proof relies
solely on a multiscale analysis in x space. We think this proof is simpler. It also allows
direct interpretation in terms of the physical positions of the particles and should be
more adapted to the future study of these theories (in particular at the non-perturbative
or constructive level).

1. Introduction

In this paper we recover the proof of perturbative renormalizability of non-commutative
�4

4 field theory [1–3] by a method solely based on x space. In this way we avoid com-
pletely the sometimes tedious use of the matrix basis and of the associated special
functions of [1–3] and we recover the more physical direct space representation of fields
and particles. Moreover our proof works for the optimal range ]0, 1] of the parameter �

which was restricted to a much smaller interval in a previous proof. We also extend the
corresponding BPHZ theorem to the more general complex Langmann-Szabo-Zarembo
ϕ̄ �ϕ�ϕ̄�ϕ model with covariant derivatives, hereafter called the LSZ model. This model
has a slightly more complicated propagator, and is exactly solvable in a certain limit [4].

Our method builds upon previous work of Filk and Chepelev-Roiban [5, 6]. These
works however remained inconclusive [7], since these authors used the right interaction
but not the right propagator, hence the problem of ultraviolet/infrared mixing prevented
them from obtaining a finite renormalized perturbation series. The Grosse Wulkenhaar
breakthrough was to realize that the right propagator in non-commutative field theory
is not the ordinary commutative propagator, but has to be modified to obey Langmann-
Szabo duality [8, 2].

Non-commutative field theories (for a general review see [9]) deserve a thorough
and systematic investigation. Indeed they may be relevant for physics beyond the stan-
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dard model. They are certainly effective models for certain limits of string theory
[10, 11]. Also they form almost certainly the correct framework for a microscopic
ab initio understanding of the quantum Hall effect which is currently lacking. We think
that x space-methods are probably more powerful for the future systematic study of the
noncommutative Langmann-Szabo covariant field theories.

Fermionic theories such as the two dimensional Gross-Neveu model can be shown to
be renormalizable to all orders in their Langmann-Szabo covariant versions, using either
the matrix basis or the direct space version developed here [12]. However the x-space
version seems the most promising for a complete non perturbative construction, using
Pauli’s principle to control the apparent (fake) divergences of perturbation theory. In
the case of φ4

4 , recall that although the commutative version has been until now fatally
flawed due to the famous Landau ghost, there is some hope that the non-commutative
field theory treated at the perturbative level in this paper may also exist at the constructive
level [13, 14]. Again the x-space formalism is probably better than the matrix basis for
a rigorous investigation of this question.

In the first section of this paper we establish the x-space power counting of the theory
using the Mehler kernel form of the propagator in direct space given in [15]. In the sec-
ond section we prove that the divergent subgraphs can be renormalized by counterterms
of the form of the initial Lagrangian. The LSZ models are treated in the Appendix. Note
that we do not prove here the exact topological power counting for irrelevant graphs.
This should be doable with our methods but is not necessary for our theorem.

2. Power Counting in x-Space

2.1. Model, notations. Beware that throughout this paper we will use many different
notations for position variables. To avoid any confusion for the reader we summarize
these notations at the end of the paper.

The simplest noncommutative ϕ4
4 theory is defined on R

4 equipped with the associa-
tive and noncommutative Moyal product

(a � b)(x) =
∫

d4k

(2π)4

∫
d4 y a(x+ 1

2θ ·k) b(x+y) eık·y . (2.1)

The renormalizable action functional introduced in [2] is

S[ϕ]=
∫

d4x

(
1

2
∂µϕ � ∂µϕ +

�2

2
(x̃µϕ) � (x̃µϕ) +

1

2
µ2

0 ϕ � ϕ +
λ

4!ϕ � ϕ � ϕ � ϕ

)
(x),

(2.2)

where x̃µ = 2(θ−1)µνxν and the Euclidean metric is used.
In four dimensional x-space the propagator is [15]

C(x, x ′) = �̃2

[2π sinh �̃t]2
e− �̃ coth �̃t

2 (x2+x ′2)+ �̃

sinh �̃t
x ·x ′−µ2

0t
, (2.3)

where �̃ = 2θ−1� and the (cyclically invariant) vertex is [5]

V (x1, x2, x3, x4) = δ(x1 − x2 + x3 − x4)e
ı
∑

1 � i< j � 4(−1)i+ j+1xi θ
−1x j , (2.4)

where we note1 xθ−1 y ≡ 2
θ
(x1 y2 − x2 y1 + x3 y4 − x4 y3).

The main result of this paper is a new proof in configuration space of

1 Of course two different θ parameters could be used for the two symplectic pairs of variables of R
4.
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Theorem 2.1 (BPHZ Theorem for Noncommutative �4
4 [2, 3]). The theory defined

by the action (2.2) is renormalizable to all orders of perturbation theory.

Let G be an arbitrary connected graph. The amplitude associated with this graph is (with
selfexplaining notations):

AG =
∫ ∏

v,i=1,...4

dxv,i

∏
l

dtl

×
∏
v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)e

ı
∑

i< j (−1)i+ j+1xv,i θ
−1xv, j

]

×
∏

l

�̃2

[2π sinh(�̃tl)]2
e
− �̃

2 coth(�̃tl )(x2
v,i(l)+x2

v′,i ′(l))+
�̃

sinh(�̃tl )
xv,i(l).xv′,i ′(l)−µ2

0tl
. (2.5)

For each line l of the graph joining positions xv,i(l) and xv′,i ′(l), we choose an
orientation and we define the “short” variable ul = xv,i(l) − xv′,i ′(l) and the “long”
variable vl = xv,i(l) + xv′,i ′(l). With these notations, defining �̃tl = αl , the propagators
in our graph can be written as:

∫ ∏
l

�̃dαl

[2π sinh(αl)]2 e− �̃
4 coth(

αl
2 )u2

l − �̃
4 tanh(

αl
2 )v2

l − µ2
0

�̃
αl . (2.6)

2.2. Orientation and position routing. A rule to solve the δ functions at every vertex is
a “position routing” exactly analog to a momentum routing in the ordinary commutative
case, except for the additional difficulty of the cyclic signs which impose to orient the
lines. It is well known that there is no canonical such routing but there is a routing asso-
ciated to any choice of a spanning tree in G. Such a tree choice is also useful to orient
the lines of the graph, hence to fix the exact sign definition of the “short” line variables
ul , and to optimize the multiscale power counting bounds below.

Let n be the number of vertices of G, N the number of its external fields, and L the
number of internal lines of G. We have L = 2n − N/2. Let T be a rooted tree in the
graph (when the graph is not a vacuum graph it is convenient to choose for the root a
vertex with external fields but this is not essential). We orient first all the lines of the
tree and all the remaining half-loop lines or “loop fields”, following the cyclicity of
the vertices. This means that starting from an arbitrary orientation of a first field at the
root and inductively climbing into the tree, at each vertex we follow the cyclic order to
alternate entering and exiting lines as in Fig. 1.

Every line of the tree by definition of this orientation has one end exiting a vertex
and another entering another one. This may not be true for the loop lines, which join
two “loop fields”. Among these, some exit one vertex and enter another; they are called
well-oriented. But others may enter or exit at both ends. These loop lines are subse-
quently referred to as “clashing lines”. If there are no clashing lines, the graph is called
orientable. If not, it is called non-orientable.

We will see below that non-orientable graphs are irrelevant in the renormalization
group sense. In fact they do not occur at all in some particular models such as the LSZ
model treated in the Appendix, or in the most natural noncommutative Gross-Neveu
models [12].

For all the well-oriented lines (hence all tree propagators plus some of the loop
propagators) we define in the natural way ul = xv,i(l) − xv′,i ′(l) if the line enters at xv,i(l)
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Fig. 1. Orientation of a tree

and exits from xv′,i ′(l). Finally we fix an additional (completely arbitrary) auxiliary ori-
entation for all the clashing loop lines, and fix in the same way ul = xv −xv′ with respect
to this auxiliary orientation.

It is also convenient to define the set of “branches” associated to the rooted tree T .
There are n − 1 such branches b(l), one for each of the n − 1 lines l of the tree, plus
the full tree itself, called the root branch, and noted b0. Each such branch is made of
the subgraph Gb containing all the vertices “above l” in T , plus the tree lines and loop
lines joining these vertices. It has also “external fields” which are the true external fields
hooked to Gb, plus the loop fields in Gb for the loops with one end (or “field”) inside and
one end outside Gb, plus the upper end of the tree line l itself to which b is associated.
In the particular case of the root branch, Gb0 = G and the external fields for that branch
are simply all true external fields. We call Xb the set of all external fields f of b.

We can now describe the position routing associated to T . There are n δ functions in
(2.5), hence n linear equations for the 4n positions, one for each vertex. The momen-
tum routing associated to the tree T solves this system by passing to another equivalent
system of n linear equations, one for each branch of the tree. This equivalent system is
obtained by summing the arguments of the δ functions of the vertices in each branch.
Obviously the Jacobian of this transformation is 1, so we simply get another equivalent
set of n δ functions, one for each branch.

Let us describe more precisely the positions summed in these branch equations, using
the orientation. Fix a particular branch Gb, with its subtree Tb. In the branch sum we find
a sum over all the ul short parameters of the lines l in Tb and no vl long parameters since
l both enters and exits the branch. This is also true for the set Lb of well-oriented loops
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lines with both fields in the branch. For the set Lb,+ of clashing loops lines with both
fields entering the branch, the short variable disappears and the long variable remains;
the same is true but with a minus sign for the set Lb,− of clashing loops lines with both
fields exiting the branch. Finally we find the sum of positions of all external fields for
the branch (with the signs according to entrance or exit). For instance in the particular
case of Fig. 2, the delta function is

δ
(
ul1 + ul2 + ul3 + uL1 + uL3 − vL2 + X1 − X2 + X3 + X4

)
. (2.7)

The position routing is summarized by:

Lemma 2.1 (Position Routing). We have, calling IG the remaining integrand in (2.5):

AG =
∫ [∏

v

[
δ(xv,1 − xv,2 + xv,3 − xv,4)

] ]
IG({xv,i })

=
∫ ∏

b

δ


 ∑

l∈Tb∪Lb

ul +
∑

l∈Lb,+

vl −
∑

l∈Lb,−
vl +

∑
f ∈Xb

ε( f )x f


 IG({xv,i }),(2.8)

where ε( f ) is ±1 depending on whether the field f enters or exits the branch.

Using the above equations one can at least solve all the long tree variables vl in terms
of external variables, short variables and long loop variables, using the n − 1 non-root
branches. To this end, recall that the unique Xi which is at the upper end of each tree
line should be written in (2.7) as 1/2(vl ± ul). There remains then the root branch δ

function. If Gb is orientable, this δ function of branch b0 contains only short and external
variables, since Lb,+ and Lb,− are empty. If Gb is non-orientable one can solve for an

Fig. 2. A branch
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additional “clashing” long loop variable. We can summarize these observations in the
following lemma:

Lemma 2.2. The position routing solves any long tree variable vl as a function of:

• the short tree variable ul of the line l itself,
• the short tree and loop variables with both ends in Gb(l),
• the long loop variables of the clashing loops with both ends in Gb(l) (if any),
• the short and long variables of the loop lines with one end inside Gb(l) and the other

outside,
• the true external variables x hooked to Gb(l).

The last equation corresponding to the root branch is particular. In the orientable case it
does not contain any long variable, but gives a linear relation among the short variables
and the external positions. In the non-orientable case it gives a linear relation between
the long variables w of all the clashing loops in the graph, some short variables u, and
all the external positions.

From now on, each time we use this lemma to solve the long tree variables vl in terms of
the other variables, we shall call wl rather than vl the remaining n +1− N/2 independent
long loop variables. Hence looking at the long variables’ names the reader can check
whether Lemma 2.2 has been used or not.

2.3. Multiscale analysis and crude power counting. In this section we follow the stan-
dard procedure of multiscale analysis [16]. First the parametric integral for the propagator
is sliced in the usual way:

C(u, v) = C0(u, v) +
∞∑

i=1

Ci (u, v), (2.9)

with

Ci (u, v) =
M−2(i−1)∫

M−2i

�̃dα

[2π sinh α]2 e− �̃
4 coth α

2 u2− �̃
4 tanh α

2 v2− µ2
0

�̃
αl . (2.10)

Lemma 2.3. For some constants K (large) and c (small) :

Ci (u, v)� K M2i e−c[Mi ‖u‖+M−i ‖v‖] (2.11)

(which a posteriori justifies the terminology of “long” and “‘short” variables).

The proof is elementary. For i � 1, it relies only on second order approximation of the
hyperbolic functions near the origin. This bound is also true for the first slice i = 0 with
K depending on µ0.

Taking absolute values, hence neglecting all oscillations, leads to the following crude
bound:

|AG | �
∑
µ

∫
duldvl

∏
l

Cil (ul , vl)
∏
v

δv, (2.12)
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where µ is the standard assignment of an integer index il to each propagator of each
internal line l of the graph G, which represents its “scale”. We will consider only ampu-
tated graphs. Therefore we have no external propagators, but only external vertices of
the graph; in the renormalization group spirit, the convenient convention is to assign all
external indices of these external fields to a fictitious −1 “background” scale.

To any assignment µ and scale i are associated the standard connected components
Gi

k , k = 1, . . . , k(i) of the subgraph Gi made of all lines with scales j � i . These tree
components are partially ordered according to their inclusion relations and the (abstract)
tree describing these inclusion relations is called the Gallavotti-Nicolò tree [17]; its
nodes are the Gi

k’s and its root is the complete graph G (see Fig. 3).
More precisely for an arbitrary subgraph g one defines:

ig(µ) = inf
l∈g

il(µ), eg(µ) = sup
l external line of g

il(µ). (2.13)

The subgraph g is a Gi
k for a given µ if and only if ig(µ)� i > eg(µ). As is well known

in the commutative field theory case, the key to optimize the bound over spatial inte-
grations is to choose the real tree T compatible with the abstract Gallavotti-Nicolò tree,
which means that the restriction T i

k of T to any Gi
k must still span Gi

k . This is always
possible (by a simple induction from leaves to root). In Fig. 3a, an example of such a
compatible tree is given with bold lines. We pick such a compatible tree T and use it
both to orient the graph as in the previous section and to solve the associated branch
system of δ functions according to Lemma 2.2. We obtain:

|AG,µ| � K n
∏

l

M2il

∫
duldvl

∏
l

e−c[Mil ‖ul‖+M−il ‖vl‖]∏
b

δb.

� K n
∏

l

M2il

∫
duldwl

∏
l

e−c[Mil ‖ul‖+M−il ‖vl (u,w,x)‖]δb0 . (2.14)

The key observation is to remark that any long variable integrated at scale i costs
K M4i whereas any short variable integrated at scale i brings K M−4i , and the variables
“solved” by the δ functions bring or cost nothing. For an orientable graph the optimal
solution is easy: we should solve the n − 1 long variables vl ’s of the tree propagators
in terms of the other variables, because this is the maximal number of long variables
that we can solve, and they have highest possible indices because T has been chosen
compatible with the Gallavotti-Nicolò tree structure. Finally we still have the last δb0

function (equivalent to the overall momentum conservation in the commutative case).
It is optimal to use it to solve one external variable (if any ) in terms of all the short
variables and the external ones. Since external variables are typically smeared against
unit scale test functions, this leaves power counting invariant.2

The non-orientable case is slightly more subtle. We remarked that in this case the
system of branch equations allows to solve n long variables as a function of all the others.

2 In the case of a vacuum graph, there are no external variables and we must therefore use the last δb0

function to solve the lowest possible short variable in terms of all others. In this way, we lose the M−4i factor
for this short integration. This is why the power counting of a vacuum graph at scale i is not given by the
usual formula M(4−N )i = M4i below at N = 0, but is in M8i , hence worse by M4i . This is of course still
much better than the commutative case, because in that case and in the analog conditions, that is without a
fixed internal point, vacuum graphs would be worse than the others by an . . . infinite factor, due to translation
invariance! In any case vacuum graphs are absorbed in the normalization of the theory, hence play no role in
the renormalization.
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(b)

(c)

(a)

Fig. 3. (a) A ϕ4 graph (b) Example of scale attribution (c) The “Gallavotti-Nicolò” tree

Should we always choose these n long variables as the n −1 long tree variables plus one
long loop variable? This is not always the optimal choice. Indeed when several disjoint
Gi

k subgraphs are non-orientable it is better to solve more long clashing loop variables,
essentially one per disjoint non-orientable Gi

k , because they spare higher costs than if
tree lines were chosen instead. We now describe the optimal procedure, using words
rather than equations to facilitate the reader’s understanding.
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Let C be the set of all the clashing loop lines. Each clashing loop line has a certain
scale i , therefore belongs to one and only one Gi

k and consequently to all G j
k′ ⊃ Gi

k .
We now define the set S of n long variables to be solved via the δ functions. First we
put in S all the n − 1 long tree variables vl . Then we scan all the connected components
Gi

k starting from the leaves towards the root, and we add a clashing line to S each time
some new non-orientable component Gi

k appears. We also remove p − 1 tree lines from
S each time p � 2 non-orientable components merge into a single one. In the end we
obtain a new set S of exactly n long variables.

More precisely suppose some Gi
k at scale i is a “non-orientable leaf”, which means

that it contains some clashing lines at scale i but none at scales j > i . We then choose
one (arbitrary) such clashing line and put it in the set S. Once a clashing line is added
to S in this way it is never removed and no other clashing line is chosen in any of the
G j

k at lower scales j < i to which the chosen line belongs. (The reader should be aware
that this process allows nevertheless several clashing lines of S to belong to a single Gi

k ,
provided they were added to different connected components at upper scales.) When
p � 2 non-orientable components merge at scale i into a single non-orientable Gi

k , we
can find p − 1 lines in the part of the tree T i

k joining them together, (e.g. taking them
among the first lines on the unique paths in T from these p components towards the
root) and remove them from S.

We see that if we have added in all q clashing lines to the set S, we have eliminated
q − 1 tree lines. The final set S thus obtained in the end has exactly n elements. The
non-trivial statement is that thanks to inductive use of Lemma 2.2 in each Gi

k , we can
solve all the long variables in the set S with the branch system of δ functions associated
to T .

We perform now all remaining integrations. This spares the corresponding M4i inte-
gration cost for each long variable in S. For any line not in S we see that the net power
counting is 1, since the cost of the long variable integration exactly compensates the gain
of the short variable integration. But for any line in S we earn the M−4i power counting
of the corresponding short variable u without paying the M4i cost of the long variable.

Gathering all the corresponding factors together with the propagators’ prefactors M2i

leads to the following bound:

|AG,µ| � K n
∏

l

M2il
∏
l∈S

M−4il . (2.15)

Remark that if the graph is well-oriented this formula remains true but the set S consists
of only the n − 1 tree lines.

In the usual way of [16] we write

∏
l

M2il =
∏

l

il∏
i=1

M2 =
∏
i,k

∏
l∈Gi

k

M2 =
∏
i,k

M2l(Gi
k) (2.16)

and

∏
l∈S

il∏
i=1

M−4il =
∏
i,k

∏
l∈Gi

k∩S

M−4, (2.17)

and we must now only count the number of elements in Gi
k ∩ S.
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If Gi
k is orientable, it contains no clashing lines, hence Gi

k ∩ S = T i
k , and the cardinal

of T i
k is n(Gi

k) − 1.
If Gi

k contains one or more clashing lines and p clashing lines l1, . . . , l p in Gi
k have

been chosen to belong to S, then p −1 tree variables in T i
k have also been removed from

S and Gi
k ∩ S = T i

k ∪ {l1, . . . , l p}− {p − 1 tree variables}, hence the cardinal of Gi
k ∩ S

is n(Gi
k).

Using the fact that 2l(Gi
k) − 4n(Gi

k) = −N (Gi
k) we can summarize these results in

the following lemma:

Lemma 2.4. The following bound holds for a connected graph (with external arguments
integrated against fixed smooth test functions):

|AG,µ| � K n
∏
i,k

M−ω(Gi
k) (2.18)

for some (large) constant K , with ω(Gi
k) = N (Gi

k)−4 if Gi
k is orientable and ω(Gi

k) =
N (Gi

k) if Gi
k is non-orientable.

This lemma is optimal if vertices’ oscillations are not taken into account, and proves that
non-orientable subgraphs are irrelevant. But it is not yet sufficient for a renormalization
theorem to all orders of perturbation.

2.4. Improved power counting. Recall that for any non-commutative Feynman graph
G we can define the genus of the graph, called g and the number of faces “broken by
external legs”, called B [2, 3]. We have g � 0 and B � 1. The power counting established
with the matrix basis in [2, 3], rewritten in the language of this paper 3 is:

ω(G) = N − 4 + 8g + 4(B − 1), (2.19)

hence we must (and can) renormalize only 2 and 4 point subgraphs with g = 0 and
B = 1, which we call planar regular. They are the only non-vacuum graphs with ω � 0.

In the previous section we established that

ω(G)� N − 4, if G orientable, ω(G)� N , if G non-orientable. (2.20)

It is easy to check that planar regular subgraphs are orientable, but the converse
is not true. Hence to prove that orientable non-planar subgraphs or orientable planar
subgraphs with B � 2 are irrelevant requires to use a bit of the vertices oscillations to
improve Lemma 2.4 and get:

Lemma 2.5. For orientable subgraphs with g � 1 we have

ω(G)� N + 4. (2.21)

For orientable subgraphs with g = 0 and B � 2 we have

ω(G)� N . (2.22)

3 Beware that the factor i in [3] is now 2i , and that the ω used here is the convergence rather than divergence
degree. Hence there is both a sign change and a factor 2 of difference between the ω’s of this paper and the
ones of [3].
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This lemma although still not giving (2.19) is sufficient for the purpose of this paper.
For instance it implies directly that graphs which contain only irrelevant subgraphs in
the sense of (2.19) have finite amplitudes uniformly bounded by K n , using the standard
method of [16] to bound the assignment sum over µ in (2.12).

The rest of this subsection is essentially devoted to the proof of this Lemma 2.5.
We return before solving δ functions, hence to the v variables. We will need only to

compute in a precise way the oscillations which are quadratic in the long variables v to
prove (2.21) and the linear oscillations in vθ−1x to prove (2.22). Fortunately an analog
problem was solved in momentum space by Filk and Chepelev-Roiban [5, 6], and we
need only a slight adaptation of their work to position space. In fact in this subsection
short variables are quite inessential but it is convenient to treat on the same footing the
long 1/2 v and the external x variables, so we introduce a new global notation y for all
these variables. The vertices are rewritten as

∏
v

δ

(
y1 − y2 + y3 − y4 +

1

2
εi ui

)
eı
(∑

i< j (−1)i+ j+1 yi θ
−1 y j +yQu+u Ru

)
(2.23)

for some inessential signs εi and some symplectic matrices Q and R.
Since we are not interested in the precise oscillations in the short u variables we will

denote in the sequel quite sloppily by Eu any linear combination of the u variables. Let’s
consider the first Filk reduction [5], which contracts tree lines of the graph. It creates
progressively generalized vertices with even number of fields. At a given induction step
and for a tree line joining two such generalized vertices with respectively p and q − p +1
fields (p is even and q is odd), we assume by induction that the two vertices are

δ(y1 − y2 + y3 . . . − yp + Eu)δ(yp − yp+1 + . . . − yq + Eu)

eı
(∑

1 � i< j � p(−1)i+ j+1 yi θ
−1 y j +

∑
p � i< j � q (−1)i+ j+1 yi θ

−1 y j +yQu+u Ru
)
.

(2.24)

Using the second δ function we see that:

yp = yp+1 − yp+2 + . . . + yq − Eu . (2.25)

Substituting this expression in the first δ function we get:

δ(y1 − y2 + . . . − yp+1 + .. − yq + Eu)δ(yp − yp+1 + . . . − yq + Eu)

eı
(∑

1 � i< j � p(−1)i+ j+1 yi θ
−1 y j +

∑
p � i< j � q (−1)i+ j+1 yi θ

−1 y j +yQu+u Ru
)
.

(2.26)

The quadratic terms which include yp in the exponential are (taking into account that
p is an even number):

p−1∑
i=1

(−1)i+1 yiθ
−1 yp +

q∑
j=p+1

(−1) j+1 ypθ
−1 y j . (2.27)

Using the expression (2.25) for yp we see that the second term gives only terms in yLu.
The first term yields:

p−1∑
i=1

q∑
j=p+1

(−1)i+1+ j+1 yiθ
−1 y j =

p−1∑
i=1

q−1∑
k=p

(−1)i+k+1 yiθ
−1 yk, (2.28)
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which reconstitutes the crossed terms, and we have recovered the inductive form of the
larger generalized vertex.

One should be aware that yp has disappeared from the final result, but that all the
subsequent ys>p have changed sign. This complication arises because of the cyclicity of
the vertex. As p was chosen to be even (which implies q odd) we see that q − 1 is even
as it should be. Consequently by this procedure we will always treat only even vertices.
We finally rewrite the product of the two vertices as:

δ(y1 − y2 + . . . + yp−1 − yp+1 + .. − yq + Eu)δ(yp − yp−1 + . . . − yq + Eu)

×eı
(∑

1 � i< j � q (−1)i+ j+1 yi θ
−1 y j +yQu+u Ru

)
, (2.29)

where the exponential is written in terms of the reindexed vertex variables. In this way
we can contract all lines of a spanning tree T and reduce G to a single vertex with
“tadpole loops” called a “rosette graph” [6]. In this rosette to keep track of cyclicity is
essential so rather than the “point-like” vertex of [6] we prefer to draw the rosette as
a cycle (which is the border of the former tree) bearing loops lines on it (see Fig. 4).
Remark that the rosette can also be considered as a big vertex, with r = 2n + 2 fields, on
which N are external fields with external variables x and 2n + 2 − N are loop fields for
the corresponding n + 1 − N/2 loops. When the graph is orientable (which is the case
to consider in Lemma 2.5, the fields alternatively enter and exit, and correspond to the
fields on the border of the tree T , which we meet turning around counterclockwise in
Fig. 1. In the rosette the long variables yl for l in T have disappeared. Let us call z the
set of remaining long loop and external variables. Then the rosette vertex factor is

δ(z1 − z2 + . . . − zr + Eu)eı
(∑

1 � i< j � r (−1)i+ j+1zi θ
−1z j +zQu+u Ru

)
. (2.30)

The initial product of δ functions has not disappeared so we can still write it as a
product over branches like in the previous section and use it to solve the yl variables in
terms of the z variables and the short u variables. The net effect of the Filk first reduction
was simply to rewrite the root branch δ function and the combination of all vertices
oscillations (using the other δ functions) as the new big vertex or rosette factor (2.30).

The second Filk reduction [5] further simplifies the rosette factor by erasing the loops
of the rosette which do not cross any other loops or arch over external fields. Here again

Fig. 4. A typical rosette
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the same operation is possible. Consider indeed such a rosette loop l (for instance loop
2 in Fig. 4). This means that on the rosette cycle there is an even number of vertices
in betwen the two ends of that loop and moreover that the sum of z’s in betwen these
two ends must be zero, since they are loop variables which both enter and exit between
these ends. Putting together all the terms in the exponential which contain zl we con-
clude exactly as in [5] that these long z variables completely disappear from the rosette
oscillation factor, which simplifies as in [6] to

δ(z1 − z2 + . . . − zr + Eu)eı
(

zIz+zQu+u Ru
)
, (2.31)

where Ii j is the antisymmetric “intersection matrix” of [6] (up to a different sign con-
vention). Here Ii j = +1 if oriented loop line i crosses oriented loop line j coming from
its right, Ii j = −1 if i crosses j coming from its left, and Ii j = 0 if i and j do not
cross. These formulas are also true for i external line and j loop line or the converse,
provided one extends the external lines from the rosette circle radially to infinity to see
their crossing with the loops. Finally when i and j are external lines one should define
Ii j = (−1)p+q+1 if p and q are the numbering of the lines on the rosette cycle (starting
from an arbitrary origin).

If a node Gi
k of the Gallavotti–Nicolò tree is orientable but non-planar (g � 1), there

must therefore exist two intersecting loop lines in the rosette corresponding to this Gi
k ,

with long variables w1 and w2. Moreover since Gi
k is orientable, none of the long loop

variables associated with these two lines belongs to the set S of long variables eliminated
by the δ constraints. Therefore, after integrating the variables in S the basic mechanism
to improve the power counting of a single non planar subgraph is the following:∫

dw1dw2e−cM−2i1w2
1−cM−2i2 w2

2−iw1θ
−1w2+w1.E1(x,u)+w2 E2(x,u)

=
∫

dw′
1dw′

2e−cM−2i1 (w′
1)

2−cM−2i2 (w′
2)

2+iw′
1θ

−1w′
2+(u,x)Q(u,x)

= K M4i1

∫
dw′

2e−(M2i1 +M−2i2 )(w′
2)

2 = K . (2.32)

In these equations we used for simplicity M−2i instead of the correct but more compli-
cated factor (�̃/4) tanh(α/2) (see 2.6) (of course this does not change the argument) and
we performed a unitary linear change of variables w′

1 = w1+�1(x, u),w′
2 = w2+�2(x, u)

to compute the oscillating w′
1 integral. The gain in (2.32) is M−4(i1+i2), which is the differ-

ence between K and the normal factor M4(i1+i2) that the w1 and w2 integrals would have
cost if we had done them with the regular e−cM−2i1w2

1−cM−2i2 w2
2 factor for long variables.

Beware that in (2.32) our constant c depends on θ and that our bounds are singular in
the limit θ → 0.

This basic argument must then be generalized to each non-planar leaf in the
Gallavotti-Nicolò tree. This is done exactly in the same way as the inductive definition of
the set A of clashing lines in the non-orientable case. In any orientable non-planar ‘prim-
itive” Gi

k node (i.e. not containing sub-non-planar nodes) we can choose an arbitrary
pair of crossing loop lines which will be integrated as in (2.32) using this oscillation.
The corresponding improvements are independent.

This leads to an improved amplitude bound:

|AG,µ| � K n
∏
i,k

M−ω(Gi
k ) , (2.33)
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where now ω(Gi
k) = N (Gi

k) + 4 if Gi
k is orientable and non planar (i.e. g � 1). This

bound proves (2.21).
Finally it remains to consider the case of nodes Gi

k which are planar orientable but
with B � 2. In that case there are no crossing loops in the rosette but there must be at
least one loop line arching over a non trivial subset of external legs in the Gi

k rosette
(see line 6 in Fig. 4). We have then a non trivial integration over at least one external
variable, called x , of at least one long loop variable called w. This “external” x variable
without the oscillation improvement would be integrated with a test function of scale 1
(if it is a true external line of scale 1) or better (if it is a higher long loop variable).4 But
we get now

∫
dxdwe−M−2i w2−iwθ−1x+w.E1(x ′,u) = K M4i

∫
dxe−M+2i x2 = K ′ , (2.34)

so that a factor M4i in the former bound becomes O(1), hence is improved by M−4i .
This proves (2.22), hence completes the proof of Lemma 2.5. 
�

This method could be generalized to get the true power counting (2.19). One simply
needs a better description of the rosette oscillating factors when g or B increase. We
conjecture that it is in fact possible to “disentangle” the rosette by some kind of “third
Filk move”. Indeed the rank of the long variables’ quadratic oscillations is exactly the
genus [7], and the rank of the linear term coupling these long variables to the external
ones is exactly B −1. So one can through a unitary change of variables on the long vari-
ables inductively disentangle adjacent crossing pairs of loops in the rosette. This means
that it is possible to diagonalize the rosette symplectic form through explicit moves
of the loops along the rosette. Once oscillations are factorized in this way, the single
improvements shown in this section generalize to one improvement of M−8i per genus
and one improvement of M−4i per broken face. In this way the exact power counting
(2.19) should be recovered by pure x-space techniques which never require the use of
the matrix basis. This study is more technical and not really necessary for the BPHZ
theorem proved in this paper.

3. Renormalization

In this section we need to consider only divergent subgraphs, namely the planar two
and four point subgraphs with a single external face (g = 0, B = 1, N = 2 or 4).
We shall prove that they can be renormalized by appropriate counterterms of the form
of the initial Lagrangian. We compute first the oscillating factors Q and R of the short
variables in (2.31) for these graphs. This is not truly necessary for what follows, but is
a good exercise.

3.1. The oscillating rosette factor. In this subsection we define another more precise
representation for the rosette factor obtained after applying the first Filk moves to a
graph of order n. We rewrite in terms of ul and vl the coordinates of the ends of the tree
lines l, l = 1, . . . , n − 1 (those contracted in the first Filk moves), but keep as variables
called s1, . . . , s2n+2 the positions of all external fields and all ends of loop lines (those
not contracted in the first Filk moves).

4 Since the loop line arches over a non trivial (i.e. neither full nor empty) subset of external legs of the
rosette, the variable x cannot be the full combination of external variables in the “root” δ function.
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We start from the root and turn around the tree in the trigonometrical sense. We
number separately all the fields as 1, . . . , 2n + 2 and all the tree lines as 1, . . . , n − 1 in
the order they are met, but we also define a global ordering ≺ on the set of all the fields
and tree lines according to the order in which they are met (see Fig. 5). In this way we
know whether the field number p is met before or after tree line number q. For example,
in Fig. 5, field number 8 ≺ tree line number 6.

Lemma 3.1. The rosette contribution after a complete first Filk reduction is exactly:

δ

(
s1 − s2 + · · · − s2n+2 +

∑
l∈T

ul

)
eı
∑

0 � i< j � 2n+2(−1)i+ j+1si θ
−1s j

×e−ı
∑

l≺l′ ulθ
−1ul′ e−ı

∑
l ε(l)

ul θ
−1vl
2 eı

∑
l,i≺l (−1)i si θ

−1ul +ı
∑

l,il ulθ
−1(−1)i si , (3.1)

where ε(l) is −1 if the tree line l is oriented towards the root and +1 if it is not.

Fig. 5. Total ordering of the tree lines and fields
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Proof. We proceed by induction. We contract the tree lines according to their ordering.
In this way, at any step k we contract a generalized vertex with 2k + 2 external fields
corresponding to the contraction of the k − 1 first lines with a usual four-vertex with
r = 4, and obtain a new generalized vertex with 2k + 4 fields.

We suppose inductively that the generalized vertex has the above form and prove that
it keeps this form after the contraction. We denote the external coordinates of this vertex
as s1, . . . , s2k+2 and the coordinates of the four-vertex as t1, . . . , t4. We contract the prop-
agator (sp, tq) with associated variables v = sp + tq and u = (−1)p+1sp + (−1)q+1tq .
We also note that, since the tree is orientable, p + q is odd.

Adding the arguments of the two δ functions gives the global δ function. We have
the two equations:

s1 − s2 + · · · − s2k+2 +
∑

us = 0 , t1 − t2 + t3 − t4 = 0. (3.2)

Using the invariance of the t vertex we can always eliminate the contribution of tq in the
phase factor. We therefore have:

ϕ = [s1 − s2 + · · · + (−1)psp−1]θ−1(−1)psp

+(−1)pspθ
−1[(−1)p+2sp+1 + · · · − s2k+2]

= [s1 − s2 + · · · + (−1)psp−1]θ−1[−u + (−1)q+1tq ]
+[−u + (−1)q+1tq ]θ−1[(−1)p+2sp+1 + . . . . − s2k+2]. (3.3)

As (−1)q+1tq =∑4
i=1,i �=q(−1)i ti we see that the sθ−1tq terms in the above expression

reproduce exactly the crossed terms needed to complete the first exponential. We rewrite
the other terms as:

[s1 − s2 + · · · + (−1)psp−1]θ−1(−u) + (−u)θ−1[(−1)p+2sp+1 + · · · − s2k+2]
= [s1 − s2 + · · · + (−1)psp−1]θ−1(−u)

+(−u)θ−1[−s1 + s2 · · · + (−1)psp −
∑

s

us]

= 2[s1 − s2 + · · · + (−1)psp−1]θ−1(−u) + (−u)θ−1(−1)psp + uθ−1
∑

s

us

= 2
∑
i≺l

(−1)i siθ
−1u + (−1)p+1 uθ−1v

2
+
∑

s

uθ−1us, (3.4)

where we have used (−1)psp = (−1)p(v − u)/2.
Note that further contractions will not involve s1 . . . sp−1. After collecting all the

contractions and using the global delta function we write:

2
∑
l,i≺l

(−1)i siθ
−1ul =

∑
l,i≺l

(−1)i siθ
−1ul +

∑
l,il

ulθ
−1(−1)i si +

∑
l,l ′

ulθ
−1ul ′ , (3.5)

and the last term is zero by the antisymmetry of θ−1. 
�
We denote by L the set of loop lines, and analyze now further the rosette contribution
for planar graphs. We call now xi , i = 1, . . . , N the N external positions. We choose as
first external field 1 an arbitrary entering external line. We define an ordering among the
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set of all lines, writing l ′ ≺ l if both ends of l ′ are before the first end of l when turning
around the tree as in Fig. 5, where l1 ≺ l2. Analogously we define l ≺ j when j is an
external vertex (l1 ≺ x4 in Fig. 5). We define l ′ ⊂ l if both ends of l ′ lie in between the
ends of l on the rosette (l2 ⊂ l4 in Fig. 5). We count a loop line as positive if it turns in
the trigonometric sense like the rosette and negative if it turns clockwise. Each loop line
l ∈ L has now a sign ε(l) associated with this convention, and we now make explicit its
end variables in terms of ul and wl .

With these conventions we prove the following lemma:

Lemma 3.2. The vertex contribution for a planar regular graph is exactly:

δ(
∑

i

(−1)i+1xi +
∑

l∈T ∪L
ul)e

ı
∑

i, j (−1)i+ j+1xi θ
−1x j

×eı
∑

l∈T ∪L, l≺ j ulθ
−1(−1) j x j +ı

∑
l∈T ∪L, l j (−1) j x j θ

−1ul

×e−ı
∑

l,l′∈T ∪L, l≺l′ ulθ
−1ul′−ı

∑
l∈T

ul θ
−1vl
2 ε(l)−ı

∑
l∈L

ul θ
−1wl
2 ε(l)

×e−ı
∑

l∈L, l′∈L∪T ; l′⊂l ul′θ−1wlε(l) . (3.6)

Proof. We see that the global root δ function has the argument:

∑
i

(−1)i+1xi +
∑

l∈L∪T

ul . (3.7)

Since the graph has one broken face we always have an even number of vertices on the
external face between two external fields. We express all the internal loop variables as
functions of u’s and w’s. Using Lemma 3.1, we regroup the terms which still contain the
external points which we relabel x in one quadratic and one linear form in the external
positions. The quadratic term can be written as:

∑
i< j

(−1)i+ j+1xiθ
−1x j . (3.8)

The linear term in the external vertices is:

∑
i< j

(−1)i+1siθ
−1(−1) j x j +

∑
i> j

(−1) j x jθ
−1(−1)i+1si

+
∑

l∈T,l j

(−1) j x jθ
−1ul +

∑
l∈T,l≺ j

ulθ
−1(−1) j x j

=
∑

l ′∈L,l ′ j

ul ′θ
−1(−1) j x j +

∑
l ′∈L,l ′ j

(−1) j x jθ
−1ul ′

+
∑

l∈T,l j

(−1) j x jθ
−1ul +

∑
l∈T,l≺ j

ulθ
−1(−1) j x j . (3.9)
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Consider a loop line from sp to sq with p < q. Its contribution to the vertex amplitude
decomposes in a “loop-loop” term and a “loop-tree” term. The first one is:

∑
i<p

(−1)i+1siθ
−1(−1)psp +

∑
p<i
i �=q

(−1)pspθ
−1(−1)i+1si + spθ

−1sq

+
∑
i<q
i �=p

(−1)i+1siθ
−1(−1)qsq +

∑
q<i

(−1)psqθ−1(−1)i+1si

=
∑
i<p

(−1)i+1siθ
−1[(−1)psp + (−1)qsq ]

+
∑
q<i

[(−1)psp + (−1)qsq ]θ−1(−1)i+1si

+
∑

p<i<q

(−1)i+1siθ−1[(−1)p+1sp + (−1)qsq ] + spθ
−1sq . (3.10)

Taking into account that (−1)i+1si + (−1) j+1s j = ul ′ if si and s j are the two ends of
the loop line l ′, we can rewrite the above expression as:

∑
l ′≺l

ul ′θ
−1(−ul) +

∑
l ′l

(−ul)θ
−1ul ′ +

∑
l ′⊂l

ul ′θ
−1(−1)p+1wl

+(−1)p+1 ulθ
−1wl

2
+
∑

l ′,l⊂l ′
ulθ

−1(−1)i+1wl ′ , (3.11)

where l is fixed in all the above expressions. Summing the contributions of all the lines
(being careful not to count the same term twice) we get the final result:

−
∑
l ′≺l

ul ′θ
−1ul −

∑
l,l ′⊂l

ul ′θ
−1wl ε(l) −

∑
l

ulθ
−1wl ε(l)

2
. (3.12)

We still have to add the “loop-tree” contribution. It reads:
∑

l ′∈T,l ′≺p

ul ′θ
−1(−1)psp +

∑
l ′∈T,l ′p

(−1)pspθ
−1ul ′

+
∑

l ′∈T,l ′≺q

ul ′θ
−1(−1)qsq +

∑
l ′∈T,l ′q

(−1)qsqθ−1ul ′

=
∑

l ′∈T ;l ′≺p,q

ul ′θ
−1[(−1)psp + (−1)qsq ] +

∑
l ′∈T ;l ′p,q

[(−1)psp + (−1)qsq ]θ−1ul ′

+
∑

l ′∈T ;p≺l ′≺q

ul ′θ
−1[(−1)p+1sp + (−1)qsq ]

=
∑

l ′∈T ;l ′≺l

ul ′θ
−1(−ul) +

∑
l ′∈T ;l ′l

(−ul)θ
−1ul ′ +

∑
l ′∈T ;l ′⊂l

ul ′θ
−1(−1)p+1wl . (3.13)

Collecting all the factors proves the lemma 
�
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3.2. Renormalization of the four-point function. Consider a 4 point subgraph which
needs to be renormalized, hence is a node of the Gallavotti-Nicolò tree. This means
that there is (i, k) such that N (Gi

k) = 4. The four external positions of the amputated
graph are labeled x1, x2, x3 and x4. We also define Q, R and S as three skew-symmetric
matrices of respective sizes 4 × l(Gi

k), l(Gi
k) × l(Gi

k) and [n(Gi
k) − 1] × l(Gi

k), where
we recall that n(G) − 1 is the number of loops of a 4 point graph with n vertices. The
amplitude associated to the connected component Gi

k is then

A(Gi
k)(x1, x2, x3, x4) =

∫ ∏
�∈T i

k

du�C�(x, u, w)
∏

l∈Gi
k , l �∈T

duldwlCl(ul , wl)

×δ


x1−x2 +x3−x4+

∑
l∈Gi

k

ul


eı
(∑

p<q (−1)p+q+1x pθ−1xq +X QU+U RU+U SW
)
.(3.14)

The exact form of the factor
∑

p<q(−1)p+q+1x pθ
−1xq follows from Lemma 3.2. From

this lemma, and (3.15) below would also follow exact expressions for Q, R and S, but
we won’t need them. The important fact is that there are no quadratic oscillations in X
times W (because B = 1) nor in W times W (because g = 0). Cl is the propagator of
the line l. For loop lines Cl is expressed in terms of ul and wl by formula (2.6), (with
v replaced by our notation w for long variables of loop lines). But for tree lines � ∈ T i

k
recall that the solution of the system of branch δ functions for T has reexpressed the
corresponding long variables v� in terms of the short variables u, and the external and
long loop variables of the branch graph G� which lies “over” � in the rooted tree T . This
is the essential content of Subsect. 2.2. More precisely consider a line � ∈ T i

k with scale
i(�)� i ; we can write

v� = X� + W� + U�, (3.15)

where

X� =
∑

e∈E(�)

ε�,exe (3.16)

is a linear combination on the set of external variables of the branch graph G� with the
correct alternating signs ε�,e,

W� =
∑

l∈L(�)

ε�,lwl (3.17)

is a linear combination over the set L(�) of long loop variables for the external lines of
G� (and ε�,l are other signs), and

U� =
∑

l ′∈S(�)

ε�,l ′ul ′ (3.18)

is a linear combination over a set S� of short variables that we do not need to know
explicitly. The tree propagator for line � then is

C�(u�, X�, U�, W�) =
M−2(i(�)−1)∫

M−2i(�)

�̃dα�e− �̃
4 {coth(

α�
2 )u2

l +tanh(
α�
2 )[X�+W�+U�]2}

[2π sinh(α�)]2 . (3.19)
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To renormalize, let us call e = max ep, p = 1, . . . , 4 the highest external index of
the subgraph Gi

k . We have e < i since Gi
k is a node of the Gallavotti-Nicolò tree. We

evaluate A(Gi
k) on external fields5 ϕ �e(x p) as:

A(Gi
k) =

∫ 4∏
p=1

dx pϕ
�e(x p) A(Gi

k)(x1, x2, x3, x4)

=
∫ 4∏

p=1

dx pϕ
�e(x p) eıExt

∏
�∈T i

k

du�C�(u�, t X�, U�, W�) (3.20)

×
∏

l∈Gi
k l �∈T

duldwlCl(ul , wl) δ

(
� + t

∑
l∈Gi

k

ul

)
eıt X QU+ıU RU+ıU SW

∣∣∣∣
t=1

with � = x1 − x2 + x3 − x4 and Ext =∑4
p<q=1(−1)p+q+1x pθ

−1xq .
This formula is designed so that at t = 0 all dependence on the external variables x

factorizes out of the u, w integral in the desired vertex form for renormalization of the
ϕ � ϕ � ϕ � ϕ interaction in the action (2.2). We now perform a Taylor expansion to first
order with respect to the t variable and prove that the remainder term is irrelevant. Let
U =∑l∈Gi

k
ul , and

R(t) = −
∑
�∈T i

k

�̃

4
tanh(

α�

2
)

{
t2 X2

� + 2t X�

[
W� + U�

]}

≡ −t2AX.X − 2tAX.(W + U ), (3.21)

where A� = �̃
4 tanh(

α�

2 ), and X.Y means
∑

�∈T i
k

X�Y�. We have

A(Gi
k) =

∫ 4∏
p=1

dx pϕ
�e(x p) eıExt

∏
�∈T i

k

du� C�(u�, U�, W�)

×

 ∏

l∈Gi
k l �∈T

duldwlCl(ul , wl)


 eıU RU+ıU SW (3.22)

×

δ(�) +

1∫

0

dt

[
U.∇δ(� + tU) + δ(� + tU)[ı X QU + R′(t)]

]

eıt X QU+R(t)
}

,

where C�(u�, U�, W�) is given by (3.19) but taken at X� = 0.
The first term, denoted by τ A, is of the desired form (2.4) times a number indepen-

dent of the external variables x . It is asymptotically constant in the slice index i , hence

5 For the external index to be exactly e the external smearing factor should be in fact
∏

p ϕ � e(x p) −∏
p ϕ � e−1(x p) but this subtlety is inessential.
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the sum over i at fixed e is logarithmically divergent: this is the divergence expected for
the four-point function. It remains only to check that (1− τ)A converges as i −e → ∞.
But we have three types of terms in (1 − τ)A, each providing a specific improvement
over the regular, log-divergent power counting of A:

• The term U.∇δ(� + tU). For this term, integrating by parts over external variables,
the ∇ acts on external fields ϕ �e, hence brings at most Me to the bound, whether
the U term brings at least M−i .

• The term X QU . Here X brings at most Me and U brings at least M−i .
• The term R′(t). It decomposes into terms in AX.X , AX.U and AX.W . Here the

A� brings at least M−2i(�), X brings at worst Me, U brings at least M−i and X�W�

brings at worst Me+i(�). This last point is the only subtle one: if � ∈ T i
k , remark that

because T i
k is a sub-tree within each Gallavotti-Nicolò subnode of Gi

k , in particular
all parameters wl ′ for l ′ ∈ L(�) which appear in W� must have indices lower or equal
to i(�) (otherwise they would have been chosen instead of � in T i

k ).

In conclusion, since i(�)� i , the Taylor remainder term (1−τ)A improves the power-
counting of the connected component Gi

k by a factor at least M−(i−e). This additional
M−(i−e) factor makes (1 − τ)A(Gi

k) convergent and irrelevant as desired.

3.3. Renormalization of the two-point function. We consider now the nodes such that
N (Gi

k) = 2. We use the same notations as in the previous subsection. The two external
points are labeled x and y. Using the global δ function, which is now δ(x − y + U), we
remark that the external oscillation eıxθ−1 y can be absorbed in a redefinition of the term
eıt X QU , which we do from now on. Also we want to use expressions symmetrized over
x and y. The full amplitude is

A(Gi
k) =

∫
dxdyϕ �e(x)ϕ �e(y)δ

(
x − y + U

)

×
∏

l∈Gi
k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, X�, U�, W�) eı X QU+ıU RU+ıU SW . (3.23)

First we write the identity

ϕ �e(x)ϕ �e(y) = 1

2

[
[ϕ �e(x)]2 + [ϕ �e(y)]2 − [ϕ �e(y) − ϕ �e(x)]2

]
, (3.24)

we develop it as

ϕ �e(x)ϕ �e(y) = 1

2

{
[ϕ �e(x)]2 + [ϕ �e(y)]2 −

[
(y − x)µ.∇µϕ �e(x)

+
∫ 1

0
ds(1 − s)(y − x)µ(y − x)ν∇µ∇νϕ

�e(x + s(y − x))

]2
}

,

(3.25)
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and substitute into (3.23). The first term A0 is a symmetric combination with external
fields at the same argument. Consider the case with the two external legs at x , namely
the term in [ϕ �e(x)]2. For this term we integrate over y. This uses the δ function. We
perform then a Taylor expansion in t at order 3 of the remaining function

f (t) = eıt X QU+R(t), (3.26)

where we recall that R(t) = −[t2AX.X + 2tAX.(W + U )]. We get

A0 = 1

2

∫
dx[ϕ �e(x)]2 eı(U RU+U SW )

×
∏

l∈G j
k , l �∈T

duldwlCl(ul , wl)
∏
�∈T i

k

du�C�(u�, U�, W�)

×

 f (0) + f ′(0) +

1

2
f ′′(0) +

1

2

1∫

0

dt (1 − t)2 f (3)(t)


 . (3.27)

In order to evaluate that expression, let A0,0, A0,1, A0,2 be the zeroth, first and second
order terms in this Taylor expansion, and A0,R be the remainder term. First,

A0,0 =
∫

dx [ϕ �e(x)]2 eı(U RU+U SW )
∏

l∈Gi
k ,l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, U�, W�) (3.28)

is quadratically divergent and exactly of the expected form for the mass counterterm.
Then

A0,1 = 1

2

∫
dx[ϕ �e(x)]2 eı(U RU+U SW )

∏
l∈Gi

k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, U�, W�)

(
ı X QU + R′(0)

)
(3.29)

vanishes identically. Indeed all the terms are odd integrals over the u, w-variables. A0,2
is more complicated:

A0,2 = 1

2

∫
dx[ϕ �e(x)]2 eı(U RU+U SW )

∏
l∈Gi

k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, U�, W�)

(
− (X QU )2

−4ı X QUAX.(W + U ) − 2AX.X + 4[AX.(W + U )]2
)

. (3.30)

The four terms in (X QU )2, X QUAX.W , AX.X and [AX.W ]2 are logarithmically
divergent and contribute to the renormalization of the harmonic frequency term �̃ in
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(2.2). The terms in xµxν with µ �= ν do not survive by parity and the terms in (xµ)2

have obviously the same coefficient. The other terms in X QUAX.U , (AX.U )(AX.W )

and [AX.U ]2 are irrelevant. Similarly the terms in A0,R are all irrelevant.
For the term in A0(y) in which we have

∫
dx[ϕ �e(y)]2 we have to perform a similar

computation, but beware that it is now x which is integrated with the δ function so that
Q, S, R and R change, but not the conclusion.

Next we have to consider the term in

[
(y − x)µ.∇µϕ �e(x)

]2

in (3.25), for which

we need to develop the f function only to first order. Integrating over y replaces each
y − x by a U factor so that we get a term

A1 = 1

2

∫
dx

[
Uµ.∇µϕ �e(x)

]2

eı(U RU+U SW )
∏

l∈Gi
k ,l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, U�, W�)


 f (0) +

1∫

0

dt f ′(t)dt


 . (3.31)

The first term is

A1,0 = 1

2

∫
dx

[
Uµ.∇µϕ �e(x)

]2

eı(U RU+U SW )
∏

l∈Gi
k ,l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, U�, W�). (3.32)

The terms with µ �= ν do not survive by parity. The other ones reconstruct a counterterm
proportional to the Laplacian. The power-counting of this factor A1,0 is improved, with
respect to A, by a factor M−2(i−e) which makes it only logarithmically divergent, as it
should be for a wave-function counterterm.

The remainder term in Ax
1,R has an additional factor at worst M−(i−e) coming from

the
∫ 1

0 dt f ′(t)dt term, hence is irrelevant and convergent.
Finally the remainder terms AR with three or four gradients in (3.25) are also irrele-

vant and convergent. Indeed we have terms of various types:

• There are terms in U 3 with ∇3. The ∇ act on the variables x , hence on external fields,
hence bring at most M3e to the bound, whether the U3 brings at least M−3i .

• Finally there are terms with 4 gradients which are still smaller.

Therefore for the renormalized amplitude AR the power-counting is improved, with
respect to A0, by a factor M−3(i−e), and becomes convergent.

Putting together the results of the two previous sections, we have proved that the
usual effective series which expresses any connected function of the theory in terms of
an infinite set of effective couplings, related one to each other by a discretized flow [16],
have finite coefficients to all orders. Reexpressing these effective series in terms of the
renormalized couplings would reintroduce in the usual way the Zimmermann’s forests of
“useless” counterterms and build the standard “old-fashioned” renormalized series. The
most explicit way to check finiteness of these renormalized series in order to complete
the “BPHZ theorem” is to use the standard “classification of forests” which distributes
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Zimmermann’s forests into packets such that the sum over assignments in each packet
is finite [16].6 This part is completely standard and identical to the commutative case.
Hence the proof of Theorem 2.1 is completed.

A. The LSZ Model

In this section we prove the perturbative renormalizability of a generalized
Langmann-Szabo-Zarembo model [18]. It consists in a bosonic complex scalar field the-
ory in a fixed magnetic background plus an harmonic oscillator. The quartic interaction
is of the Moyal type. The action functional is given by

S =
∫

1

2
ϕ̄
(− DµDµ + �̃2x2 + µ2

0

)
ϕ + λ ϕ̄ � ϕ � ϕ̄ � ϕ, (A.1)

where Dµ = ∂µ − ı Bµνxν is the covariant derivative. The 1/2 factor is somewhat
unusual in a complex theory but it allows us to recover exactly the results given in [15]
with �̃2 → ω2 = �̃2 + B2. By expanding the quadratic part of the action, we get a
�4-like kinetic part plus an angular momentum term:

ϕ̄DµDµϕ + �̃2x2ϕ̄ϕ = ϕ̄
(
� − ω2x2 − 2BL5

)
ϕ (A.2)

with L5 = x1 p2 − x2 p1 + x3 p4 − x4 p3 = x ∧ ∇. Here the skew-symmetric matrix B
has been put in its canonical form

B =



0 −1
1 0 (0)

(0)
0 −1
1 0


 . (A.3)

In x space, the interaction term is exactly the same as (2.4). The complex conjugation
of the fields only selects the orientable graphs.

At �̃ = 0, the model is similar to the Gross-Neveu theory. Its renormalization is
therefore harder [12] and is not treated in this paper. If we additionally set B = θ−1 we
recover the integrable LSZ model [18].

A.1. Power counting. The propagator corresponding to the action (A.1) has been cal-
culated in [15] in the two-dimensional case. The generalization to higher dimensions,
e.g. four, is straightforward:

C(x, y) =
∞∫

0

dt
ω2

(2π sinh ωt)2 exp −ω

2

(
cosh Bt

sinh ωt
(x − y)2

+
cosh ωt − cosh Bt

sinh ωt
(x2 + y2) + ı

sinh Bt

sinh ωt
xθ−1 y

)
. (A.4)

6 One could also use the popular inductive scheme of Polchinski, which however does not extend yet to
non-perturbative “constructive” renormalization
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Note that the sliced version of (A.4) obeys the same bound (2.11) as the ϕ4 propagator.
Moreover the additional oscillating phases exp ı xθ−1 y are of the form exp ı ulθ

−1vl .
Such terms played no role in the power counting of the �4 theory. They were bounded
by one. This allows to conclude that Lemmas 2.4 and 2.5 hold for the generalized LSZ
model. Note also that in this case, the theory contains only orientable graphs due to the
use of complex fields.

A.2. Renormalization. As for the noncommutative �4 theory, we only need to
renormalize the planar (g = 0) two and four-point functions with only one external face.

Recall that the oscillating factors of the propagators are

exp ı
sinh Bt

2 sinh ωt
ulθ

−1vl . (A.5)

After resolving the v�, � ∈ T variables in terms of X�, W� and U�, they can be included
in the vertices oscillations by a redefinition of the Q, S and R matrices (see (3.14)). For
the four-point function, we can then perform the same Taylor subtraction as in the �4

case.
The two-point function case is more subtle. Let us consider the generic amplitude

A(Gi
k) =

∫
dxdyϕ̄ �e(x)ϕ �e(y)δ

(
x − y + U

)

×
∏

l∈Gi
k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, X�, U�, W�) eı X QU+ıU RU+ıU SW . (A.6)

The symmetrization procedure (3.24) over the external fields is not possible anymore,
the theory being complex. Nevertheless we can decompose ϕ̄(x)ϕ(y) in a symmetric
and an anti-symmetric part:

ϕ̄(x)ϕ(y) = 1
2

(
ϕ̄(x)ϕ(y) + ϕ̄(y)ϕ(x) + ϕ̄(x)ϕ(y) − ϕ̄(y)ϕ(x)

)
def= (S + A)ϕ̄(x)ϕ(y). (A.7)

The symmetric part of A, called As , will lead to the same renormalization procedure as
the �4 case. Indeed,

Sϕ̄(x)ϕ(y) = 1
2

(
ϕ̄(x)ϕ(y) + ϕ̄(y)ϕ(x)

)
= 1

2

{
ϕ̄(x)ϕ(x) + ϕ̄(y)ϕ(y) − (ϕ̄(x) − ϕ̄(y)

)(
ϕ(x) − ϕ(y)

)}
(A.8)

which is the complex equivalent of (3.24).
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In the anti-symmetric part of A, called Aa , the linear terms ϕ̄∇ϕ do not compensate:

Aϕ̄(x)ϕ(y) = 1
2

(
ϕ̄(x)ϕ(y) − ϕ̄(y)ϕ(x)

)
= 1

2 (ϕ̄(x)(y − x).∇ϕ(x) − (y − x).∇ϕ̄(x)ϕ(x)

+ 1
2 ϕ̄(x)((y − x).∇)2ϕ(x) − 1

2 ((y − x).∇)2ϕ̄(x)ϕ(x)

+ 1
2

1∫

0

ds(1 − s)2ϕ̄(x)((y − x).∇)3ϕ(x + s(y − x))

−((y − x).∇)3ϕ̄(x + s(y − x))ϕ(x)). (A.9)

We decompose Aa into five parts following the Taylor expansion (A.9):

A1+
a =

∫
dxdy ϕ̄(x)(y − x).∇ϕ(x)δ

(
x − y + U

)

×
∏

l∈Gi
k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, X�, U�, W�) eı X QU+ıU RU+ıU SW

=
∫

dx ϕ̄(x)U.∇ϕ(x)
∏

l∈Gi
k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, X ′
�, U ′

�, W�) eı X Q′U+ıU RU+ıU SW , (A.10)

where we performed the integration over y thanks to the delta function. The changes
have been absorbed in a redefinition of X�, U� and Q. From now on X� (and X ) contain
only x (if x is hooked to the branch b(l)) and we forget the primes for Q and U�. We
expand the function f defined in (3.26) up to order 2:

A1+
a =

∫
ϕ̄(x)U.∇ϕ(x)

∏
l∈Gi

k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, U�, W�) eıU RU+ıU SW

×

 f (0) + f ′(0) +

1∫

0

dt (1 − t) f
′′
(t)


 . (A.11)

The zeroth order term vanishes thanks to the parity of the integrals with respect to the u
and w variables. The first order term contains

ϕ̄(x)Uµ∇µϕ(x)
(
ı X QU + R′(0)

)
. (A.12)

The first term leads to (U1∇1 + U2∇2)ϕ(x1U 2 − x2U 1) with the same kind of expres-
sions for the two other dimensions. Due to the odd integrals, only the terms of the form
(U 1)2x2∇1 − (U 2)2x1∇2 survive. We are left with integrals like
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∫
(u1

�)
2

∏
l∈Gi

k , l �∈T

duldwlCl(ul , wl)
∏
�∈T i

k

du�C�(u�, U�, W�)e
ıU RU+ıU SW . (A.13)

To prove that these terms give the same coefficient (in order to reconstruct a x ∧∇ term),
note that, apart from the (u1

�)
2, the involved integrals are actually invariant under an

overall rotation of the u and w variables. Then by performing rotations of π/2, we prove
that the counterterm is of the form of the Lagrangian. The R′(0) and the remainder term
in A1+

a are irrelevant.
Let us now study the other terms in Aa .

A1−
a = −

∫
dx U.∇ϕ̄(x) ϕ(x)

∏
l∈Gi

k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, X�, U�, W�) eı X QU+ıU RU+ıU SW . (A.14)

Once more we decouple the external variables from the internal ones by Taylor expanding
the function f . Up to irrelevant terms, this only doubles the x ∧ ∇ term in A1+

a ,

A2+
a = 1

2

∫
ϕ̄(x) (U.∇)2ϕ(x)

∏
l∈Gi

k , l �∈T

duldwlCl(ul , wl)

×
∏
�∈T i

k

du�C�(u�, U�, W�) eıU RU+ıU SW ( f (0) +

1∫

0

dt f
′
(t)
)
. (A.15)

The f (0) term renormalizes the wave-function. The remainder term in (A.15) is irrel-
evant. A2−

a doubles the A2+
a contribution. Finally the last remainder terms (the last two

lines in (A.9)) are irrelevant too. This completes the proof of the perturbative renormal-
izability of the LSZ models.

Remark that if we had considered a real theory with a covariant derivative which
corresponds to a neutral scalar field in a magnetic background, the angular momentum
term wouldn’t renormalize. Only the harmonic potential term would. It seems that the
renormalization “distinguishes” the true theory in which a charged field should couple
to a magnetic field. It would be interesting to study the renormalization group flow of
these kind of models along the lines of [13].

B. Notations of Positions

• The letter x is used for the four initial positions of a vertex
• the letter X is used solely for external positions of the considered graph or subgraphs
• the letters v and u are used for the sum and difference of two positions joined by an

internal line
• the letter w is used solely as another name for a v variable which corresponds to a

loop line (not a tree line) once a tree has been chosen
• the letter y is used for the collective of long and external variables.
• z is to y what w is to v, namely a name for the external variables or long loop variables
• s and t are names for external variables and ends of loop lines variables in rosette

vertices.
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Hence the same complete set of 4n variables for a graph with n vertices depending on
context can be denoted x ; X , u and v ; y and u ; X , u, w and the v of the tree lines ; z,
u and the v of the tree lines. The s and t are only used in Subsect. 3.1.
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