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Abstract: We investigate bosonic Gaussian quantum states on an infinite cubic lattice in
arbitrary spatial dimensions. We derive general properties of such states as ground states
of quadratic Hamiltonians for both critical and non-critical cases. Tight analytic rela-
tions between the decay of the interaction and the correlation functions are proven and
the dependence of the correlation length on band gap and effective mass is derived. We
show that properties of critical ground states depend on the gap of the point-symmetrized
rather than on that of the original Hamiltonian. For critical systems with polynomially
decaying interactions logarithmic deviations from polynomially decaying correlation
functions are found.

1. Introduction

The importance of bosonic Gaussian states arises from two facts. First, they provide
a very good description for accessible states of a large variety of physical systems. In
fact, every ground and thermal state of a quadratic bosonic Hamiltonian is Gaussian
and remains so under quadratic time evolutions. In this way quadratic approximations
naturally lead to Gaussian states. Hence, they are ubiquitous in quantum optics as well
as in the description of vibrational modes in solid states, ion traps or nanomechanical
oscillators.

The second point for the relevance of Gaussian states is that they admit a powerful
phase space description which enables us to solve quantum many-body problems which
are otherwise (e.g., for spin systems) hardly tractable. In particular, the phase space
dimension, and with it the complexity of many tasks, scales linearly rather than expo-
nentially in the number of involved subsystems. For this reason quadratic Hamiltonians
and the corresponding Gaussian states also play a paradigmatic role as they may serve
as an exactly solvable toy model from which insight into other quantum systems may
be gained.

Exploiting the symplectic tools of the phase space description, exact solutions have
been found for various problems in quantum information theory as well as in quantum
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statistical mechanics. In fact, many recent works form a bridge between these two fields
as they address entanglement questions for asymptotically large lattices of quadratically
coupled harmonic oscillators: the entropic area law [1–3] has been investigated as well
as entanglement statics [4–6], dynamics [7–9] and frustration [10, 11].

In the present paper we analytically derive general properties of ground states of
translationally invariant quadratic Hamiltonians on a cubic lattice. We start by giving an
outlook and a non-technical summary of the main results. The results on the asymptotic
scaling of ground state correlations are summarized in Table 1.

We note that related investigations of correlation functions were recently carried out
in [12, 13] for finite dimensional spin systems and in [1, 14] for generic harmonic lattices
with non-critical finite range interactions.

Quadratic Hamiltonians. In Sect. 2, we start by introducing some basic results on qua-
dratic Hamiltonians together with the used notation.

Translationally invariant systems. In Sect. 3, we show first that every pure translational
invariant Gaussian state is point symmetric. This implies that the spectral gap of the sym-
metrized rather than the original Hamiltonian determines the characteristic properties of
the ground state. We provide a general formula for the latter and express its covariance
matrix in terms of a product of the inverse of the Fourier transformed spectral function
and the Hamiltonian matrix.

Non-critical systems. Section 4 shows that if the Hamiltonian is gapped, then the corre-
lations decay according to the interaction: a (super) polynomial decay of the interaction
leads to the same (super) polynomial decay for the correlations, and (following Ref. [1])
finite range interactions lead to exponentially decaying correlations.

Correlation length and gap. Section 5 gives an explicit formula for the correlation length
for gapped 1D-Hamiltonians with finite range interactions. The correlation length ξ is
expressed in terms of the dominating zero of the complex spectral function, which close

Table 1. Summary of the bounds derived in the paper on the asymptotic scaling of ground state correlations,
depending on the scaling of the interaction (left column). Here n is the distance between two points (harmonic
oscillators) on a cubic lattice of dimension d. O denotes upper bounds, O∗ tight upper bounds, and � the
exact asyptotics. The table shows the results for generic interactions—special cases are discussed in the text
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to a critical point is in turn determined by the spectral gap � and the effective mass m∗
at the band gap via ξ ∼ (m∗�)−1/2. When the change in the Hamiltonian is given by a
global scaling of the interactions this proves the folk theorem ξ ∼ 1/�.
Critical systems. Section 6 shows that for generic d-dimensional critical systems the
correlations decay as 1/nd+1, where n is the distance between two points on the lattice.
Whereas for sufficiently fast decreasing interactions in d = 1 the asymptotic bound is
exactly polynomial, it contains an additional logarithmic correction for d ≥ 2. Similarly
for d = 1 a logarithmic deviation is found if the interaction decays exactly like −1/n3.

2. Quadratic Hamiltonians and their Ground States

Consider a system of N bosonic modes which are characterized by N pairs of canonical
operators (Q1, P1, . . . , QN , PN ) =: R. The canonical commutation relations (CCR)
are governed by the symplectic matrix σ via

[
Rk, Rl

] = iσkl , σ =
N⊕

n=1

(
0 1

−1 0

)
,

and the system may be equivalently described in terms of bosonic creation and annihi-
lation operators al = (Ql + i Pl)/

√
2. Quadratic Hamiltonians are of the form

H = 1

2

∑

kl

Hkl Rk Rl ,

where the Hamiltonian matrix H is real and positive semidefinite due to the Hermitic-
ity and lower semi-boundedness of the Hamiltonian H. Without loss of generality we
neglect linear and constant terms since they can easily be incorporated by a displace-
ment of the canonical operators and a change of the energy offset. Before we discuss the
general case we mention some important special instances of quadratic Hamiltonians: a
well studied 1D example of this class is the case of nearest neighbor interactions in the
position operators of harmonic oscillators on a chain with periodic boundary conditions

Hκ = 1

2

N∑

i=1

Q2
i + P2

i − κ Qi Qi+1 , κ ∈ [−1, 1]. (1)

This kind of spring-like interaction was studied in the context of information transfer
[7], entanglement statics [4–6] and entanglement dynamics [9]. Moreover, it can be
considered as the discretization of a massive bosonic continuum theory given by the
Klein-Gordon Hamiltonian

HKG = 1

2

∫ L/2

−L/2

[
φ̇(x)2 +

(
�φ(x)

)2 + m2φ(x)2
]
dx,

where the coupling κ is related to the mass m by κ−1 = 1+ 1
2

(mL
N

)2 [5]. Other finite range
quadratic Hamiltonians appear as limiting cases of finite range spin Hamiltonians via the
Holstein–Primakoff approximation [15]. In this way the xy-spin model with transverse
magnetic field can for instance be mapped onto a quadratic bosonic Hamiltonian in the
limit of strong polarization where a � (σx + iσy)/2. Longer range interactions appear
naturally for instance in 1D systems of trapped ions. These can either be implemented as
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Coulomb crystals in Paul traps or in arrays of ion microtraps. When expanding around
the equilibrium positions, the interaction between two ions at position i and j �= i is—
in harmonic approximation—of the form

c Qi Q j

|i− j |3 , where c > 0 (c < 0) if Qi , Q j are
position operators in radial (axial) direction [16].

Let us now return to the general case and briefly recall the normal mode decomposition
[17]: every Hamiltonian matrix can be brought to a diagonal normal form by a congru-
ence transformation with a symplectic matrix S ∈ Sp(2N , R) = {S|Sσ ST = σ }:1

SH ST =
I⊕

i=1

(
εi 0
0 εi

)
⊕

J⊕

j=1

(
0 0
0 1

)
, εi > 0, (2)

where the symplectic eigenvalues εi are the square roots of the duplicate nonzero
eigenvalues of σ Hσ T H . The diagonalizing symplectic transformation S has a unitary
representation US on Hilbert space which transforms the Hamiltonian according to

USHU †
S = 1

2

I∑

i=1

(
Q2

i + P2
i

)
εi + 1

2

J∑

j=1

P2
j =

I∑

i=1

(
a†

i ai + 1
2

)
εi + 1

2

J∑

j=1

P2
j . (3)

Hence, by Eq. (3) the ground state energy E0 and the energy gap � can easily be
expressed in terms of the symplectic eigenvalues of the Hamiltonian matrix:

E0 = 1
2

I∑

i=1

εi , � =
{

mini εi , J = 0
0, J > 0 . (4)

The case of a vanishing energy gap � = 0 is called critical and the respective ground
states are often qualitatively different from those of non-critical Hamiltonians. For the
Hamiltonian Hκ , Eq. (1), this happens in the strong coupling limit |κ| = 1 − �2 → 1,
and in the case of 1D Coulomb crystals a vanishing energy gap in the radial modes can
be considered as the origin of a structural phase transition where the linear alignment of
the ions becomes unstable and changes to a zig-zag configuration [18–20]. Needless to
say, these phase transitions appear as well in higher dimensions and for various different
configurations [21].

Ground and thermal states of quadratic Hamiltonians are Gaussian states, i.e, states
having a Gaussian Wigner distribution in phase space. In the mathematical physics liter-
ature they are known as bosonic quasi-free states [22, 23]. These states are completely
characterized by their first moments dk = tr

[
ρRk
]

(which are w.l.o.g. set to zero in our
case) and their covariance matrix (CM)

γkl = tr
[
ρ
{

Rk − dk, Rl − dl
}

+

]
, (5)

where {·, ·}+ is the anticommutator. The CM satisfies γ ≥ iσ , which expresses Hei-
senberg’s uncertainty relation and is equivalent to the positivity of the corresponding
density operator ρ ≥ 0. In order to find the ground state of a quadratic Hamiltonian,
observe that

1
2

∑

i

εi
(4)= E0 = inf

ρ
tr[ρH] (5)= 1

4 inf
γ

tr[γ H ]. (6)

1 Note that we disregard systems where the Hamiltonian contains irrelevant normal modes.
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By virtue of Eqs. (2,3) the infimum is attained for the ground state covariance matrix

γ = lim
s→∞ ST




I⊕

i=1

(
1 0
0 1

)
⊕

J⊕

j=1

(
s 0
0 s−1

)

 S, (7)

which reduces to γ = ST S in the non-critical case. Note that the ground state is unique
as long as H does not contain irrelevant normal modes [which we have neglected from
the very beginning in Eq. (2)].

In many cases it is convenient to change the order of the canonical operators such that
R = (Q1, . . . , QN , P1, . . . , PN ). Then the covariance matrix as well as the Hamiltonian
matrix can be written in block form

H =
(

HQ HQ P

H T
Q P HP

)
.

In this representation a quadratic Hamiltonian is particle number preserving iff HQ =
HP and HQ P = −H T

Q P , that is, the Hamiltonian contains only terms of the kind a†
i a j +

a†
j ai . In quantum optics terms of the form a†

i a†
j , which are not number preserving,

are neglected within the framework of the rotating wave approximation. The resulting
Hamiltonians have particular simple ground states:

Theorem 1a. The ground state of any particle number preserving Hamiltonian is the
vacuum with γ = 11, and the corresponding ground state energy is given by E0 = 1

4 trH.

Proof. Number preserving Hamiltonians are most easily expressed in terms of creation
and annihilation operators. For this reason we change to the respective complex repre-
sentation via the transformation

H �→ �H�T =
(

0 X
X̄ 0

)
, � = 1√

2

(
11 −i11
11 i11

)
.

In this basis H is transformed to normal form via a block diagonal unitary transforma-
tion U ⊕ Ū which in turn corresponds to an element of the orthogonal subgroup of the
symplectic group Sp(2N , R) ∩ SO(2N ) � U(N ) [24]. Hence, the diagonalizing S in
Eqs. (2,7) is orthogonal and since J = 0 due to particle number conservation, we have
γ = ST S = 11. E0 follows then immediately from Eq. (6). �

Another important class of quadratic Hamiltonians for which the ground state CM
takes on a particular simple form corresponds to the case HQ P = 0 where there is no
coupling between the momentum and position operators:

Theorem 1b. For a quadratic Hamiltonian with Hamiltonian matrix H = HQ ⊕ HP
the ground state energy and the ground state CM are given by

E0 = 1
2 tr
[√

HQ

√
HP

]
, γ = X ⊕ X−1, X = H−1/2

Q

√
H1/2

Q HP H1/2
Q H−1/2

Q . (8)

Proof. Since σ Hσ T H = HP HQ ⊕ HQ HP , the symplectic eigenvalues of H are given
by the eigenvalues of

√
HQ

√
HP and thus E0 = 1

2 tr
[√

HQ
√

HP
]
. Moreover, by the

uniqueness of the ground state and the fact that E0 = 1
4 tr[γ H ] with γ from Eq. (8) we

know that γ is the ground state CM (as it is an admissible pure state CM by construction).
�
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Finally we give a general formula for the ground state CM in cases where the blocks in
the Hamiltonian matrix can be diagonalized simultaneously. This is of particular impor-
tance as it applies to all translational invariant Hamiltonians discussed in the following
sections.

Theorem 1c. Consider a quadratic Hamiltonian for which the blocks HQ, HP , HQ P
of the Hamiltonian matrix can be diagonalized simultaneously and in addition HQ P =
H T

Q P . Then with

Ê =
√

HQ HP − H2
Q P we have (9)

E0 = 1
2 tr[Ê], � = λmin

(
Ê
)
, γ = (Ê ⊕ Ê)−1σ Hσ T . (10)

Proof. Since σ Hσ T H = Ê2 ⊕ Ê2 we have indeed E0 = 1
2 tr[Ê] and � = λmin

(
Ê
)
.

Positivity γ ≥ 0 is implied by H ≥ 0 such that we can safely talk about the symplec-
tic eigenvalues of γ . The latter are, however, all equal to one due to (γ σ )2 = −11 so
that γ is an admissible pure state CM. Moreover it belongs to the ground state since
1
4 tr[Hγ ] = E0. �

3. Translationally Invariant Systems

Let us now turn towards translationally invariant systems. We consider cubic lattices in d
dimensions with periodic boundary conditions. For simplicity we assume that the size of
the lattice is N d . The system is again characterized by a Hamiltonian matrix Hkl , where
the indices k, l, which correspond to two points (harmonic oscillators) on the lattice, are
now d-component vectors in Z

d
N . Translational invariance is then reflected by the fact

that any matrix element Akl , A ∈ {HQ, HP , HQ P } depends only on the relative position
k − l of the two points on the lattice, and we will therefore often write Ak−l = Akl .
Note that due to the periodic boundary conditions k − l is understood modulo N in each
component. Matrices of this type are called circulant, and they are all simultaneously
diagonalized via the Fourier transform

Fαβ = 1√
N

e
2π i
N αβ, α, β ∈ ZN , such that

Â := F⊗d AF†⊗d = diag





∑

n∈Z
d
N

An e− 2π i
N m n






m

,

where m n is the usual scalar product in Z
d
N . It follows immediately that all circulant

matrices mutually commute.
In the following, we will show that we can without loss of generality restrict ourselves

to point-symmetric Hamiltonians, i.e., those for which HQ P = H T
Q P (which means that

H contains only pairs Qk Pl + Ql Pk). For dimension d = 1 this is often called reflection
symmetry.

Theorem 2. Any translationally invariant pure state CM � is point symmetric.

Proof. For the proof, we use that any pure state covariance matrix can be written as

� =
(

�Q �Q P

�T
Q P �P

)
=
(

X XY
Y X X−1 + Y XY

)
,
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where X ≥ 0 and Y is real and symmetric [25]. From translational invariance, it follows
that all blocks and thus X and Y have to be circulant and therefore commute. Hence,
�Q P = XY = Y X = �T

Q P , i.e., � is point symmetric. �
Let P : Z

d
N → Z

d
N be the reflection on the lattice and define the symmetrization oper-

ation S(A) = 1
2 (A + P AP) such that by the above theorem S(γ ) = γ for every

translational invariant pure state CM. Then due to the cyclicity of the trace we have for
any translational invariant Hamiltonian

inf
γ

tr
[
Hγ
] = inf

γ
tr
[
S(H)γ

]
.

Hence, the point-symmetrized Hamiltonian S(H), which differs from H by the off-
diagonal block S(HQ P ) = 1

2 (HQ P + H T
Q P ) has both the same ground state energy and

the same ground state as H . Together with Theorem 1c this leads us to the following:

Theorem 3. Consider any translationally invariant quadratic Hamiltonian. With Ê =[
HQ HP − 1

4 (HQ P + H T
Q P )2
]1/2

the ground state CM and the corresponding ground
state energy are given by

E0 = 1
2 tr[Ê], γ = (Ê ⊕ Ê

)−1
σS(H)σ T . (11)

It is important to note that the energy gaps of H and S(H) will in general be differ-
ent. In particular H might be gapless while S(H) is gapped. However, as we will see
in the following sections, the properties of γ depend on the gap � = λmin(Ê) of the
symmetrized Hamiltonian rather than on that of the original H . For this reason we will
in the following for simplicity assume HQ P = H T

Q P . By Thm. 3 all results can then also
be applied to the general case without point symmetry if one only keeps in mind that �

is the gap corresponding to S(H).
Note that the eigenvalues of Ê are the symplectic eigenvalues of S(H), i.e., E =

F⊗d ÊF†⊗d is the excitation spectrum of the Hamiltonian. This is the reason for the
notation where E resides in Fourier space and Ê in real space, which differs from the
normal usage of the hat throughout the paper.
Correlation functions. According to Eqs. (9,10,11) we have to compute the entries of
functions of matrices in order to learn about the entries of the covariance matrix. This
is most conveniently done by a double Fourier transformation, where one uses that
f̂ (M) = f (M̂), and we find

[ f (M)]nm = 1

N d

∑

r,s

e− 2π i
N nr [ f (M̂)]rse

2π i
N sm . (12)

As we consider translationally invariant systems, M is circulant and thus M̂ is diagonal.
We define the function

M̂(φ) =
∑

n∈Z
d
N

Mn e−inφ (13)

such that M̂(2πr/N ) = M̂r,r . As f (M) is solely determined by its first row, we can
write

[ f (M)]n = 1

N d

∑

r∈Z
d
N

e2π i nr/N f (M̂(2πr/N )). (14)
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In the following we will use the index n ∈ Z
d for the relative position of two points

on the lattice. Their distance will be measured either by the l1, l2 or l∞ norm. Since we
are considering finite dimensional lattices these are all equivalent for our purpose and
we will simply write ‖n‖. In the thermodynamic limit N → ∞, the sum in Eq. (14)
converges to the integral

[ f (M)]n = 1

(2π)d

∫

T d
dφ f (M̂(φ)) einφ with M̂(φ) =

∑

n∈Zd

Mn e−inφ, (15)

where T d is the d-dimensional torus, i.e., [0, 2π ]d with periodic boundary conditions.
The convergence holds as soon as

∑ |Mn| < ∞ [which holds e.g. for Mn = O(‖n‖−α)

with some α > d] and f is continuous on an open interval which contains the range of M̂ .
From the definition (15) of M̂ , it follows that M̂ ∈ C k(T d) (the n times continuously

differentiable functions on T d ) whenever the entries Mn decay at least as fast as ‖n‖−α

for some α > k + d, since then the sum of the derivatives converges uniformly. Particu-
larly, if the entries of M decay faster than any polynomial, then M̂ ∈ C ∞(T d). In the
following the most important function of the type f ◦ M̂ will be the spectral function

E(φ) =
√∑

n∈Zd

e−inφ
(
[HQ HP ]n − [H2

Q P ]n

)
. (16)

Asymptotic notation. As the main issue of this paper is the asymptotic scaling of cor-
relations, we use the Landau symbols o, O , and �, as well as the symbol O∗ for tight
bounds:

– f (x) = o(g(x)) means lim
x→∞

f (x)
g(x)

= 0, i.e., f vanishes strictly faster than g for
x → ∞;

– f (x) = O(g(x)), if lim sup
x→∞

∣∣∣ f (x)
g(x)

∣∣∣ is finite, i.e., f vanishes at least as fast as g;

– f (x) = �(g(x)), if f (x) = O(g(x)) and g(x) = O( f (x)) (i.e., exact asymptotics);
– f (x) = O∗(g(x)), if f (x) = O(g(x)) but f (x) �= o(g(x)), i.e., g is a tight bound

on f .2 If f is taken from a set (e.g., those functions consistent with the assumptions
of a theorem) we will write f = O∗(g) if g is a tight bound for at least one f (i.e.,
the best possible universal bound under the given assumptions).

If talking about Hamiltonians, the scaling is meant to hold for all blocks, e.g., if the
interaction vanishes as O(‖n‖−α) for n → ∞, this holds for all the blocks HQ , HP , and
HQ P = H T

P Q . The same holds for covariance matrices in the non-critical case. By the
shorthand notation f (n) = o(‖n‖−∞), we mean that f (n) = o(‖n‖−α) ∀α > 0. Note
finally that the Landau symbols are also used in (Taylor) expansions around a point x0
where the considered limit is x → x0 rather than x → ∞.

4. Non-Critical Systems

In this section, we analyze the ground state correlations of non-critical systems, i.e.,
those which exhibit an energy gap � > 0 between the ground and the first excited state.

2 In order to see the difference to �, take an f (x) = g(x) for even x , f (x) = 0 for odd x , x ∈ N. Although
f does not bound g, thus f (x) �= O(g(x)), the bound g is certainly tight. A situation like this is met, e.g., in
Theorem 5, where the correlations oscillate within an exponentially decaying envelope.
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Simply speaking, we will show that the decay of correlations reflects the decay of the
interaction. While local (super-polynomially decaying) interactions imply exponentially
(super-polynomially) decaying correlations, a polynomial decay of interactions will lead
to the same polynomial law for the correlations.

According to Theorem 3, we will consider a translationally invariant system with a
point-symmetric Hamiltonian (HQ P = H T

Q P ). Following (10,11), we have to determine

the entries of (Ê−1 ⊕ Ê−1)σ Hσ T , with Ê = (HQ HP + H2
Q P )1/2. In Lemma 1 we will

first show that it is possible to consider the two contributions independently, and as the
asymptotics of σ Hσ T is known, we only have to care about the entries of Ê−1, i.e., we
have to determine the asymptotic behavior of the integral

(Ê−1)n = 1

(2π)d

∫

T d
dφ E−1(φ)einφ where E = (ĤQ ĤP + Ĥ2

Q P )1/2.

Lemma 1. Given two asymptotic circulant matrices A, B in d dimensions with polyno-
mially decaying entries, An = O(‖n‖−α), Bn = O(‖n‖−β), α, β > d. Then

(AB)n = O∗(‖n‖−µ), µ := min{α, β}.
Proof. With Qη(n) := min{1, ‖n‖−η}, we know that |An| = O(Qα) and |Bn| =
O(Qβ), and

|(AB)n| =
∣∣∣∣
∣∣

∑

j

A0, j B j,n

∣∣∣∣
∣∣
≤
∑

j

|A j ||Bn− j | = O




∑

j

Qα( j)Qβ(n − j)



 . (17)

We consider only one half space ‖ j‖ ≤ ‖n− j‖, where we bound Qβ(n− j) ≤ Qβ(n/2).
As Qα( j) is summable, the contribution of this half-plane is O

(
Qβ(n/2)

)
. The other

half-plane gives the same result with α and β interchanged, which proves the bound,
while tightness follows by taking all An , Bn positive. �

We now determine the asymptotics of (Ê−1)n for different types of Hamiltonians.

Lemma 2. For non-critical systems with rapidly decaying interactions, i.e., as o(‖n‖−∞),
the entries of Ê−1 decay rapidly as well. That is,

� > 0 ⇒ (Ê−1)n = o(‖n‖−∞).

Proof. As the interactions decay as o(‖n‖−∞), Ĥ• ∈ C ∞(T d) (• = Q, P, P Q), and
thus E2 = ĤQ ĤP + Ĥ2

Q P ∈ C ∞(T d). Since the system is gapped, i.e., E ≥ � > 0, it

follows that also g := E−1 ∈ C ∞(T d). For the proof, we need to bound

(Ê−1)n = 1

(2π)d

∫

T d
dφ g(φ)einφ

by ‖n‖−κ for all κ ∈ N. First, let us have a look at the one-dimensional case. By
integration by parts, we get

(Ê−1)n = 1

2π

[
1

in
g(φ)einφ

]π

φ=−π

− 1

2π in

∫ π

−π

dφ g′(φ)einφ,
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where the first part vanishes due to the periodicity of g. As g ∈ C ∞(T 1), the integration
by parts can be iterated arbitrarily often and all the brackets vanish, such that after κ

iterations,

(Ê−1)n = 1

2π(in)κ

∫ π

−π

dφ g(κ)(φ)einφ.

As g(κ)(φ) is continuous, the integral can be bounded by
∫ |g(κ)(φ)|dφ =: Cκ < ∞,

such that finally

|(Ê−1)n| ≤ Cκ

nκ
∀κ ∈ N ,

which completes the proof of the one-dimensional case.
The extension to higher dimensions is straightforward. For a given n = (n1, . . . , nd),

integrate by parts with respect to the φi for which |ni | = ‖n‖∞; we assume i = 1 with-
out loss of generality. As g(·, φ2, . . . , φd) ∈ C ∞(S1), the same arguments as in the 1D
case show

|(Ê−1)n| ≤ 1

(2π)d |n1|κ
∫

T d

∣
∣∣∣

∂κ

∂φκ
1

g(φ)

∣
∣∣∣ dφ = Cκ

‖n‖κ∞
. �

For systems with local interactions, a stronger version of Lemma 2 can be obtained:

Lemma 3. For a system with finite range interaction, the entries of Ê−1 decay exponen-
tially.

This has been proven in [1] for Hamiltonians of the type H = V ⊕ 11, exploiting a
result on functions of banded matrices [26]. Following Eqs. (9,11) the generalization
to arbitrary translational invariant Hamiltonians is straightforward by replacing V with
HQ HP − H2

Q P . In fact, it has been shown recently that the result even extends to non
translational invariant Hamiltonians of the form in Theorem 1 b [14].

Finally, we consider systems with polynomially decaying interaction.

Lemma 4. For a 1D lattice with H = V ⊕ 11 > 0 and an exactly polynomially decaying
interaction

Vi j =
{

i = j : a
i �= j : b

|i− j |ν
, 2 ≤ ν ∈ N,

Ê−1 decays polynomially with the same exponent, (Ê−1)n = (V 1/2)n = �(|n|−ν).

Hamiltonians of this type appear, e.g., for the vibrational degrees of freedom of ions
in a linear trap, where ν = 3.

Proof. We need to estimate (Ê−1)n
(9)= (V −1/2)n = 1

2π

∫ 2π

0 V̂ −1/2(φ)einφdφ. Note that

V̂ (φ) = a + 2b
∞∑

n=1

cos(nφ)

nν
= a + 2b Re

[
Liν(e

iφ)
]

> 0, (18)

where Liν(z) = ∑n≥1 zn/nν is the polylogarithm. The polynomial decay of coeffi-

cients implies V̂ ∈ C ν−2(S1), and as the system is non-critical, V̂ −1/2 ∈ C ν−2(S1).
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As Liν has an analytic continuation to C\[1;∞), V̂ ∈ C ∞((0; 2π)) and thus V̂ −1/2 ∈
C ∞((0; 2π)). We can therefore integrate by parts ν −1 times, and as all brackets vanish
due to periodicity, we obtain

(Ê−1)n = 1

2π(in)ν−1

∫ 2π

0

[
dν−1

dφν−1 V̂ −1/2(φ)

]
einφdφ, (19)

and

dν−1

dφν−1 V̂ −1/2(φ) = − V̂ (ν−1)(φ)

2V̂ (φ)3/2
+

3(ν − 2)V̂ (ν−2)(φ)V̂ (1)(φ)

4V̂ (φ)5/2
+ g(φ). (20)

Note that the second term only appears if ν ≥ 3, and g only if ν ≥ 4. As g(φ) ∈ C 1(S1),
its Fourier coefficients vanish as O(n−1), as can be shown by integrating by parts. The
second term can be integrated by parts as well, the bracket vanishes due to continuity,
and we remain with

1

in

∫ 2π

0

[
3(ν − 2)V̂ (ν−1)(φ)V̂ (1)(φ)

4V̂ (φ)5/2
+ h(φ)

]

einφdφ,

with h ∈ C (S1). [For ν = 3, a factor 2 appears as (V̂ (1))′ = V̂ (ν−1).] As we will show
later, V̂ (ν−1) is absolutely integrable, hence the integral exists, and thus the Fourier
coefficients of the second term in Eq. (20) vanish as O(n−1) as well. Finally, it remains
to bound

∫ 2π

0

V̂ (ν−1)(φ)

2V̂ (φ)3/2
einφdφ. (21)

As Li′ν(x) = Liν−1(x)/x , it follows from Eq. (18) that

V (ν−1)(φ) = 2b Re
[
iν−1Li1(e

iφ)
]

= 2b Re
[
−iν−1 log(1 − eiφ)

]
,

where the last step is from the definition of Li1.
We now distinguish two cases. First, assume that ν is even. Then,

V (ν−1)(φ) ∝ Im log(1 − eiφ) = arg(1 − eiφ) = (φ − π)

2

on (0; 2π), hence the integrand in Eq. (21) is bounded and has a bounded derivative,
and by integration by parts, the integral Eq. (21) is O(n−1). In case ν is odd we have

V (ν−1)(φ) ∝ Re log(1 − eiφ) = log
∣∣∣1 − eiφ

∣∣∣ = log(2 sin(φ/2))

on (0; 2π). With h(φ) := V̂ −3/2(φ)/2, the integrand in Eq. (21) can be written as

V̂ (ν−1)(φ)h(φ) ∝ log(2 sin(φ/2)) h(0) + log(2 sin(φ/2)) [h(φ) − h(0)]. (22)

The first term gives a contribution proportional to
∫ 2π

0
log(2 sin(φ/2)) cos(nφ)dφ = − 1

2n
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as it is the back-transform of − 1
2

∑
n≥1 cos(nφ)/n. For the second term, note that h ∈

C 1(S1) for ν ≥ 3 and thus h(φ)−h(0) = h′(0)φ+o(φ) by Taylor’s theorem. Therefore,
the log singularity vanishes, and we can once more integrate by parts. The derivative is

1

2
cot(φ/2) [h(φ) − h(0)] + log(2 sin(φ/2)) h′(φ).

In the left part, the 1/φ singularity of cot(φ/2) is cancelled out by h(φ)−h(0) = O(φ),
and the second part is integrable as h′ ∈ C (S1), so that the contribution of the integral
(21) is O(n−1) as well.

In order to show that n−ν is also a lower bound on (V̂ −1/2)n , one has to analyze
the asymptotics more carefully. Using the Riemann-Lebesgue lemma—which says that
the Fourier coefficients of absolutely integrable functions are o(1)—one finds that all
terms in (19) vanish as o(1/nν), except for the integral (21). Now for even ν, (21) can be
integrated by parts, and while the brackets give a �(n−ν) term, the remaining integral
is o(n−ν), which proves that (V̂ −1/2)n = �(n−ν). For odd ν, on the other hand, the first
part of (22) gives exactly a polynomial decay, while the contributions from the second
part vanishes as o(n−ν), which proves (V̂ −1/2)n = �(n−ν) for odd ν as well. �
Generalizations of Lemma 4. The preceding lemma can be extended to non-integer
exponents α �∈ N: if Vn ∝ n−α , n �= 0, then (Ê−1)n = O(n−α).

For the proof, define α = ν + ε, ν ∈ N, 0 < ε < 1. Then V̂ ∈ C ν−1(S1),
V̂ ∈ C ∞((0; 2π)), and one can integrate by parts ν times, where all brackets vanish.
What remains is to bound the Fourier integral of the νth derivative of V̂ −1/2 by n−ε. An
upper bound can be established by noting that |V̂ (ν)(φ)| ≤ |Liε(eiφ)| = O(φε−1) and
|V̂ (ν+1)(φ)| = O(φε−2). It follows that all contributions in the Fourier integral except the
singularity from V̂ (ν) lead to o(1/n) contributions as can be shown by another integra-
tion by parts. In order to bound the Fourier integral of the O(φε−1) term, split the Fourier
integral at 1

n . The integral over [0; 1
n ] can be directly bounded by n−ε, while for [ 1

n ; 1], an

equivalent bound can be established after integration by parts, using V̂ (ν+1) = O(φε−2).
This method is discussed in more detail in the proof of Theorem 10, following Eq. (44).

The proof that n−ε is also a lower bound to (Ê−1)n is more involved. From a series
expansion of V̂ and its derivatives, it can be seen that it suffices to bound the sine and
cosine Fourier coefficients of φε−1 from below. As in the proof of Theorem 9, this is
accomplished by splitting the integral into single oscillations of the sine or cosine and
bounding each part by the derivative of φε−1.

For polynomially bounded interactions Vn = O(n−α), α > 1, not very much can be
said without further knowledge. With ν < α, ν ∈ N the largest integer strictly smaller
than α, we know that V̂ ∈ C ν−1(S1). Thus, one can integrate by parts ν − 1 times, the
brackets vanish, and the remaining Fourier integral is o(1) using the Riemann-Lebes-
gue lemma. It follows that (Ê−1)n = o

(
n−(ν−1)

)
. In contrast to the case of an exactly

polynomial decay, this can be extended to higher spatial dimensions d > 1 by replacing
ν − 1 with ν − d, which yields (Ê−1)n = o

(
n−(ν−d)

)
.

We now use the preceding lemmas about the entries of Ê−1 (Lemma 2–4) to derive
corresponding results on the correlations of ground states of non-critical systems.

Theorem 4. For systems with � > 0, the following holds:

(i) If the Hamiltonian H has finite range, the ground state correlations decay exponen-
tially.
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(ii) If H decays as o(‖n‖−∞), the ground state correlations decay as o(‖n‖−∞) as well.
(iii) For a 1D system with H = V ⊕ 11, where V decays with a power law |n|−ν , ν ≥ 2,

the ground state correlations decay as �(|n|−ν).

Proof. In all cases, we have to find the scaling of the ground state γ which is the product
γ = (Ê−1 ⊕ Ê−1)σ Hσ T , Eq. (10). Part (i) follows directly from Lemma 3, as multiply-
ing with a finite-range σ Hσ T doesn’t change the exponential decay, while (ii) follows
from Lemma 2, the o(‖n‖−∞) decay of σ Hσ T , and Lemma 1. To show (iii), note that
for H = V ⊕ 11, the ground state is γ = V −1/2 ⊕ V 1/2, and from Lemma 4, O(n−ν)

follows. For V̂ −1/2, Lemma 4 also includes that the bound is exact, while for V̂ 1/2, it
can be shown by transferring the proof of the lemma one-to-one. �

Note that a simple converse of Theorem 4 always holds: for each translationally
invariant pure state CM γ , there exists a Hamiltonian H with the same asymptotic
behavior as γ such that γ is the ground state of H . This can be trivially seen by choosing
H = σγ σ T .

5. Correlation Length and Gap

In this section, we consider one-dimensional chains with local gapped Hamiltonians. We
compute the correlation length for these systems and use this result to derive a relation
between correlation length and gap.

Theorem 5. Consider a non-critical 1D chain with a local Hamiltonian. Define the

complex extension of the spectral function E(φ) =
[∑L

n=0 cn cos(nφ)
]1/2

in Eq. (16)
as

g(z) :=
L∑

n=0

cn
zn + z−n

2
,

such that g(eiφ) = E2(φ)
(9)= ĤQ(φ)ĤP (φ) − Ĥ2

Q P (φ) and let z̃ be zero of g with the
largest magnitude smaller than one. Then, the correlation length

ξ = − 1

log |z̃|

determines the asymptotic scaling of the correlations which is given by

– O∗(e−n/ξ /
√

n), if z̃ is a zero of order one,
– O∗(e−n/ξ ), if z̃ is a zero of even order,
– o(e−n/(ξ+ε)) for all ε > 0, if z̃ is a zero of odd order larger than one.

For the nearest neighbor interaction Hamiltonian Hκ from Eq. (1) one has for instance
E(φ) = √

1 − κ cos(φ), so that g has simple zeros at z0 = (1 ± √
1 − κ2)/κ . There-

fore z̃ = (1 − √
1 − κ2)/κ , and the correlations decay as �(e−n/ξ /

√
n),

where ξ = −1/ log |z̃|.
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Proof. For local Hamiltonians, the correlations decay as the matrix elements of Ê−1

[Eq. (10)]. By Fourier transforming (9),E(φ) = √g(eiφ), with g(eiφ) = ĤQ(φ)ĤP (φ)−
Ĥ2

Q P (φ) = ∑L
n=0 cn cos(nφ) an even trigonometric polynomial (we assume cL �= 0

without loss of generality), and min(g(eiφ)) = �2. We have to compute

(Ê−1)n = 1

2π

∫ 2π

0

1

E(φ)
einφdφ = 1

2π i

∫

S1

zn−1

√
g(z)

dz, (23)

where S1 is the unit circle. The function g(z) has a pole of order L at zero and 2L
zeros altogether. Since min(g(φ)) = �2 > 0, g has no zeros on the unit circle. As
g(z) = g(1/z), the zeros come in pairs, and L of them are inside the unit circle. Also,
the conjugate of a zero is a zero as well. From each zero with odd multiplicity emerges
a branch cut of

√
g(z). We arrange all the branch cuts inside the unit circle such that

they go straight to the middle where they annihilate with another cut. In case L is odd,
the last cut is annihilated by the singularity of

√
g(z) at 0. If two zeros lie on a line, one

cut curves slightly. A sample arrangement is shown in Fig. 1.
Following Cauchy’s theorem, the integral can be decomposed into integrals along

the different branch cuts and around the residues of 1/
√

g, and one has to estimate the
contributions from the different types of zeros of g. The simplest case is given by zeros
z0 with even multiplicity 2m. In that case, define h(z) := g(z)/(z − z0)

2m which has no
zero around z0. The contribution from z0 to the correlations is then given by the residue
at z0 and is

Fig. 1. Sample arrangement of branch cuts and poles of
√

g inside the unit circle. From each odd order zero
of g, a branch cut emerges. All cuts go to 0 where they cancel with another cut. In case their number is odd,
there is an additional branch point at 0 cancelling the last cut. In case two zeros are on a line to the origin, the
cuts are chosen curved. The integral of

√
g around the unit circle is equal to the integral around the cuts, plus

integrals around the residues which originate from the even order zeros of g
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1

(m − 1)!
dm−1

dzm−1

(
zn−1

√
h(z)

)∣∣∣∣
z=z0

∝ zn−(m−1)
0

for n − (m − 1) > 0, i.e., it scales as |z0|n . Note that for z0 �∈ R, the imaginary parts
originating from z0 and its conjugate z̄0 exactly cancel out, but the scaling is still given
by |z0|n = en log |z0|, i.e., ξ = −1/ log |z0| is the corresponding correlation length.

If z0 is a simple zero of g(z), we have to integrate around the branch cut. Assume
first that the cut goes to zero in a straight line, and consider a contour with distance ε to
the slit. Both the contribution from the ε region around zero and the ε semicircle at z0
vanish as ε → 0, and the total integral is therefore given by twice the integral along the
cut,

1

π i

∫ z0

0

zn−1

√
z − z0

√
h(z)

dz,

where again h(z) = g(z)/(z − z0). Intuitively, for growing n the part of the integral
close to z0 becomes more and more dominating, i.e., the integral is well approximated
by the modified integral where h(z) has been replaced by h(z0). After rotating it onto
the real axis, this integral—up to a phase—reads

1

π
√|h(z0)|

∫ |z0|

0

rn−1

√|z0| − r
dr = |z0|n−1/2�(n)√

π |h(z0)| �(n + 1
2 )

, (24)

which for large n is

1√
π |z0h(z0)|

|z0|n√
n

+ O

( |z0|n
n3/2

)
. (25)

In order to justify the approximation h(z) � h(z0), consider the difference of the two
respective integrals. It is bounded by

∣∣∣∣

∫ z0

0

|z|n−1

√|z − z0|
∣∣∣∣

1√
h(z)

− 1√
h(z0)

∣∣∣∣
︸ ︷︷ ︸

(∗)

dz

∣∣∣∣ .

On [z0/2, z0], h(z) is analytic and has no zeros, thus, |h(z)−1/2−h(z0)
−1/2| < C |z−z0|,

where C is the maximum of the derivative of h(z)−1/2 on [z0/2, z0]. On [0, z0/2], the
same bound is obtained by choosing C the supremum of |h(z)−1/2 − h(z0)

−1/2|/|z0/2|
on [0, z0/2]. Together, (∗) ≤ C |z − z0|, and the above integral is bounded by

C
∫ |z0|

0
rn−1
√|z0| − r dr = C

√
π |z0|n+1/2�(n)

2�(n + 3
2 )

= O

( |z0|n
n3/2

)
,

i.e., it vanishes by 1/n faster than the asymptotics derived in Eq. (25), which justifies
fixing h(z) at h(z0).

From Eq. (25), it follows that the scaling is e−n/ξ /
√

n, where the correlation length
is again ξ = −1/ log |z0|. The same scaling behavior can be shown to hold for appro-
priately chosen curved branch cuts from z0 to 0 by relating the curved to a straight
integral.

The situation gets more complicated if zeros of odd order > 1 appear. In order to get
an estimate which holds in all scenarios, we apply Cauchy’s theorem to contract the unit
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circle in the integration (23) to a circle of radius r > |z0|, where z0 is the largest zero
inside the unit circle. Then, the integrand can be bounded by Crrn−1 (where Cr < ∞ is
the supremum of 1/

√
g on the circle), and this gives a bound 2πCrrn−1 for the integral.

This holds for all r > |z0|, i.e., the correlations decay faster than en log r for all r > |z0|.
This does not imply that the correlations decay as en log |z0|, but it is still reasonable to
define −1/ log |z0| as the correlation length. �
Theorem 6. Consider a 1D chain together with a family of Hamiltonians H(�) with
gap � > 0, where H(�) is continuous for � → 0 in the sense that all entries of H
converge. Then, the ground state correlations scale exponentially, and for sufficiently
small � the correlation length is

ξ � 1√
�m∗ .

Here, m∗ =
(

d2E(φ)

dφ2

∣∣∣
φ=φ�

)−1

is the effective mass at the band gap.

For the discretized Klein-Gordon field (1), for example, we have � = √
1 − |κ|,

m∗ = 2
√

1 − |κ|/|κ|, and for small � (corresponding to |κ| close to 1), one obtains
ξ � √|κ|/2(1 − |κ|) � 1/

√
2�. Hence, the ξ ∝ 1/� law holds if the coupling is

increased relative to the on-site energy (in which case m∗ ∝ �).
More generally, if we expand the spectral function [Eq. (16)] around the band gap

we are generically3 led to the dispersion relation E(k) � √
�2 + v2k2 (k ≡ φ). By the

definition of the effective mass and Theorem 6 this leads exactly to the folk theorem

ξ � v

�
. (26)

Proof. According to Theorem 5, what remains to be done is to determine the position of
the largest zero z̃ of g in the unit circle. Due to the restriction on H(�), the coefficients
of the polynomial g(z)zL and thus also the zeros of g continuously depend on �, i.e.,
for sufficiently small �, the zero closest to the unit circle is the one closest to the gap. In
order to determine the position of this zero, we will expand g around the gap. We only
discuss the generic case where the gap appears only for one angle φ0, g(φ0) = �. In the
case of multiple occurrences of the gap in the spectrum, one will pick the gap which gives
the zero closest to the unit circle, i.e., the largest correlation length. Furthermore, we
assume φ0 = 0 without loss of generality. Otherwise, one considers g(ze−iφ0) instead
of g(z), which on the unit circle coincides with the (rotated) spectrum.

The knowledge on g =: u + iv (with u, v : C → R) which will be used in the proof
is

u(1) = �2, v(1) = 0,

uφ(1) = 0, vφ(1) = 0,

uφφ(1) = 2�
m∗ > 0, vφφ(1) = 0,

(27)

where the subscripts denote the partial derivative with respect to the respective sub-
script (in Euclidean coordinates z ≡ x + iy, in polar coordinates z ≡ reiφ). Note that

3 This makes the natural assumption that the minimum under the square root is quadratic. In fact, if it is of
higher order, then m∗ = ∞ and thus ξ = 0, which is consistent with the findings of the following section. An
example of such a behavior is given by so called ‘quadratic interactions’ [2] for which H = V ⊕ 11, where V
is the square of a banded matrix.
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z = 1 is the point where the gap appears, and that g(eiφ) = E(φ)2 is real. Therefore,
the derivatives of the imaginary part v along the circle vanish, while the derivatives of
the real part u are found to be u(1) = E(0)2 = �2, uφ(1) = 2E(0)E ′(0) = 0, and
uφφ(0) = 2E ′(0)2 + 2E(0)E ′′(0) = 2�/m∗, where m∗ = 1/E ′′(φ) is the effective mass
at the band gap.

We need to exploit the relation between Euclidean and polar coordinates,

gx (1) = gr (1) ; gy(1) = gφ(1),

gxx (1) = grr (1) ; gyy(1) = gφφ(1) + gr (1),

and the Cauchy–Riemann equations ux = vy , uy = −vx , and gxx + gyy = 0, which
together with the information (27) lead to

u(1) = �2 ; v(1) = 0 ;
ux (1) = uy(1) = vx (1) = vy(1) = 0 ;

uxx (1) = − 2�
m∗ ; uyy(1) = 2�

m∗ ;
vxx (1) = 0 ; vyy(1) = 0.

Note that it is not possible to derive information about the mixed second derivates using
only the information (27). However, as long as vxy does not vanish at 1, v will only stay
zero in direction of x or y, but not diagonally. Since �2 > 0 and 2�/m∗ > 0, the closest
zero is—to second order—approximately located along the x axis. By intersecting with
the parabola �2 − �

m∗ (x −1)2, one finds that the zero is located at x0 ≈ 1−√
�m∗. For

small �, the correlations thus decay with correlation length ξ ≈ −1/ log(1−√
�m∗) ≈

1/
√

�m∗. �

6. Critical Systems

In the following, we discuss critical systems, i.e., systems without an energy gap, � = 0.4

In that case, the Hamiltonian will get singular and some entries of the ground state covari-
ance matrix will diverge, which leads to difficulties and ambiguities in the description
of the asymptotic behavior of correlations. We will therefore restrict to Hamiltonians of
the type

H = V ⊕ 11,

for which the ground state CM is γ = V −1/2 ⊕ V 1/2. While the Q part diverges, the
entries of the P-block stay finite. Following Thm. 1(b) the extension to interactions of
the form H = HQ ⊕ HP is straightforward.

In order to compute the correlations we have to determine the asymptotics of V 1/2,
i.e.,

(V 1/2)n = 1

(2π)d

∫

T d

√
V̂ (φ)einφdφ.

4 Note that there are different meanings of the notion criticality referring either to a vanishing energy gap
or to an algebraic decay of correlations. In this section we discuss in which cases these two properties are
equivalent.
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We will restrict to the cases in which the excitation spectrum E =
√

V̂ has only a finite
number of zeros, i.e., finitely many points of criticality. In addition, we will also consider
the special case in which the Hamiltonian exhibits a tensor product structure.

We proceed as follows. First, we consider one-dimensional critical chains and show
that the correlations decay typically as O(n−2) and characterize those special cases
where the correlations decay more rapidly. The practically important case of exactly
cubic decaying interactions will be investigated in greater detail. Depending on the sign
of the interaction this case will lead to a logarithmic deviation from the n−2 behavior.
Then, we turn to higher dimensional systems and show that generically the correlations
decay as n−(d+1) log n, where d is the spatial dimension of the lattice.

6.1. One dimension. First, we prove a lemma which shows that although taking the
square root of a smooth function destroys its differentiability, the derivatives will stay
bounded.

Lemma 5. Let f ∈ C m([−1; 1]), f (x) ≥ 0 with the only zero at x = 0, and let 2ν ≤ m
be the order of the minimum at x = 0, i.e., f (k)(0) = 0 ∀k < 2ν, f (2ν)(0) > 0.

Define g(x) := √
f (x). Then, the following holds:

– For odd ν, g ∈ C ν−1([−1; 1]), and g ∈ C m−ν([−1; 0]), g ∈ C m−ν([0; 1]), i.e.,
the first m − ν derivatives (for x �= 0) are bounded.

– For even ν, g ∈ C m−ν([−1; 1]).
Proof. Using the Taylor expansion f (x) =∑m

k=2ν ck xk + ρ(x), ρ(k)(x) = o(xm−k) for
k ≤ m, we express g as g(x) = (sgn x)νxνr(x) with

r(x) =
√√√√

m∑

k=2ν

ck xk−2ν +
ρ(x)

x2ν
,

where we used that (sgn x)νxν = √
x2ν . Let us now consider the derivatives of r(x).

While the sum leads to a O(1) contribution, the kth derivative of the remainder behaves
as o(1)/x2ν−m+k . Together, this leads to

r (k)(x) = O(1), 2ν − m + k ≤ 0,

r (k)(x) = o(1)/x2ν−m+k, 2ν − m + k ≥ 1.

Now consider the kth derivative of g(x) for x �= 0,

g(k)(x) = (sgn x)ν
k∑

l=0

(
k

l

)[
dl

dxl
xν

]
r (k−l)(x)

︸ ︷︷ ︸
sl

.

Assume first k ≤ ν. Then, sl ∝ O(1)xν−l for 2ν − m + k − l ≤ 0, and sl ∝ o(1)xm−ν−k

for 2ν − m + k − l ≥ 1, and as m ≥ 2ν, it follows that g(k) = O(x) for k < ν,
which cancels the discontinuity originating from sgn x . For k = ν, on the contrary,
sk = O(1), and sgn x introduces a discontinuity on g(k), yet, it remains bounded and
piecewise differentiable on [−1; 0] and [0; 1]. The first non-bounded sl is found as soon
as m − ν − k = −1, and g ∈ C m−ν([0; 1]) directly follows.

This also implies that for m − ν − k ≥ 0, g(x)/(sgn x)ν ∈ C m−ν([−1; 1]), i.e., the
discontinuity is only due to (sgn x)ν . Since, however, this is only discontinuous for odd
ν, it follows that g ∈ C m−ν([−1; 1]) if ν even. �
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Theorem 7. Consider a one-dimensional critical chain with Hamiltonian H = V ⊕ 11,
where Vn = O(n−α), α > 4 and where V̂ has a finite number of critical points which
are all quadratic minima of V̂ . Then, (γP )n = O∗(n−2). For Vn ∝ n−α , α > 3 it even
follows that (γP ) = �(n−2).

Note that for Vn ∝ n−α , the extrema of V̂ are always quadratic.

Proof. We want to estimate

(V 1/2)n = 1

2π

∫

S1
g(φ)einφdφ, (28)

where g = V̂ 1/2. Under both assumptions, V̂ ∈ C 2(S1), and all critical points are min-
ima of order 2. It follows from Lemma 5 that g is continuous with bounded derivative.
Therefore, we can integrate by parts, the bracket vanishes, and we obtain

(V 1/2)n = − 1

2π in

∫ 2π

0
g′(φ)einφdφ.

Now, split S1 at the zeros of g into closed intervals I j ,
⋃

j I j = S1, and rewrite the
above integral as a sum of integrals over I j . As g′ ∈ C (I j ) (and differentiable on the
inner of I j ), one can once more integrate by parts which yields

(V 1/2)n = − 1

2π(in)2

∑

j

([
g′(φ)einφ

]

I j
−
∫

I j

g′′(φ)einφdφ

)
. (29)

Neither of the terms will vanish, but since g′ ∈ C (I j ), the bracket is bounded. In case
Vn ∈ O(n−α), α > 4, we have V̂ ∈ C 3(S1), therefore g′′ is bounded (Lemma 5), and
the integrals vanish as o(1). Unless the contributions of the brackets for the different I j

cancel out, the n−2 bound is tight, (V 1/2)n = O∗(n−2). The tightness of the bound is
also illustrated by the example which follows the proof.

For the case of an exactly polynomial decay, we additionally have to show that g′′ is
absolutely integrable for 3 < α ≤ 4. Then, the exactness of the bound holds because
the bracket in Eq. (29) does not oscillate (the critical point is either at φ = 0 or at
φ = π ), and because the integral is o(1) for g′′ ∈ L1(S1). In case the critical point is
at φ = π , the latter holds since V̂ ∈ C ∞((0; 2π)) implies that g′′ is bounded at π , and
V̂ ∈ C 2(S1) that g ∈ C 2((−π, π)), which together proves that g′′ is bounded on S1.

In case the critical point is at φ = 0, the situation is more involved (and for α = 3, a
logarithmic correction appears, cf. Theorem 9). Since V̂ (3)(φ) = −Im

[
Liα−3(eiφ)

] =
O(φα−4), we have

V̂ ′′(φ) = V̂ ′′(0) + O(φα−3),

V̂ ′(φ) = V̂ ′′(0)φ + O(φα−2),

V̂ (φ) = 1
2 V̂ ′′(0)φ2 + O(φα−1).

With this information,

g′′(φ) = 2V̂ (φ)V̂ ′′(φ) − V̂ ′(φ)2

4V (φ)3/2 = O(φα−4),

which indeed proves that g′′ ∈ L1(S1), and thus (V 1/2)n = �(n−2). �
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As an example, consider again the discretized Klein-Gordon field of Eq. (1) which is
critical for κ = ±1, corresponding to V̂ (φ) = 1∓cos φ. The Fourier integral is solvable

and yields (γP )n = − 2
√

2
π

(sgn κ)n

4n2−1
= �(n−2).

Generalizations of Theorem 7. Using Lemma 5, several generalizations for the 1D criti-
cal case can be found. In the following, we mention some of them. In all cases H = V ⊕11
is critical.

Critical points of even order. If Vn = o(n−∞) and the critical points are minima of order
2ν, ν even, the correlations decay as (γP )n = o(n−∞). This is the case, e.g., if V = X2

with X itself rapidly decaying.

Critical points of higher order. If V̂ has critical points of order at least 2ν, ν odd, and
Vn = O(n−α), α > 2ν + 2, then (γP )n = O(n−(ν+1)).

Minima of different orders. If V̂ has minima of different orders 2νi , in general the mini-
mum with the lowest odd νi ≡ ν1 will determine the asymptotics, (γP )n = O(n−(ν1+1)).
As V̂ ∈ C (2 max{νi })(S1) is required anyway, the piecewise differentiability of V̂ 1/2 is
guaranteed.

Weaker requirements on V . It is possible to ease the requirements imposed on V in
Theorem 7 to Vn = O(n−α), α > 3 or V̂ ∈ C 2(S1), respectively. The price one has to
pay is that one gets an additional log correction as in the multidimensional critical case,
Theorem 10. The method to bound g′′ is the same which is used there to derive (39).

The above proof does not cover the case of the relevant 1/n3 interaction, which for
instance appears for the motional degrees of freedom of trapped ions. In the following,
we separately discuss this case. It will turn out that the scaling will depend on the sign
of the coupling: while a positive sign (corresponding to the radial degrees of freedom)
again gives a �( 1

n2 ) scaling as before, for the negative sign (corresponding to the axial

degree of freedom) one gets �
(√log n

n2

)
.

Theorem 8. Consider a critical 1D chain with a 1/n3 coupling with positive sign, i.e.,
H = V ⊕ 11, Vn = c/n3, V0 = 3cζ(3)/2, c > 0, with ζ the Riemann zeta function.
Then, the ground state correlations scale as (γP )n = �( 1

n2 ).

Proof. We take w.l.o.g. c = 1/2. For this sign of the coupling, the critical point is at π ,
V̂ (π) = 0. From the proof of Lemma 4, we know that V̂ ∈ C 1(S1), V̂ ∈ C ∞((0; 2π)),
and that V̂ ′′(φ) = log(2 sin(φ/2)) on (0; 2π). With g := V̂ 1/2, it follows from Lemma 5
that g ∈ C (S1), g ∈ C 1([−π;π ]), and g ∈ C ∞((0;π ]), g ∈ C ∞([−π; 0)). This
means that all derivatives g(k), k ≥ 1 can exhibit jumps at the critical point π but they all
remain bounded. In contrast, around φ = 0, g′ is continuous but g′′ has a log divergence.

Thus, the Fourier integral

(V 1/2)n = 1

2π

∫

S1
g(φ)einφdφ

can be split at 0 and π , and then integrated by parts twice. The brackets of the first
integration cancel out due to continuity of g, and one remains with

(V 1/2)n = 1

π(in)2

([
g′(φ) cos(nφ)

]π
0 +
∫ π

0
g′′(φ) cos(nφ)dφ

)
,
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where we used the symmetry of g. One finds [g′(φ) cos(nφ)]π0 = −
√

log 2
2 (−1)n , and

since g′′ is integrable, the integral is o(1) due to the Riemann-Lebesgue lemma. Together,
this proves (γP )n = �( 1

n2 ). �
Theorem 9. Consider a critical 1D chain with a 1/n3 coupling with negative sign, i.e.,
H = V ⊕11, Vn = −c/n3, V0 = 2cζ(3), c > 0, with ζ the Riemann zeta function. Then,

the ground state correlations scale as (γP )n = �
(√log n

n2

)
.

Proof. Again, take w.l.o.g. c = 1/2. For the negative sign of the interaction, the critical
point is at φ = 0. Since at this point V̂ ′′ diverges, Lemma 5 cannot be applied, and the
situation gets more involved.

As in the previous proof, we use that V̂ ∈ C 1(S1), V̂ ∈ C ∞((0; 2π)), and thus
V̂ 1/2 ∈ C (S1), V̂ 1/2 ∈ C ∞((0; 2π)). Further, V̂ ′′(φ) = − log(2 sin(φ/2)) on (0; 2π),
cf. the proof of Lemma 4, and with sin x = x(1 + O(x2)) we have V̂ ′′(φ) = − log(φ) +
O(φ2) for φ → 0 (and similarly for φ → 2π ), and therefore

V̂ ′(φ) = φ(1 − log φ) + O(φ3), V̂ (φ) = 1
4φ2(3 − 2 log φ) + O(φ4). (30)

As V̂ 1/2 ∈ C (S1), we can integrate by parts one time,

(V 1/2)n= 1

2π

∫

S1
V̂ 1/2(φ)einφdφ= 1

πn

∫ π

0
g′(φ) sin(nφ)dφ, (31)

where we exploited the symmetry of V̂ , and with g := V̂ 1/2. Then, from (30),

g′(φ)= 1 − log φ√
3 − 2 log φ

+O

(
φ2

√| log φ|
)

, g′′(φ)= −2 + log φ

φ(3 − 2 log φ)3/2 + O

(
φ√| log φ|

)
,

and after another round of approximation,

g′(φ) =
√| log φ|√

2
+ O

(
1√| log φ|

)
, g′′(φ) = − 1

23/2

1

φ
√| log φ| + O

(
1

φ| log φ|3/2

)
.

This shows that the remainder g′(φ) − √| log φ|/2 is continuous with an absolutely
integrable derivative, and by integration by parts it follows that it only leads to a con-
tribution O(1/n) in the integral (31). Thus, it remains to investigate the asymptotics of
the sine Fourier coefficients of h(φ) = √| log φ|. For convenience, we split the integral
(31) at 1, and [1;π ] only contributes with O(1/n), as h is continuous with absolutely
integrable derivative on [1;π ]. On [0; 1], we have to compute the asymptotics of

I =
∫ 1

0

√− log φ sin(nφ)dφ. (32)

Therefore, split the integral at 1/n. The left integral can be bounded directly, and the
right after integration by parts [cf. the treatment of Eq. (44)]. One gets

I ≤
∫ 1/n

0

√− log φ dφ +

√
log n

n
+

1

n

∫ 1

1/n

1

2φ
√− log φ

dφ = O

(√
log n

n

)
.

In order to prove that this is also a lower bound for the asymptotics, it suffices to show
this for the integral (32) as all other contributions vanish more quickly. To this end, split
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the integral (32) into single oscillations of the sine, Jk = [ 2πk
n ,

2π(k+1)
n ], k ≥ 0. As√− log φ has negative slope on (0; 1), each of the Jk gives a positive contribution to I,

and thus we can truncate the integral at 1
2 ,

I ≥
∑

2π(k+1)
n ≤ 1

2

∫

Jk

√− log φ sin(nφ) dφ. (33)

On [0; 1
2 ], √− log φ has a positive curvature, and thus, each of the integrals can be esti-

mated by linearly approximating
√− log φ at the middle of each Jk but with the slope

at 2π(k+1)
n , which gives

∫

Jk

√− log φ sin(nφ) dφ ≥ π

n2

1

2π(k+1)
n

√
− log

[
2π(k+1)

n

] .

Now, we plug this into the sum (33) and bound the sum by the integral from 2π
n to 1

2 (the

integrand in monotonically decreasing), which indeed gives a lower bound 1
n (
√

log n
2π

−√
log 2) on I and thus proves the �(

√
log n/n2) scaling. �

6.2. Higher dimensions. For more than one dimension, the situation is more involved.
First of all, it is clear by taking many uncoupled copies of the one-dimensional chain
that there exist cases where the correlations will decay as n−2. However, these are
very special examples corresponding to Hamiltonians with a tensor product structure
Hi1i2, j1 j2 = Hi1, j1 H ′

i2, j2
. In contrast, we show that for generic systems the correlations

in the critical case decay as O(n−(d+1) log n), where d is the dimension of the lattice.
The requirement is again that the energy spectrum E(φ) has only a finite number of
zeroes, i.e., finitely many critical points.

Note that the case of a Hamiltonian with a tensor product structure can also be solved,
as in that case V̂ becomes a product of terms depending on one φi each and thus the
integral factorizes. Interestingly, although the correlations along the axes decay as n−2,
the correlations in a fixed diagonal direction will decay as n−2

1 · · · n−2
d ∝ ‖n‖−2d and

thus even faster than in the following theorem. The O
(‖n‖−(d+1) log ‖n‖) decay of the

theorem holds isotropically, i.e., independent of the direction of n.

Theorem 10. Consider a d-dimensional bosonic lattice with a critical Hamiltonian H =
V ⊕ 11. Then the P-correlations of the ground state decay as

O
(
‖n‖−(d+1) log ‖n‖

)

if the following holds: V̂ ∈ C d+1 [e.g., the correlations decay as O(‖n‖−(2d+1+ε)),
ε > 0], V̂ has only a finite number of zeros which are quadratic minima, i.e., the

Hessian
(

∂2 V̂ (φ)
∂φi ∂φ j

)

i j
is positive definite at all zeros.
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Proof. We have to evaluate the asymptotic behavior of the integral

(V̂ 1/2)n = 1

(2π)d

∫

T d
ddφ

√
V̂ (φ) cos[nφ].

Let us first briefly sketch the proof. We start by showing that it suffices to analyze
each critical point separately. To this end, we show that is is possible to smoothly cut
out some environment of each critical point which reproduces the asymptotic behavior.
Then, we rotate the coordinate system such that we always look at the correlations in a
fixed direction, and integrate by parts—which surprisingly can be carried out as often
as V̂ is differentiable, as all the brackets vanish. Therefore, the information about the
asymptotics is contained in the remaining integral, and after a properly chosen number
of partial integrations, we will attempt to estimate this term.

Let now ζi , i = 1, . . . , I be the zeros of V̂ . Clearly, these will be the only points

which contribute to the asymptotics as everywhere else
√

V̂ is C d+1. In order to separate
the contributions coming from the different ζi , we will make use of so-called neutral-
izers [27]. For our purposes, these are functions Nξ0,r ∈ C ∞(Rd → [0; 1]) which
satifsy

Nξ0,r (ξ) =
{

1 : ‖ξ − ξ0‖ ≤ r/2
0 : ‖ξ − ξ0‖ ≥ r

and are rotationally symmetric (cf. [27] for an explicit construction). For each ζi , there
exists an ri such that the balls Bri (ζi ) do not intersect. We now define the functions

fi (φ) :=
√

V̂ (φ) Nζi ,ri (φ), ρ(φ) :=
√

V̂ (φ) −
I∑

i=1

fi (φ).

Clearly, ρ is C d+1, and so is each fi except at ζi . Furthermore, each fi is still the square
root of a C d+1 function. By definition,

(V̂ −1/2)n = 1

(2π)d

I∑

i=1

∫

T d
ddφ fi (φ) cos[nφ] +

1

(2π)d

∫

T d
ddφρ(φ) cos[nφ], (34)

i.e., it suffices to look at the asymptotics of each fi separately. The contribution of ρ

is O(‖n‖−(d+1)) as can be shown by successive integrations by parts just as for the
non-critial lattice (cf. the proof of Lemma 2).

Let us now analyze the integrals

Ii =
∫

Bri (ζi )

ddφ fi (φ) cos[nφ].

The integration range can be restriced to Bri (ζi ) as fi vanishes outside the ball. By a
rotation, this can be mapped to an integral where n = (‖n‖, 0, . . . , 0), whereas fi is
rotated to another function f̃i with the same properties,

Ii =
∫

Bri (ζi )

ddφ f̃i (φ) cos[‖n‖φ1].
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Since the integrand is continuous and thus bounded, it is absolutely integrable, and from
Fubini’s theorem, one finds

Ii =
∫

Bri (ζ̃i )

dd−1φ̃

∫ ζi,1+ri

ζi,1−ri

dφ1 f̃i (φ1, φ̃) cos[‖n‖φ1]
︸ ︷︷ ︸

Ji (φ̃)

,

where we separated out the integration over the first component. The vector φ̃ denotes the
components 2 . . . d of φ. The extension of the integration range to a cylinder is possible
as f̃i vanishes outside Bri (ζi ).

Let us now require φ̃ �= ζ̃i . This does not change the integral since the excluded set
is of measure zero, but it ensures that f̃i is in C d+1. This allows us to integrate the inner
integral Ji (φ̃) by parts up to d + 1 times, and each of the brackets

[
f̃ (k)
i (φ1, φ̃)

1

‖n‖k
cos(‖n‖φ1 − kπ/2)

]ζi,1+ri

φ1=ζi,1−ri

appearing in the kth integration step vanishes. Here, f̃ (d)
i (φ1, φ̃) = ∂d f̃i (φ1, φ̃)/∂φd

1 is
the d th partial derivative with respect to the first argument. After integrating by parts d
times, we obtain

Ii = 1

‖n‖d

∫

Bri (ζ̃i )

dd−1φ̃

ζi,1 + ri∫

ζi,1 − ri

dφ1 f̃ (d)
i (φ1, φ̃) cos[‖n‖φ1 − dπ/2]. (35)

Now we proceed as follows: first, we show that the order of integration can be inter-
changed, and second, we show that for the function obtained after integrating f̃ (d)

i over
φ̃, the Fourier coefficients vanish as log(‖n‖)/‖n‖.

The central issue for what follows is to find suitable bounds on | f̃ (k)
i |. Therefore,

define f̃ 2
i =: hi ∈ C d+1. By virtue of Taylor’s theorem, and as hi (ζi ) = 0 is a mini-

mum,

hi (φ) = 1
2 (φ − ζi ) · (D2hi (ζi ))(φ − ζi ) + o(‖φ − ζi‖2)

with D2 the second derivative. As the first term is bounded by 1
2‖D2hi (ζi )‖∞‖φ − ζi‖2

and the second vanished faster than ‖φ − ζi‖2, we can find εi > 0 and C1 > 0 such that

|hi (φ)| ≤ C1‖φ − ζi‖2 ∀‖φ − ζi‖ < εi . (36)

By looking at the Tayor series of h′
i ≡ ∂hi/∂φ1 up to the first order we also find that

there are εi > 0 and C2 > 0 such that

|h′
i (φ)| ≤ C2‖φ − ζi‖ ∀‖φ − ζi‖ < εi . (37)

In addition to these upper bounds, we will also need a lower bound on |hi |. Again, by
the Taylor expansion of hi around ζi , we find

|hi (φ)| ≥ λmin

[
D2hi (ζi )

]
− o(‖φ − ζi‖2),
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and as all the zeros are quadratic minima, i.e., λmin
[
D2hi (ζi )

]
> 0, there exist εi > 0,

C3 > 0 such that

|hi (φ)| ≥ C3‖φ − ζi‖2 ∀‖φ − ζi‖ < εi . (38)

Clearly, εi can be chosen equal in Eqs. (36–38). Note that the bounds can be chosen to
be invariant under rotation of hi and thus of f̃i . This holds in particular for the εi as the
remainders of Taylor series vanish uniformly. Thus, the bound we will obtain for the
correlation function indeed only depends on ‖n‖ and not on the direction of n.

Now, we use the conditions (36–38) to derive bounds on | f̃ (k)
i |. Therefore, note that

from f̃i ≡ √
hi it follows that

f̃ (k)
i =

∑

j1+···+ jk=k
jν=0,1,2,...

c j1... jk h( j1)
i · · · h( jk)

i

h(2k−1)/2
i

.

One can easily check that for each term in the numerator, the number K0 of zeroth
derivatives and the number K1 of first derivatives of hi satisfy 2K0 + K1 ≥ k. By bound-
ing all higher derivatives of hi from above by constants, we find that the modulus of
each summand in the numerator, and thus the modulus of the numerator itself, can be
bounded above by C ′‖φ − ζi‖k in the ball Bεi (ζi ) with some C ′ > 0. On the other hand,
it follows directly from (38) that the modulus of the denominator is bounded below by
C ′′‖φ − ζi‖2k−1, C ′′ > 0, such that in total

| f̃ (k)
i (φ)| ≤ C

1

‖φ − ζi‖k−1 ; 1 ≤ k ≤ d + 1. (39)

Note that this holds not only inside Bεi (ζi ) but in the whole domain of fi , as outside
Bεi (ζi ), fi is C d+1 and thus all the derivatives are bounded.

Equation (39) is the key result for the remaining part of the proof. First, it can be
used to bound the integrand in (35) by an integrable singularity (this is most easily seen
in spherical coordinates, where 1/rd−1 is integrable in a d-dimensional space). Hence,
the order of integration in (35) can be interchanged, and it remains to investigate the
asymptotics of the integral

Ii = 1

‖n‖d

ζi,1 + ri∫

ζi,1 − ri

dφ1gi (φ1) cos[‖n‖φ1 − dπ/2], with (40)

gi (φ1) ≡
∫

Bri (ζ̃i )

dd−1φ̃ f̃ (d)
i (φ1, φ̃). (41)

From (39), we now derive bounds on gi (φ1) and its first derivative. Again, we may safely
fix φ1 �= ζi,1 as this has measure zero. Then, using (39) we find that

|gi (φ1)| ≤
∫ ri

0

C
(
(φ1 − ζi,1)2 + r2)

)(d−1)/2
Sd−1rd−2dr,
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where we have transformed into spherical coordinates [Sd−1 is the surface of the (d −1)-
dimensional unit sphere] and assumed the l2-norm. Since (φ1 − ζ1)

2 + r2 ≥ r2, the
integrand can be bounded once again, and we find

|gi (φ1)| ≤
∫ ri

0

C Sd−1

((φ1 − ζi,1)2 + r2)1/2 dr

= C

(
− log |φ1 − ζi,1| + log

[
ri +
√

r2
i + (φ1 − ζi,1)2

])

≤ −C log |φ1 − ζi,1|, (42)

where in the last step we used that in (40) |φ1 − ζi,1| < ri and that ri can be chosen
sufficiently small.

Next, we derive a bound on g′
i (φ1). As we fix φ1 �= ζ1, the integrand in (41) is C 1

and we can take the differentiation into the integral,

g′
i (φ1) =

∫

Bri (ζ̃i )

dd−1φ̃ f̃ (d+1)
i (φ1, φ̃).

Again, we bound the integrand by virtue of Eq. (39) and obtain

|g′
i (φ1)| ≤

∫ ri

0

C Sd−1

((φ1 − ζi,1)2 + r2)
dr

= C
arctan

[
ri|φ1−ζi,1|
]

|φ1 − ζi,1| ≤ C ′

|φ1 − ζi,1| . (43)

Finally, these two bounds will allow us to estimate (40) and thus the asymptotics of
the correlations in the lattice. We consider one half of the integral (40),

ζi,1 + ri∫

ζi,1

dφ1gi (φ1) cos[‖n‖φ1 − dπ/2], (44)

as both halves contribute equally to the asymptotics. We then split the integral at ζi,1 +
ri/‖n‖. The left part gives

∣∣∣∣
∣∣∣

ζi,1+ri /‖n‖∫

ζi,1

dφ1gi (φ1) cos[‖n‖φ1 − dπ/2]

∣∣∣∣
∣∣∣

(42)≤
ζi,1+ri /‖n‖∫

ζi,1

dφ1(− log |φ1 − ζi,1|)

= ri − ri log ri + ri log ‖n‖
‖n‖ . (45)
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The right part of the split integral (44) can be estimated by integration by parts,
∣∣∣
∣∣∣∣

ζi,1+ri∫

ζi,1+ri /‖n‖
dφ1gi (φ1) cos[‖n‖φ1 − dπ/2]

∣∣∣
∣∣∣∣

≤
∣
∣∣∣∣

[
gi (φ1)

1

‖n‖ cos[‖n‖φ1 − (d + 1)π/2]
]ζi,1+ri

ζi,1+ri /‖n‖

∣
∣∣∣∣

+
1

‖n‖

ζi,1+ri∫

ζi,1+ri /‖n‖
dφ1|g′

i (φ1)|

(42,43)≤ C
log ‖n‖

‖n‖ + C ′ | log ri |
‖n‖ . (46)

Thus, both halves [Eqs. (45),(46)] give a log ‖n‖/‖n‖ bound for the integral (44), and
thus the integral Ii is asymptotically bounded by log ‖n‖/‖n‖d+1 following Eq. (40).
As the number of such integrals in (34) is finite, this proves that the correlations of the
ground state decay at least as log ‖n‖/‖n‖d+1. �
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