
Digital Object Identifier (DOI) 10.1007/s00220-006-0020-6
Commun. Math. Phys. 266, 797–818 (2006) Communications in

Mathematical
Physics

Upper Bounds to the Ground State Energies
of the One- and Two-Component Charged Bose Gases�

Jan Philip Solovej��,���

Institute for Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen,
Denmark. E-mail: solovej@math.ku.dk

Received: 30 September 2005 / Accepted: 2 December 2005
Published online: 5 May 2006 – © by J.P. Solovej 2006

Abstract: We prove upper bounds on the ground state energies of the one- and two-
component charged Bose gases. The upper bound for the one-component gas agrees with
the high density asymptotic formula proposed by L. Foldy in 1961. The upper bound
for the two-component gas agrees in the large particle number limit with the asymptotic
formula conjectured by F. Dyson in 1967. Matching asymptotic lower bounds for these
systems were proved in references [10] and [11]. The formulas of Foldy and Dyson
which are based on Bogolubov’s pairing theory have thus been validated.

1. Introduction and Main Results

In 1961 L. Foldy [7] used Bogolubov’s 1947 pairing theory [4] for Bose systems to give
a heuristic calculation of the ground state energy of a one-component charged Bose gas
in the high density limit. The one-component Bose gas is a system of Bose particles all
of the same charge moving in the presence of a fixed uniform background of the opposite
charge.

In 1967 F. Dyson [6] considered the two-component Bose gas with two species of
bosons with opposite charges. Motivated by Foldy’s calculation Dyson was able to prove
a rigorous upper bound on the ground state energy. A famous consequence of Dyson’s
upper bound is that charged bosonic matter is not stable, the ground state energy is super-
linear in the number of particles. Dyson, moreover, conjectured an exact asymptotic form
of the ground state energy in the limit of a large number of particles.
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In [10] it was proved that Foldy’s calculation is indeed correct as a leading asymptotic
lower bound for the ground state energy of the one-component charged Bose gas in the
high density limit.

In [11] it was similarly proved that Dyson’s conjectured expression is correct as an
asymptotic lower bound for the ground state energy of the two-component charged Bose
gas in the limit of a large number of particles.

The aim of the present paper is to prove the corresponding upper bounds thus vali-
dating both Foldy’s one-component and Dyson’s two-component formulas.

It should be mentioned that Foldy’s calculation may be viewed as a trial state calcula-
tion and may thus be turned into a rigorous upper bound. Foldy, however, uses periodic
boundary conditions, and a periodic version of the Coulomb potential. It is not known
whether this formulation has the same thermodynamic limit as the formulation given
below.

The one-component Bose gas is a system of N particles all of the same charge +1,
say, constrained to a box � = [0, L]3 ⊂ R

3, in which there is a uniform background
charge of density ρ.

The Hamiltonian for the one-component charged Bose gas is thus

H (1)
N =

N∑

i=1

(− 1
2�i − V (xi )

)
+

∑

1≤i< j≤N

|xi − x j |−1 + C, (1)

where

V (x) = ρ

∫

�

|xi − y|−1 dy, C = ρ2

2

∫∫

�×�
|x − y|−1 dx dy.

We use Dirichlet boundary conditions.
It is known from the work of Lieb and Narnhofer [9] that the ground state energy

E (1)(N ) of H (1)
N has a thermodynamic limit if we restrict to a neutral system

e(ρ) = lim
N→∞

L3=N/ρ

E (1)(N )

L3 .

It is however also shown in [9] that one will get the same thermodynamic energy by
minimizing over all particle numbers, i.e.,

e(ρ) = lim
L→∞ inf

N

E (1)(N )

L3 .

Theorem 1.1 (Foldy’s formula). The ground state energy e(ρ) of the one-component
charged Bose gas satisfies the asymptotics

lim
ρ→∞ ρ

−5/4e(ρ) = −I0, (2)

where

I0 = (2/π)3/4
∫ ∞

0
1 + x4 − x2

(
x4 + 2

)1/2
dx = 45/4�(3/4)

5π1/4�(5/4)
. (3)
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The two component Bose gas is described by the Hamiltonian

H (2)
N =

N∑

i=1

−1

2
�i +

∑

1≤i< j≤N

ei e j

|xi − x j |

acting on the Hilbert space L2(R3 ×{1,−1}), where the variable (xi , ei ) ∈ R
3 ×{1,−1}

gives the position and charge of particle i .
The word two component refers to the fact that the charge of each particle can be

either positive or negative. Thus the gas has a positive and a negative component. One
would not normally consider the charges as variables, but rather fix them to have given
values. If we did that, the Hamiltonian would not be fully symmetric in all N variables,
but only in the variables for the positively charged particles and negatively charged
particles separately. Clearly, the charge variables commute with the Hamiltonian and
the bottom of the spectrum (the ground state energy) E (2)(N ) of H (2)

N will therefore be
achieved for a fixed combination of charges (rather than a superposition).

Theorem 1.2 (Dyson’s formula). The ground state energy E (2)(N ) of the two-compo-
nent charged Bose gas satisfies the asymptotics

lim
N→∞ N−7/5 E (2)(N ) = −A,

where A is the positive constant determined by the variational principle

−A = inf

{
1
2

∫

R3
|∇�|2 − I0

∫

R3
�5/2

∣∣∣∣ 0 ≤ �,

∫

R3
�2 = 1

}
(4)

with I0 again given by (3).

In [6] Dyson proves that E (2)(N ) ≤ −C N 7/5, but with a constant different from A.
He conjectures that the correct value is given as above. That the exponent 7/5 is, indeed,
correct was first proved in 1988 by Conlon, Lieb, and Yau in [5], where they show a
lower bound −C N 7/5, but still not with the correct constant. They also proved that 5/4 is
the correct exponent in Foldy’s formula. The asymptotic lower bounds in Theorems 1.1
and 1.2 were proved in [10] and [11] respectively. The main results of the following
paper are the asymptotic upper bounds.

In Sect. 2 we give a general construction of bosonic trial states on the bosonic Fock
space over a general Hilbert space. The trial states will be built from coherent states and
squeezed states. The trial states are essentially the ones dictated by Bogolubov theory.
These trial states are the bosonic equivalent of the fermionic states in Hartree-Fock theory
or rather to their extension including the Bardeen-Cooper-Schrieffer states (see [1]).

In the same way as fermionic systems may be approximated by the semi-classical
Thomas-Fermi theory we will also use a semi-classical type approximation to the
Bogolubov trial states.

In Sect. 3 we use the general trial state method to give an upper bound on the ground
state energy for the two-component gas, but in a grand canonical setting where we do
not fix the total number of particles.

In Sect 3.1 we show how to get an upper bound for fixed particle number and thus
prove Theorem 1.2.

In Sect. 4 we use the general trial state method to give an upper bound on the ground
state energy for the one-component gas and prove Theorem 1.1.
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A key ingredient in the proofs is a semiclassical construction where we represent
operators as phase-space integrals with coherent states symbols and use the Berezin-
Lieb inequalities. We need an operator version of the inequality. This is discussed in
Appendix A.

2. The Abstract Trial State Construction

Our goal in this section is to construct trial states on the bosonic Fock space F =
F(H1) = ⊕∞

N=0 HN , over some Hilbert Space H1, i.e., HN = ⊗N
Sym H1 and H0 = C.

We will be using the language of bosonic creation and annihilation operators as a con-
venient tool for the book keeping. We denote by |0〉 the vacuum vector in F . If T is an
operator on H1 and W is an operator H1 ⊗H1, which is symmetric under interchange of
the tensor factors, we may lift (also referred to as second quantize) these operators to F as

∞⊕

N=1

N∑

i=1

Ti and
∞⊕

N=2

∑

1≤i< j≤N

Wi j .

Here Ti refers to the operator T acting on the i th factor in the tensor product and Wi j

refers to W acting on the i th and i th factors. If uα, α = 1, . . . is an orthonormal basis for
H1 we can express these operators using creation and annihilation operators as

∞⊕

N=1

N∑

i=1

Ti =
∑

α,β

(uα, T uβ)a(uα)
∗a(uβ) (5)

and
∞⊕

N=0

∑

1≤i< j≤N

Wi j = 1

2

∑

αβµν

(uα ⊗ uβ,W uµ ⊗ uν)a(uα)
∗a(uβ)

∗a(uν)a(uµ). (6)

Of special interest is the number operator (the second quantization of the identity)

N =
∞⊕

N=0

N .

If φ ∈ H1 is a not necessarily normalized vector we define the corresponding coherent
state as the normalized vector in Fock space

|φ〉C = exp(−‖φ‖2/2 + a(φ)∗)|0〉

=
∞∑

n=0

e−‖φ‖2/2 (a(φ)
∗)n

n! |0〉, (7)

and for a normalized ψ ∈ H1 we define the squeezed state depending on λ ∈ C with
|λ| < 1,

|λ;ψ〉S = (1 − |λ|2)1/4 exp(−(λ/2)a(ψ)∗a(ψ)∗)|0〉

= (1 − |λ|2)1/4
∞∑

n=0

(−λ/2)n
n! (a(ψ)∗)2n|0〉. (8)
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It is straightforward to check that these states are normalized. Up to an overall phase
|φ〉C and |λ;ψ〉S are characterized by

(a(φ)− ‖φ‖2)|φ〉C = 0 and (a(ψ) + λa(ψ)∗)|λ;ψ〉S = 0. (9)

We immediately see that

C〈φ|(a(φ)∗)ma(φ)k |φ〉C = ‖φ‖2(m+k). (10)

For the squeezed state we get

S〈λ;ψ |(a(ψ)∗) j a(ψ) j+2k |λ;ψ〉S

= (1 − |λ|2)1/2
∞∑

n=0

(2n + 2k)!
(n + k)!2 (2n − j + 1)(2n − j + 2) · · · (2n)

×(n + k)(n + k − 1) · · · (n + 1)(|λ|/2)2n(−λ/2)k

= (1 − |λ|2)1/2|λ| j (−λ)k d j

d|λ| j

(
|λ|−1 d

d|λ|
)k

(1 − |λ|2)−1/2. (11)

Moreover, the expectation in the state |λ;ψ〉S of a product of an odd number of the
operators a(ψ)∗ or a(ψ) vanishes.

For the expectation of the particle number we find

C〈φ|a(φ/‖φ‖)∗a(φ/‖φ‖)|φ〉C = ‖φ‖2 and S〈λ;ψ |a(ψ)∗a(ψ)|λ;ψ〉S = |λ|2
1 − |λ|2 .

We point out that the variation in the particle number is very different in the coherent
state and in the squeezed state

C〈φ|(a(φ/‖φ‖)∗a(φ/‖φ‖))2|φ〉C − C〈φ|a(φ/‖φ‖)∗a(φ/‖φ‖)|φ〉2
C = ‖φ‖2, (12)

S〈λ;ψ |(a(ψ)∗a(ψ))2|λ;ψ〉S − S〈λ;ψ |a(ψ)∗a(ψ)|λ;ψ〉2
S = 2|λ|2

(1 − |λ|2)2 .
(13)

Thus in the coherent state the standard deviation of the particle number is the square
root of the expectation itself, whereas for the squeezed state the standard deviation of
the particle number is, in fact, greater than the expectation itself. For this reason the
squeezed states are not appropriate for describing Bose condensates with a macroscopic
and sharply defined occupation number in a specific one-particle state. To describe con-
densates we will use coherent states.

We will here define a variational principle corresponding to the Bogolubov theory of
Bose gases. We shall do this by characterizing the set of variational trial states (see also
Robinson [12]).

The Bogolubov variational theory is very similar to the Hartree-Fock theory for Fermi
gases. More precisely, it is similar to the generalized Hartree-Fock theory which includes
the Bardeen-Cooper-Schrieffer (BCS) trial states. In generalized Hartree-Fock theory
(see [1]) the class of trial states is defined to be the quasi-free states on a fermionic Fock
space. For the ground state (zero temperature) theory we may restrict to pure quasi-free
states.
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To describe the variational states of Bogolubov theory we will again start from (nor-
malized) quasi-free pure states. Such a state may be characterized as follows. If � ∈
F(H1) is a normalized quasi-free pure state there exists an orthonormal family ψ1, . . .

of H1 and a sequence of numbers 0 < λ1, . . . < 1 with
∑∞
α=1 λ

2
α < ∞ such that

� =
∏

α=1

[
(1 − λ2

α)
1
4 exp

(
−λα

2
a(ψα)

∗a(ψα)
∗
)]

|0〉. (14)

A straightforward but lengthy calculation from (11) shows that the quasi-free state sat-
isfies

(
�, a�1a�2a�3a�4�

)
=
(
�, a�1a�2�

) (
�, a�3a�4�

)
+
(
�, a�1a�4�

) (
�, a�2a�3�

)

+
(
�, a�1a�3�

) (
�, a�2a�4�

)
(15)

and from the definition of the state we have for all integers m ≥ 1,
(
�, a�1 · · · a�2m−1�

)
= 0. (16)

In (15) and (16), a�j , j = 1, 2 . . . refer to any creation or annihilation operators. The
relation (15) is the case m = 2 of the more general rule

(
�, a�1 · · · a�2m�

)
=

∑

π∈P2m

(
�, a�π(1)a

�

π(2)�
)

· · ·
(
�, a�π(2m−1)a

�

π(2m)�
)
, (17)

where P2m is the set of pairing permutations

P2m = {π ∈ S2m | π(2 j − 1) < π(2 j + 1), j = 1, . . . ,m − 1

π(2 j − 1) < π(2 j), j = 1, . . . ,m} . (18)

We shall here use this only in the case (15) when m = 2.
The one-particle density matrix of the quasi-free state � is the operator γ1 defined

on the one-body space H1 by (g, γ1 f )H1 = (�, a( f )∗a(g)�)F , where f, g ∈ H1.
From (11)

γ1 =
∞∑

α=1

λ2
α

1 − λ2
α

|ψα〉〈ψα|. (19)

Note, in particular, that the one-particle density matrix is a positive semi-definite trace
class operator with

Tr γ1 = (�,N�) =
∞∑

α=1

λ2
α

1 − λ2
α

< ∞.

Connected to the quasi-free pure state � we also have the symmetric bilinear form ξ1
on H1 given by ξ1( f, g) = (�, a( f )∗a(g)∗�)F . We find, again from (11), that

ξ1( f, g) =
∞∑

α=1

−λα
1 − λ2

α

(ψα, f )(ψα, g). (20)
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We may identify ξ1 with a linear map ξ1 : H1 → H∗
1, from the one-body space H1

to its dual space H∗
1. We then have the relations

ξ∗
1 ξ1 = γ1(γ1 + 1), ξ1γ1 = γ1ξ1, (21)

where we have also identified γ1 in the natural way with a map from H∗
1 to itself. If we

introduce the operator � : H1 ⊕ H∗
1 → H1 ⊕ H∗

1 defined using matrix notation as

� =
(
γ1 ξ1
ξ∗

1 1 + γ1

)
,

we may rewrite the condition (21) as

�

(−1 0
0 1

)
� = �.

We may refer to an operator satisfying this condition as a symplectic projection. In the
fermionic case the corresponding operator is simply a projection. Note that the operator
� may also be described by

(| f1〉 ⊕ 〈g1|, �| f2〉 ⊕ 〈g2|)H1⊕H∗
1
=(�, (a( f2)

∗ + a(g2)
) (

a( f1) + a(g1)
∗)�

)
F(H1)

,

where we have used the Dirac bra and ket notation to denote elements of H1 and H∗
1

respectively.
Given a positive definite trace class operator γ1 and a symmetric bilinear form ξ1

satisfying (21) we may find a unique quasi-free pure state � such that γ1 is the corre-
sponding one-particle density matrix and ξ1 the corresponding bilinear form. To see this
one simply has to show that there exists an orthonormal family ψ1, . . . and a sequence
of positive numbers λ1, . . . such that (19) and (20) hold. This is a fairly simple exercise
in linear algebra.

The choice of ξ1 is equivalent to a particular choice of eigenbasis for γ1. If γ1 has
real eigenfunctions (in some representation) there is a particular ξ1 corresponding to this
choice of basis. We shall use this in our construction of states in the next sections.

Consider as an example γ1 being a real translation invariant operator on the Hilbert
space L2(Rn/2πZ

n) of square integrable functions on the torus. The real eigenfunctions
come in degenerate pairs of the form cos(px) and sin(px), p ∈ Z

n . The associated
quasi-free state will in the exponent have terms of the form

a(cos(px))∗a(cos(px))∗ + a(sin(px))∗a(sin(px))∗ = a(eipx )∗a(e−i px )∗.

This corresponds to a pairing of states with opposite momenta, as is the usual case in
the Bogolubov pair theory.

The Bogolubov variational states are not just quasi-free states as defined above. In
fact, quasi-free states being built out of squeezed states are not well suited for describ-
ing condensates (see the discussion after (12) and (13). We introduce condensates by
appropriate unitary transformations of quasi-free states as we shall now describe.

Given φ ∈ H1 we have a unitary map Uφ on the Fock space F(H1) which satisfies

U∗
φa( f )Uφ = a( f ) + ( f, φ).

This unitary is unique up to an overall complex phase, which we may fix by noting that
we can add the requirement that the unitary maps the vacuum state to a coherent state

Uφ |0〉 = |φ〉C .
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From the first identity in (9) it is clear that Uφ satisfies this up to a phase.
The Bogolubov variational states are constructed from a quasi-free state � and a

vector φ ∈ H1 as�φ = Uφ�. From the above discussion we see that a Bogolubov state
may be described as follows.

Definition 2.1 (Bogolubov variational states). A Bogolubov state on the bosonic Fock
space F(H1) is given by

�φ,γ1,ξ1 =
∏

α=1

[
(1 − λ2

α)
1
4 exp

(
−λα

2
(a(ψα)

∗− (φ,ψα))(a(ψα)
∗ − (φ,ψα))

)]
|φ〉C ,

(22)

where φ ∈ H1 and ψ1, ψ2 . . . is an orthonormal family in H1 and 0 < λ1, λ2, . . . < 1
satisfy

∑∞
α=1 λ

2
α = 1. We call φ the condensate vector and ψ1, ψ2 . . . the pair states.

There is a one-to-one correspondence between Bogolubov states and triples (φ, γ1, ξ1)

consisting of a vector φ ∈ H1 a positive trace class operator γ1 on H1 and a bilinear
form ξ1 on H1 × H1 satisfying (21). The correspondence is given by (19) and (20).

We find for the one-particle density matrix of the Bogolubov state �φ,γ1,ξ1 that
(
�φ,γ1,ξ1 , a(u)∗a(v)�φ,γ1,ξ1

)
F(H1)

= (
�0,γ1,ξ1 , (a(u)

∗ + (φ, u))(a(v) + (v, φ))�0,γ1,ξ1

)
F(H1)

= (v, γ1u) + (v, φ)(φ, u) (23)

and likewise for the two-particle density matrix using (15),
(
�φ,γ1,ξ1 , a(u1)

∗a(u2)
∗a(v2)a(v1)�φ,γ1,ξ1

)
F(H1)

= (v1, φ)(v2, φ)(φ, u1)(φ, u2)

+ξ1(u1, u2)(v1, φ)(v2, φ) + ξ1(v1, v2)(φ, u1)(φ, u2)

+(v2, γ1u1)(v1, φ)(φ, u2) + (v1, γ1u2)(v2, φ)(φ, u1)

+(v2, γ1u2)(v1, φ)(φ, u1) + (v1, γ1u1)(v2, φ)(φ, u2)

+(v1, γ1u1)(v2, γ1u2) + (v1, γ1u2)(v2, γ1u1) + ξ1(v1, v2)ξ1(u1, u2). (24)

The above trial states are motivated by the Bogolubov approximation for Bose con-
densed systems. The states φ represent the condensate, whereas the statesψα, α = 1, . . .
represent the pair states. A key ingredient in the Bogolubov approximation is the c-num-
ber substitution, i.e., the replacement of the operator a(φ) by the number ‖φ‖2. This
replacement will give the correct value for expectations of normal ordered products in
the Bogolubov states if we have the additional assumption that γ1φ = 0 (see (10). In
Sect. 3 we will choose a Bogolubov state satisfying this assumption, but in Sect. 4 the
Bogolubov state that we choose will not satisfy the assumption.

It is not the aim here to study the general properties of the Bogolubov variational
problem, i.e., the minimization of the expectation of many-body Hamiltonians restricted
to Bogolubov states. We will instead proceed to the specific examples of the one-com-
ponent and two-component charged Bose gas. Here we shall not characterize the exact
Bogolubov minimizer, but instead give the semiclassical approximations to these states
which give the leading order asymptotics in Theorems 1.1 and 1.2.

The Hamiltonians that we are interested in are particle number conserving, i.e., com-
mute with particle number and the reader may wonder why we do not define a class
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of particle conserving, i.e., canonical trial states rather than the grand canonical states
above. As in the fermionic BCS theory it is very complicated to write a canonical trial
state. The calculations are greatly simplified in the grand canonical setting. Simple
minded trial states with a fixed number of particles in the condensate will not give the
correct approximation, since the important virtual pair creation will be lost.

3. The Two-Component Charged Bose Gas

We consider the two component Bose gas described by the Hamiltonian

H (2) =
∞⊕

N=0

H (2)
N , H (2)

N =
N∑

i=1

−1

2
�i +

∑

1≤i< j≤N

ei e j

|xi − x j |

acting on the Fock space F(L2(R3×{1,−1}), where the variable (xi , ei ) ∈ R
3×{1,−1}

gives the position and charge of particle i .
Our goal here is first to construct a grand canonical normalized trial function

� ∈ F(L2(R3 × {1,−1})
with particle numbers concentrated sharply around the average value 〈N 〉 = (�,N�)

and such that

〈H (2)〉 = (�, H (2)�) ≤ −A〈N 〉7/5 + o(〈N 〉7/5) (25)

for large 〈N 〉. We have denoted the expectation in the state � by 〈A〉 = (�,A�).
From this the proof of Dyson’s formula Theorem 1.2 (i.e., the fact that we can achieve
this estimate with a trial function of fixed particle number) will follow fairly easily (see
Sect. 3.1).

To construct the trial state� we use the method from the previous section. We begin
with a normalized minimizer � for the variational problem (4). Using spherically sym-
metric decreasing rearrangements it is not difficult to see that a minimizer exists and that
it may be chosen positive and spherically symmetric decreasing. Moreover, from the
Euler-Lagrange equation it is exponentially decreasing and smooth. It is, however, not
essential that we can find an exact minimizer with these properties. As we shall see, we
could as well have chosen an approximate minimizer, which is smooth and compactly
supported.

Let n > 0 and define the normalized function

φ0(x) = n3/10�(n1/5x). (26)

We define a normalized state�n ∈ F as in (22) with the condensate vector on L2(R3 ×
{−1, 1}) given by

φ(x, e) =
√

n

2
φ0(x)

and the operator γ1 on L2(R3 × {−1, 1}) defined by the integral kernel

γ1(x, e; , y, e′) = 1

2
γ (x, y)ee′,
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where γ is a positive semi-definite trace class operator having real eigenfunctions. We
shall make an explicit choice for γ below (see 39). We write the spectral decomposition
of γ as

γ =
∞∑

α=1

λ2
α

1 − λ2
α

|ψα〉〈ψα|, (27)

whereψα, α = 1, . . . is a real orthonormal basis and 0 ≤ λα < 1 for α = 1, . . .. Observe
that on the space L2(R3 × {1,−1}) we have ‖φ‖2 = n and γ1φ = 0. Denoting

ψα±(x, e) = ψα(x)δ±1,e, α = 1, . . .

we may write the trial state �n as

�n =
∏

α=1

(1 − λ2
α)

1/4 exp



−n

2
+ a∗(φ)−

∑

e,e′=±

∞∑

α=1

λα

4
ee′a∗

αea∗
αe′



 |0〉 , (28)

where a∗
α,e = a(ψαe)

∗, for α = 1, . . ..
As discussed in the previous section choosing n and any γ with real eigenfunc-

tions uniquely specifies a state �n of the form above (possible degenerate eigenvalues
will not cause ambiguities). Instead of specifying the individual eigenfunctions ψα and
parameters λα, α = 1, . . . we will simply choose the operator γ .

The state �n should be compared to Dyson’s trial state in [6]. The main difference
is that whereas we use a coherent state construction for the condensate, Dyson used
squeezed states for this as well. Put differently, Dyson’s trial state corresponds to an
exponential of a purely quadratic expression in creation operators without any linear
terms. As we explained in the previous section the consequence of using the linear term
in the exponent is that the variation in the number of particles occupying the state φ0 is
much smaller than for a quadratic term.

From (23) we find for the expected number of particles in the state �n ,

〈N 〉 =
〈 ∞∑

α=1

∑

e=±
a∗
αeaαe

〉
= n + Tr γ, (29)

and for the kinetic energy expectation

(
�n,

∞⊕

N=0

N∑

i=1

− 1
2�i�n

)
= n

2

∫
|∇φ0|2 + Tr

(− 1
2�γ

)

= n7/5

2

∫
|∇�|2 + Tr

(− 1
2�γ

)
. (30)

From (6) we get that


�n,

∞⊕

N=0

∑

1≤i< j≤N

ei e j

|xi − x j |�n



 = 1
2

∞∑

α,β,µ,ν=1

∑

ee′=±
ee′wαβνµ〈a∗

αea∗
βe′aµe′aνe〉,

(31)
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where

wαβνµ =
∫∫

ψα(x)ψβ(y)|x − y|−1ψν(x)ψµ(y) dx dy. (32)

(Since the Coulomb energy is an unbounded operator one may worry about the conver-
gence of the expansion in (31). This problem is easily circumvented by introducing a
convergence factor into |x |−1, e.g., |x |−1(1−exp(−t |x |)). The expectation on the left of
(31) converges as t → ∞ by the Monotone Convergence Theorem, since for fixed val-
ues of the charges each term is monotone in t . We may do all calculations and estimates
for finite t and at the end let t → ∞. We will here ignore this slight complication.)

Using the notation of Sect. 2 we have

(
ψβe′ , γ1ψαe

) = ee′

2

λ2
α

1 − λ2
α

δαβ, ξ1(ψβe′ , ψαe) = −ee′

2

λα

1 − λ2
α

δαβ, (33)

and thus from (24),
〈
a∗
αea∗

βe′aµe′aνe

〉

= n2

4
(φ0, ψα)(φ0, ψβ)(ψµ, φ0)(ψν, φ0)

−n
ee′

4

(
δαβ

λα

1 − λ2
α

(ψµ, φ0)(ψν, φ0) + δµν
λµ

1 − λ2
µ

(φ0, ψα)(φ0, ψβ)

)

+n
ee′

4

(
δαµ

λ2
α

1 − λ2
α

(φ0, ψβ)(ψν, φ0) + δβν
λ2
β

1 − λ2
β

(φ0, ψα)(ψµ, φ0)

)

+
n

4
δβµ

λ2
β

1 − λ2
β

(φ0, ψα)(ψν, φ0) +
n

4
δαν

λ2
α

1 − λ2
α

(φ0, ψβ)(ψµ, φ0)

+
δανδβµ

4

λ2
α

1 − λ2
α

λ2
β

1 − λ2
β

+
δαµδβν

4

λ2
α

1 − λ2
α

λ2
β

1 − λ2
β

+
δαβδµν

4

λα

1 − λ2
α

λµ

1 − λ2
µ

. (34)

We therefore arrive at


�n,

∞⊕

N=0

∑

1≤i< j≤N

ei e j

|xi − x j |�n



=
∞∑

α=1

wααµν(ψν, φ0)(ψµ, φ0)n

(
λ2
α

1−λ2
α

− λα

1−λ2
α

)
,

where we have used that φ0 and ψα, α = 1, . . . are real. From the expression for wααµν
we see that we may write this as



�n,

∞⊕

N=0

∑

1≤i< j≤N

ei e j

|xi − x j |�n



 = nTr
(
K
(
γ −√γ (γ + 1)

))
, (35)

where K is the operator on L2(R3) with integral kernel

K(x, y) = φ0(x)|x − y|−1φ0(y). (36)
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Putting together (30) and (35) we arrive at

〈H (2)〉 = n7/5

2

∫
|∇�|2 + Tr

(− 1
2�γ

)
+ nTr

(
K
(
γ −√γ (γ + 1)

))
. (37)

Our next goal is to construct the operator γ . Here we shall use the method of coherent
states symbols. Let χ(x) = π−3/2 exp(−x2) such that

∫
χ(x)2 dx = 1. Let 0 < � be a

parameter which we shall specify below as a function of n such that n−2/5 � � � n−1/5.
Denote χ�(x) = �−3/2χ(x/�) and let

θu,p(x) = exp(i px)χ�(x − u). (38)

We then define γ to be the operator

γ = (2π)−3
∫∫

R3×R3
f (u, p)|θu,p〉〈θu,p| du d p, (39)

where

f (u, p) = g

(
p

(8πnφ0(u)2)1/4

)
, where g(p) = 1

2

(
p4 + 1

p2
(

p4 + 2
)1/2 − 1

)
.

(40)

We see that f (u, p) ≥ 0 and hence γ is a positive semi-definite operator and since
f (u, p) = f (u,−p) all eigenfunctions of γ may be chosen real. That this is an appro-
priate choice for the function f will be seen at the end of our calculation (see (48)).
Moreover,

Tr γ = (2π)−3
∫∫

f (u, p) du d p = π−9/4
(n

2

)3/4
∫

R3
φ0(u)

3/2 du
∫

R3
g(p) d p

= 2−3/4π−9/4n3/5
∫

R3
�(u)3/2 du

∫

R3
g(p) d p. (41)

Thus γ is a trace class operator. Hence we have all the requirements needed in order for
γ to define a state �n . Moreover, we see from (29) that for large n,

〈N 〉 = n + O(n3/5). (42)

We turn now to the calculation of the expectation of the kinetic energy,

Tr(−�γ ) = (2π)−3
∫∫∫

|∇θu,p|2 f (u, p) du d p

= (2π)−3
∫∫

p2 f (u, p) du d p + (2π)−3
∫
(∇χ)2�−2

∫∫
f (u, p) du d p

≤ (2π)−3
∫∫

p2 f (u, p) du d p + C(n2/5�)−2n7/5

= 23/4π−7/4n7/5
∫

R3
�(u)5/2 du

∫

R3
p2g(p) d p + C(n2/5�)−2n7/5, (43)

where in the second to last inequality we have used the definition (26) of φ0.
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The next step in calculating the energy expectation in the state �n is to calculate (or
rather estimate) Tr(K(√γ (γ + 1) − γ )). In order to do this we shall use the operator
version of the Berezin-Lieb inequality given in (76) in Theorem A.1 in Appendix A. We
will use it for the operator concave function ξ(t) = √

t (t + 1)− t (see the discussion at
the end of Appendix A) and the map ω �→ |ω〉 being (u, p) �→ |θu,p〉. We have

(2π)−3
∫

|θu,p〉〈θu,p| du d p = I.

Since K is a positive operator we conclude from Theorem A.1 that

Tr(K(
√
γ (γ + 1)− γ ))

≥(2π)−3
∫∫ (√

f (u, p)( f (u, p)+1)− f (u, p)
)

〈θu,p|K|θu,p〉 du d p. (44)

Since |x − y|−1 is a positive definite kernel we have for 0 ≤ δ′,

〈θu,p|K|θu,p〉 =
∫∫

eipxχ�(x − u)φ0(x)|x − y|−1e−i pyχ�(y − u)φ0(y) dx dy

≥ (1 − Cδ′)φ0(u)
2
∫∫

eipxχ�(x − u)|x − y|−1e−i pyχ�(y − u) dx dy

−Cδ′−1(n2/5�)4n−3/5

≥ φ0(u)
2
∫∫

eipxχ�(x)|x − y|−1e−i pyχ�(y) dx dy−Cδ′(n2/5�)2n−1/5

−Cδ′−1(n2/5�)4n−3/5

≥ φ0(u)
2
∫

j�(q)
4π

|p − q|2 dq − C(n2/5�)3n−2/5, (45)

where j�(q) = (2π)−3|χ̂ �(q)|2 = �3π−3e−2�2q2
(with the convention f̂ (p) = ∫

eipx

f (x) dx for the Fourier transform). In the last inequality we have chosen δ′ =(n2/5�)n−1/5

and in the first inequality we have used that |φ0(x)− φ0(u)| ≤ Cn1/2|x − u| and hence

∫∫
χ�(x − u)|φ0(x)− φ0(u)||x − y|−1χ�(y − u)|φ0(y)− φ0(u)| dx dy

≤ C(n2/5�)4n−3/5.

We have that
∫

j�(q) dq = 1. We will use the estimate

∣∣∣|p|−2 − j� ∗ |p|−2
∣∣∣

≤ |p|−2
∫

j�(q)
|q|

|p − q| dq + |p|−1
∫

j�(q)
|q|

|p − q|2 dq

≤ sup
(

j�(q)|q|7/2
)(

|p|−2
∫

|q|−5/2|p−q|−1 dq +|p|−1
(∫

|q|−5/2|p−q|−2 dq

))

≤ C |p|−5/2 sup
(

j�(q)|q|7/2
)
. (46)
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For our explicit choice of j� we get
∣∣|p|−2 − j� ∗ |p|−2

∣∣ ≤ �−1/2|p|−5/2. From (44),
(45) and estimate (41) we find that

Tr(K(
√
γ (γ + 1)− γ ))

≥ 2(2π)−2
∫∫ (√

f (u, p)( f (u, p) + 1)− f (u, p)
)
φ0(u)

2 j� ∗ |p|−2 du d p

−C(n2/5�)3n1/5

≥ 2−1/4π−7/4n2/5
∫∫ (√

g(p)(g(p) + 1)− g(p)
)
�(u)5/2|p|−2 du d p

−C(n2/5�)−1/2n2/5 − C(n2/5�)3n1/5, (47)

where we have also used that
∫∫ (√

f (u, p)( f (u, p) + 1)− f (u, p)
)

du d p ≤ Cn3/5

(as in (41)).
If we now insert the above estimate and (43) into (37) we arrive at

〈H (2)〉 ≤ n7/5
(

1
2

∫

R3
|∇�(u)|2 du

+2−1/4π−7/4
∫

R3
�(u)5/2 du

×
∫

R3
p2g(p)− |p|−2

(√
g(p)(g(p) + 1)− g(p)

)
d p

)

+Cn7/5((n2/5�)3n−1/5 + (n2/5�)−1/2). (48)

The function g in (40) was chosen precisely so as to optimize the above expression. If we
insert the expression for g it is easily seen that the term in the large parenthesis above is

1
2

∫

R3
|∇�(u)|2 du − I0

∫

R3
�(u)5/2 du.

If we choose � to be an exact minimizer then this expression is −A (recall that A and
I0 were defined in Theorem 1.2). From the estimate in (48) we see that if we choose �
as a function of n such that �n2/5 = n2/35 then

〈H (2)〉 ≤ −An7/5(1 − Cn−1/35). (49)

Because of the estimate (42) this means that we have found a state satisfying (25).
We could instead have chosen � to be a smooth compactly supported approximate

minimizer to the variational problem (4). We would then for any ε > 0 have proved that
limn→∞ n−7/5〈H (2)〉 ≤ −A + ε, which of course implies (25).

3.1. An upper bound for fixed particle number. In this section we shall prove the upper
bound in Theorem 1.2 on the energy E (2)(N ) corresponding to a fixed particle number N .

Let �ε,n for n, ε > 0 denote the state constructed in the previous section, but with
the function g in (40) replaced by the function gε, which is equal to g for |p| > ε and
is zero otherwise. We will again denote the expectation of any operator A in the state
�ε,n , by 〈A〉. It then follows from the construction in the previous section that

lim
n→∞ n−7/5〈H (2)〉 ≤ −Aε, (50)

where Aε → A as ε → 0.
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Let �(m)ε,n denote the projection of the state �ε,n onto the subspace corresponding to
particle number m = 0, 1, . . .. We then have

〈N 2〉 =
∞∑

m=0

m2‖�(m)ε,n ‖2 =
〈(
∑

e=±

∞∑

α=1

a∗
αeaα,e

)2〉
.

Hence from (29) and (34),

〈N 2〉 − 〈N 〉2 =
∞∑

α=1

∑

e,e′=±
〈a∗
αeaα,ea∗

αe′aα,e′ 〉 − 〈a∗
αeaα,e〉〈a∗

αe′aα,e′ 〉

= n + 2Tr γε(γε + 1),

where γε is given as in (39), but with f replaced by fε, which is expressed in terms of
gε instead of g. Thus using (75) in Theorem A.1 (or (76) for that matter) in the convex
case, we see that

〈N 2〉 − 〈N 〉2 ≤ n + 2(2π)−3
∫∫

fε(u, p)( fε(u, p) + 1) du d p ≤ n + Cεn
3/5.

Here Cε > 0 is a constant depending on ε and such that Cε → ∞ as ε → 0. It is at this
point that it is necessary to replace g with gε, since otherwise the above integral is not
convergent.

For any M > 0 we have

∑

m−〈N 〉>M

m7/5
∥∥∥�(m)ε,n

∥∥∥
2 ≤ M−3/5

∞∑

m=0

m7/5|m − 〈N 〉|3/5
∥∥∥�(m)ε,n

∥∥∥
2

≤ M−3/5〈N 2〉7/10〈(N − 〈N 〉)2〉3/10

= M−3/5〈N 2〉7/10(〈N 2〉 − 〈N 〉2)3/10

≤ CεM−3/5n17/10. (51)

Given a positive integer N , we choose n = N − C0 N 3/5. Then if C0 > 0 is cho-
sen appropriately we have according to (29) and (42) that the expected particle number
satisfies

N − C1 N 3/5 ≤ 〈N 〉 ≤ N − C2 N 3/5,

for some C1,C2 > 0.
Since M �→ E(M) is a non-increasing and non-positive function (adding particles

will always lower the energy, since one may construct a trial state with the extra particles
placed arbitrarily far away from the original particles) we have that

E (2)(N ) ≤
∑

m≤N

E (2)(m)
∥∥∥�(m)ε,n

∥∥∥
2

≤
∞∑

m=0

E (2)(m)
∥∥∥�(m)ε,n

∥∥∥
2 −

∑

m>〈N 〉+C2 N 3/5

E (2)(m)
∥∥∥�(m)ε,n

∥∥∥
2

≤ 〈H (2)〉 +
∑

m>〈N 〉+C2 N 3/5

Cm7/5
∥∥∥�(m)ε,n

∥∥∥
2

≤ 〈H (2)〉 + CεN 7/5−3/50,
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where we have used the lower bound E (2)(m) ≥ −Cm7/5 (see [5] or[11]) and the
estimate (51). Thus we finally get the upper bound in Theorem 1.2,

lim sup
N →∞

N−7/5 E (2)(N ) ≤ lim
ε→0

lim sup
n→∞

n−7/5
(
〈H (2)〉 + CεN 7/5−3/50

)
= −A,

according to (50).

4. The One-Component Charged Bose Gas

Since the thermodynamic ground state energy e(ρ) of the one-component charged Bose
gas may be calculated by minimizing over all particle numbers we may again consider
the grand canonical ensemble. Thus we are looking for an upper bound to the ground
state energy of the Hamiltonian H (1) = ⊕∞

N=0 H (1)
N acting on the Bosonic Fock space

F(L2(�)).
To construct a grand canonical trial function we begin by choosing a real normalized

function φ0 ∈ L2(�). Let η ∈ C1
0(0, L) be a non-negative function compactly supported

in (0, L) and such that
∫∞

0 η(t)2 dt = 1. Moreover, assume that η(t) is a constant for
t ∈ [r, L − r ] for some 0 < r < L/4 to be chosen below. We will write this constant as
(ρ/n)1/6, for some n > 0. In fact, we shall choose r independently of L (for large L).
We also assume that η(t) ≤ (ρ/n)1/6. We then define

φ0(x, y, z) = η(x)η(y)η(z). (52)

Thus φ0 is equal to a constant
√
ρ/n on the cube [r, L − r ]3 and 0 ≤ φ0(x) ≤ √

ρ/n
for all x ∈ �. Since η is normalized so is φ0 and ρ(L − 2r)3 ≤ n ≤ ρL3. Thus the
constant n is almost the number of particles required to have a neutral system. We have

|η(t)| ≤ C L−1/2 and |φ0(x)| ≤ C L−3/2 (53)

and we may assume that the derivatives satisfy

|η′(t)| ≤ Cr−1L−1/2 and hence |∇φ0(x)| ≤ Cr−1L−3/2. (54)

In particular, we have
∫

�

|∇φ0(x)|2 dx ≤ C(r L)−1. (55)

Observe that we also have that
∫∫

(nφ0(x)
2 − ρ)|x − y|−1(nφ0(y)

2 − ρ) dx dy ≤ Cρ2L3r2. (56)

We choose our grand canonical trial function�n as in (22). The condensate vector is

φ = z0φ0, (57)

where the parameter z0 > 0 will be chosen below. The operator γ1 = γ (we omit the
subscript 1 because we shall use a subscript ε below with a different meaning) will
be chosen to be a positive semi-definite trace class operator with real eigenfunctions.
The eigenfunctions (corresponding to non-zero eigenvalues) should satisfy Dirichlet
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boundary conditions on the boundary of �. Let ψα, α = 1, . . . be an orthonormal basis
of real eigenfunctions for γ . We use the notation a∗

α = a∗(ψα).
As usual we denote the expectation of an operator A in the state �n by 〈A〉. As in

(30) we see from (5) and (23),
(
�n,

∞⊕

N=0

N∑

i=1

− 1
2�i�n

)
= z2

0

2

∫
|∇φ0|2 + Tr

(− 1
2�γ

)

≤ Cz2
0(r L)−1 + Tr

(− 1
2�γ

)
, (58)

where in the last inequality we have used (55). We likewise get
(
�n,

∞⊕

N=0

N∑

i=1

V (xi )�n

)
=
∫

V (x)φ(x)2 dx +
∫

V (x)ργ (x) dx

= ρ

∫∫

�×�
z2

0φ0(y)2 + ργ (y)

|x − y| dx dy, (59)

where ργ (x) = γ (x, x) is the density of the operator γ .
From (6) we have (as in 31) with wαβνµ given exactly as in (32)



�n,

∞⊕

N=0

∑

1≤i< j≤N

|xi − x j |−1�n



 = 1
2

∞∑

α,β,µ,ν=1

wαβνµ〈a∗
αa∗
βaµaν 〉.

We then obtain from (24) that


�n,

∞⊕

N=0

∑

1≤i< j≤N

|xi − x j |−1�n



 = z4
0

2

∫∫

�×�
φ0(x)

2|x − y|−1φ0(y)
2 dx dy

+z2
0Tr

(
K
(
γ −√γ (γ + 1)

))
+ z2

0

∫∫

�×�
φ0(x)

2|x − y|−1ργ (x) dx dy

+ 1
2

∫∫

�×�
|γ (x, y)|2
|x − y| dx dy + 1

2

∫∫

�×�
|√γ (γ + 1)(x, y)|2

|x − y| dx dy

+ 1
2

∫∫

�×�
ργ (x)|x − y|−1ργ (y) dx dy, (60)

where the operator K is given as in (36). Putting together (58),(59), and (60) we arrive at

〈H (1)〉 ≤ Cz2
0(r L)−1 + 1

2

∫∫ |γ (x, y)|2
|x − y| dxdy + 1

2

∫∫ |√γ (γ + 1)(x, y)|2
|x − y| dx dy

+ 1
2

∫∫

�×�

(
ρ − ργ (x)−z2

0φ0(x)
2
)

|x−y|−1
(
ρ − ργ (y)−z2

0φ0(y)
2
)

dx dy

+Tr
(− 1

2�γ
)

+ z2
0Tr

(
K
(
γ −√γ (γ + 1)

))
. (61)

We now choose

γ = γε = (2π)−3
∫

R3
gε

(
p

(8πρ)1/4

)
|θp〉〈θp| d p, (62)



814 J.P. Solovej

where the function gε(p) = 0 for |p| ≤ ε and gε(p) = g(p) for |p| > ε, where g is
defined in (40), and

θp(x) =
√

nρ−1 exp(i px)φ0(x). (63)

Recall that nρ−1φ0(x)2 ≤ 1 and is equal to 1 on most of �.
We see that the map p �→ |θp〉 satisfies the requirements of the map ω �→ |ω〉 in

Theorem A.1 with measure dµ(ω) = (2π)−3 d p.
That γε satisfies the necessary requirements follows as before. It is clear that the

eigenfunctions of γε with non-zero eigenvalues have compact support in (0, L)3.
We calculate the density of γε

ργε (x) = (2π)−3
∫

R3
gε

(
p

(8πρ)1/4

)
|θp(x)

2| d p

= (2π)−3nρ−1φ0(x)
2
∫

R3
gε

(
p

(8πρ)1/4

)
d p

= nρ−1/42−3/4π−9/4φ0(x)
2
∫

gε(p) d p. (64)

We finally choose z0 > 0

z2
0 = n

(
1 − 2−3/4ρ−1/4π−9/4

∫
gε(p) d p

)
(65)

(for ρ large enough). Then

z2
0φ0(x)

2 + ργε (x) = nφ0(x)
2.

It follows from (56) and the fact that φ0(x)2 ≤ ρ/n that
∫∫

�×�

(
ρ − ργε (x)− z2

0φ0(x)
2
)

|x − y|−1
(
ρ − ργε (y)− z2

0φ0(y)
2
)

dx dy

≤ Cρ2 L3r2. (66)

To estimate the second term in (61) we will use Hardy’s inequality
∫ |∇u(x)|2 dx ≥

1
4

∫ |u(x)|
|x |2 dx as follows:

∫∫ |γε(x, y)|2
|x − y| dx dy ≤

(∫∫
|γε(x, y)|2 dx dy

)1/2 (∫∫ |γε(x, y)|2
|x − y|2 dx dy

)1/2

≤ 2

(∫∫
|γε(x, y)|2 dx dy

)1/2 (∫∫
|∇xγε(x, y)|2 dx dy

)1/2

= 2
(

Tr γ 2
ε

)1/2 (
Tr(−�γ 2

ε )
)1/2

.

Since x �→ x2 is operator convex we may estimate these terms using the Berezin-Lieb
inequality (76) in the convex case, but we may alternatively simply use the norm bound
‖γε‖ ≤ Cε−2. Hence
∫∫ |γε(x, y)|2

|x − y| dx dy ≤Cε−2
(∫

ργε (x)

)1/2

(Tr(−�γε))1/2 ≤Cε−2ρL3, (67)
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where we have used (64), n ≤ ρL3 and the fact which we shall prove below in (68), that
Tr(−�γε) ≤ Cρ5/4L3 (recall that we will choose r independently of L). The third term
in (61) which compared to the second term has γε replaced by

√
γε(γε + 1) is estimated

in exactly the same way and with the same bound as the second term.
We are now left with calculating the last two terms in (61). For the kinetic energy of

γε we have as in (43),

Tr(−�γε) ≤ (2π)−3 n

ρ

∫

R3
gε

(
p

(8πρ)1/4

)(
p2 +

∫
|∇φ0(x)|2 dx

)
d p

≤ 23/4π−7/4ρ5/4L3
∫

R3
p2gε (p) d p + Cρ3/4L3(r L)−1/2, (68)

where we have used (55) and n ≤ ρL3.
For the last term in (61) we again, as in (44), appeal to the operator version (76) of

the Berezin-Lieb inequalities. We arrive at

Tr
(
K
(
γε −√γε(γε + 1)

))

≤ (2π)−3
∫

R3

(
fε(p)−√ fε(p)( fε(p) + 1)

)
〈θp|K‖θp〉 d p, (69)

where fε(p) = gε
(

p(8πρ)−1/4
)
. We have as in (45)

〈θp|K|θp〉 = 4π J ∗ |p|−2, (70)

where J (p) = (2π)−3nρ−1|φ̂2
0(p)|2. The special form (52) implies that

J (p1, p2, p3) = j (p1) j (p2) j (p3),

where j (τ ) = (2π)−1n1/3ρ−1/3|η̂2(τ )|2. Since
∫

j (τ ) dτ = n1/3ρ−1/3
∫
η(t)4 dt ,∫

η2 = 1, and 0 ≤ η(t) ≤ n−1/3ρ1/3 and equal to this constant on [r, L − r ] we have
that 1 − 2r/L ≤ ∫

j (τ ) dτ ≤ 1. This implies in particular that

(1 − 2r/L)3 ≤
∫

J (p) d p ≤ 1. (71)

By (53) and (54) and the support property of η′ we have |η̂2(τ )| ≤ |τ |−1
∫ |(η2)′(t)| dt

≤ C(|τ |L)−1. Thus j (τ ) ≤ C L(|τ |L)−2. Hence
∫

|q|>L−1/2
J (q) dq ≤ 3

∫

|τ |>(3L)−1/2
j (τ ) dτ ≤ C L−1/2. (72)

For |p| > ε(8πρ)1/4 and |q| ≤ L−1/2 we have |p − q| ≤ (1 + Cρ−1/4ε−1L−1/2)|p|
and hence from (71) and (72),

J ∗ |p|−2 ≥ (1 + Cρ−1/4ε−1L−1/2)−2|p|−2
∫

|q|<L−1/2
J (q) dq

≥ (1 + Cρ−1/4ε−1L−1/2)−2((1 − 2r L−1)3 − C L−1/2)|p|−2

≥ (1 − C(ρ−1/4ε−1L−1/2 + r L−1 + L−1/2))|p|−2. (73)
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Inserting this into (70) and then into (69) we arrive at

Tr
(
K
(
γε −√γε(γε + 1)

))

≤ 2−1/4ρ1/4π−7/4
∫
(gε(p)−√gε(p)(gε(p) + 1))|p|−2 d p

+C
(
ε−1L−1/2 + ρ1/4r L−1 + ρ1/4L−1/2

)
. (74)

If we now insert the above estimate, (65), (66), (67), (68), and the same estimate for γε
replaced by

√
γε(γε + 1)) into (61) we see that

lim sup
L→∞

L−3〈H (1)〉 ≤ ρ5/42−1/4π−7/4
∫

|p|2gε(p) + gε(p)|p|−2

−√gε(p)(gε(p) + 1)|p|−2 d p

+Cρ(1 + ρr2 + ε−2).

Here we may actually let r → 0 (which really means that we could have chosen r as a
negative power of L). If we recall the behavior of g(p) for small |p| from (40) we find
that the error in replacing gε by g is of order ρ5/4ε. Thus by choosing ε = ρ−1/12 we
obtain the final result

e(ρ) ≤ lim sup
L→∞

L−3〈H (1)〉 ≤ −I0ρ
5/4(1 − Cρ−1/12).

A. The Berezin-Lieb Inequality

In this appendix we shall prove variants of the Berezin-Lieb inequalities [2, 8].

Theorem A.1 (Berezin-Lieb inequalities). Let H be a Hilbert space and � a measure
space with a (positive) measure µ such that there exists a map

� � ω �→ |ω〉 ∈ H,

satisfying
∫ |ω〉〈ω|dµ(ω) ≤ I as operators. Assume ξ : R+ ∪ {0} → R is a con-

cave function with ξ(0) ≥ 0. Then for any non-negative function f on � satisfying∫
f (ω)〈ω|ω〉dµ(ω) < ∞ we have the Berezin-Lieb inequality

TrH
(
ξ

(∫
f (ω)|ω〉〈ω|dµ(ω)

))
≥
∫
ξ( f (ω))〈ω|ω〉dµ(ω). (75)

If moreover ξ is operator concave (still satisfying ξ(0) ≥ 0) the inequality holds as an
operator inequality

ξ

(∫
f (ω)|ω〉〈ω|dµ(ω)

)
≥
∫
ξ( f (ω))|ω〉〈ω|dµ(ω). (76)
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Proof. We first note that
∫

f (ω)|ω〉〈ω|dµ(ω) is a positive semi-definite trace class
operator. Let u1, u2, . . . be an orthonormal basis of eigenvectors for this operator. Then

TrH
(
ξ

(∫
f (ω)|ω〉〈ω|dµ(ω)

))

=
∞∑

i=1

ξ

(∫
f (ω)|〈ω|ui 〉|2dµ(ω)

)

≥
∞∑

i=1

∫
|〈ω|ui 〉|2dµ(ω)ξ

((∫
|〈ω|ui 〉|2dµ(ω)

)−1 ∫
f (ω)|〈ω|ui 〉|2dµ(ω)

)
,

where we have used that
∫ |〈ω|ui 〉|2dµ(ω) ≤ 1 and that since ξ is concave with ξ(0) ≥ 0

we have ξ(at) ≥ aξ(t) for all t ≥ 0 and 0 < a < 1. If we now use Jensen’s inequality
we arrive at

TrH
(
ξ

(∫
f (ω)|ω〉〈ω|dµ(ω)

))
≥

∞∑

i=1

∫
ξ( f (ω))|〈ω|ui 〉|2dµ(ω)

=
∫
ξ( f (ω))〈ω|ω〉dµ(ω).

We turn to the case when ξ is operator concave. Define the operator U : H →
L2(�, dµ) by (Uφ)(ω) = 〈ω|φ〉. Then

U∗h =
∫

h(ω)|ω〉dµ(ω).

Thus if B is the multiplication operator on L2(�, dµ) given by Bh(ω) = f (ω)h(ω)we
have

U∗ BU =
∫

f (ω)|ω〉〈ω|dµ(ω).

In particular, we have the operator inequalities 0 ≤ U∗U ≤ I . Using that (1 −
UU∗)1/2U = U (1−U∗U )1/2 it is straightforward to check that the following operators
on H ⊕ L2(�, dµ) (written in matrix notation) are unitary:

U =
(
(I − U∗U )1/2 −U∗

U (I − UU∗)1/2
)
, V =

(
(I − U∗U )1/2 U∗

U −(I − UU∗)1/2
)
.

Moreover we have that

1

2
U∗
(

0 0
0 B

)
U +

1

2
V∗
(

0 0
0 B

)
V =

(
U∗BU 0

0 (1 − UU∗)1/2 B(1 − UU∗)1/2
)
.

Since ξ is operator concave and U and V are unitary we find that
(
ξ(U∗BU ) 0

0 ξ((1 − UU∗)1/2 B(1 − UU∗)1/2)

)

≥ 1

2
U∗
(

0 0
0 ξ(B)

)
U +

1

2
V∗
(

0 0
0 ξ(B)

)
V

=
(

U∗ξ(B)U 0
0 (1 − UU∗)1/2ξ(B)(1 − UU∗)1/2

)
.
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In particular, this gives ξ(U∗BU ) ≥ U∗ξ(B)U , which is precisely the operator
Berezin-Lieb inequality (76). ��

In order to determine whether a given function is operator concave we may use
Nevanlinna’s Theorem (see [3] Theorems V.4.11 and V.4.14 and Eq. (V.49)). According
to this a real function ξ defined on the positive real axis with an analytic extension to
C \ {x ∈ R | x ≤ 0}, which maps the upper half plane into itself has a representation of
the form

ξ(t) = α + βt +
∫ ∞

0

(
λ

λ2 + 1
− 1

λ + t

)
dν(λ),

where β ≥ 0 and where ν is a positive measure satisfying
∫∞

0
1

1+λ2 dν(λ) < ∞. Since

t �→ −(t +λ)−1 is operator concave the same is true for functions with the above integral
representation.

As a special case we see that the function ξ(t) = √
t (t + 1), which is analytic away

from the segment [−1, 0] is operator concave.
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