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Abstract: In this paper we obtain sufficient conditions on the regularity of the weak
solutions to guarantee conservation of the energy and the helicity for the incompressible
Euler equations. The regularity of the weak solutions are measured in terms of the Trie-
bel-Lizorkin type of norms, F' ]S, and the Besov norms, 3% a In particular, in the Besov
space case, our results refine the previous ones due to Constantin-E-Titi (energy) and
the author of this paper (helicity), where the regularity is measured by a special class
of the Besov space norm B;,, o = N I‘§, which is the Nikolskii space. We also obtain a
sufficient regularity condition for the conservation of the L”-norm of the temperature
function in the weak solutions of the quasi-geostrophic equation.

1. Introduction and the Main Results

The Euler equations for the homogeneous incompressible fluid flows in R", n = 2, 3,
are

Bi@w-VIv=-Vp, (x.0)eR"x(0,7)
(E){ divv=0,
v(x, 0) = vo(x),

where v = (vy, -+, vp),v; =vj(x,1), j =1,---,n,is the velocity of the fluid flows,
p = p(x,t) is the scalar pressure, and vg is the given initial velocity satisfying div
vo = 0. It is well-known that for smooth solutions of the Euler equations the energy
E(t) = % re 100X, N|%dx is preserved in time. For nonsmooth(weak) solutions it is
not at all obvious that we still have energy conservation. Thus, there comes the very
interesting question of how much smoothness we need to assume for the solution to
have energy conservation property. Regarding this question L. Onsager conjectured that
a Holder continuous weak solution with the Holder exponent 1/3 preserve the energy,
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and this is sharp. Considering Kolmogorov’s scaling argument on the energy correlation
in the homogeneous turbulence the exponent 1/3 is natural. The sufficiency part of this
conjecture is proved in a positive direction by a simple but very elegant argument by
Constantin-E-Titi[5], using the Besov space norm, 33 . with s > 1/3 (see below for
precise definitions of the function spaces) for the Ve10c1ty Remarkably enough Shnir-
elman[13] later constructed an example of weak solution of 3D Euler equations, which
does not preserve energy. The problem of finding the optimal regularity condition for
a weak solution to have conservation property can also be considered for the helicity,
which is defined by H (1) = fRﬂ v(x,t) - w(x,t)dx, where w = curl v is the vortic-
ity. In particular, the helicity is closely related to the topological invariants, e.g. the
knottedness of vortex tubes (see [1] for the details and other significance of the helic-
ity conservation). Thus, in [2] the author of this paper obtained a sufficient regularity
condition for the helicity conservation, using the function space B, _,s > 1/3, for the

vorticity. One of the purposes of this paper is to refine those results using the Triebel-
Lizorkin type of spaces, 7, b ».q> and the Besov spaces B;] 4 With similar values for s, p,
but allowing full range of values for ¢ € [1, oo](for a precise statement of the results
see the theorems below). When we restrict ¢ = 0o, our Besov space results for Euler
equations reduce to the previous ones described above. On the other hand, our results
for Triebel-Lizorkin type of space are completely new. We also extend our arguments to
consider the L”-norm conservation in the weak solutions of the 2D quasi-geostrophic
equations.

By a weak solutlon of (E) in R" x (0, T') with initial data vy we mean a vector field

ve C(0,T); L l L (R™)) satisfying the integral identity:
a t
—/ / v(x, 1) - ‘W 0L e — / v (x) - ¢ (x, 0)dx
0 n R”
T
—/ / v(x,t) @ v(x, 1) : Vo (x, t)dxdt
0 R»
T
—/ / divp(x, t)p(x, t)dxdt =0, (1.1)
0 R»
T
/ / v(x,t) - Vy(x, t)dxdt =0 (1.2)
0 n
for every vector test function ¢ = (¢1, ..., ¢,) € C{)’O (R*x [0, T)), and for every scalar

test function ¢ € C(‘)’O(R" x [0, T)). Here we used the notation (¢ ® v);; = u;v;, and
A:B= Z?j:l A;jB;; for n x n matrices A and B. In the case when we discuss the
helicity conservation of the weak solution we impose further regularity for the vorticity,

w(-,t) € L% (R3) for almost every t € [0, T] in order to define the helicity for such a
weak solution. In order to state our main theorems we introduce function spaces. Given
0<s < 1,1 <p <o0o,1 <g < o0, the function space J”-'S is defined by the
seminorm,

ifl<p<oo,1<g<o0

H 1f () — f(x—y)ﬂdy)é

|y|n+3q
||f||}'s — LP(R",dx)
Pa ¥) — f(x —
ess sup PACD) ff bl ifl <p<o00,g=00
|y[>0 |y| LP (R dx)
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On the other hand, the space B;, q is defined by the seminorm,

1
Ifllg = (IR" IH’“W dy) ifl<p=<oo,l<g<oo
Pq Nl
€55 8Up|y|>0 M# ifl <p<oo,qg=o00
Observe that, in particular, .7-' = B‘;o’oo = C*, which is the usual Holder seminor-

med space. We also note that When q = oo we have the equivalence, BZ, 0 = N ;, which
is the Nikolskii space, used in [5] and [2].
In order to compare this space with other more classical function spaces let us intro-

duce the Banach space 7, ., B8}, , by defining its norm,

1Ay, = WA e + W f gy o W8y, = W lr + 1l -

respectively. We note that for0 < s < 1,2 < p < 00, q = 2, ]—'S 2 ~ LP(R") =
(1— A)’% LP(R™), the fractional order Sobolev space (or the Bessel potentlal space)(see
p. 163,[14]). If —+— mm{p 7 <5< ILn <p <ooandn < g =< oo, then 7 , coincides

with the Triebel-Lizorkin space F; , (R") defined by the Littlewood- Paley decomp051-
tion(see p. 101, [15]). On the other hand, for wider range of parameters, 0 < s < 1,
0 <p=00,0<gq =00, B, coincides with the Besov space By, ,(R")(see p. 110,
[15]). We also note the equivalence

, =B

p.p’

S — S

Fp.p = Bpp

for 1 < p < oco. Hereafter, we use the notation X;’q (resp. X3, ,) to represent f;.q(resp.
S 25 s

Fp.q)or Bp’q(resp. Bp’q).

Theorem 1.1. Let s > % and q € [2, 00] be given. Suppose v is a weak solution of
the n—dimensional Euler equations withv € C ([0, T1; L>*(R"))NL*(0, T; X§ q(R”)).
Then, the energy is preserved in time, namely

/|v(x,t)|2dx=/ lvg(x)|>dx (1.3)
Rn R~

forallt € [0, 7).

Theorem 1.2. Let s > %, q € [2,00], and r1 € [2,00], 2 € [1, 00] be given, satis-
fying 2/r1 + 1/ry = 1. Suppose v is a weak solution of the 3-D Euler equations with
v e C(0,T]; LAR3}) N L"(0, T: XS (R3)) and w € L0, T; xs (R3)) where

the curl operation is in the sense of dzstrzbunon Then, the helicity is preserved in time,
namely

/ v(x, 1) -wlx, dx = / vo(x) - wo(x)dx (1.4)
R3 R3

forallt € [0, 7).

Similarly to [2], as an application of the above theorem we have the following esti-
mate from below of the vorticity by a constant depending on the initial data for the weak
solutions of the 3-D Euler equations.
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Corollary 1.1. Suppose v is a weak solution of the 3-D Euler equations satisfying the
conditions of Theorem 1.2. Then, we have the following estimate:

lo(, ””i% > CHy, Vtel0,T), (1.5)

where Hy = IR" vo(x) - wo(x)dx is the initial helicity, and C is an absolute constant.
Next we are concerned with the L”-norm conservation for the weak solutions of the
2D quasi-geostrophic equation,
¥i+(w-V)o =0,
— 1 0(y.1)
(QG) | vlx,0) ==V [po 7204y,
0(x,0) = 6p(x),

where 6(x, t) is a scalar function representing the temperature, v(x, t) is the velocity
field of the fluid, and V4 = (-3 v, » Ox;)- The system (QG) is of intensive interest recently
(see e.g. [4, 6, 16, 7, 8, 3], and references therein), since the equation has very similar
structure to the 3-D Euler equations, and also it has direct connections to the physical
phenomena in atmospheric science.

Let p € [2, 00). By a weak solution of (QG) in D x (0, T) with initial data vy we

mean a scalar field 0 € C([0, T); L?(R?) N Lﬁ (R?)) satisfying the integral identity:

T
—/ / O(x,1) [i +v- V] ¢ (x, t)dxdt —/ Op(x)p(x,0)dx =0 (1.6)
0 JR2? ot R2

v(x, 1) = —vi/ mozy (1.7)
R2 [x — |

for every test function ¢ € CSO(R2 x [0, T)), where VL in (1.7) is in the sense of
distribution. We note that contrary to the case of 3-D Euler equations there is a global
existence result for the weak solutions of (QG) for p = 2([12]).

Theorem 1.3. Let 5 > l p € [2,00), g € [1,00], and r1 € [p,o0],rm € [1,00]
be given, satisfying p/r1 + 1/rp = 1. Suppose 6 is a weak solution of (QG) with 0 €

C([0, T]; LP (RHNL 7T (R2))NL" (0, T X3, R andv € L0, T; X3, (R?)).
Then, the LP norm of 6(-, t) is preserved,
16 ILr = l16ollLr (1.8)

forallt € [0, T].

2. Proof of the Main Theorems

Letp(x) € Cgo(]R") be the standard mollifier with ¢ > 0, supp ¢ C {x € R" | |x| < 1}.
Let ¢°(x) = 8,,(,0( ). Given f € L} (R"), we denote by f¢(x) = (f % ¢°)(x).

loc

Lemma 2.1. Let k € N, s € (0,1) and p,q € [1, oo]. Then, there exist constants C
depending on k, s, q, n such that the following inequalities hold:

1D fe Nl < Ce ¥ fllgy - @.1)
Lf = fllr < C 1 f gy - (2.2)
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Proof. By integration by part we deduce
D* e (x) = /R DY f(x = )¢ (ndy = (=D /R DY f(x — y)¢ (y)dy
k e 1 k y
= : F = Dby = o | = ko) () dy

= - / [f (=) = f(X)](D"w)( )dy.

where we used the fact

/ FE D) (2)dy = fx) / (D) (2) ay =o.

Hence,

Dl = i /IR A==l |[Dre) ()| dy
(L ) ()
et (RS ) ( [ iDtemi 1 dy)l
_ cetk ( / |f (x—|yy|1+—sqf(x)lq dy) (2.3)

where 1/q+1/q" = 1. Taking L (dx) norm of (2.3), we obtain (2.1) with X}, | = 73

In order to have the corresponding inequality for the norm of B .q> We use the Minkowski
inequality and the Holder inequality to estimate
1

1 P »
1D £l —k[/ [/ |f<x—y>—f<x)|\(D"qo)(z)\dy] dx]
& Rn Rn &

8n1+k /IR FC=0=fOller [Drg ()| dy

1 IfC=9=FOI, ko (Y (Z4s)g’
< (L L) ([ [0t () i)

s—k
—_ .T 5 .4
Ce" || f ||[5»p'q (2.4

IA

1

where 1/q + 1/q’ = 1. Next, we prove (2.2).

If() = ffl = ‘/Rﬂ[f(X) —flx— y)]wg(y)dy‘

< /R @ = flx =l )y
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_ — q é 4 146)g! i
(/ () = Fx = ) dy) (/ ol 1yl >qdy)
" |y|resd R

<
_ et (/ If(x)—f(x—y)lqdy)q, (2.5)
n |y|n+sq

where 1/g+1/q" = 1. Taking L? (dx) norm of (2.5), we obtain (2.2) with )'(fy’q = .7'-';‘(1.
On the other hand, using the Minkowski and the Holder inequalities again, we have

Py
If = £l < [/R (/R F@) = = y>|</f“<y>dy) dx}

< /IR IFO = £ = Dllegt )y

Vel \Y e
< / fe) fn(+s y)”LP dy (/ |(pg(y)|q |y|(§+s)q dy)q
n ly|+sd R"

— s .
=Ce IIfIIB;,q. (2.6)

O

Proof of Theorem 1.1. We note the identity,

(u®v)® =u* @v° +/Rn P°(y) (w(x —y) —u(x)) ® (v(x —y) —v(x))dy
—(u—u®)® (v—1°) (2.7

for all u,v e LZZOC(R”), which was first observed in [5]. Suppose v(x, ) is a weak
solution of (E). Let £(t) € Cg°([0, T)). Given y € R", choosing the test functions
(x, 1) = &) (9 (x —),0,0),§@)(0, 9 (x — ), 0) and (1) (0, 0, ¢*(x — y)) in (1.1),
we obtain each component of

&€

8’; +div (v ® v)° = —Vp~, 2.8)
and choosing ¥ (x, 1) = &(1)¢®(x — y) in (1.2), we derive div v® = 0. We take L>(R")
inner product (2.8) with v®. Then, integrating by part, and using the identity (2.7), we
obtain

1d
—— v |2dx = / (v ®v)° : Vvidx —/ Vp® - vidx
2dt Rn Rn n

- /]R [/R ¢ (& —y) — () ® (W(x — y) — v(x))dy] L V0® ()dx
_/ [(v =) ® (v—209)]: Vvidx
]Rn
=1+11, 29)

where we used the facts,

/ Vp® - vidx = —/ pfdivv®dx =0,
n ]Rn
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and

e ¢ . vold S ssav;d 1 v/ 82d
/an ®v°: Vv x—Z/nvi ja—xix—z/Rn(v' v |["dx

i,j=1
1 : 3 &2
= —= (div v®)|v°|“dx = 0.
2 Rn

We estimate I and 11 separately:

1 5/ i/ lo*Wlvx — y) — v(X)Izdy] [V© (x)]dx
R |JRe

1 2
209, \ [v(x —y) —v(x)|¢ 4
5/ (/ lo® ()17 |y|<q+2“”dY) (/ dy ) |Vv*(x)ldx
Rr \JR" n |y|*+sq
oo T
—vy)— q
E C82S [/ (/ |U(x )’) U(x | dy) dx:| ”VUSHL}
n n |y|n+sq

< C83S—1”U“3'x , (210)
3,

q

where 2/g+1/q" =1, ¢ € [2, 00], and we used (2.1) in the last step. For the estimate in
Bg’ o horm we first use the Fubini theorem, and the use the Holder inequality to deduce,

1 S/ {/ |§0€(y)||v(x —y) — U(x)|2|Vv€(x)|dx}dy
R (JRe
= /]R" lo® Mv(- — y) — U(’)”ianvvanydy

1 2
N TERWI o =) = vl \7
s(/ |¢6(y)|‘1|y|<q”)‘fdy) (/ dy ) 1Vv°ll
Rn n |y| q

2s—1 2 K 2
<Ce V% - € vl
< ol e Nol

< ¥l (2.11)
3.q

where we used (2.1) again. We note that the estimate (2.10) has obvious end point exten-
sion for g = 2(q’ = o0) and g = oo(q’ = 1), although we do not write down those
estimates separately. The estimate of /1 is simpler as follows.

I 5/ () — v ()P V0 () ldx
]Rn

2
< o — oI 11V0° 5

37w (2.12)

< Ce -
f— X%vq’

where we used (2.1) and (2.2) directly. Taking into account the estimates (2.10)—(2.12),
and integrating (2.9) over [0, #] C [0, T'], we have

T
2 2 35—1 3
v @1l72 — lIvGll;2| < Ce™ / ol dr.
0 4

Fors > % passing ¢ — 0, we have |[v(#)]|;2 = |lvoll 2 ifv € L3(0, T; X;q(R”)). |
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Proof of Theorem 1.2. Suppose v(x,t) is a weak solution of (E), and v = curl v
in the sense of distribution. Let £(¢) € Cgo([O, T)). Given y € R3, choosing the
test functions, ¢ (x, ) = &(f)curl, (¢°(x — y),0,0), £(¢)curl, (0, °(x — y),0) and
&(t)curly (0,0, ®(x — y)) in (1.1), and integrating by part, we obtain the three compo-
nents of

dow® . & . &
p +div(v ® w)® —div(o ® v)° = 0. (2.13)
We compute

d v dw®
— V8- ofdx = L-a)sdx+/ e 22 ax
dt Jr3 R3 Ot R3 at

= —/ div (v @ v)° - wtdx —/ Ve - div (v @ w)°dx

R3 R3

+/ ve - div (0w @ v)°dx
R3
—T+I1+111. (2.14)

Integrating by part, and using the formula (2.7), we derive

I =/ (v ®v)¢: Voidx
R3
=/ V¥ @0v° Va)sdx+/ re(v, V) : Va)sdx—/ (v—0%) ® (v—7°) : Voidx,
R3 R3 R3
where we set
re(u,v) = /W P (y) (u(x —y) —ux) ® (v(x —y) — v(x))dy.
Similarly,

11 =/ (v ® w)® : Vvidx
R3
=/ V2 Q@ b : Vvedx+/ re(v, w) : Vubdx
R3 R3
—/ (v—1°) ® (w—w°) : VVidx,
R3
111 =—/ (0 ®@v)° : Vvidx
R3
:—/ o® @ v vadx—/ re(w, v) : Voidx
R3 R3

+/ (w—0°) ® (V—1°) : Vvidx
R3
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respectively. Since div v® = 0, we have by integration by part,
/ V¥ ®1v°: Voldx = Z/ vf ve —Ldx
R3 R3 1 8xi
- Z / v; — a)e dx
R3 8)(

i,j=1

—/ V8P ®@ o 1 Vvidx. (2.15)
R3

Also, using the fact div @® = 0, we have by integration by part,

F@v°: Votdx = y
/Rza)@)v vidx Z/R3a) x‘x

i,j=1

z_z/ of =L dx
ii= R3 Xi

=—/ o @ v¥: Vvidx = 0. (2.16)
R3

Hence, we find that the sum of the first terms of I, /1 and I cancels out, and after
rearrangement of the remaining terms we obtain,

I+11+111 :/ re(v, V) : Va)gdx+/ re(v, w) : Vvfdx
R3 R3
—/ re(w, v) : Voldx
]R3
—/ (v—2)® @ —1°): Vobdx
R3
—/ v =% ® (0w — &°) : VVidx
R3

+/ (0 — %) ® (v—1°) : Vibdx
R3
=N+ h+3+J4+J5+ 6. 2.17)

We estimate (2.17) term by term starting from Ji:

il = ‘/}1@3 [/R3 P*MEx —y) —v(x) ® (v(x —y) — v(X))dy] : Vo' (x)dx

< / [/ P*Mvx —y) — v(x)|2dy] Vo (x)|dx
rR? |JR3

1 2
g T =y — vl \F
=/ (/ |w8(y>|q|y|‘q+2‘”dY)q(/ D M ay) " 1ver ()ldx
R3 \/R? R3 ly|>+sd
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4
9 9
2 pE=p-v@  \ 7 :
- \V4
= |:/R (/]R e ) ] Vel

= Ce Ml Nolg, (2.18)

724 54

where 1/g + 1/q’ = 1, and we used (2.1) in the last step. For the Besov space norm
estimate we use the Fubini theorem and the Holder inequality as previously:

ws/ [/ <p€<y>|v<x—y>—v(x>|2|w€(x>|dx]dy
R3 |JR3
s/ PEM v —y) —vOI? o IV ody
R3 L2 LS5

2

R Y MR A
< € q gt g d Vot
< [ (Lowommsa) ([ ity ) iveti,

3s—1 2
< Ce vl lleoli - (2.19)
%.t] g‘(l

wio

We estimate J, as follows:

| 2| = ‘/ [/ PrMx —y) — () ® (@(x —y) — w(X))dy] : Vot (x)dx
R3 |/R3

5/ [/ ¢8<y>|v<x—y)—v(x)Hw(x—y)—w(x)|dy}|W<x>|dx
R3 R3

1
’ 5.196)g’ q
< ([ o w2 ay)

1
X/ (/ lv(x — y)3_ v(x))4 dy)q(/ |w(x—y1—w(x)|q dy)q|Vv5(x)|dx
R3\JR3 ly|>*+s4 R3 ly|>+sd

2

, a2

< Ce? / (/ |v<x—y>—v<x)|qdy)2q i ’
R3 \JR3 ly|3+s4

9 5

lwx —y) — w(x)|9 5 o .
) |:/]R3 (/R% |y |3+sa dy) dxi| IVl 5

3s—1 2
= Ce ol lollg (2.20)
34 5

where 2/q + 1/q’ = 1. Next, we estimate in the Besov norm:

|12 S/ {/ <p€(y)|v(x—y)—v(X)IIw(x—y)—w(X)IIVve(X)IdX}dy
R’ | J/®3

< /R eIV =) =0l glot =) =0l 5[V ydy
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1
' 6496’ q
< ([ v o w2 ay)

1 1
||U(-—y)—v(~)||qL% q lo(-—y) —a)()||(z% q
Vot
X/]R3 /]1@ |y|3+sq dy /]1{3 |y|3+s‘1 dy Vv ”L%

< Ce¥ Ml ol - 21)
%.q 54

The estimate of J3 is similar to that of J,, and we have

1731 < Ce* Ml llollg, - (2.22)

24 54

We estimate Jy as follows:

[J4] = ‘/ [(v =) ® (v—1v%)]: Voidx
R3

</ v — v} Vofldx < [lv—v¥|I% Vo' o
R3 L2 L5

3s—1 2
<Ce vl Nollgs (2.23)
9 9
24 54

where we used (2.1) and (2.2). Similarly, we estimate J5:

|J5| =

/ [(v =% ® (w— )] : Vvidx
RS

</ v =¥l — o [[VVldx < [lv =] sllo —aof] o IVV] 9
R3 L2 L5 L2

< CeP Ml lolyy - (2.24)
%q 54
The estimates of Jg is similar to that of Js, and we have
3s—1 2 .
[Jo| < Ce IIUIIXSQ loll s - (2.25)

9.9 2.4

Taking into account the estimates (2.18)—(2.25), and integrating (2.17) over [0, ] C
[0, T'], we have

/ vo(x,t) - o (x, )dx — / Vg (x) - wp(x)dx
R3 R3

T
3s—1 2
<ce [, lowly, dr
0 %,q 54

T o T 5
< Ce¥! / @I, dt / lo@l, dr) .
0 94 0 %4

where 2/r; + 1/r, = 1. Passing ¢ — 0, we find that
/ w(x,t) -v(x,t)dx = / wo(x) - vo(x)dx
R3 R3

for s > % O
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Proof of Corollary 1.1. We estimate the helicity,
/ v(x, 1) - w(x, dx < [[v(, DliplloC Dl 3
R3 L2
2
= CIVUC. DIl s llewC.0ll 3 = Cllw(nt)IIL%, (2.26)

where we used the Sobolev inequality and the Calderon-Zygmund inequality. Combining
(2.26) with Theorem 1.2, we obtain the desired conclusion. 0O

Proof of Theorem 1.3. Suppose 0 (x, t) is a weak solution of (QG) in the sense of (1.6)—
(1.7). Let £(2) € Cgo([O, T)). Given y € R2, choosing the test function ¢(x, 1) =
E(t)p®(x — y) in (1.6) we obtain

&€

a6 :
B +div (v9)* = 0. (2.27)

We take the L2(R2) inner product (2.27) with 6¢|6¢|? ~2. Then, integrating by part, and
using the identity (2.7), we obtain

dt/ 1051Pdx = (p— 1)/ WO)* - VO (0% 1P~ 2dx
p

= (p—l)/ {/ P (M (x —y)—v(x)(O(x — y)—G(X))dy]
R2 R2
VO (x)]0° (x)|P2dx
—(p—1 /Rz[(v — %) (0 — 6°)]- VO (x)]6° (x)|P~*dx
=(p— DI +11], (2.28)

where we used the fact,
1 1
/ veO° - VOE|OE 1P 2 dx = —/ W® - V)|0%1Pdx = ——/ (div v®)|6%|Pdx = 0.
R2 P JRr2 P Jr2

We estimate I and /1] separately:

I< / [/ e WMvx —y) —v)]|Ox —y) — 9(x)|dy] VO (x)[160° (x) P~ 2dx
R2 JRR2

1 1
f (A 128)g q [v(x —y) —v(x)|? q
< / (/ o ()7 |y|(q+2”qdy) (/ 7 dy
rR2 \UR2 R? ly[=*sa

y (/2 0 —y) —VQ(X))I"dy)" IVO° ()10 ()| P~2dx
R

|y|2+sq

pl
< e / (/ Iv(x—y)—v(x)lqdy) S
R2 \U/R2 |y|>*sd

1
p+l

p+l
0(x —y) —0(x)|? a
X / (/ o dy dx ||V98||Lp+1||98||”+1
R2 \JR2 |y|=*s4

3s—1 2
<Ce V|| £ o~ 0
< 0l 101 | 1617

1
p+l

(2.29)

Lp+l ’
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where 1/g + 1/q' = 1, q € [1, oc], and we used (2.1) in the last step. The estimate in
the Besov space norm is the following.

1 S/ {/ |§05(y)||v(x—y)—v(x)||9(x—y)_Q(x)||V98(x)”65(x)|p_2dx]dy
R2 R2

5/ PEMIC =) =vO Lt lOC = ¥) = OOl Lp1 VO [l Lpo I|98||Lp+1

A L
C g N7 oG- —y) —vOI?,.,
< (/ |9 ()| |y|a+> dy) (/ e L dy
R2 R2 |y|=*s4

I
16¢—y) =007,
/Rz ot B PPN L T

Lp+l

< Ce*Mvllg, 101, 161755 (2.30)

Using (2.1) and (2.2) directly, we estimate
Il < / [v(x) — v° (0)[10(x) — 0°(x)[|VO° (x)]|0° (x)|P*dx
3

< v =0l 10 = 0N Lot IVO° Lo 165117,

Lp+l

3s—1 A 2
<Ces IIUIIX;H_qII@II " ||9||L,,+1 (2.31)

Taking into account the estimates (2.29)—(2.31), and integrating (2.28) over [0, ] C
[0, T'], we have

lesly, — 1617,

Lp+!

T
_ 2
< Ce¥ 1/ @l 10 18I, 5dT
0 p+lq p+lg

T
< C83‘H/ @l 10@%  dr
0 p+l.q p+lq

1 )4
noT 0
< Ce*! (/ (G dr) (/ 10T Iys dr) ,
0 p+|q 0 p+l.q

where p/ri +1/rp = 1. Fors > % passing ¢ — 0, we have ||0(¢)|Lr = ||6ollLr, if

veL?0,T; X5, ,(R))and6 € L7 (0, T; X5, (R?)). O
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