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Abstract: The extended Airy kernel describes the space-time correlation functions for
the Airy process, which is the limiting process for a polynuclear growth model. The
Airy functions themselves are given by integrals in which the exponents have a cubic
singularity, arising from the coalescence of two saddle points in an asymptotic analysis.
Pearcey functions are given by integrals in which the exponents have a quartic singular-
ity, arising from the coalescence of three saddle points. A corresponding Pearcey kernel
appears in a random matrix model and a Brownian motion model for a fixed time. This
paper derives an extended Pearcey kernel by scaling the Brownian motion model at
several times, and a system of partial differential equations whose solution determines
associated distribution functions. We expect there to be a limiting nonstationary process
consisting of infinitely many paths, which we call the Pearcey process, whose space-time
correlation functions are expressible in terms of this extended kernel.

1. Introduction

Determinantal processes are at the center of some recent remarkable developments in
probability theory. These processes describe the mathematical structure underpinning
random matrix theory, shape fluctuations of random Young tableaux, and certain 1 + 1
dimensional random growth models. (See [2, 9, 10, 18, 20] for recent reviews.) Each such
process has an associated kernelK(x, y), and certain distribution functions for the pro-
cess are expressed in terms of determinants involving this kernel. (They can be ordinary
determinants or operator determinants associated with the corresponding operatorK on
an L2 space.) Typically these models have a parameter n which might measure the size
of the system and one is usually interested in the existence of limiting distributions as
n → ∞. Limit laws then come down to proving that the operator Kn, where we now
make the n dependence explicit, converges in trace class norm to a limiting operatorK .
In this context universality theorems become statements that certain canonical operators
K are the limits for a wide variety ofKn. What canonicalK can we expect to encounter?
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In various examples the kernelKn(x, y) (or, in the case of matrix kernels, the matrix
entries Kn,ij (x, y)) can be expressed as an integral

∫
C1

∫
C2

f (s, t) eφn(s,t; x,y) ds dt.

To study the asymptotics of such integrals one turns to a saddle point analysis. Typically
one finds a nontrivial limit law when there is a coalescence of saddle points. The sim-
plest example is the coalescence of two saddle points. This leads to the fold singularity
φ2(z) = 1

3 z
3 + λz in the theory of Thom and Arnold and a limiting kernel, the Airy

kernel [19] or the more general matrix-valued extended Airy kernel [17, 11].
After the fold singularity comes the cusp singularity φ3(z) = 1

4 z
4 + λ2z

2 + λ1z.
The diffraction integrals, which are Airy functions in the case of a fold singularity,
now become Pearcey functions [16]. What may be called the Pearcey kernel, since it
is expressed in terms of Pearcey functions, arose in the work of Brézin and Hikami [6,
7] on the level spacing distribution for random Hermitian matrices in an external field.
More precisely, let H be an n × n GUE matrix (with n even), suitably scaled, and H0
a fixed Hermitian matrix with eigenvalues ±a each of multiplicity n/2. Let n → ∞.
If a is small the density of eigenvalues is supported in the limit on a single interval. If
a is large then it is supported on two intervals. At the “closing of the gap” the limiting
eigenvalue distribution is described by the Pearcey kernel.

Bleher, Kuijlaars and Aptekarev [4, 5, 3] have shown that the same kernel arises in
a Brownian motion model. Okounkov and Reshetikhin [15] have encountered the same
kernel in a certain growth model.

Our starting point is with the work of Aptekarev, Bleher and Kuijlaars [3]. With n
even again, consider n nonintersecting Brownian paths starting at position 0 at time
τ = 0, with half the paths conditioned to end at b > 0 at time τ = 1 and the other half
conditioned to end at −b. At any fixed time this model is equivalent to the random matrix
model of Brézin and Hikami since they are described by the same distribution function.
If b is of the order n1/2 there is a critical time τc such that the limiting distribution of the
Brownian paths as n → ∞ is supported by one interval for τ < τc and by two intervals
when τ > τc. The limiting distribution at the critical time is described by the Pearcey
kernel.

It is in searching for the limiting joint distribution at several times that an extended
Pearcey kernel arises.1 Consider times 0 < τ1 ≤ · · · ≤ τm < 1 and ask for the prob-
ability that for each k no path passes through a set Xk at time τk . We show that this
probability is given by the operator determinant det(I − Kχ) with an m × m matrix
kernel K(x, y), where χ(y) = diag

(
χXk (y)

)
.

We then take b = n1/2 and scale all the times near the critical time by the substitutions
τk → 1/2+n−1/2τk and scale the kernel by x → n−1/4x, y → n−1/4y. (Actually there
are some awkward coefficients involving 21/4 which we need not write down exactly.)
The resulting limiting kernel, the extended Pearcey kernel, has i, j entry

− 1

4π2

∫
C

∫ i∞

−i∞
e−s

4/4+τj s2/2−ys+t4/4−τi t2/2+xt ds dt
s − t

(1.1)

1 It was in this context that the extended Airy kernel, and other extended kernels considered in [21],
arose.
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plus a Gaussian when i < j . The t contour C consists of the rays from ±∞eiπ/4 to 0
and the rays from 0 to ±e−iπ/4. Form = 1 and τ1 = 0 this reduces to the Pearcey kernel
of Brézin and Hikami.2

These authors also asked the question whether modifications of their matrix model
could lead to kernels involving higher-order singularities. They found that this was so,
but that the eigenvalues of the deterministic matrix H0 had to be complex. Of course
there are no such matrices, but the kernels describing the distribution of eigenvalues of
H0 + H make perfectly good sense. So in a way this was a fictitious random matrix
model. In Sect. V we shall show how to derive analogous extended kernels and limiting
processes from fictitious Brownian motion models, in which the end-points of the paths
are complex numbers.

For the extendedAiry kernel the authors in [21] derived a system of partial differential
equations, with the end-points of the intervals of theXk as independent variables, whose
solution determines det(I − Kχ).3 Here it is assumed that each Xk is a finite union
of intervals. For m = 1 and X1 = (ξ,∞) these partial differential equations reduce to
ordinary differential equations which in turn can be reduced to the familiar Painlevé II
equation. In Sect. IV of this paper we find the analogous system of partial differential
equations where now the underlying kernel is the extended Pearcey kernel.4 Unlike the
case of the extended Airy kernel, here it is not until a computation at the very end that
one sees that the equations close. It is fair to say that we do not really understand, from
this point of view, why there should be such a system of equations.

The observant reader will have noticed that so far there has been no mention of the
Pearcey process, supposedly the subject of the paper. The reason is that the existence of
an actual limiting process consisting of infinitely many paths, with correlation functions
and spacing distributions described by the extended Pearcey kernel, is a subtle probabi-
listic question which we do not now address. That for each fixed time there is a limiting
random point field follows from a theorem of Lenard [13, 14] (see also [18]), since that
requires only a family of inequalities for the correlation functions which are preserved
in the limit. But the construction of a process, a time-dependent random point field, is
another matter. Of course we expect there to be one.

2. Extended Kernel for the Brownian Motion Model

Suppose we have n nonintersecting Brownian paths. It follows from a theorem of Karlin
and McGregor [12] that the probability density that at times τ0, . . . , τm+1 their positions
are in infinitesimal neighborhoods of x0i , . . . , xm+1,i is equal to

m∏
k=0

det (P (xm,i, xm+1,j , σm)), (2.1)

where

σk = τk+1 − τk

2 In the external source random matrix model, an interpretation is also given for the coefficients of s2

and t2 in the exponential. It is not related to time as it is here.
3 Equations of a different kind in the case m = 2 were found by Adler and van Moerbeke [1].
4 In the casem = 1 the kernel is integrable, i.e., it is a finite-rank kernel divided by x−y. (See footnote

7 for the exact formula.) A system of associated PDEs in this case was found in [7], in the spirit of [19],
when X1 is an interval. This method does not work when m > 1, and our equations are completely
different.
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and

P(x, y, σ ) = (πσ)−1/2e−(x−y)
2/σ .

The indices i and j run from 0 to n− 1, and we take

τ0 = 0, τm+1 = 1.

We set all the x0i = ai and xm+1,j = bj , thus requiring our paths to start at ai and
end at bj . (Later we will let all ai → 0.)

By the method of [8] (modified and somewhat simplified in [21]) we shall derive
an “extended kernel” K(x, y), which is a matrix kernel (Kk�(x, y))mk,�=1 such that for
general functions f1, . . . , fm the expected value of

m∏
k=1

n−1∏
i=0

(1 + fk(xki))

is equal to

det (I −K f ),

where

f (y) = diag (fk(y)).

In particular the probability that for each k no path passes through the set Xk at time τk
is equal to

det (I −K χ),

where

χ(y) = diag (χXk (y)).

(The same kernel gives the correlation functions [8]. In particular the probability density
(2.1) is equal to (n!)−m det(Kk�(xki, x�j ))k,�=1,...,m; i,j=0,...,n−1.)

The extended kernel K will be a difference H − E, where E is the strictly upper-
triangular matrix with k, � entry P(x, y, τ� − τk) when k < �, and where Hk�(x, y) is
given at first by the rather abstract formula (2.5) below and then by the more concrete
formula (2.6). Then we let all ai → 0 and find the integral representation (2.11) for the
case when all the Brownian paths start at zero. This representation will enable us to take
the scaling limit in the next section.

We now present the derivation ofK .Although in the cited references the determinants
at either end (corresponding to k = 0 and m in (2.1)) were Vandermonde determinants,
it is straightforward to apply the method to the present case. Therefore, rather than go
through the full derivation again we just describe how one finds the extended kernel.

For i, j = 0, . . . , n − 1 we find Pi(x), which are a linear combination of the
P(x, ak, σ0) and Qj(y), which are a linear combination of the P(y, bk, σm) such that

∫
· · ·
∫
Pi(x1)

m−1∏
k=1

P(xk, xk+1, σk)Qj (xm) dx1 · · · dxm = δij .
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Because of the semi-group property of the P(x, y, τ ) this is the same as
∫ ∫

Pi(x) P (x, y, τm − τ1)Qj (y) dx dy = δij . (2.2)

We next define for k < �,

Ek�(xk, x�) =
∫

· · ·
∫ �−1∏

r=k
P (xr , xr+1, σr ) dxk+1 · · · dx�−1 = P(xk, x�, τ� − τk).

Set

Pi = P1i , Qmj = Qj,

and for k > 1 define

Pki(y) =
∫
E1k(y, u) Pi(u) du =

∫
P(y, u, τk − τ1) Pi(u) du, (2.3)

and for k < m define

Qkj (x) =
∫
Ekm(x, v)Qj (v) dv =

∫
P(x, v, τm − τk)Qj (v) dv. (2.4)

(These hold also for P1i and Qmj if we set Ekk(x, y) = δ(x − y).)
The extended kernel is given by K = H − E where

Hk�(x, y) =
n−1∑
i=0

Qki(x) P�i(y), (2.5)

and Ek�(x, y) is as given above for k < � and equal to zero otherwise.
This is essentially the derivation in [8] applied to this special case. We now determine

Hk�(x, y) explicitly.
Suppose

Pi(x) =
∑
k

pik P (x, ak, σ0),

Qj (y) =
∑
�

qj� P (y, b�, σm).

If we substitute these into (2.2) and use the fact that σ0 + τm − τ1 + σm = 1 we see that
it becomes

1√
2π

∑
k,�

pik qj� e
−(ak−b�)2 = δij .

Thus, if we define matrices P, Q and A by

P = (pij ), Q = (qij ), A = (e−(ai−bj )
2
),

then we require PAQt = √
2π I .



386 C. A. Tracy, H. Widom

Next we compute

Pri(y) =
∫
P(y, u, τr − τ1) Pi(u) du =

∑
k

pik P (y, ak, τr ),

Qsj (x) =
∫
P(x, v, τm − τs)Qj (v) dv =

∑
�

qj� P (x, b�, 1 − τs).

Hence

Hrs(x, y) =
∑
i

Qri(x) Psi(y) =
∑
i,k,�

P (x, b�, 1 − τr ) qi� pik P (y, ak, τs).

The internal sum over i is equal to the �, k entry ofQtP = √
2π A−1. So the above can

be written (changing indices)

Hk�(x, y) =
√

2π
∑
i,j

P (x, bi, 1 − τk) (A
−1)ij P (y, aj , τ�).

If we set B = (e2 ai bj ) then this becomes

Hk�(x, y) =
√

2π
∑
i,j

P (x, bi, 1 − τk) e
b2
i (B−1)ij e

a2
j P (y, aj , τ�). (2.6)

This gives the extended kernel when the Brownian paths start at the aj . Now we are
going to let all aj → 0.

There is a matrix function D = D(a0, . . . , an−1) such that for any smooth fuction
f ,

lim
ai→0

D(a0, . . . , an−1)




f (a0)

f (a1)
...

f (an−1)


 =




f (0)
f ′(0)
...

f (n−1)(0)


 .

Here limai→0 is short for a certain sequence of limiting operations. Now B−1 applied
to the column vector

(e
a2
j P (y, aj , τ�))

equals (DB)−1 applied to the vector

D (e
a2
j P (y, aj , τ�)).

When we apply limai→0 this vector becomes

(∂
j
a e

a2/2 P(y, a, τ�)|a=0),



The Pearcey Process 387

whileDB becomes the matrix ((2 bj )i), which is invertible when all the bj are distinct.
If we set V = (bj

i) then the limiting (DB)−1 is equal to V −1 diag (2−j ). Thus we have
shown that when all ai = 0,

Hk�(x.y) =
√

2π
∑
i,j

P (x, bi, 1 − τk) e
b2
i (V −1)ij 2−j ∂ja ea

2
P(y, a, τ�)|a=0. (2.7)

The next step is to write down an integral representation for the last factor. We have

ea
2
P(y, a, τ�) = 1

πi
√

2(1 − τ�)
e

y2

1−τ�
∫ i∞

−i∞
e

τ�
1−τ� s

2+2s
(
a− y

1−τ�
)
ds.

Hence

2−j ∂ja ea
2
P(y, a, τ�)|a=0 = 1

πi
√

2(1 − τ�)
e

y2

1−τ�
∫ i∞

−i∞
sj e

τ�
1−τ� s

2− 2sy
1−τ� ds. (2.8)

Next we are to multiply this by (V −1)ij and sum over j . The index j appears in (2.8)
only in the factor sj in the integrand, so what we want to compute is

n−1∑
j=0

(V −1)ij s
j . (2.9)

Cramer’s rule in this case tells us that the above is equal to �i/�, where � denotes the
Vandermonde determinant of b = {b0, . . . , bn−1} and�i the Vandermonde determinant
of b with bi replaced by s. This is equal to

∏
r �=i

s − br

bi − br
.

Observe that this is the same as the residue

res

(∏
r

s − br

t − br

1

s − t
, t = bi

)
. (2.10)

This allows us to replace the sum over i in (2.7) by an integral over t . In fact, using (2.8)
and the identification of (2.9) with (2.10) we see that the right side of (2.7) is equal to

− 1

2π

1√
π(1 − τ�)

e
y2

1−τ�
∫
C

∫ i∞

−i∞
P(x, t, 1 − τk) e

t2 e
τ�

1−τ� s
2− 2sy

1−τ�
∏
r

s − br

t − br

ds dt

s − t
,

where the contour of integration C surrounds all the bi and lies to one side (it doesn’t
matter which) of the s contour. Thus

Hk�(x, y) = − 1

2π2

1√
(1 − τk) (1 − τ�)

e
y2

1−τ� − x2
1−τk

×
∫
C

∫ i∞

−i∞
e
− τk

1−τk t
2+ 2xt

1−τk + τ�
1−τ� s

2− 2sy
1−τ�

∏
r

s − br

t − br

ds dt

s − t
. (2.11)
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In this representation the s contour (which passes to one side of the closed t contour)
may be replaced by the imaginary axis and C by the contour consisting of the rays from
±∞eiπ/4 to 0 and the rays from 0 to ±∞e−iπ/4. (We temporarily call this the “new”
contour C.) To see this let CR denote the new contour C, but with R replacing ∞ and
the ends joined by two vertical lines (where t2 has positive real part). The t contour may
be replaced by CR if the s contour passes to the left of it. To show that the s contour may
be replaced by the imaginary axis it is enough to show that we get 0 when the s contour
is the interval [−iR, iR] plus a curve from iR to −iR passing around to the left of CR .
If we integrate first with respect to s we get a pole at s = t , and the resulting t integral is
zero because the integrand is analytic inside CR . So we can replace the s contour by the
imaginary axis. We then let R → ∞ to see that CR may be replaced by the new contour
C.

3. The Extended Pearcey Kernel

The case of interest here is where half the br equal b and half equal −b. It is convenient
to replace n by 2n, so that the product in the integrand in (2.11) is equal to

(
s2 − b2

t2 − b2

)n
.

We take the case b = n1/2. We know from [3] that the critical time (the time when the
support of the limiting density changes from one interval to two) is 1/2, and the place
(where the intervals separate) is x = 0. We make the replacements

τk → 1/2 + n−1/2 τk

and the scaling

x → n−1/4 x, y → n−1/4 y.

More exactly, we define

Kn,ij (x, y) = n−1/4Kij (n
−1/4 x, n−1/4 y),

with the new definition of the τk . (Notice the change of indices from k and � to i and j .
This is for later convenience.)

The kernel En,ij (x, y) is exactly the same as Eij (x, y). As for Hn,ij (x, y), its inte-
gral representation is obtained from (2.11) by the scaling replacements and then by the
substitutions s → n1/4 s, t → n1/4 t in the integral itself. The result is (we apologize
for its length)

Hn,ij (x, y) = − 1

π2

1√
(1 − 2n−1/2τi) (1 − 2n−1/2τj )

exp

{
2y2

n1/2 − 2τj
− 2x2

n1/2 − 2τi

}

×
∫
C

∫ i∞

−i∞
exp

{
−n1/2 1 + 2n−1/2τi

1 − 2n−1/2τi
t2 + 4xt

1 − 2n−1/2τi

}

× exp

{
n1/2 1 + 2n−1/2τj

1 − 2n−1/2τj
s2 − 4ys

1 − 2n−1/2τj i

}

×
(

1 − s2/n1/2

1 − t2/n1/2

)n
ds dt

s − t
. (3.1)
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We shall show that this has the limiting form

H
Pearcey
ij (x, y) = − 1

π2

∫
C

∫ i∞

−i∞
e−s

4/2+4 τj s2−4ys+t4/2−4 τi t2+4xt ds dt

s − t
, (3.2)

where, as in (2.11) and (3.1), the s integration is along the imaginary axis and the contour
C consists of the rays from ±∞eiπ/4 to 0 and the rays from 0 to ±∞e−iπ/4. Precisely,
we shall show that

lim
n→∞Hn,ij (x, y) = H

Pearcey
ij (x, y) (3.3)

uniformly for x and y in an arbitrary bounded set, and similarly for all partial derivatives.5

The factor outside the integral in (3.1) converges to −1/π2. The first step in prov-
ing the convergence of the integral in (3.1) to that in (3.2) is to establish pointwise
convergence of the integrand.

The first exponential factor in the integrand in (3.1) is

exp
{

− (n1/2 + 4τi +O(n−1/2)) t2 + (4 +O(n−1/2)) xt
}
,

while the second exponential factor is

exp
{
(n1/2 + 4τj +O(n−1/2)) s2 − (4 +O(n−1/2)) ys

}
. (3.4)

When s = o(n1/4), t = o(n1/4) the last factor in the integrand is equal to

exp
{
n1/2 t2 + t4/2 + o(t4/n)− n1/2 s2 − s4/2 + o(s4/n)

}
.

Thus the entire integrand (aside from the factor 1/(s − t)) is

exp
{

− (1 + o(1)) s4/2 + (4τj +O(n−1/2)) s2 − (4 +O(n−1/2)) ys}

× exp
{
(1 + o(1)) t4/4 − (4τi +O(n−1/2)) t2 + (4 +O(n−1/2)) xt

}
. (3.5)

In particular this establishes pointwise convergence of the integrands in (3.1) to that
in (3.2). For the claimed uniform convergence of the integrals and their derivatives it is
enough to show that they all converge pointwise and boundedly. To do this we change
the t contour C by rotating its rays slightly toward the real line. (How much we rotate
we say below. We can revert to the original contour after taking the limit.) This is so that
on the modified contour, which we denote by C′, we have � t2 > 0 as well as � t4 < 0.

The function 1/(s− t) belongs toLq for any q < 2 in the neighborhood of s = t = 0
on the contours of integration and to Lq for any q > 2 outside this neighborhood. To
establish pointwise bounded convergence of the integral it therefore suffices to show
that for any p ∈ (1,∞) the rest of the integrand (which we know converges pointwise)
has Lp norm which is uniformly bounded in x and y.6 The rest of the integrand is the

5 The constants in (3.2) are different from those in (1.1), a matter of no importance. In the next section
we shall make the appropriate change so that they agree.

6 That this suffices follows from the fact, an exercise, that if {fn} is a bounded sequence in Lp con-
verging pointwise to f then (fn, g) → (f, g) for all g ∈ Lq , where p = q/(q − 1). We take fn to be
the integrand in (3.1) except for the factor 1/(s − t) and g to be 1/(s − t), and apply this twice, with
q < 2 in a neighborhood of s = t = 0 and with q > 2 outside the neighborhood.
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product of a function of s and a function of t and we show that both of these functions
have uniformly bounded Lp norms.

From (3.5) it follows that for some small ε > 0 the function of t isO(e� t4/2+O(|t |2))
uniformly in x if |t | ≤ ε n1/4. Given this ε we choose C′ to consist of the rays of C
rotated slightly toward the real axis so that if θ = arg t2 when t ∈ C′ then cos θ = ε2/2.

When t ∈ C′ and |t | ≤ ε n1/4 the function of t isO(e� t4/2+O(|t |2)) = O(ecos 2θ |t |4/2).
Since cos 2θ < 0 the Lp norm on this part of C′ is O(1).

When t ∈ C′ and |t | ≥ ε n1/4 we have

|1 − t2/n1/2|2 = 1 + n−1|t |4 − 2n−1/2 cos θ |t |2.
But

n−1|t |4 − 2n−1/2 cos θ |t |2 = n−1/2|t |2 (n−1/2|t |2 − ε2) ≥ 0

when |t | ≥ εn1/4.Thus |1−t2/n1/2| ≥ 1 and the function of t isO(e− cos θ n1/2 |t |2+O(|t |2))
= O(e− cos θ n1/2 |t |2/2), and the Lp norm on this part of C′ is o(1).

We have shown that on C′ the function of t has uniformly bounded Lp norm.
For the Lp norm of the function of s we see from (3.4) that the integral of its pth

power is at most a constant independent of y times
∫ ∞

0
e−pn

1/2s2+τs2
(1 + n−1/2 s2)pn ds.

(We replaced s by is, used evenness, and took any τ > −4p τj .) The variable change
s → n1/4 s replaces this by

n1/4
∫ ∞

0
e−pn (s

2−log (1+s2))+n1/2 τ s2
ds.

The integral over (1,∞) is exponentially small. Since s2 − log (1 + s2) ≥ s4/2 when
s ≤ 1, what remains is at most

n1/4
∫ 1

0
e−pn s

4/2+O(n1/2 s2) ds =
∫ n1/4

0
e−p s

4/2+O(s2) ds,

which is O(1).
This completes the demonstration of the bounded pointwise convergence of Hn,ij

(x, y) toH Pearcey
ij . Taking any partial derivative just inserts in the integrand a polynomial

in x, y, s and t , and the argument for the modified integral is virtually the same. This
completes the proof of (3.3).

4. Differential Equations for the Pearcey Process

We expect the extended Pearcey kernel to characterize the Pearcey process, a point pro-
cess which can be thought of as infinitely many nonintersecting paths. Given sets Xk ,
the probability that for each k no path passes through the set Xk at time τk is equal to

det (I −K χ),
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where

χ(y) = diag (χXk (y)).

The following discussion follows closely that in [21]. We take the case where each
Xk is a finite union of intervals with end-points ξkw, w = 1, 2, . . ., in increasing order.
If we set

R = (I −K χ)−1K,

with kernel R(x, y), then

∂kw det (I −K χ) = (−1)w+1Rkk(ξkw, ξkw).

(We use the notation ∂kw for ∂ξkw .) We shall find a system of PDEs in the variables ξkw
with the right sides above among the unknown functions.

In order to have the simplest coefficients later we make the further variable changes

s → s/21/4, t → t/21/4

and substitutions

x → 21/4x/4, y → 21/4y/4, τk → 21/2τk/8.

The resulting rescaled kernels are (we omit the superscripts “Pearcey”)

Hij (x, y) = − 1

4π2

∫
C

∫ i∞

−i∞
e−s

4/4+τj s2/2−ys+t4/4−τi t2/2+xt ds dt
s − t

,

which is (1.1), and

Eij (x, y) = 1√
2π (τj − τi)

e
− (x−y)2

2(τj−τi ) .

Define the vector functions

ϕ(x) =
(

1

2πi

∫
C

et
4/4−τk t2/2+xtdt

)
, ψ(y) =

(
1

2πi

∫ i∞

−i∞
e−s

4/4+τk s2/2−ysds
)
.

We think of ϕ as a column m-vector and ψ as a row m-vector. Their components are
Pearcey functions.7 The vector functions satisfy the differential equations

ϕ′′′(x)− τ ϕ′(x)+ x ϕ(x) = 0, ψ ′′′(y)− ψ ′(y) τ − y ψ(y) = 0,

where τ = diag (τk).

7 In case m = 1 the kernel has the explicit representation

K(x, y) = ϕ′′(x) ψ(y)− ϕ′(x) ψ ′(y)+ ϕ(x)ψ ′′(y)− τ ϕ(x)ψ(y)

x − y

in terms of the Pearcey functions. (Here we set τ = τ1. This is the same as the i, i entry of the matrix
kernel if we set τ = τi .) This was shown in [6]. Another derivation will be given in footnote 9.
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Define the column vector function Q and row vector function P by

Q = (I −K χ)−1ϕ, P = ψ (I − χ K)−1. (4.1)

The unknowns in our equations will be six vector functions indexed by the end-points
kw of theXk and three matrix functions with the same indices. The vector functions are
denoted by

q, q ′, q ′′, p, p′, p′′.

The first three are column vectors and the second three are row vectors. They are defined
by

qiu = Qi(ξiu), q ′
iu = Q′

i (ξiu), q ′′
iu = Q′′

i (ξiu),

and analogously for p, p′, p′′. The matrix function unknowns are

r, rx, ry

defined by

riu,jv = Rij (ξiu, ξjv), rx,iu,jv = Rxij (ξiu, ξjv), ry,iu,jv = Ryij (ξiu, ξjv).

(Here Rxij , for example, means ∂xRij (x, y).)
The equations themselves will contain the matrix functions rxx, rxy, ryy defined anal-

ogously, but we shall see that the combinations of them that appear can be expressed in
terms of the unknown functions.

The equations will be stated in differential form. We use the notation

ξ = diag (ξkw), dξ = diag (dξkw), s = diag ((−1)w+1).

Recall that q is a column vector and p a row vector.
Our equations are

dr = −r s dξ r + dξ rx + ry dξ, (4.2)

drx = −rx s dξ r + dξ rxx + rxy dξ, (4.3)

dry = −r s dξ ry + dξ rxy + ryy dξ, (4.4)

dq = dξ q ′ − r s dξ q, (4.5)

dp = p′ dξ − p dξ s r, (4.6)

dq ′ = dξ q ′′ − rx s dξ q, (4.7)

dp′ = p′′ dξ − p dξ s ry, (4.8)

dq ′′ = dξ (τ q ′ − ξ q + r s q ′′ − ry s q
′ + ryy s q − r τ s q)− rxx s dξ q, (4.9)

dp′′ = (p′ τ + p ξ + p′′ s r − p′ s rx + p s rxx − p s τ r) dξ − p dξ s ryy.(4.10)

One remark about the matrix τ in Eqs. (4.9) and (4.10). Earlier τ was the m × m

diagonal matrix with k diagonal entry τk . In the equations here it is the diagonal matrix
with kw diagonal entry τk . The exact meaning of τ when it appears will be clear from
the context.

As in [21], what makes the equations possible is that the operator K has some nice
commutators. In this case we also need a miracle at the end.8

8 That it seems a miracle to us shows that we do not really understand why the equations should close.
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Denote by ϕ ⊗ ψ the operator with matrix kernel (ϕi(x) ψj (y)), where ϕi and ψj
are the components of ϕ and ψ , respectively.

If we apply the operator ∂x + ∂y to the integral defining Hij (x, y) we obtain the
commutator relation [D, H ] = −ϕ ⊗ψ , where D = d/dx. Since also [D, E] = 0 we
have

[D, K] = −ϕ ⊗ ψ. (4.11)

This is the first commutator. From it follows

[D, K χ ] = −ϕ ⊗ ψ χ +K δ.

Here we have used the following notation: δkw is the diagonal matrix operator whose
kth diagonal entry equals multiplication by δ(y − ξkw), and

δ =
∑
kw

(−1)w+1δkw.

It appears above because Dχ = δ.
Set

ρ = (I −K χ)−1, R = ρ K = (I −K χ K)−1 − I.

It follows from the last commutator upon left- and right-multiplication by ρ that

[D, ρ] = −ρ ϕ ⊗ ψ χ ρ + R δ ρ.

From the commutators of D with K and ρ we compute

[D, R] = [D, ρ K] = ρ [D, K] + [D, ρ]K = −ρ ϕ ⊗ ψ (I + χ R)+ R δ R.

Notice that

I + χ R = (I − χ K)−1.

If we recall (4.1) we see that we have shown

[D, R] = −Q⊗ P + R δ R. (4.12)

To obtain our second commutator we observe that if we apply ∂t +∂s to the integrand
in the formula for Hij (x, y) we get zero for the resulting integral. If we apply it to
(s − t)−1 we also get zero. Therefore we get zero if we apply it to the numerator, and
this operation brings down the factor

t3 − τi t + x − s3 + τj s − y.

The same factor results if we apply to Hij (x, y) the operator

∂3
x + ∂3

y − (τi ∂x + τj ∂y)+ (x − y).

We deduce

[D3 − τD +M, H ] = 0.



394 C. A. Tracy, H. Widom

One verifies that also [D3 − τD +M, E] = 0. Hence

[D3 − τD +M, K] = 0. (4.13)

This is the second commutator.9 From it we obtain

[D3 − τD +M, K χ ] = K [D3 − τD +M, χ ] = K (DδD +D2δ + δD2 − τ δ),

and this gives

[D3 − τD +M, ρ] = R (DδD +D2δ + δD2) ρ − R τ δ ρ, (4.14)

which in turn gives

[D3−τD +M, R] = [D3−τD +M, ρ K]

=R (DδD+D2δ+δD2) R − R τ δ R. (4.15)

Of our nine equations the first seven are universal — they do not depend on the
particulars of the kernelK or vector functions ϕ or ψ . (The same was observed in [21].)
What are not universal are Eqs. (4.9) and (4.10). For the equations to close we shall also
have to show that the combinations of the entries of rxx, rxy and ryy which actually
appear in the equations are all expressible in terms of the unknown functions. The reader
can check that these are the diagonal entries of rxx + rxy and rxy + ryy (which also give
the diagonal entries of rxx − ryy) and the off-diagonal entries of rxx, rxy and ryy .

What we do at the beginning of our derivation will be a repetition of what was done
in [21]. First, we have

∂kwρ = ρ (K ∂kwχ) ρ = (−1)w R δkw ρ. (4.16)

From this we obtain ∂kwR = (−1)w R δkw R, and so

∂kw riu,jv = (∂kw Rij )(ξiu, ξjv)+ Rxij (ξiu, ξjv) δiu,kw + Ryij (ξiu, ξjv) δjv,kw.

= (−1)w riu,kw rkw,jv + rx,iu,jv δiu,kw + ry,iu,jv δjv,kw.

Multipliying by dξkw and summing over kw give (4.2). Equations (4.3) and (4.4) are
derived analogously.

Next we derive (4.5) and (4.7). Using (4.16) applied to ϕ we obtain

∂kw qiu = Q′
i (ξiu) δiu,kw + (−1)w (R δkw Q)i(ξiu) = q ′

iu δiu,kw + (−1)w riu,kw qkw.

Multiplying by dξkw and summing over kw give (4.5). If we multiply (4.16) on the left
by D we obtain ∂kwρx = (−1)w Rx δkw ρ and applying the result to ϕ we obtain (4.7)
similarly.

For (4.9) we begin as above, now applyingD2 to (4.16) on the left and ϕ on the right
to obtain

∂kw q
′′
iu = Q′′′

i (ξiu) δiu,kw + (−1)w rxx,iu,kw qkw. (4.17)

9 From (4.11) we obtain also [D3, K] = −ϕ′′ ⊗ψ + ϕ′ ⊗ψ ′ − ϕ⊗ψ ′′. Combining this with (4.11)
itself and (4.13) for m = 1 with τ = τ1 we obtain [M, K] = ϕ′′ ⊗ ψ − ϕ′ ⊗ ψ ′ + ϕ ⊗ ψ ′′ − τ ϕ ⊗ ψ .
This is equivalent to the formula stated in footnote 7.
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Now, though, we have to compute the first term on the right. To do it we apply (4.14) to
ϕ and use the differential equation satisfied by ϕ to obtain

Q′′′(x)− τ Q′(x)+ x Q(x) = −Ry δ Q′ + Ryy δ Q+ R δQ′′ − R τ δ Q. (4.18)

This gives

Q′′′
i (ξiu) = τi q

′
iu − ξiu qiu + (−ry s q ′ + ryy s q + r s q ′′ − r τ s q)iu.

If we substitute this into (4.17), multiply by dξkw and sum over kw we obtain Eq. (4.9).
This completes the derivation of the equations for the differentials of q, q ′ and q ′′.

We could say that the derivation of the equations for the differentials of p, p′ and p′′ is
analogous, which is true. But here is a better way. Observe that theP for the operatorK is
the transpose of theQ for the transpose ofK , and similarly with P andQ interchanged.
It follows from this that for any equation involvingQ there is another one for P obtained
by replacingK by its transpose (and so interchanging ∂x and ∂y) and taking transposes.
The upshot is that Eqs. (4.6), (4.8) and (4.10) are consequences of (4.5), (4.7) and (4.9).
The reason for the difference in signs in the appearance of ξ on the right sides of (4.9)
and (4.10) is the difference in signs in the last terms in the differential equations for ϕ
and ψ .

Finally we have to show that the diagonal entries of rxx + rxy and rxy + ryy and
the off-diagonal entries of rxx, rxy and ryy are all known, in the sense that they are
expressible in terms of the unknown functions. This is really the heart of the matter.

We use ≡ between expressions involvingR, Q andP and their derivatives to indicate
that the difference involves at most two derivatives ofQ or P and at most one derivative
of R. The reason is that if we take the appropriate entries evaluated at the appropri-
ate points we obtain a known quantity, i.e., one expressible in terms of the unknown
functions.

If we multiply (4.12) on the left or right by D we obtain

Rxx + Rxy = −Q′ ⊗ P + Rx δ R, Rxy + Ryy = −Q⊗ P ′ + R δ Ry.

In particular

Rxx+Rxy ≡ 0, Rxy+Rxy ≡ 0,

so in fact all entries of rxx + rxy and rxy + ryy are known.
From (4.12) we obtain consecutively

[D2, R] = −Q′ ⊗ P +Q⊗ P ′ +DR δ R + R δ RD, (4.19)

[D3, R]=−Q′′ ⊗ P+Q′ ⊗ P ′−Q⊗ P ′′+D2R δ R+DR δRD+R δ RD2. (4.20)

If we subtract (4.15) from (4.20) we find

[τ D −M, R] = −Q′′ ⊗ P +Q′ ⊗ P ′ −Q⊗ P ′′

+Rxx δ R − Rx δRy + R δ Ryy + Ry δRx − Ryyδ R − R δRxx + R τ δ R.

We use

Rxx − Ryy = Q⊗ P ′ −Q′ ⊗ P + Rx δ R − R δ Ry
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and

Ry = −Rx −Q⊗ P + R δ R

to see that this equals

−Q′′ ⊗ P +Q′ ⊗ P ′ −Q⊗ P ′′ + (Q⊗ P ′ −Q′ ⊗ P − R δ Ry) δ R

−R δ (Q⊗ P ′ −Q′ ⊗ P + Rx δ R − R δ Ry)+ Rx δ Q⊗ P (4.21)

−(Q⊗ P − R δ R) δ Rx + R τ δ R.

We first apply D acting on the left to this, and deduce that

D [τ D, R] ≡ −Q′′′ ⊗ P + Rxx δ Q⊗ P.

If we use (4.18) and the fact that Ryy ≡ Rxx we see that this is ≡ 0. This means that

τi Rxx,i,j + τj Rxy,i,j ≡ 0.

Since Rxx,i,j + Rxy,i,j ≡ 0 we deduce that Rxx,i,j and Rxy,i,j are individually ≡ 0
when i �= j . Therefore rxx,iu,jv and rxy,iu,jv are known then.

But we still have to show that riu,iv is known when u �= v, and for this we apply D2

to (4.21) rather than D. We get this time

D2 [τ D −M, R] ≡ −Q′′′′ ⊗ P +Q′′′ ⊗ (P ′ − P δ R)− Rxx δ Ry δ R

−Rxx δ (Q⊗ P ′ −Q′ ⊗ P + Rx δ R − R δ Ry) (4.22)

+Rxxx δ Q⊗ P + Rxx δ R δ Rx + Rxx τ δ R.

We first compare the diagonal entries of D2 [τ D, R] on the left with those of
Rxx τ δ R on the right. The diagonal entries of the former are the same as those of

τ (Rxxx + Rxxy) ≡ τ Rxx δ R.

(Notice that applyingD2 to (4.12) on the left givesRxxx +Rxxy ≡ Rxx δ R.) The differ-
ence between this and Rxx τ δ R is [τ, Rxx] δ R. Only the off-diagonal entries of Rxx
occur here, so this is ≡ 0.

If we remove these terms from (4.22) the left side becomes −D2 [M, R] and the
resulting right side we write, after using the fact Rx +Ry = −Q⊗P +R δ R twice, as

−Q′′′′ ⊗ P +Q′′′ ⊗ (P ′ − P δ R)

−Rxx δ (Q⊗ P ′ −Q′ ⊗ P −Q⊗ P δ R + R δQ⊗ P)+ Rxxx δ Q⊗ P. (4.23)

Now we use (4.18) and the facts

Ryy ≡ Rxx, Rxy ≡ −Rxx, Rxxx − Rxyy ≡ Rxxδ R

(the last comes from applying D to (4.19) on the left) to obtain

Q′′′ ≡ Rxx δ Q, Q′′′′ ≡ Rxx δ Q
′ + (Rxxx − Rxx δ R) δ Q.

Substituting these expressions for Q′′′ and Q′′′′ into (4.23) shows that it is ≡ 0.
This was the miracle.
We have shown that

D2 [M, R] ≡ 0,

in other words (x − y)Rxx(x, y) ≡ 0. If we set x = ξiu, y = ξiv we deduce that
Rxx(ξiu, ξiv) = rxx,iu,iv is known when u �= v.
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5. Higher-Order Singularities

We begin with the fictitious Brownian motion model, in which the end-points of the
paths are complex numbers. The model consists of 2Rn nonintersecting Brownian paths
starting at zero, with n of them ending at each of the points ±n1/2br (r = 1, . . . , R).
The product in the integrand in (2.11) becomes

R∏
r=1

(
b2
r − s2/n

b2
r − t2/n

)n
, (5.1)

and we use the same contours as before.
We shall first make the substitutions τk → 1/2 +n−δτk with δ to be determined. The

first exponential in (2.11) becomes

exp
{

− (1 + 4 n−δτk +O(n−2δ)) t2 + (4 +O(n−δ)) xt +O(x2)
}
, (5.2)

and the second exponential becomes

exp
{
(1 + 4 n−δτ� +O(n−2δ)) s2 − (4 +O(n−δ)) ys +O(y2)

}
.

If we set ar = 1/b2
r the product (5.1) is the exponential of

(∑
ar

)
(t2− s2)+ n−1

2

(∑
a2
r

)
(t4− s4)+ · · · + n−R

R + 1

(∑
aR+1
r

)
(t2R+2−s2R+2)

+O(n−R−1(|t |2R+4 + |s|2R+4)).

If R > 1 we choose the ar such that
∑

ar = 1,
∑

a2
r = · · · =

∑
aRr = 0.

The ar are the roots of the equation

aR − aR−1 + 1

2!
aR−2 − · · · + (−1)R

R!
= 0, (5.3)

from which it follows that

∑
aR+1
r = (−1)R+1

R!
.

In general the ar will be complex, and so the same will be true of the end-points of our
Brownian paths.

In the integrals defining Hij we make the substitutions

t → nδ/2 t, s → nδ/2 s,

where

δ = R

R + 1
,
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and in the kernel we make the scaling

x → n−δ/2 x, y → n−δ/2 y.

This gives us the kernel Hn,ij (x, y). As before Eij is unchanged, and the limiting form
of Hn,ij (x, y) is now

− 1

π2

∫
C

∫ i∞

−i∞
e(−1)Rs2R+2/(R+1)!+4 τj s2−4ys+(−1)R+1t2R+2/(R+1)!−4 τi t2+4xt ds dt

s − t
.

This is formal and it is not at first clear what the C contour should be, although one
might guess that it consists of four rays, one in each quadrant, on which (−1)R+1t2R+2

is negative and real. We shall see that this is so, and that the rays are the most vertical

ones, those between 0 and ±∞e±
R

2R+2πi . The orientation of the rays is as in the case
R = 1. (The s integration should cause no new problems.)

After the variable changes the product of the two functions of t in the integrand in
(2.11) is of the form

e−nδt2∏
(b2
r − nδ−1t2)n

e(−4 τk t2+4xt+O(n−δ(|t |+|t |2)). (5.4)

The main part of this is the quotient.
Upon the substitution t → n(δ−1)/2t the quotient becomes

e−nt2∏
(b2
r − t2)n

. (5.5)

Suppose we want to do a steepest descent analysis of the integral of this over a nearly
vertical ray from 0 in the right half-plane. (This nearly vertical ray would be the part of
the t contour in (2.11) in the first quadrant.) No pole ±br is purely imaginary, as is clear
from the equation the ar satisfy. So there are R poles in the right half plane and R in the
left. There are 2R + 2 steepest descent curves emanating from the origin, half starting
out in the right half-plane. These remain there since, as one can show, the integrand is
positive and increasing on the imaginary axis. We claim that there is at least one pole
between any two of these curves. The reason is that otherwise the integrals over these
two curves would be equal, and so have equal asymptotics. That means, after computing
the asymptotics, that the integrals

∫ ∞eikπ/(R+1)

0
e(−1)R+1 t2R+2

dt

would be the same for two different integers k ∈ (−(R + 1)/2, (R + 1)/2). But the
integrals are all different.

Therefore there is a pole between any two of the curves. Let � be the curve which
starts out most steeply, in the direction arg t = R

2R+2π . It follows from what we have
just shown that there is no pole between � and the positive imaginary axis. This is what
we wanted to show.

The curve we take for the t integral in (2.11) is �n = n(1−δ)/2 �. The original con-
tour for the t-integral in the representation ofHn,ij can be deformed to this one. (We are
speaking now, of course, of one quarter of the full contour.)
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We can now take care of the annoying part of the argument establishing the claimed
asymptotics. The curve � is asymptotic to the positive real axis at +∞. Therefore for A
sufficiently large (5.5) isO(e−n|t |2/2)when t ∈ �, |t | > A. Hence (5.4) isO(e−nδ |t |2/4)
when t ∈ �n, |t | > n(1−δ)/2A. It follows that its L2 norm over this portion of �n is
exponentially small. When t ∈ �, |t | > ε then (5.5) is O(e−nη) for some η > 0, and it
follows that (5.4) is O(e−nη/2) when t ∈ �n, |t | > n(1−δ)/2ε and also |t | < n(1−δ)/2A.
Therefore the norm of (5.4) over this portion of �n is also exponentially small. So we
need consider only the portion of �n on which |t | < n(1−δ)/2ε, and for this we get the
limit ∫ ∞e2iπR/(R+1)

0
e(−1)R+1 t2R+2−4 τk t2+x t dt

with appropriate uniformity, in the usual way.
Just as with the Pearcey kernel we can search for a system of PDEs associated with

det (I −K χ). Again we obtain two commutators, which when combined show that K
is an integrable kernel when m = 1. In this case we define ϕ and ψ by

ϕ(x) =
(

1

πi

∫
C

e(−1)R+1t2R+2/(R+1)!−4τk t2/2+4xtdt

)
,

ψ(y) =
(

1

πi

∫ i∞

−i∞
e(−1)Rs2R+2/(R+1)!+4τk t2/2−4ytds

)
.

They satisfy the differential equations

cR ϕ
(2R+1)(x)− 2τϕ′(x)+ 4xϕ(x) = 0, cR ψ

(2R+1)(y)− 2ψ ′(y)τ − 4yψ(y) = 0,

where

cR = 2
(−1)R+1

42R+1 R!
.

The first commutator is [D, K] = −4 ϕ ⊗ ψ , which also gives

[Dn, K] = −4
n−1∑
k=0

(−1)k ϕ(n−k−1) ⊗ ψ(k). (5.6)

The second commutator is

[cR D
2R+1 − 2 τ D + 4M, K] = 0.

In case m = 1 (or for a general m and a diagonal entry of K), combining this with the
commutator [D2R+1, K] obtained from (5.6) and the differential equations for ϕ and
ψ we get an expression for [M, K] in terms of derivatives of ϕ and ψ up to order 2R.
This gives the analogue of the expression for K(x, y) in footnote 7.

For a system of PDEs in this case we would have many more unknowns, and the
industrious reader could write them down. However there will remain the problem of
showing that certain quantities involving 2Rth derivatives of the resolvent kernel R (too
many Rs!) evaluated at endpoints of the Xk are expressible in terms of the unknowns.
For the case R = 1 a miracle took place. Even to determine what miracle has to take
place for general R would be a nontrivial computational task.
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