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Abstract: In this paper, we initiate the study of C∗-algebras A endowed with a twisted
action of a locally compact abelian Lie group G, and we construct a twisted crossed
product A � G, which is in general a nonassociative, noncommutative, algebra. The
duality properties of this twisted crossed product algebra are studied in detail, and are
applied to T-duality in Type II string theory to obtain the T-dual of a general principal
torus bundle with general H-flux, which we will argue to be a bundle of noncommutative,
nonassociative tori. Nonassociativity is interpreted in the context of monoidal categories
of modules. We also show that this construction of the T-dual includes the other special
cases already analysed in a series of papers.

1. Introduction

Recent work has revealed the strong connections between T-duality in string theory
and Takai duality for C∗-algebras (as for instance discussed in the introduction to
[3, 28]), but for general H-fluxes C∗-algebras are no longer adequate. In this paper
we present a generalisation which permits a very precise description of the general
T-dual.

Let T be a compact connected Abelian Lie group of rank � with Lie algebra t and
let t̂ be the dual of t. Let E → M be a principal T-bundle with connection. By the
Chern-Weil construction the space �(E)T of T-invariant forms on E is isomorphic to
the space of forms on M with values in ∧̂t, i.e.

�k(E)T ∼=
k⊕

p=0

�p(M,∧k−p t̂) , (1.1)

and by a classical result of Chevalley and Koszul, the de-Rham complex (�•(E), d) is
chain homotopy equivalent to the complex (�•(M,∧•̂t),D) with a modified de-Rham
differentialD, and hence the associated cohomologies are isomorphic. Furthermore, we
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know that any class inHk(E) can be represented by a form in�k(E)T. Thus, under this
isomorphism, anH -flux inH 3(E) can be considered as a 4-tupleH = (H3, H2, H1, H0)

with Hp ∈ �p(M,∧3−p t̂) for p = 0, 1, 2, 3, closed under the action of D (cf. [18, 5]
for more details).1

T-duality for principal circle bundles was treated geometrically in [2, 3], and dimen-
sional considerations force the H0 and H1 components of the H-flux to vanish in this
case. The T-dual turns out to be another principal circle bundle with T-dual H-flux. The
arguments were extended in [4] to principal T

�-bundles with H-flux satisfying the con-
dition that the H0 and H1 components vanish. Then the T-dual turns out to be another
principal T

�-bundle with T-dual H-flux having vanishing H0 and H1 components. The
analysis in [28, 29] shows that if one considers principal T

�-bundles with H-flux satisfy-
ing the condition that just theH0 component vanishes, then one arrives at the surprising
conclusion that the T-dual bundle has to have noncommutative tori as fibres, provided the
H1 component is non-zero. The weaker condition in [28, 29] permits non-vanishingH1,
but still excludes non-zeroH0. In this paper we shall remove the last of these constraints,
to allow a non-vanishing H0 component. In this case, we arrive at the astonishing con-
clusion that the T-dual bundle has to have nonassociative tori as fibres, taking it even
beyond the normal range of noncommutative geometry.

The key step is provided by a new explicit construction of a continuous trace alge-
bra B having a given Dixmier-Douady invariant, whose spectrum is the total space E
of the principal T-bundle, together with automorphisms βg for g ∈ G = t, which
transform the spectrum in a way compatible with the G-action on E. The new fea-
tures arise because in general g �→ βg is not a homomorphism but satisfies βxβy =
ad(v(x, y))βxy , where ad(v) denotes conjugation by a unitary element of the multiplier
algebraMB. One expects the algebra associated with the T-dual to be the crossed product
B �β G, but the twisting forces us to take a suitably twisted crossed product B �β,v G.
Such (Leptin-)Busby-Smith twistings have long been known but, for non-trivial H0,
v(x, y) is not a cocycle and that means that associativity fails in the twisted crossed
product.

In Sect. 2 we give the relationship between the differential forms and the multi-
characters on G which will be used in our later constructions. Section 3 reviews the
generalised Busby-Smith twisted crossed products. An example of a twisting is given in
Sect. 4, together with a proof that it is the only type up to stability. This is followed by
an example of a nonassociative generalisation of the compact operators.

The theory of twisted induced representations is developed in Sect. 6 and then used to
construct examples of algebras with given spectrum and Dixmier–Douady class in Sect.
7. In Sect. 8 it is shown that the twisted crossed product of a twisted induced algebra is
isomorphic to a generalisation of the twisted compact operators. In Sect. 9, the double
dual is shown to be the tensor product of the original algebra with the twisted compact
operators, that is, Morita equivalent in this category to the original algebra. In Sect. 10,
the mathematical results of the previous sections are used to justify the assertion that the
T-dual to a general principal torus bundle with H-flux, is a bundle of nonassociative tori.
The final section outlines how associativity can be restored by working in a different
category, an idea which will be explored in more detail in a subsequent paper.

1 The conclusions in this paper are valid for integral classes H ∈ H 3(E,Z) as well, since this paper
deals exclusively with the introduction of the additional ‘degree of freedom’H0, which does not carry
torsion, on top of established results which hold in the case of torsion H . Note that H0 can be identified
with the restriction of H to a fibre. For simplicity we have chosen to formulate some of the results in
terms of differential forms.
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2. Differential Forms and Multicharacters

Let T be a compact connected Abelian Lie group of rank �, and E → M a principal
T-bundle. In essence the action of T on E provides a map from the Lie algebra t to
vector fields on E, which we write X �→ ξX, and then a p-form f ∈ �p(E)T in the
fibre directions defines the antisymmetric multilinear form valued function on M ,

(ξ∗f )(X1, X2, . . . , Xp) = f (ξX1 , ξX2 , . . . , ξXp). (2.1)

For abelian Lie groups the form exponentiates to a multicharacter on G = t,

φ
(
exp(X1), . . . , exp(Xp)

) = exp(−2πi(ξ∗f )(X1, . . . , Xp)). (2.2)

(A multicharacter is a character in each variable, and this property follows from the
additivity of ξ∗f , and φ is also antisymmetric in the sense that even permutations of its
variables leave it unchanged whilst odd permutations invert it.)

The multicharacter property ensures that this is always a (Moore) cocycle inZp(t,T),
since, for example when p = 3,

φ(y, z,w)φ(x, yz,w)φ(x, y, z) = φ(y, z,w)φ(x, y,w)φ(x, z,w)φ(x, y, z)

= φ(xy, z,w)φ(x, y, zw).

(It is known that every cohomology class in H 2(Rn,T) can be represented by an anti-
symmetric bicharacter of the form φ [23, 19], and for p = 3 it is certainly true that
smooth cocycles are cohomologous to antisymmetric tricharacters.)

Example. Consider the torus bundle T
3 over a point, withH0 the class defined by k times

the volume formdx1∧dx2∧dx3. The associated antisymmetric form on a,b, c ∈ t = R
3

is then given by

f (a,b, c) = k[a,b, c] ≡ ka.(b × c), (2.3)

whence φ(a,b, c) = exp(−2kπi[a,b, c]).

Although we are mainly interested in the abelian groups T = T
n, G = t = R

n, and
N ∼= Z

n the kernel of the exponential map t → T, the constructions which we present in
Chapters 3 to 8 are valid for general unimodular separable locally compact groups with
a tricharacter φ. For that reason we shall write the group composition multiplicatively,
and be careful not to commute terms. However, this generalisation is less sweeping than
may appear because the tricharacter φ on G defines a homomorphism of each variable
into the abelian group T, and so must be lifted from a tricharacter on the abelianisation
G/[G,G].

Finally we note that, by definition, the Dixmier-Douady class has components which
are integral 3-forms, and that means, in particular, that the tricharacter φ constructed
from H0 is identically 1 on N × N × N, where N is the kernel of the exponential map.
We shall assume this to be true in the general case.
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3. Generalised Busby-Smith Twisted Crossed Products

As noted above we now work with a general unimodular separable locally compact group
G and a closed subgroup N on which the tricharacter φ has trivial restriction. For any
group G one can interpretH 2(G,A) as classifying central extensions of G by A, whilst,
for p > 3, Hp(G,A) is usually interpreted in terms of crossed modules [15, 16, 6, 20,
21, 34, 26], with elements of H 3(G,A) known as MacLane–Whitehead obstructions
[35, 27]. However, we shall see that these classes also arise in a C∗-algebraic context.

The H -field is usually linked to the equivariant Brauer group of a continuous trace
C∗-algebra A with spectrum E, on which a group G acts as automorphisms so that the
dual action E agrees with the bundle structure. However, the equivariant Brauer group
can be described entirely in terms of cohomology classes in Hp(M,H 3−p(G,T)) for
p = 1, 2, 3, [11], leaving no room forH -fields with a component inH 0(M,H 3(G,T)),
(for example, any non-trivial H -field on G considered as a principal G-bundle over a
point). Since the representatives ofH 0 are locally constant functions we shall concentrate
our attention on H 3(G,T).

This suggests that we must consider a wider class of algebras or actions. In fact, inner
automorphisms automatically act trivially on the spectrum, so that only homomorphisms
of G to the outer automorphisms Out(A) = Aut(A)/Inn(A) are interesting. However,
to work with these one needs a lifting α : G → Aut(A). The problem then is that αxαy
and αxy can differ by an inner automorphism ad(u(x, y)) : a �→ u(x, y)au(x, y)−1,
that is αxαy = ad(u(x, y))αxy . We can take u(x, y) = 1 whenever x or y is the identity.

This is almost precisely the data needed to define a Busby–Smith (or Leptin) twisted
crossed product A �α,u G of A and G, [24, 7, 32]. Assuming that u is a measurable
function on G×G, we can define a twisted convolution product and adjoint onC0(G,A)
by

(f ∗ g)(x) =
∫

G

f (y)αy[g(y−1x)]u(y, y−1x) dy,

f ∗(x) = u(x, x−1)−1αx[f (x−1)]∗,

and complete this to get a new algebra.
The link with the algebraists’ picture of H 3(G,A) arises because u is no longer a

cocycle since the condition linking α and u tells us only that the adjoint actions of
u(x, y)u(xy, z) and αx[u(y, z)]u(x, yz) coincide, so that one has a modified cocycle
condition:

φ(x, y, z)u(x, y)u(xy, z) = αx[u(y, z)]u(x, yz) (3.1)

for some central unitary element φ(x, y, z) ∈ UZ(A). It is easy to check that φ is a
cocycle defining an element ofH 3(G, UZ(A)). (Essentially the same argument is used
in [8] to explain the origin of the Gauss anomaly and Jackiw’s nonassociative anomaly
in quantum field theory.) When φ is a tricharacter one can still form a twisted crossed
product.

Proposition 3.1. When φ defined as above is an antisymmetric tricharacter the twisted
crossed product A �α,u G satisfies the ∗-algebra identity (f ∗ g)∗ = g∗ ∗ f ∗, and is
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associative if and only if φ ≡ 1. In fact, we have

((f ∗ g) ∗ h)(x) =
∫

G×G
f (z)αz[g(z

−1y)]αy[h(y−1x)]u(z, z−1y)u(y, y−1x) dydz,

(f ∗ (g ∗ h))(x) =
∫

G×G
f (z)αz[g(z

−1y)]αy[h(y−1x)]φ(z, z−1y, y−1x)

×u(z, z−1y)u(y, y−1x) dydz.

Proof. Using the modified cocycle identity, one calculates that

(f ∗ g)∗(x) =
∫

G
φ(x, x−1y, y−1)∗u(y, y−1)∗αy[g(y−1)]∗

×u(x, x−1y)∗αx[f (x−1y)]∗ dy, (3.2)

whilst

(g∗ ∗ f ∗)(x) =
∫

G

φ(y, y−1x, x−1y)∗u(y, y−1)∗αy[g(y−1)]∗

×u(x, x−1y)∗αx[f (x−1y)]∗ dy, (3.3)

and for antisymmetric tricharacters both factors involving φ are 1.
The twisted crossed product algebra A �α,u G has

((f ∗ g) ∗ h)(x) =
∫

G
(f ∗ g)(y)αy[h(y−1x)]u(y, y−1x) dy,

=
∫

G×G
f (z)αz[g(z

−1y)]u(z, z−1y)αy[h(y−1x)]u(y, y−1x) dydz

=
∫

G×G
f (z)αz[g(z

−1y)]αzαz−1y[h(y−1x)]u(z, z−1y)

×u(y, y−1x) dydz

=
∫

G×G
f (z)αz[g(z

−1y)]αz−1y[h(y−1x)]u(z, z−1y)

×u(y, y−1x) dydz,

and, using the modified cocycle identity,

(f ∗ (g ∗ h))(x) =
∫

G
f (z)αz[(g ∗ h)(z−1x)]u(z, z−1x) dz

=
∫

G×G
f (z)αz[g(z

−1y)]αz−1y[h(y−1x)]u(z−1y, y−1x)

×u(z, z−1y) dydz,

=
∫

G×G
f (z)αz[g(z

−1y)]αz−1y[h(y−1x)]αz[u(z
−1y, y−1x)]

×u(z, z−1y) dydz

=
∫

G×G
f (z)αz[g(z

−1y)]αz−1y[h(y−1x)]φ(z, z−1y, y−1x)

×u(z, z−1y)u(y, y−1x) dydz,
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so that the Busby-Smith twisted crossed product is nonassociative except in the case
φ ≡ 1. �	

Henceforth we shall always take φ to be an antisymmetric tricharacter.
Usually Busby-Smith products are only defined when φ = 1, but we shall see that

much of the theory goes through without that assumption, so that this provides a means
of constructing nonassociative from associative algebras. The nonassociativity becomes
even more transparent when one considers a covariant representation (U, π) of (G,A)
satisfying the conditions

U(x)π(a)U(x)−1 = π(αx(a)), U(x)U(y) = π(u(x, y))U(xy). (3.4)

These give

U(x)[U(y)U(z)] = U(x)[π(u(y, z))]U(yz)

= π(u(x, yz))π(αxu(y, z))U(x(yz)),

[U(x)U(y)]U(z) = π(u(x, y))U(xy)U(z)

= π(u(x, y))π(u(xy, z))U((xy)z),

so that

φ(x, y, z)U(x)[U(y)U(z)] = [U(x)U(y)]U(z). (3.5)

In fact, H 3(G) was already interpreted as defining a nonassociative structure in [16],
and this has resurfaced in the physics literature [22, 13].

4. Generalised Packer–Raeburn Stabilisation

For a given antisymmetric tricharacter φ on G there is a simple example of an algebra
with twisting on which G acts as automorphisms. It is derived from the imprimitivi-
ty algebra generated by multiplication and translation operators on L2(G). The right
regular representation ρ acts on ψ ∈ L2(G) by (ρ(x)ψ)(v) = ψ(vx), and we define

(uρ(y, z)ψ)(v) = φ(v, y, z)ψ(v). (4.1)

(We shall often be interested in the case when G is a closed subgroup of a group H, with
φ defined on H × H × H and trivial on G × G × G. Then uρ(y, z) can be defined as
a multiplication operator on L2(G) for general y, z ∈ H, and the restriction of uρ to
G × G is identically 1.)

Now

φ(x, y, z)(uρ(x, y)uρ(xy, z)uρ(x, yz)
−1ψ)(v)

= φ(x, y, z)φ(v, x, y)φ(v, xy, z)φ(v, x, yz)−1ψ(v)

= φ(vx, y, z)ψ(v)
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and

(ρ(x)uρ(y, z)ρ(x)
−1ψ)(v) = (uρ(y, z)ρ(x)

−1ψ)(vx)

= φ(vx, y, z)(ρ(x)−1ψ)(vx)

= φ(vx, y, z)ψ(v), (4.2)

so that, setting αx = ad(ρ(x)), we get φ(x, y, z)uρ(x, y)uρ(xy, z)uρ(x, yz)−1 =
αx[uρ(y, z)]. This gives an explicit realisation of an algebra C = C0(G) with an ac-
tion of G by automorphisms and with the appropriate Busby-Smith obstruction. (When
G is non-compact uρ(x, y) is in the multiplier algebra rather than the algebra itself.)
The same idea can be extended to the right regular σ -representation on L2(G) given by
(ρ(x)ψ)(v) = σ(v, x)ψ(vx) for any borel multiplier σ , and this makes no difference
to the cocycle identity.

Naturally, one can also work with the left regular representation (λ(x)ψ)(v) =
ψ(x−1v), and

(uλ(y, z)ψ)(v) = φ(v, y, z)−1ψ(v). (4.3)

This is useful because it links directly to the formulation used by [30] to show that
twisted crossed products defined by cocycles are stably equivalent to normal crossed
products. In our case u is not a cocycle, but there is nonetheless a nice generalisation of
the Packer–Raeburn Theorem.

Theorem 4.1. Let A, G, α, u be as above. There exists a strongly continuous action β
of G on A ⊗ K(L2(G)) and a twisting uλ such that (β, uλ) are exterior equivalent to
(α ⊗ id, u⊗ 1), that is, there exists vs = (1 ⊗ λs)(id ⊗M(u(s, ·))∗) such that

βs = ad(vs)(αs ⊗ id), id ⊗ uλ(s, t) = vsαs(vt )(u(s, t)⊗ 1)v∗
st . (4.4)

Proof. The proof of Theorem 3.4 in [30] is still valid as far as the last line on p. 301. At
that point the original argument uses the fact that u is a cocycle to show that it has been
untwisted by the exterior equivalence. In our case u satisfies a modified cocycle identity,
so that that last line (in the original notation) givesφ(s, t, r)−1ξ(r) = (uλ(s, t)ξ)(r). �	

One similarly obtains:

Corollary 4.2. In the situation of Theorem 4.1 one has

(A �α,u G)⊗ K(L2(G)) ∼= (A ⊗ K)�β,uλ G . (4.5)

The Packer-Raeburn stabilisation trick is used to show that up to stabilisation by
tensoring with compact operators A�α,uG and A�β,uλ G are isomorphic. The original
idea derived from Quigg’s generalisation of Takai duality for twisted crossed products,
and their β is just equivalent to Quigg’s double dual ̂̂α. One may therefore obtain a
duality theorem by the same procedure. We postpone discussion of this until Sect. 9
where we shall give a much more detailed account of duality for abelian groups.



48 P. Bouwknegt, K. Hannabuss, V. Mathai

5. Twisted Compact Operators

Before developing the theory further it is useful to give a very simple example of a nonas-
sociative algebra, obtained by twisting the algebra of compact operators onL2(G) using
the factor φ(x, y, z). We start with the Hilbert-Schmidt operators, realised as kernels
K(x, y) for x, y ∈ G, with the involution K∗(x, y) = K(y, x), and norm

‖K‖2
HS =

∫

G×G
|K(x, y)|2 dxdy, (5.1)

and define the new multiplication

(K1 ∗K2)(x, z) =
∫

G
φ(x, y, z)K1(x, y)K2(y, z) dy. (5.2)

This is consistent with the involution because

(K1 ∗K2)
∗(x, z) = (K1 ∗K2)(z, x)

=
∫

G
φ(z, y, x)−1K1(z, y)K2(y, x) dy

=
∫

G
φ(x, y, z)K∗

2 (x, y)K
∗
1 (y, z) dy

= (K∗
2 ∗K∗

1 )(x, z).

The fact that φ(x, y, x) = 1 also means that we still have

‖K‖2
HS =

∫

G
(K∗ ∗K)(x, x) dx. (5.3)

As usual, one can define a C∗-norm using the left regular representation ‖K1‖ =
sup(‖K1 ∗K2‖HS/‖K2‖HS). By using the Cauchy-Schwarz inequality and by consid-
ering rank one projections one sees that this is equivalent to the ordinary operator norm.
The twisted compact operators Kφ(L

2(G)) are the completion of the Hilbert-Schmidt
operators with respect to that norm.

Unfortunately the new multiplication is not associative unless

φ(x, y, z)φ(x, z,w) = φ(x, y,w)φ(y, z,w), (5.4)

for all x, y, z, w ∈ G. In that case φ(x, y, z) = φ(x, y,w)φ(y, z,w)/φ(x, z,w), but
conversely, whenever φ(x, y, z) has the form ψ(x, y)ψ(y, z)/ψ(x, z), for some func-
tion ψ , the algebra is associative. The twisted multiplication of kernels was used in
[9] to study the hyperbolic quantum Hall effect, but in that two-dimensional situation
the multiplication is automatically associative. Once one gets to three dimensions the
analogous algebra is nonassociative.

Proposition 5.1. The group G acts on the twisted algebra Kφ(L
2(G)) with multiplica-

tion

(K1 ∗K2)(x, z) =
∫

G
φ(x, y, z)K1(x, y)K2(y, z) dy (5.5)

by natural ∗-automorphisms

θx[K](z, w) = φ(x, z,w)K(zx,wx), (5.6)

and θxθy = ad(σ (x, y))θxy , where ad(σ (x, y))[K](z, w) = φ(x, y, z)φ(x, y,w)−1

K(z,w) comes from the multiplier σ(x, y)(v) = φ(x, y, v).
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Proof. Using the tricharacter property of φ, we see that

(θx[K1]∗θx[K2])(z, w)=
∫

G
φ(z, v,w)φ(x, z, v)φ(x, v,w)K1(zx, vx)K2(vx,wx)dv

=
∫

G
φ(zx, vx,wx)φ(x, z,w)K1(zx, vx)K2(vx,wx) dv

=φ(x, z,w)(K1 ∗K2)(zx,wx),

= θx[K1 ∗K2](z, w).

We also have

θx[K]∗(z, w) = θx[K](w, z) = φ(x, z,w)K(w, z)

= φ(x,w, z)K∗(w, z) = θx[K∗](z, w). (5.7)

Moreover,

θxθy[K](z, w) = φ(x, z,w)(θy[K])(zx,wx)

= φ(x, z,w)φ(y, zx,wx)K(zxy,wxy)

= φ(x, y, z)φ(x, y,w)−1θxy[K](z, w)

= ad(σ (x, y))[θxy[K]](z, w),

with σ(x, y)(z, w) = φ(x, y, z)δ(z− w). �	
Note. There is also a left-handed version of this which uses the multiplication

(K1 ∗K2)(x, z) =
∫

G
φ(x, y, z)−1K1(x, y)K2(y, z) dy (5.8)

and automorphisms

τx[K](z, w) = φ(x, z,w)K(x−1z, x−1w), (5.9)

and it is this version which will appear later, in Sect. 9. Some further automorphisms of
the original algebra Kφ(L

2(G)) given by

γx[K](z, w) = φ(x, z,w)−1K(x−1z, x−1w) (5.10)

will be useful in Sect. 8.
When G is a contractible group the twisted compact operators are just a deformation

of the usual ones.

Proposition 5.2. When G is a contractible group Kφ(L
2(G)) is a continuous deforma-

tion of K(L2(G)).

Proof. Let {εt : t ∈ [0, 1]} give a contraction ofG onto the identity, that is εt : G → G
is continuous and satisfies ε0(x) = x and ε1(x) is the identity for all x ∈ G. We then
define (for the right-handed version)

(K1 ∗t K2)(x, z) =
∫

G
φ(x, εt (y), z)K1(x, y)K2(y, z) dy, (5.11)

so that at t = 0 we have the twisted and at t = 1 the untwisted product. �	
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6. Twisted Induced Algebras

The introduction of u and φ has far-reaching consequences, because almost all the stan-
dard procedures have to be deformed, and we shall now investigate these in more detail.

Suppose that A is a C∗-algebra on which C(M) acts as double centralisers and the
subgroup N of G acts by automorphisms αr , (r ∈ N), and that for each s, t ∈ N there
are unitaries u(s, t) in the multiplier algebraM(A) such that αsαt = ad(u(s, t))αst , and
also the modified cocycle condition (for a specified continuous tricharacter φ)

αr [u(s, t)]u(r, st) = φ(r, s, t)u(r, s)u(rs, t). (6.1)

Such algebras always exist, since we can take the algebra freely generated by a collection
of symbols {u(s, t) : s, t ∈ N} and define the automorphism αr by the formula

αr [u(s, t)] = φ(r, s, t)u(r, s)u(rs, t)u(r, st)−1. (6.2)

We shall suppose that u and φ extend to continuous functions on G satisfying the
same relations:

αr [u(x, y)]u(r, xy) = φ(r, x, y)u(r, x)u(rx, y), (6.3)

for r ∈ N and x, y ∈ G. (We are mainly interested in the case when N is a maximal
rank lattice in a vector group G, and then φ automatically extends, and in the interesting
examples u does too.) Normally one would induce an algebra admitting a G-action from
that containing an N-action, but that will no longer work since the induced algebra is
trivial. Instead we consider the u-induced algebra B = u-indG

NA described in the next
result.

Proposition 6.1. The space B = u-indG
NA of functions f ∈ C0(G,A) which satisfy

f (rx) = ad(u(r, x))−1αr [f (x)] for all x ∈ G and r ∈ N is not trivial, and is closed
under pointwise multiplication of functions (f1f2)(x) = f1(x)f2(x) and the involution
f ∗(x) = f (x)∗. The norm ‖f ‖ = sup ‖f (x)‖ is a C ∗-norm.

Proof. We first note that (using the cocycle condition and remembering that the adjoint
action is unaffected by the central factor φ) functions in the space satisfy

f (rsx) = ad(u(r, sx))−1αr [f (sx)]

= ad(u(r, sx))−1αr([ad(u(s, x))]−1αs[f (x)])

= ad(u(r, sx))−1αr [ad(u(s, x))]−1αrαs[f (x)]

= ad(u(rs, x))−1ad(u(r, s))−1αrαs[f (x)]

= ad(u(rs, x))−1αrs[f (x)],

showing consistency of the condition. Without u this consistency check would fail and
the induced algebra would be trivial, showing why one cannot use the normal induced
algebra. We shall exhibit some useful explicit functions in the induced algebra in Prop-
osition 6.4, but there is also a general construction which is useful. For f a function
C0(G) and a an element in A, we define an A-valued function (f♦a) on G by

(f♦a)(x) =
∫

N
f (nx)α−1

n [ad(u(n, x))[a]] dn. (6.4)
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Using the cocycle identity for ad(u) (the obstruction φ is central and so disappears in
the adjoint action) we then check that

(f♦a)(rx) =
∫

N
f (nrx)α−1

n [ad(u(n, rx))[a]] dn

=
∫

N
f (nrx)α−1

n [ad(αn[u(r, x)])−1ad(u(n, r))ad(u(nr, x))[a]] dn

= ad(u(r, x))−1
∫

N
f (nrx)α−1

n [ad(u(n, r))ad(u(nr, x))[a]] dn

= ad(u(r, x))−1αr

∫

N
f (nrx)α−1

nr [ad(u(nr, x))[a]] dn

= ad(u(r, x))−1αr [(f♦a)(x)],
showing that (f♦a) defines an element of B.

Using the fact that αr and ad(u(x, r)) are automorphisms, we see that

(f1f2)(xr) = f1(xr)f2(xr)

= ad(u(x, r))αr [f1(x)]ad(u(x, r))αr [f2(x)]

= ad(u(x, r))αr [f1(x)f2(x)]

= ad(u(x, r))αr [(f1f2)(x)],

so that the space of u-induced functions is closed under the product.
Finally, exploiting the unitarity of u(r, x), we have

f ∗(rx) = f (rx)∗

= [u(r, x)−1αr [f (x)]u(r, x)]
∗

= u(r, x)−1αr [f (x)]
∗u(r, x)

= u(r, x)−1αr [f
∗(x)]u(r, x),

so that the involution respects the constraint. Finally

‖f ∗f ‖ = sup ‖(f ∗f )(x)‖ = sup ‖f (x)∗f (x)‖ = sup ‖f (x)‖2 (6.5)

gives a C∗-norm. �	
This shows that the induced space B is actually a ∗-algebra (moreover, an associative

algebra, since A was associative). A C∗-norm can be defined much as in the usual case.
Exploiting the ideas of the ordinary induced representations we can improve on this.

Theorem 6.2. If A is a continuous trace algebra with spectrum Â then B is a contin-
uous trace algebra with spectrum B̂ = N\(G × Â), where the action of r ∈ N on
(x, π) ∈ G × Â is defined by r(x, π) = (rx, π ◦ α−1

r ad(u(r, x))).

Proof. We should start by checking that the above formula does indeed define an action,
but that is essentially the same calculation just done to show that f♦a satisfies the equi-
variance condition for B. The rest of the proof follows the ideas in [33, 6.16 to 6.21], but
with the actions on the other sides, and using our definition of f♦a, and noting that in
the proof of 6.18 one needs to restrict to neighbourhoods of both s and x. This enables
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us to show that the representation defined by (x, π) ∈ G × Â, (x, π) : F �→ π(F (x) of
B is irreducible, because, for any (x, a) ∈ G × A we can use appropriate f♦a to find
F ∈ B such that F(x) = a, and then use irreducibility of π . The rest of the proof in [33]
is independent of the twisting. �	

We next introduce automorphisms of the twisted induced algebra.

Proposition 6.3. For y ∈ G and a function f : G → A define βy[f ](x) = ad(u(x, y))
[f (xy)]. Then βy preserves the subalgebra B and defines a ∗-automorphism of it.

Proof.

βy[f ](rx) = ad(u(rx, y))[f (rxy)]

= ad(u(rx, y))ad(u(r, xy))−1αr [f (xy)]

= ad(u(r, x))−1ad(αr [(u(x, y)])αr [f (xy)]

= ad(u(r, x))−1αr([ad(u(x, y))][f (xy)])

= ad(u(r, x))−1αr [βy[f ](x)],

showing that βy satisfies the equivariance condition.
To see that these are automorphisms we need only note that

(βy[f1]βy[f2])(x) = (βy[f1](x)βy[f2])(x)

= ad(u(x, y))[f1(xy)]ad(u(x, y))[f2(xy)]

= ad(u(x, y))[f1(xy)f2(xy)]

= ad(u(x, y))[(f1f2)(xy)]

= βy[f1f2](x),

as required, and compatibility with the involution is also easily checked. �	
Naturally the map y �→ βy is not a homomorphism.

Proposition 6.4. The functions v(y, z) : x �→ φ(x, y, z)u(x, y)u(xy, z)u(x, yz)−1, lie
in the multiplier algebra of B and satisfy

βx[v(y, z)]v(x, yz) = φ(x, y, z)v(x, y)v(xy, z). (6.6)

The automorphisms defined by β satisfy the relations

βyβz = ad(v(y, z))βyz. (6.7)

Proof. When x ∈ N we can write v(y, z)(x) = αx[u(y, z)], but otherwise αx is
undefined, and we cannot reduce v(y, z)(x) = φ(x, y, z)−1ad(u(x, y))ad(u(xy, z))
ad(u(x, yz))−1. To check that v(y, z) satisfies the equivariance condition for member-
ship of B, we calculate

u(rx, y)u(rxy, z)u(rx, yz)−1

= φ(r, x, y)−1u(r, x)−1αr [u(x, y)]u(r, xy)u(rxy, z)u(rx, yz)
−1

= φ(r, x, y)−1φ(r, xy, z)−1u(r, x)−1αr [u(x, y)]αr [u(xy, z)]u(r, xyz)u(rx, yz)
−1

= φ(r, x, y)−1φ(r, xy, z)−1φ(r, x, yz)u(r, x)−1αr [u(x, y)u(xy, z)]αr [u(x, yz)]
−1

×u(r, x)
= φ(r, x, y)−1φ(r, xy, z)−1φ(r, x, yz)ad(u(r, x))−1αr [u(x, y)u(xy, z)u(x, yz)

−1]

= φ(r, y, z)−1ad(u(r, x))−1αr [u(x, y)u(xy, z)u(x, yz)
−1].
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From this we see that

[v(y, z)](rx) = φ(rx, y, z)φ(r, y, z)−1ad(u(r, x))−1αr [φ(x, y, z)
−1v(y, z)(x)]

= ad(u(r, x))−1αr [v(y, z)(x)].

We cannot conclude that v(y, z) lies in B since it does not satisfy the analytic condition
of vanishing outside compact sets, but it is certainly in the multiplier algebra.

By making some cancellations, we obtain

(

v(x, y)v(xy, z)v(x, yz)−1
)

(s)= φ(s, x, y)φ(s, xy, z)

φ(s, x, yz)
u(s, x)u(sx, y)

×u(sxy, z)u(s, xyz)−1u(s, x)−1

=φ(s, y, z)ad(u(s, x))[u(sx, y)u(sxy, z)u(sx, yz)−1]

=φ(x, y, z)−1ad(u(s, x))[v(y, z)(sx)]

=φ(x, y, z)−1βx[v(y, z)](s).

Finally we see that

(βyβz[f ])(x) = ad(u(x, y))[(βz[f ](xy)]

= ad(u(x, y))ad(u(xy, z)[f (xyz)]

= ad(u(x, y))ad(u(xy, z)ad(u(x, yz)−1)[(βyzf (x)]

= ad(v(y, z))(x)[(βyzf (x)].

�	
Corollary 6.5. The action of G on B̂ defined by β has orbit space B̂/G = Â/N, so that
β defines the principal G/N-bundle (G × Â)/N → Â/N.

Proof. The action of y ∈ G sends � ∈ B̂ to � ◦ βy . In the earlier notation we have

(x, π)(βy[f ]) = π(βy[f ](x)) = π(ad(u(x, y))[f (xy)]), (6.8)

and, since inner automorphisms don’t affect the class of a representation, this is equiv-
alent to (xy, π). For r ∈ N this reduces to

(x, π)(βr [f ]) = π(ad(u(x, r)u(r, x)−1)ad(u(r, x)αr [f (x)]), (6.9)

which is equivalent to r(x, π), showing that the subgroup N stabilises the irreducible
representations of B, so that we have a G/N bundle, and that the orbit space is Â/N, as
claimed. �	

7. Algebras with Prescribed Spectrum and Dixmier-Douady Class

Before tackling the general case it is useful to consider what happens for the principal
bundle G/N over a point. In that case only the componentH0 can be non-trivial, and we
assume that it defines the tricharacter φ as before.

In fact [10] gives a universal construction for a principal projective unitary bundle
over a group, but we shall give an alternative description of the algebra as a twisted
induced algebra. We shall induce from N to G, and in order that the spectrum should
be just G/N we induce the algebra K(L2(N)) of compact operators. That carries the
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right regular representation ρ of N and twisting uρ described in Sect. 4. Although the
restriction of uρ to N × N is 1, the extension to G × G gives the induced algebra a twist.

At this point it is instructive to consider why uρ-indG
N(K(L2(N))) has a non-van-

ishing Dixmier–Douady obstruction when the action of N on K(L2(N)) is given by
αρ = adρ. One might expect that the induced algebra uρ-indG

N(K(L2(N)) simply acts
on the induced Hilbert space of square-integrable functions ψ : G → L2(N), which
satisfy the equivariance condition

ψ(rx) = uρ(r, x)
−1ρ(r)ψ(x), (7.1)

so that there is no obstruction. However, this is incorrect because the suggested equi-
variance condition on ψ is inconsistent, when uρ is not a cocycle:

ψ(rsx) = uρ(r, sx)
−1ρ(r)ψ(sx)

= uρ(r, sx)
−1ρ(r)uρ(s, x)

−1ρ(s)ψ(x)

= uρ(r, sx)
−1αr [uρ(s, x)]

−1ρ(r)ρ(s)ψ(x)

= φ(r, s, x)−1uρ(rs, x)
−1uρ(r, s)

−1ρ(rs)ψ(x).

Now, as we noted in the last paragraph, uρ(r, s) = 1, but the presence of the argument
x /∈ N means that φ(r, s, x) �= 1, and we end up with constraints

uρ(rs, x)
−1ρ(rs)ψ(x) = ψ(rsx) = φ(r, s, x)−1uρ(rs, x)

−1ρ(rs)ψ(x) (7.2)

which can be satisfied only by ψ = 0.

Proposition 7.1. Let φ be the tricharacter of G constructed from H0, uρ , ρ defined on
L2(N) as in Sect. 4, andαρ = adρ. The algebra uρ-indG

N(K(L2(N))) has spectrum G/N,
the G action on the spectrum is transitive with stabiliser N, and the Dixmier-Douady
class is described by the 3-form H0.

Proof. We assume that φ is obtained from the class f = H0 by the procedure described
in Sect. 2.

Choose an open set F ⊆ G on which the projection π to G/N is one-one, and
translates Fi = Fxi whose projections give a cover of G/N. These translates share
the property that the projection to G/N is injective, and so we may choose sections
γi : π(Fi) → G. The differences γij (v) = γi(v)γj (v)

−1 lie in N.
The restriction of the induced algebra to algebra-valued functions on π(Fi) ⊆ G/N

is Morita equivalent to C(π(Fi)) via the bimoduleXi = L2(π(Fi), L
2(N)), (restriction

to the subsets enables us to sidestep the earlier problem withL2(G, L2(N))). The actions
are the obvious pointwise multiplicative actions,

(fψ)(v) = f (γi(v))ψ(v) (7.3)

and this is a imprimitivity bimodule in the sense of [33].
Over the intersection π(Fi)∩π(Fj ) there is an equivalence of the two bimodulesXi

and Xj , given by the map

(gijψ)(v) = uρ(γij (v), γj (v))
−1ρ(γij (v))ψ(v) (7.4)
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from Xj to Xi . To see why this works we note that

(gij fψ)(v) = uρ(γij (v), γj (v))
−1ρ(γij (v))f (γj (v))ψ(v)

= ad(uρ(γij (v), γj (v))
−1ad(ρ(γij (v))[f (γj (v))]

uρ(γij (v), γj (v))
−1ρ(γij (v))ψ(v).

Since γij (v) ∈ N this simplifies to

f (γij (v)γj (v))uρ(γij (v), γj (v))
−1ρ(γij (v))ψ(v) = (fgijψ)(v). (7.5)

To compute the obstruction we must compare gij gjk and gik on π(Fi) ∩ π(Fj ) ∩
π(Fk). Now we have

(gij gjkφ)(v) = uρ(γij (v), γj (v))
−1ρ(γij (v))(gjkψ)(v)

= uρ(γij (v), γj (v))
−1ρ(γij (v))

uρ(γjk(v), γk(v))
−1ρ(γjk(v))ψ(v)

= uρ(γij (v), γj (v))
−1ad(ρ(γij (v)))[uρ(γjk(v), γk(v))

−1]

ρ(γij (v))ρ(γjk(v))ψ(v).

Applying the modified cocycle identity we have

(gij gjkφ)(v) = φ(γij (v), γjk(v), γk(v))
−1uρ(γik(v), γk(v))

−1

uρ(γij (v), γjk(v))
−1ρ(γik(v))ψ(v),

and finally, since γij (v), γjk(v) ∈ N we deduce that uρ(γij (v), γjk(v)) = 1, giving

(gij gjkφ)(v) = φ(γij (v), γjk(v), γk(v))
−1(gikψ)(v). (7.6)

This shows that the Dixmier-Douady class can be described by the Čech cocycle

φijk = φ(γij (v), γjk(v), γk(v))
−1

= exp[2πif (γij (v), γjk(v), γk(v))]

= exp[2πif (γi(v), γj (v), γk(v))],

where the antisymmetry of f has been used in the final line. To find a form describing the
de Rham cocycle we note that, since locally γk(v) and v are the same and the differences
γij are in N,

df (γij (v), γjk(v), γk(v)) = f (γij (v), γjk(v), dγk(v))

= f (γij (v), γjk(v), dv)

= f (γij (v), γj (v), dv)− f (γij (v), γk(v), dv),

giving an explicit expression as the difference of one-forms. Repeating this process twice
we arrive at the de Rham form f (dv, dv, dv) giving the class H0. (The antisymmetry
of f compensates for the antisymmetry of the exterior product to give a non-vanishing
answer.) �	

The same ideas can now be used to deal with the general case. However, since we
want to use results for the untwisted case, we shall at this point restrict ourselves to the
case of an abelian group G.
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Theorem 7.2. Let G be abelian and A a continuous trace algebra with an action of
N ⊂ G by locally projectively unitary automorphisms. (This includes the assumption
that the restriction of u to N × N takes the constant value 1). Both u-indG

N(A) and

indG
N(A) are continuous trace algebras, and the difference of their Dixmier-Douady

invariants δ(u-indG
N(A)) − δ(indG

N(A)) is the class defined by the form f ∈ �3(G,Z)
associated to the tricharacter φ:

δ(u-indG
N(A))− δ(indG

N(A)) = [f ]. (7.7)

Proof. We first note that by Theorem 4.1 u is exterior equivalent to uλ which by (4.3) has
trivial restriction to N × N. Since A has continuous trace, it is locally Morita equivalent
to an algebra of compact operators, and all our calculations will be local. In fact we
may cover Â by open sets {Uλ} and find Hilbert spaces Hλ such that the restriction AUλ

of A to Uλ is Morita equivalent to C(Uλ,K(Hλ)) via some bimodule Yλ. Combining
these with the bimodules Xl used in the previous proof we take X(l,λ) = Xl ⊗ Yλ for
the restriction of the algebra to π(Fl)× Uλ.

We may assume that the cover is fine enough that αn(a) is equivalent to ad(ρλn)(a)

for a ∈ AUλ , with ρλ a θλ-representation. We now define an equivalence G(m,µ)(l,λ) on the
overlap of the sets π(Fl)× Uλ and π(Fm)× Uµ by setting

(G
(m,µ)

(l,λ) ψ)(v) = u(γlm(v), γm(v))
−1hλµρ

µ(γlm(v))ψ(v), (7.8)

where hλµ describes the equivalences of Yλ and Yµ, (which are assumed to satisfy the
relationship hλµhµν = �λµνhλν , where � is a Čech cocycle describing the Dixmier-
Douady class of A.) On overlaps the projective representations ρλ are equivalent in
the sense that ρµ(n)hµν = hµνκµν(n)ρ

ν(n), for some character κµν ∈ N̂. The adjoint
actions of ρµ and ρν are both equivalent to α.

We now calculate that

(G
(m,µ)

(l,λ) G
(n,ν)
(m,µ)ψ)(v) = u(γlm(v), γm(v))

−1hλµρ
µ(γlm(v))u(γmn(v),

γn(v))
−1hµνρ

ν(γmn(v))ψ(v)

= u(γlm(v), γm(v))
−1αγlm)[u(γmn(v), γn(v))

−1]hλµhµν
×κµν(γlm)ρν(γlm(v))ρν(γmn(v))ψ(v).

The first two terms combine as before to give

u(γln(v), γn(v))
−1u(γlm(v), γmn(v))

−1 = φ(γlm, γmn, γn)
−1u(γln(v), γn(v))

−1,

(7.9)

whilst the projective representions give

ρν(γlm(v))ρ
ν(γmn(v)) = θν(γlm(v), γmn(v))ρ

ν(γln(v)), (7.10)

giving

(G
(m,µ)

(l,λ) G
(n,ν)
(m,µ)ψ)(v)

= φ(γlm, γmn, γn)
−1κµν(γlm)θ

ν(γlm(v), γmn(v))�λµν

u(γln(v), γn(v))
−1hλνρ

ν(γln(v))ψ(v)

= φ(γlm, γmn, γn)
−1κµν(γlm)θ

ν(γlm(v), γmn(v))�λµνG
(n,ν)
(l,λ) ψ(v),



Nonassociative Tori and Applications to T-Duality 57

from which we deduce the obstruction. All the factors except the first would be pres-
ent for indG

N(A), so that the difference between the Dixmier-Douady obstructions for
u-indG

N(A) and indG
N(A) is just given by φ−1, or as forms by f . �	

Our formula shows that the obstruction has four contributions: the MacLane-White-
head obstruction φ−1, the Mackey obstruction θ , the Phillips-Raeburn obstruction κ ,
and the Dixmier-Douady obstruction � for A, corresponding to H0, H1, H2 and H3.

Corollary 7.3. Let G be abelian and E be a principal G/N-bundle over M with pre-
scribed Dixmier-Douady invariant associated withH . Then there is a u-induced algebra
with spectrum E, and the correct action of G, having the Dixmier-Douady invariantH .
This u-induced algebra is not necessarily unique.2

Proof. We know from [2, 4, 28] that there is an algebra indG
N(A) associated with the

principal G/N-bundle E and having Dixmier-Douady form H − H0. This algebra is
not necessarily unique, cf. [28]. With f as in the theorem we see that u-indG

N(A) has
Dixmier-Douady class described by the form H . An alternative approach would be to
note that a continuous trace algebra with Dixmier–Douady class given byH , can be con-
structed as the tensor product of two continuous trace algebras with classesH −H0 and
withH0, and then to apply [28] for the former and our earlier result for the classH0. �	

Although we have shown how to construct an algebra with a given Dixmier-Douady
class, it is natural to wonder whether one could also find another algebra with twisting
given by an ordinary cocycle. The next result shows that this is not possible.

Theorem 7.4. Every system with the Dixmier-Douady invariantH is described by auto-
morphisms whose twisting gives the same tricharacter φ.

Proof. By the general theory we know that any other system must be exterior equiv-
alent to the u-induced system above, that is it is described by automorphisms λx =
ad(W(x))βx , and w(x, y) = W(x)βx[W(y)]v(x, y)W(xy)−1 for some MB-valued
functionW on G. Since the twistings are cohomologous they must define the same class
φ, but more explicitly we calculate that

λx[w(y, z)]w(x, yz) = ad(W(x))βx[W(y)βy[W(z)]v(y, z)W(yz)−1]

W(x)βx[W(yz)]v(x, yz)W(xyz)−1

= W(x)βx[W(y)]βxβy[W(z)]βx[v(y, z)]v(x, yz)W(xyz)−1

= φ(x, y, z)W(x)βx[W(y)]ad(v(x, y))

×βxy[W(z)]v(x, y)v(xy, z)W(xyz)−1

= φ(x, y, z)W(x)βx[W(y)]v(x, y)W(xy)−1W(xy)

×βxy[W(z)]v(xy, z)W(xyz)−1

= φ(x, y, z)w(x, y)w(xy, z),

showing that the same cocycle φ arises. �	
2 The non-uniqueness reflects the fact that there may exist several liftings of the action of N on A to

G. So, strictly speaking, u-ind does not define a functor, but u-indG
N(A) just indicates the induced algebra

with a prescribed action of G.
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8. The Twisted Crossed Product Algebra

In this section we can return to the case of a general group G. We have argued that the dual
of a bundle described by B with a twisted group action should be given by the twisted
crossed product. For the induced algebra u-indG

N(A) its twisted crossed product with G
can be calculated explicitly, and the following result shows that it is a generalisation of
the twisted compact operators in Sect. 5.

Theorem 8.1. The twisted crossed product u-indG
N(A) �β,v G is isomorphic to the

∗-algebra of A-valued kernels on G × G satisfying

K1(rz, rw) = φ(r, z, w)−1u(r, z)−1αr [K1(z, w)]u(r,w), (8.1)

with K∗(z, w) = K(w, z)∗ and product

(K1 � K2)(z, w) =
∫

G
K1(z, v)K2(v,w)φ(z, v,w) dv. (8.2)

Proof. The twisted crossed product consists of functions Fj : G → B with twisted
convolution

(F1 ∗ F2)(x) =
∫

G
F1(y)βy[F2(y

−1x)]v(y, y−1x) dy. (8.3)

Identifying B with functions from G to A, we may give the elements of the twisted
crossed product a second argument in G and, using the explicit form of the induced
action and of v, get

(F1 ∗ F2)(z, x) =
∫

G
F1(z, y)ad(u(z, y))[F2(zy, y

−1x)]

×φ(z, y, y−1x)u(z, y)u(zy, y−1x)u(z, x)−1 dy, (8.4)

which can be rearranged as

(F1 ∗ F2)(z, x)u(z, x) =
∫

G
φ(z, y, y−1x)F1(z, y)u(z, y)F2(zy, y

−1x)

×u(zy, y−1x) dy. (8.5)

We now define K1(z, zy) = F1(z, y)u(z, y), K2(z, zy) = F2(z, y)u(z, y) and (K1 �

K2)(z, zx) = (F1 ∗ F2)(z, x)u(z, x) to obtain

(K1 � K2)(z, zx) =
∫

G
K1(z, zy)K2(zy, zx)φ(z, y, y

−1x) dy. (8.6)

Setting w = zx, v = zy and exploiting the antisymmetry of φ the result follows. We
readily check that

F ∗(z, x)u(z, x) = v(x, x−1)∗ad(u(z, x))[F(zx, x−1)]∗u(z, x)
= u(zx, x−1)∗F(zx, x−1)∗, (8.7)

from which it follows that K∗(z, w) = K(w, z)∗.
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The kernels inherit an equivariance condition from the inducing process,

K1(rz, rzy) = F1(rz, y)u(rz, y)

= ad(u(r, z))−1αr [F1(z, y)]u(rz, y)

= u(r, z)−1αr [K1(z, zy)u(z, y)
−1]u(r, z)u(rz, y)

= φ(r, z, y)−1u(r, z)−1αr [K1(z, zy)]u(r, zy).

Exploiting the antisymmetry of φ this gives

K1(rz, rw) = φ(r, z, w)−1u(r, z)−1αr [K1(z, w)]u(r,w). (8.8)

We note that since the original product F1 ∗ F2 respected this equivariance condition,
so does the product on kernels. The norm on the twisted crossed product can be defined
from the left regular representation and so agrees with that on kernels. �	

The description of the crossed product algebra in Theorem 8.1 can be made more
precise for a bundle over a point described by A = K(L2(N)) as in Proposition 7.1.
However, this time it is more useful to take the left handed version of the automorphisms,
that is

αr [k](s, t) = k(r−1s, r−1t) , (8.9)

and set (u(s, t)ψ)(r) = φ(r, s, t)−1ψ(r).

Theorem 8.2. The nonassociative torus describing the dual of a bundle over a point is
isomorphic to the algebra Aφ = Kφ(L

2(G))�γ,u N, where γ is defined by Eq. (5.10).

Proof. We abbreviate notation for the K(L2(N))-valued kernels by setting

K(z,w) : (s, t) �→ K(z,w; s, t), (8.10)

so that the equivariance condition can be given explicitly as

K(rz, rw; s, t) = φ(r, z, w)−1φ(r, z, s)K(z,w; r−1s, r−1t)]φ(r,w, t)−1, (8.11)

or, replacing the first two arguments, as

K(z,w; s, t) = φ(r, z, w)−1φ(r, z, s)K(r−1z, r−1w; r−1s, r−1t)]φ(r,w, t)−1.

(8.12)

Taking r = s in this formula we get

K(z,w; s, t) = φ(s, z, w)−1K(s−1z, s−1w; 1, s−1t)

×φ(w, s, t). (8.13)

Writing u(x, y) for the multiplier associated with the automorphism of twisted kernels
γx defined by Eq. (5.10), we have

K(z,w; s, t) = γs[K](z, w; 1, s−1t)u(s, t) = γs[K](z, w; 1, s−1t)u(s, s−1t) .

(8.14)
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This shows that the kernels can be reconstructed from their values when the third
argument is 1, and in this case the product formula can be simplified. The product

(K1 � K2)(z,w; r, t) =
∫

N×G
K1(z, v; r, s)K2(v,w; s, t)φ(z, v,w) dsdv , (8.15)

reduces to

(K1 � K2)(z, w; 1, t) =
∫

N×G
K1(z, v; 1, s)K2(v,w; s, t)φ(z, v,w) dsdv .

(8.16)

The second kernel can be rewritten using the equivariance condition to give

(K1 � K2)(z, w; 1, t) =
∫

G
{
∫

N
K1(z, v; 1, s)γs[K2](v,w; 1, s−1t)u(s, s−1t) ds}

×φ(z, v,w) dv . (8.17)

Identifying the kernel Kj with the Kφ(L
2(G))-valued function s �→ {(z, w) �→ Kj

(z,w; 1, s)} on N , this is just the twisted crossed product of the two functions. In other
words we can identify the algebra with Kφ(L

2(G))�γ,u N. �	

In the general case of a bundle over M one needs to take A = C(M,K(L2(N)), but
since the products of functions onM are all taken pointwise, there is no essential change
in the calculations. The only point for caution is that, in those cases where φ depends on
M (and consequently so also do γ and u), one is really looking at an algebra of contin-
uous sections of a bundle over M rather than just functions. Observe that by Theorem
8.1, the nonassociative torusAφ is canonically isomorphic to u-indG

N(K(L2(N))�β,v G.

Theorem 8.3. The nonassociative torus describing the dual of a bundle over M is iso-
morphic to the algebra C(M,Kφ(L

2(G))�γ,u N).

When N is trivial this gives the twisted algebra of kernels introduced in Sect. 5, though
with φ replaced by its inverse. More generally it provides an extension of Green’s Gen-
eralised Imprimitivity Theorem [17] to the case of these twisted induced algebras.

In contrast to the twisted crossed product algebra for the dual, the correspondence
algebra is associative. Provided that there is no Mackey obstruction the correspondence
space is associated with the algebra u-indG

N(A)�β,v N.

Theorem 8.4. The algebra u-indG
N(A)�β,v N is associative.

Proof. By Propositions 3.1 and 6.4 u-indG
N(A) �β,v N is associative if and only if the

restriction of φ to N × N × N is 1, and we have seen that this is a consequence of the
integrality of the form H0. �	

For non-trivial Mackey obstruction one replaces N by the projection onto G of the
centre of the central extension defined by the multiplier [19, 14], and that algebra is
similarly associative.
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9. The Dual Action

In this section we shall assume that G is abelian. Following the development in Sect. 5,
we may define automorphisms of the kernels by

τx[K](z, w) = φ(x, z,w)K(x−1z, x−1w), (9.1)

and these satisfy τxτy = ad(̃u(x, y))−1τxy , where

ad(̃u(x, y)[K])(z, w) = φ(x, y, z)φ(x, y,w)−1K(z,w). (9.2)

However, we are primarily interested in the case of abelian groups, and there is also a
more useful action of the dual group Ĝ on the dual algebra. Its definition is motivated by
the action β̂ξ on F ∈ u-indG

N(A)�β,vG given by β̂ξ [F ](z, y) = ξ(y)F (z, y). Rewritten
in terms of kernels this leads to the following idea.

Proposition 9.1. For ξ ∈ Ĝ define β̂ξ by

β̂ξ [K](z, w) = ξ(z−1w)K(z,w). (9.3)

Then β̂ξ is an automorphism of u-indG
N(A)�β,v G, and β̂ξ β̂η = β̂ξη.

Proof. We must first show that β̂ξ is well-defined, that is that it preserves the subspace
of kernels K satisfying the equivariance condition of Theorem 8.1. In fact we see that

β̂ξ [K](rz, rw) = ξ(z−1w)K(rz, rw)

= ξ(z−1w)φ(r, z, w)−1u(r, z)−1βr [K(z,w)]u(r,w)

= φ(r, z, w)−1u(r, z)−1βr [β̂ξ [K](z, w)]u(r,w),

which gives the required equivariance condition. It is also an automorphism since

(β̂ξ [K1] � β̂ξ [K2])(z, w) =
∫

G
ξ(z−1v)K1(z, v)ξ(v

−1w)K2(v,w)φ(z, v,w)
−1 dv

=
∫

G
ξ(z−1w)K1(z, v))K2(v,w)φ(z, v,w)

−1 dv

= ξ(z−1w)(K1 � K2)(v,w).

There is no twisting involved since it is easy to check that β̂ξ β̂η = β̂ξη. �	
We now form the crossed product of the twisted crossed product algebra with Ĝ. The

elements are functions from Ĝ to the algebra of kernels described in the last section, and
so may be regarded as A-valued functions on G × G × Ĝ, with multiplication

(̂k1 � k̂2)(z, w, ξ) =
∫

G×Ĝ
k̂1(z, v, η)β̂η [̂k2](v,w, η−1ξ)φ(z, v,w)−1 dηdv

=
∫

G×Ĝ
k̂1(z, v, η)η(v

−1w)̂k2(v,w, η
−1ξ)φ(z, v,w)−1 dηdv.

We shall denote the group-theoretic Fourier transform of k̂ with respect to its third
argument by k (which is now a function on G × G × G):

k(z,w, x) =
∫

Ĝ
k̂(z, w, ξ)ξ(x) dξ. (9.4)
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The multiplication obtained by Fourier transform is (assuming appropriate normalisation
of the measures)

(k1 � k2)(z, w, x) =
∫

G×Ĝ×Ĝ
ξ(x)̂k1(z, v, η)η(v

−1w)̂k2(v,w, η
−1ξ)

×φ(z, v,w)−1 dξdηdv

=
∫

G×Ĝ×Ĝ
k̂1(z, v, η)η(v

−1wx)̂k2(v,w, η
−1ξ)(η−1ξ)(x)

×φ(z, v,w)−1 dξdηdv

=
∫

G
k1(z, v, v

−1wx)k2(v,w, x)φ(z, v,w)
−1 dv.

We now introduce another transformation by

k̃(x; z,w) = φ(x, z,w)−1u(x, z)k(xz, xw,w−1)u(x,w)−1. (9.5)

Theorem 9.2. There is an isomorphism

(u-indG
N(A)�β,v G)�β̂ Ĝ

∼= u-indG
N(A)⊗ Kφ(L

2(G)). (9.6)

Proof. One important property which follows from the equivariance condition for the
A-valued kernels is that

k̃(rx; z,w) = φ(rx, z,w)−1u(rx, z)k(rxz, rxw,w−1)u(rx,w)−1

= [φ(rx, z,w)φ(r, xz, xw)]−1u(rx, z)u(r, xz)−1αr [k(xz, xw,w
−1)]

×u(r, xw)u(rx,w)−1

= [φ(rx, z,w)φ(r, xz, xw)]−1φ(r, x, z)−1φ(r, x,w)

u(r, x)−1αr [u(x, z)]αr [k(xz, xw,w
−1)]αr [u(x,w)]

−1u(r, x)

= [φ(rx, z,w)φ(r, xz, xw)]−1φ(r, z, x)φ(r, x,w)

ad(u(r, x))−1αr [u(x, z)k(xz, xw,w
−1)u(x,w)−1]

= ad(u(r, x))−1αr [̃k(x; z,w)],

so that the kernels k̃ satisfy the induced algebra condition with respect to x, and so can
be considered elements of the algebra induced from N to G by the A-valued kernels.

Next we consider the product on these functions

(̃k1 � k̃2)(x; z,w) = φ(x, z,w)−1u(x, z)(k1 � k2)(xz, xw,w
−1)u(x,w)−1

= φ(x, z,w)−1
∫

G
u(x, z)k1(xz, xv, v

−1)k2(xv, xw,w
−1)

×u(x,w)−1φ(xz, xv, xw)−1 dv

=
∫

G
k̃1(x; z, v)̃k2(x; v,w)φ(z, v,w)−1 dv.

Thus we have the pointwise product with respect to x, with the twisted multiplication
of Kφ(L

2(G)) in the fibres. �	
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We shall show in the final section that the twisted compact operators are in a certain
sense Morita equivalent to the ordinary compact operators, so that this result provides a
very precise analogue of the normal duality theorem.

To complete the argument we really need to know that the double dual action ̂̂β is
equivalent to the original β to within the action on the twisted compact operators. The
double dual action is defined on (u-indG

N(A)�β,v G)�β̂ Ĝ by the same procedure used

to obtain the dual action, that is multiplication by the pairing of the Ĝ variable and the
group element:

(̂̂βg [̂k](z, w, ξ) = ξ(g)̂k(z, w, ξ). (9.7)

Theorem 9.3. The double dual action of G can be written as

(̂̂βg [̃k])(x; z,w) = τg[(v(g, g−1z)−1βg [̃k]v(g, g−1w)(x; z,w)]. (9.8)

Proof. Fourier transforming the definition of the action we get

(̂̂βg[k](z, w, x) =
∫

Ĝ
ξ(g)ξ(x)̂k(z, w, ξ) = k(z,w, xg). (9.9)

Using the same notation for the equivalent action on k̃,

(̂̂βg [̃k])(x; z,w) = φ(x, z,w)−1u(x, z)(̂̂βg[k])(xz, xw,w−1)u(x,w)−1

= φ(x, z,w)−1u(x, z)k(xz, xw,w−1g)u(x,w)−1

= φ(xg, g−1z, g−1w)φ(x, z,w)−1u(x, z)u(xg, g−1z)−1

k̃(xg; g−1z, g−1w)u(xg, g−1w)u(x,w)−1.

In terms of the induced twisting we now we have

u(x, z)u(xg, g−1z)−1 = φ(x, g, g−1z)−1v(g, g−1z)(x)−1u(x, g), (9.10)

and substituting this (and the analogous expression in w), we arrive at

(̂̂βg [̃k])(x; z,w) = φ(xg, g−1z, g−1w)φ(x, z,w)−1φ(x, g, g−1z)−1φ(x, g, g−1w)

×v(g, g−1z)(x)−1

u(x, g)̃k(xg; g−1z, g−1w)u(x, g)−1v(g, g−1w)(x)

= φ(g, z,w)v(g, g−1z)(x)−1ad(u(x, g))[̃k(xg; g−1z, g−1w)]

×v(g, g−1w)(x)

= φ(g, z,w)v(g, g−1z)(x)−1(βg [̃k](x; g−1z, g−1w)]v(g, g−1w)(x).

This can be rewritten in terms of the twisted action τg on kernels and the adjoint action
of v in the form
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(̂̂βg [̃k])(x; z,w) = τg[(v(g, g−1z)−1βg [̃k]v(g, g−1w))(x; z,w)], (9.11)

showing that to within an inner automorphism of the kernels one has βg ⊗ τg , and up to
an action on the twisted kernels one recovers βg . �	

In the application to principal T
n-bundles one takes G = R

n. As this is contractible,
Proposition 5.2 shows that Kφ(L

2(G)) is a deformation of K(L2(G)), so that this is a
close substitute for the usual duality theorem.

10. Applications to T-Duality

In this section, we apply the mathematical results of the earlier sections to determine the
T-dual of principal torus bundles with general H-flux, thus generalizing earlier results
in [2–4, 28, 29]. Let G = R

�, and N = Z
� in the setup of Corollary 7.3.

Let E → M be a principal T
�-bundle, andH ∈ H 3(E) be an integral H-flux on E.3

Then we can identify H = (H3, H2, H1, H0), where Hp ∈ �p(M,∧3−p t̂), under the
isomorphism (1.1), and closed under D. Then by the results in [28, 29], there is a con-
tinuous trace C∗-algebra indG

N(A) with spectrum equal to E and with Dixmier-Douady
invariant equal to (H3, H2, H1, 0), which has an action of G that covers the given action
of G on E. This action is not necessarily unique. Then by Corollary 7.3, we know that
there is another continuous trace C∗-algebra u-indG

N(A) with spectrum equal to E and
with Dixmier-Douady invariant equal to H = (H3, H2, H1, H0), which has a twisted
action of G that covers the given action of G onE. Our main definition in this section is:

Definition 10.1. The twisted crossed product u-indG
N(A) �β,v G is defined to be the

T-dual to the principal T
�-bundle E with H-flux H .

We justify this definition as follows. Firstly, the T-dual of u-indG
N(A) �β,v G is the

crossed product (u-indG
N(A)�β,v G)�β̂ Ĝ, which by the twisted Takai duality Theorem

9.2 is isomorphic to u-indG
N(A)⊗ Kφ(L

2(G)). That is, the T-dual of u-indG
N(A)�β,v G

is Morita equivalent to the continuous trace algebra u-indG
N(A), so that T-duality applied

twice returns us to where we started, up to Morita equivalence. In the special case when
H = H0, the fibre of this bundle over the point z ∈ M is equal to the nonassociative
torus Aφ of rank � with tricharacter φ corresponding to H0 (see Theorem 8.2). In the
general case, but when H0 is zero, the fibre is a stabilized noncommutative torus with
invariant H1, [28, 29], and when H0 = 0 and H1 = 0, then the fibre is the stabilized
algebra of continuous functions on a torus, [2–4]. Thus we have the following theorem.

Theorem 10.2 (T-duality for principal torus bundles). Let E → M be a princi-
pal T

�-bundle over M , and H ∈ H 3(E) be an integral H-flux on E. Then H =
(H3, H2, H1, H0), where Hp ∈ �p(M,∧3−p̂t). Let c1(E) ∈ H 2(M, t) denote the
first Chern class of E, which determines E up to isomorphism.

Then:

(1) If H0 = 0 and H1 = 0, then there is a canonical T-dual Ê which is a principal
T
�-bundle over M first Chern class c1(Ê) = H2 ∈ H 2(M, t̂). Ê has a T-dual H-

flux Ĥ = (Ĥ3, Ĥ2, 0, 0) given by Ĥ3 = H3 and Ĥ2 = c1(E). T-duality is neatly
encapsulated in the commutative diagram,

3 The conclusions in this section are valid for integral classes H ∈ H 3(E,Z) as well since the com-
ponent H0 does not carry torsion, and the remainder of the arguments is based on the results of [28, 29],
which also hold for torsion H . For simplicity we state the results for differential forms only.
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Fig. 10.1. In the diagram, the fiber over z ∈ M is the noncommutative torus Af (z), which is represented
by a foliated torus, with foliation angle equal to f (z)

(2) If H0 = 0 and H1 �= 0, then the T-dual is a continuous field of (stabilized) non-
commutative tori Af over M , where the fiber over the point z ∈ M is equal to the

rank k noncommutative torus Af (z) (see Fig. 10.1 above). Here f : M → T
(�2) is

a continuous map representing H1 ∈ [M,T(
�
2)] ⊂ H 1(M,∧2, t̂). This map is not

unique, but the nonuniqueness does not affect its K-theory.
(3) If H0 �= 0 and if H = H0, then the T-dual is a bundle of nonassociative tori Aφ (cf.

Theorem 8.2) over M , where φ is the tricharacter associated to H0. For general H ,
the T-dual is a continuous field of algebras that contains both the noncommutative
torus and the nonassociative torus, and moreover, the T-dual is not unique, but the
nonuniqueness occurs exactly as in part (2) above.

Part (1) was proved in [2, 3] when � = 1 and in [4] for general �.
Part (2) was proved in [28] when � = 2 and in [29] for general �.
Part (3) is what has been proved in this paper.

A particular, but important case of Theorem 10.2 above is the following.

1. The T-dual of the torus T
3 with no background flux is the dual torus T̂

3. This remains
true if the background flux is topologically trivial.

2. (T3, k dx ∧ dy ∧ dz) considered as a trivial circle bundle over T
2. The T-dual of

(T3, k dx∧dy∧dz) is the nilmanifold (HR/HZ, 0), whereHR is the 3 dimensional
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Heisenberg group and HZ the lattice in it defined by

HZ =








1 x 1

k
z

0 1 y

0 0 1



 : x, y, z ∈ Z





. (10.2)

3. (T3, k dx ∧ dy ∧ dz) considered as a trivial T
2-bundle over T. The T-dual of

(T3, k dx ∧ dy ∧ dz) is a continuous field of stabilized noncommutative tori,

C∗(HZ)⊗ K, since
∫

T2
k dx ∧ dy ∧ dz �= 0.

4. (T3, k dx ∧ dy ∧ dz) considered as a trivial T
3-bundle over a point. The T-dual of

(T3, k dx ∧ dy ∧ dz) is a nonassociative torus, Aφ (cf. Theorem 8.2), where φ is the

tricharacter associated to k dx ∧ dy ∧ dz, since
∫

T3
k dx ∧ dy ∧ dz �= 0.

We end with some speculations and open problems related to the results of the paper.
In Sect. 11, we propose a natural definition of K-theory for the special nonassociative
algebras that are considered in this paper. These are of the form A �β,v G, where A
is a C∗-algebra admitting a twisted action of the Abelian group G = R

�. We expect
an analogue of Connes–Thom isomorphism theorem in K-theory to hold, showing that
the K-theories of A and A �β,v G are naturally isomorphic. This would then give fur-
ther evidence that our definition of the T-dual of a principal torus bundle with H-flux is
indeed correct. Finally, the K-theory of our special nonassociative algebras should be
Morita invariant in our context, namely invariant under tensor product with twisted com-
pact operators. Then the twisted Takai duality Theorem 9.2 would prove that T-duality
applied twice returns us to the torus bundle with H-flux that we started out with.

It remains to also determine the topological invariants of continuous fields of non-
commutative tori and bundles of nonassociative tori as in the paper. This would then
enable one to give a more symmetric characterization to the T-dual, similar to part (1)
of the theorem above. We have an explicit conjecture for this, the explanation for which
is in [5], namely, for the continuous field of noncommutative tori Af , there should be
a “Chern class” invariant c1(Af ) = (H2, H1, 0) satisfying dH2 + c1(E) ∧H1 = 0. In
this case, we can add the following to part (2) of the theorem above.

The T-dual Af is classified by its Chern class invariant c1(Af ) = (H2, H1, 0) satis-
fying dH2 +c1(E)∧H1 = 0 and dH1 = 0 and has T-dual H-flux Ĥ = (Ĥ3, Ĥ2, Ĥ1, 0),
given by Ĥ3 = H3, Ĥ2 = c1(E) and Ĥ1 = 0.

Similarly, for the bundle of nonassociative tori Aφ with tricharacter φ associated to
H0, there should also be a “Chern class” invariant c1(Aφ) = (H2, H1, H0) satisfying
dH2 + c1(E) ∧ H1 = 0 and dH1 + c1(E) ∧ H0 = 0. In this case, we can add the
following to part (3) of the theorem above.

The T-dual Aφ is classified by its Chern class invariant c1(Aφ) = (H2, H1, H0) sat-
isfying dH2 + c1(E) ∧ H1 = 0, dH1 + c1(E) ∧ H0 = 0 and dH0 = 0. It has T-dual
H-flux Ĥ = (Ĥ3, Ĥ2, Ĥ1, Ĥ0) given by Ĥ3 = H3, Ĥ2 = c1(E), Ĥ1 = 0 and Ĥ0 = 0.

What also remains to be done is T-duality for nonabelian principal bundles, where
some of the ideas of this paper and [5] apply.
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11. Nonassociative Algebras and Monoidal Categories – An Outlook

Although the nonassociativity of the crossed product algebra appears to present a seri-
ous amendment to the notion of duality, that is not really the case. The fact that the
same obstruction φ appears throughout is a signal that one should rather work in the
monoidal category of C0(G)-modules in which the isomorphism� : (U ⊗ V )⊗W →
U ⊗ (V ⊗W) is given by the action of φ ∈ C(G × G × G), the multiplier algebra of
C0(G)⊗C0(G)⊗C0(G), [25, 12]. The cocycle identity for φ is equivalent to commuta-
tivity of the fundamental pentagonal diagram which ensures that all higher associators are
consistent. By Fourier transforming we could identify the category as Ĝ-modules rather
thanC(G)-modules, which fits more directly into the framework of the duality theorem.
The identity object is the trivial Ĝ-module 1 on C, which certainly has the property that,
for any Ĝ-moduleU ,U ⊗1 and 1⊗U are naturally isomorphic toU . This is equivalent
on C(G) to evaluating a function at the identity. Because φ vanishes when an argument
is set equal to the identity, the two obvious maps from U ⊗ (1 ⊗V ) = �[(U ⊗ 1)⊗V ]
to U ⊗ V are consistent.

An algebra A is a monoid in this category, and the identification� automatically takes
care of the associativity. We can also define a left A-module M if one has a morphism
A ⊗M → M . A left A-module M is said to be projective if given any surjective mor-
phism of left A-modules a : E → N and any morphism of left A-modules b : M → N ,
there is a morphism of left A-modules c : M → E such that a ◦ c = b. If A has a unit,
then one can define the monoid V (A) consisting of isomorphism classes of finitely gen-
erated projective left A-modules under the direct sum operation. ThenK0(A) is defined
as the Grothendieck group of V (A). If A does not have a unit, and A+ denotes A with
a unit adjoined to it, then K0(A) is defined as the kernel of the canonical morphism
K0(A+) �→ K0(C) ∼= Z. This will be studied in detail in a subsequent paper.

An example of a monoid in the category of Ĝ modules is the algebra Kφ(L
2(G)) of

twisted compact operators with the Ĝ action

(ξ ·K)(x, y) = ξ(xy−1)K(x, y)

and L2(G), which has the Ĝ-action (ξ ·ψ)(x) = ξ(x)ψ(x), is a module withK⊗ψ �→
K ∗ ψ , where

(K ∗ ψ)(x) =
∫

G
K(x, z)ψ(z) dz.

The Ĝ actions are compatible since

((ξ ·K) ∗ (ξ · ψ))(x) =
∫

G
ξ(xz−1)K(x, z)ξ(z)ψ(z) dz = (ξ(x)(K ∗ ψ))(x).

Then

(K1 ∗ (K2 ∗ ψ))(x) =
∫

G
K1(x, y)K2(y, z)ψ(z) dydz,

and the alternate bracketing (K1 ∗K2) ∗ψ must be computed as the image of �(K1 ⊗
(K2 ⊗ ψ)), giving

((K1 ∗K2) ∗ ψ)(x) =
∫

G
φ(x, y, z)−1K1(x, y)K2(y, z)ψ(z) dydz,

consistent with the multiplication law on the twisted kernels.
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One can alternately work with the C0(G) action rather than Ĝ but then the action on
kernels requires a use of the coproduct (�f )(x, y) = f (xy), so that (f · K)(x, y) =
f (xy−1)K(x, y).

One can similarly define right A-modules, and also bimodules for two algebras A1
and A2. It is also possible to look at A1-A2-bimodulesXwhich have an action of a prod-
uct group Ĝ1 × Ĝ2 with maps �1 and �2 defining the associativity properties, and are
in the category of Ĝ1-modules as left A1-modules and in the category of Ĝ2-modules as
right A2-modules. Such a bimodule can be used to set up a Morita equivalence between
left A2-modules and left A1-modules, by mapping a left A2-module M to the quotient
of X ⊗ V by the equivalence relation (x.b)⊗ ψ ∼ �2(x ⊗ (b.ψ)), for x ∈ X, b ∈ A2
andψ ∈ M . This allows us to define Morita equivalence between algebras with different
kinds of associativity. In particular, if we take A1 = Kφ(L

2(G)), A2 = K(L2(G)), with

X = K(L2(G)), equipped with the usual right multiplication action of A2 and the left
multiplication action of A1 defined above, then we have Morita equivalence between
the twisted and untwisted algebras.

Clearly this is only an outline of some of the ideas arising out of this new perspec-
tive on nonassociativity, and we shall explore these in more detail in the sequel to this
paper. Since posting this paper on the arXives [1] has come to our attention, which also
investigates some nonassociative algebras albeit in a rather different context.
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