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Abstract: This paper contains the generalization of the Feigin-Stoyanovsky construc-
tion to all integrable ŝlr+1-modules.We give formulas for the q-characters of any highest-
weight integrable module of ŝlr+1 as a linear combination of the fermionic q-characters
of the fusion products of a special set of integrable modules. The coefficients in the sum
are the entries of the inverse matrix of generalized Kostka polynomials in q−1. We prove
the conjecture of Feigin and Loktev regarding the q-multiplicities of irreducible modules
in the graded tensor product of rectangular highest weight-modules in the case of slr+1.
We also give the fermionic formulas for the q-characters of the (non-level-restricted)
fusion products of rectangular highest-weight integrable ŝlr+1-modules.

1. Introduction

Fermionic formulæ for characters of highest-weight modules of affine algebras or vertex
algebras first appeared in a purely algebraic context [17]. They were later shown [13, 12]
to be related to the partition functions of certain statistical mechanical systems at their
critical points. These character formulæ have desirable combinatorial properties, such
as the manifest positivity of the coefficients that represent weight-space multiplicities.
They also have a physical significance because they reflect the quasi-particle content
of the statistical mechanical system. Consequently, algebraic constructions of bases for
representations which reveal this combinatorial structure are important, and have been
studied using several methods in the past dozen years.

One such method is that of Feigin and Stoyanovskiı̆ [23]. These authors used a theo-
rem of Primc [21] to give an interesting construction of the vacuum integrable modules
of the affine algebra ĝ associated to any simple Lie algebra g. Their construction relies on
the loop generators of the affine algebra. Physical systems associated with such integra-
ble ĝ-modules are generalizations of the Heisenberg spin chain in statistical mechanics,
or the WZW model in conformal field theory.
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The formulæ of Feigin-Stoyanovskiı̆ [23] have an attractive interpretation in terms
of (a bosonic version of) non-abelian quantum Hall states [19, 2]. In these states there
are r “types” of particles that obey a generalized exclusion principle: the wave function
vanishes if any k+1 particles occupy the same state. Here r is the rank of the algebra and
k is the level of the integrable ĝ-module. In the presence of quasi-particle excitations, the
wave functions can also vanish if fewer than k + 1 particles occupy the same state. The
statistics of the quasi-particles is ‘dual’ to the statistics of the fundamental particles [1].

The original construction of Feigin-Stoyanovskiı̆ can be used to compute [23] char-
acters of vacuum (with highest weight k�0) representations of affine algebras. Later,
Georgiev [10, 9] generalized it to some modules in the ADE series, with particularly
simple highest weights, of the form lωj + k�0, corresponding to special rectangular
Young diagrams. (Here ωj are certain fundamental g-weights, and l ∈ Z≥0.)

In general, no fermionic formulæ are available for arbitrary highest-weight, integrable
ĝ-modules. In this paper, we resolve this problem for the case of slr+1.

We explain, in terms of the functional realization of Feigin and Stoyanovskĭ, why such
‘rectangular highest weight’ modules are very special, and why there is no direct ferm-
ionic construction for other modules. However, we prove that it is possible to compute
the character of any module as a finite sum of fermionic characters of the ‘rectangu-
lar’ highest-weight modules. The coefficients in this sum are the entries of the inverse
matrix of generalized Kostka polynomials. These coefficients are, however, not mani-
festly positive (or even of positive degree).

In our construction we are naturally led to the graded tensor product of Feigin and
Loktev [8] of finite-dimensional g-modules. In the case of irreducible slr+1-modules
with highest weights of the form lωj (where ωj is any fundamental weight), we com-
pute the explicit fermionic form of the graded multiplicities of irreducible modules in
the Feigin-Loktev tensor product, thus proving two of the conjectures of [8]: That the
graded tensor product in this case is independent of the evaluation parameters, and that
it is related to the generalized Kostka polynomials of [22, 16].

The plan of the paper is as follows. In Sect. 2 we give the basic definitions of the
algebra and its modules. In Sects. 3 and 4, we supply the details of the generalized con-
struction of [23] for integrable modules of ŝlr+1, with highest weights corresponding
to rectangular Young diagrams. In Sect. 5, we explain a similar calculation of graded
characters of conformal blocks or coinvariants (the fusion product of [8]), which turn
out to be related to the generalized Kostka polynomials of [22, 16]. We then use this cal-
culation in Sect. 6 to compute the characters of arbitrary highest-weight representations.
See Theorem 6.3 for the main result.

Although, for the sake of clarity, we concentrate in this paper on the case of
ĝ = ŝlr+1, the generalization to affine algebras associated with other simple Lie algebras
is possible, but in that case one should replace the notion of integrable ĝ-modules with
irreducible g-modules as their top component with those which have (the degeneration
to the classical case of) Kirillov-Reshetikhin modules as their top component. We will
give this construction in a future publication.

2. Notation

2.1. Current generators of affine algebras. Let g = slr+1 and let � = {αi | i =
1, . . . , r} denote its simple roots, and {ωi | i = 1, . . . , r} the fundamental weights.
Let {eαi

= ei | i = 1, . . . , r} denote the corresponding generators of n+, and
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{fαi
= fi | i = 1, . . . , r} those of n−. We have the Cartan decomposition slr+1 �

n+ ⊕ h ⊕ n−, where h is the Cartan subalgebra.
Irreducible, finite-dimensional highest-weight g-modules πλ are parametrized by

weights λ ∈ P +, that is, λ = l1ω1 +· · ·+ lrωr with li ∈ Z≥0. The subset of P + consist-
ing of weights λ such that

∑r
i=1 li ≤ k is called the set of level-k restricted weights, P +

k .
The affine Lie algebra associated with g is ĝ, where

ĝ � g ⊗ C[t, t−1] ⊕ Cc ⊕ Cd,

where c is central and

[d, x ⊗ tn] = −nx ⊗ tn. (2.1)

We denote the current generators by x[n]
def= x ⊗ tn, x ∈ slr+1. Let 〈x, y〉 be the

symmetric bilinear form on slr+1. Then the relations between the currents are

[x ⊗ f (t), y ⊗ g(t)]̂g = [x, y]gf (t)g(t) + c 〈x, y〉
∮

t=0
f ′(t)g(t)dt,

where [·, ·]g is the corresponding commutator in g.
The Cartan decomposition is ĝ � n̂+ ⊕ ĥ⊕ n̂− with n̂± = n± ⊕ (slr+1 ⊗ t±1

C[t±1])
and ĥ=h⊕Cc⊕Cd . The algebra ĝ′ is the algebra obtained by dropping the generator d.

We will frequently use generating functions for current generators of the affine alge-
bra, which we define by

x(z) =
∑

n∈Z

x[n]z−n−1, x ∈ slr+1. (2.2)

Note that the convention for the current generators in (2.2) is different from that used
by [23, 4].

2.2. Affine algebra modules. On any irreducible ŝlr+1-module, c acts by a constant k

called the level of the representation. A cyclic highest-weight ĝ-module with highest
weight � = λ + k�0 + mδ is a cyclic module generated by the action of ĝ on a
highest-weight vector vλ, such that

n̂+vλ = 0, (2.3)

hvλ = λ(h)vλ, for h ∈ h ⊂ g, cvλ = kvλ, dvλ = mvλ. (2.4)

The universal such module is the Verma module M(�) � U(̂n−). If k ∈ N and λ ∈
P +

k , the quotient of the Verma module by its maximal submodule is an irreducible,
highest-weight integrable ĝ-module, which we denote by Vλ (we assume k is fixed in
this notation). The structure of the cyclic module generated by a highest-weight vector
vλ is independent of m, so it is generally convenient to set m = 0.

Definition 2.1. Let M be an irreducible cyclic highest-weight module with highest
weight � = λ + k�0, generated by the highest-weight vector vλ. The subspace gener-
ated by the action of the subalgebra g ⊗ 1 � g on vλ is called the top component of
M . It is isomorphic as a g-module to πλ.
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The irreducible, finite-dimensional g-module πλ is characterized as the quotient of
the Verma module of g by the left ideal in g generated by f

li+1
i . Similarly, the integrable

module Vλ is the quotient of theVerma module of ĝ, M(�), by the left ideal in ĝ generated
by fi[0]li+1, plus one additional generator, eθ [−1]k−θ(λ)+1, where θ = α1 + · · · + αr .

A characterization of the maximal proper submodule M ′(�) of M(�) in the case of
integrable modules was given in [21] in terms of the algebra of current generators.

Note that on any highest-weight module, the current (2.2) acts as a Laurent series in z.
Therefore, products of currents make sense when acting on a highest-weight module,
and one can consider the associative algebra of currents. Formally, the coefficients of zn

in products of currents of the form x(z)y(z) exist only in a completion U of U( ĝ ).

Theorem 2.2 [21]. Let M(�) be a Verma module with highest weight � = λ + k�0,
with λ ∈ P +

k and k ∈ N. Denote its maximal proper submodule by M ′(�), such that
Vλ � M(�)/M ′(�). Let R be the subspace in U generated by the adjoint action of
U(slr+1) on the coefficients of eθ (z)

k+1. Then M ′(�) = RM(�).

Again, the elements in R act as well-defined elements of U( ĝ ) on M(�). We call the
set of currents which result from the adjoint action of slr+1 on the current eθ (z)

k+1 the
integrability conditions. For example, for any root α, the coefficients of eα(z)k+1 are in R.

3. The Semi-Infinite Construction of Feigin and Stoyanovskiı̆

Theorem 2.2 was used by Feigin and Stoyanovskiı̆ [23] to give a construction of the
integrable modules in the case where � = k�0. The construction naturally gives rise to
fermionic formulæ for the characters of integrable modules. We will explain the details
of the construction of [23] below.

3.1. Principal subspaces. For arbitrary integrable highest weight � = λ + k�0, let vλ

be the highest-weight vector of Vλ. Consider the subalgebra

ñ−
def= n− ⊗ C[t, t−1]

acting on vλ.

Definition 3.1. Define the principal subspace Wλ = W
(0)
λ = U(̃n−)vλ ⊂ Vλ. Similarly,

define the principal subspaces W
(N)
λ = U(̃n−)TNvλ, where TN = tα(N) is the affine

Weyl translation corresponding to the root α(N) = ∑

i Niαi (in the notation of [11]
(6.5.2)), where Ni are positive integers such that (CrN)α = 2N for all α, and Cr is the
Cartan matrix of slr+1.

Lemma 3.2. This choice of α(N) gives a sequence of inclusions

W
(0)
λ ⊂ W

(1)
λ ⊂ · · · ⊂ W

(N)
λ ⊂ · · · , (3.1)

such that the inductive limit of the sequence (3.1) as N → ∞ is the integrable module Vλ.
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The inclusions follow from the fact that vλ ∈ W
(N)
λ . The fact that the inductive limit

indeed gives the full module is not obvious (see [20, 5]) but follows from the fact that
the module is integrable.

In fact, this theorem was proven in [23] for the following cases: ŝl2 for arbitrary high-
est weight, and ŝl3 with � = k�0. This was done by computing the characters in the
limit N → ∞, and comparing them with the known character formulæ for Vλ of [17].

In [10, 9], certain combinatorial proofs were provided using ideas related to those of
[23] (with differently defined principal subspaces) for rectangular highest weights, for
all simply laced algebras. The principal subspaces of that paper are different from those
used here, as [10] uses what amounts to a different subalgebra to generate the subspace.

In this paper, we will continue this program by giving the character formulæ for
arbitrary highest-weight modules of slr+1. It turns out that the methods of [23] are not
sufficient for the case of non-rectangular representations, and instead we must resort to
computing the characters of certain fusion products of representations, and decomposing
them in terms of irreducible modules. The result is a formula which is a sum of fermionic
formulas of the form found in [23, 10, 9], where the coefficients in the sum are elements
of Z[q−1].

3.2. Relations in the principal subspace. Let us characterize the ideal Iλ, where Wλ �
U(̃n−)/Iλ. Using a PBW-type argument, it is easy to see that Wλ = U(n− ⊗C[t−1])vλ,
because the highest-weight vector vλ is annihilated by n− ⊗ tC[t]. Thus, Iλ includes the
left ideal generated by {fα[n] | n > 0, α ∈ �}.

The ideal contains the two-sided ideal generated by relations in the Lie algebra. In
terms of generating functions, these relations are

[fαi
(z), fαj

(w)] =
{

0, |i − j | = 1
w−1δ(w/z)fαi+αj

(z), |i − j | = 1 , (3.2)

[
fαi

(z), [fαi
(w), fαi±1(u)]

] = 0, (3.3)

where δ(z) = ∑

n∈Z
zn. These two relations together mean that matrix elements involv-

ing the product fi(z)fi±1(w) have a simple pole whenever z = w, and that the residue
of this pole commutes with fi(u).

The integrability condition

fi(z)
k+1v = 0, v ∈ Vλ, 1 ≤ i ≤ r, (3.4)

implies that Iλ contains the two-sided ideal generated by the coefficients of zn of fi(z)
k+1

(in the appropriate completion of the universal enveloping algebra).
Finally there are the relations which follow from the integrability of the top com-

ponent πλ of Vλ, which is a subspace of Wλ also. Therefore, Iλ contains the left ideal
generated by fi[0]li+1. The integrability condition involving eθ [−1] does not play a
role, because it is not an element of U(̃n−).

3.3. Construction of the dual space. In order to compute the characters of the principal
subspace Wλ, we describe its dual space. This will enable us to calculate the character
for sufficiently simple λ. The dual space is spanned by the coefficients of monomials of
the form x

n1
1 · · · xnm

m of matrix elements in the set

Fλ = {〈w|fi1(x1) · · · fim(xm)|vλ〉 | w ∈ V ∗
λ , m ≥ 0, 1 ≤ ia ≤ r

}
,
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where V ∗
λ is the restricted dual module. Given an ordering of the generators, the function

above is defined in the region |xi | > |xi+1|, and therefore the coefficient of x
n1
1 · · · xnm

m

for given integers nj is given by the expansion in this regime. Below, we shall refer to
the function space Fλ itself as the dual space, and specify an appropriate pairing. This
space can be characterized by its pole structure and vanishing conditions.

3.3.1. The dual space to U(̃n−). Let us first consider the larger function space G, dual to
the universal enveloping algebra U = U(̃n−). The algebra U is spanned by words in the
letters {fαi

[n] | i = 1, . . . , r, n ∈ Z}, and it is h and d-graded. The graded component
U [m]d , where m = (m(1), . . . , m(r))T , is spanned by the elements fi1 [n1] · · · fim [nm],
of h-weight

∑

α m(α)α = ∑

j αij and −∑

i ni = d .
The dual space to U is also h- and d-graded. Denote by U [m] the h-graded compo-

nent, and by G[m] the dual to it. This is a space of functions in the variables

x = {x(α)
i | i = 1, . . . , m(α), α = 1, . . . , r},

where x
(α)
i is the variable corresponding to a generator of the form fα(x

(α)
i ). We define

the pairing (·, ·) between U and G inductively, as follows:

(1, 1) = 1,

(g(x), Mfα[n]) =
(

1

2πi

∮

x
(α)
1 =0

(x
(α)
1 )ng(x)dx

(α)
1 , M

)

, M ∈ U, (3.5)

where the contour of integration is taken counter-clockwise around the point x
(α)
1 = 0,

in such a way that all other points are excluded, |x(α)
1 | < |x(α′)

j |. Similarly,

(g(x), fα[n]M) =
(

1

2πi

∮

x
(α)
1 =0

(x
(α)
1 )ng(x)dx

(α)
1 , M

)

,

the contour is taken clockwise.
The commutation relations between the currents are equivalent to the operator prod-

uct expansion (OPE)

fi(z)fi±1(w) = fαi+αi±1(w)

z − w
+ regular terms,

where “regular terms” refers to terms which have no pole at z = w, and the expansion of
the denominator is taken in the region |z| > |w|. Due to the OPE’s, it is clear that func-
tions in G[m] will have at most a simple pole whenever x

(α)
j = x

(α±1)
k . Thus, functions

in G[m] are rational functions of the form

g(x) = g1(x)
∏

i,j,α(x
(α)
i − x

(α+1)
j )

, (3.6)

where g1(x) are polynomials in (x
(α)
i )±1.
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Again using the OPE’s, we can construct the pairing between all other elements of
U and G. For example,

(g(x), Mfα+α±1[n])=
(

1

2πi

∮

x
(α)
1 =0

(x
(α)
1 )n(x

(α)
1 −x

(α±1)
1 )g(x)

∣
∣
∣
x

(α)
1 =x

(α±1)
1

dx
(α)
1 , M

)

,

where the contour excludes all other points, and

(g(x), Mfα+···+α+h[n])

=
(

1

2πi

∮

x
(α)
1 =0

(x
(α)
1 )n(x

(α)
1 − x

(α+1)
1 )

· · · (x(α+h−1)
1 − x

(α+h)
1 )g(x)

∣
∣
∣
x

(α)
1 =···=x

(α+h)
1

dx
(α)
1 , M

)

.

The function g1(x) is not completely arbitrary, due to the Serre relation (3.3). The
Serre relation implies that the function

(x
(α)
1 − x

(α+1)
1 )g(x)

∣
∣
∣
x

(α)
1 =x

(α+1)
1

has no poles at the points x
(α+1)
j = x

(α)
1 and x

(α)
j = x

(α+1)
1 , where j > 1. This implies

that the function g1(x) has the property that

g1(x)|
x

(α)
i =x

(α)
j =x

(α±1)
k

= 0. (3.7)

Finally, it is clear that since [fi(z), fi(w)] = 0, g1(x) is symmetric under the ex-
change of variables x

(α)
i ↔ x

(α)
j . In summary, we have

Theorem 3.3. The space of functions G[m] dual to the graded component U [m] of the
universal enveloping algebra of ñ−, with the pairing defined inductively by (3.5), is the
space of functions in the variables {x(α)

j } with j = 1, . . . , m(α) and α = 1, . . . , r , of the

form (3.6), where g1(x) is a polynomial in (x
(α)
j )±1, symmetric under the exchange of

variables with the same superscript, and which vanishes wheneverx
(α)
1 = x

(α)
2 = x

(α±1)
1 .

3.3.2. Dual to the principal subspace Wλ. Next, we consider the space Fλ[m], which
is defined as the graded component of the space Fλ, the subset of matrix elements of
U [m] in Fλ. The space Fλ[m] is the dual space to Wλ[m] (the weight subspace of Wλ of
h-weight λ − mT α) with the pairing defined as in (3.5), where 1 ∈ U is replaced by vλ.

The dual space Fλ[m] is the subspace of G[m], which couples trivially via the pairing
(3.5) to the ideal Iλ ⊂ U . Apart from the two-sided ideal coming from the relations in
the algebra, which we have already accounted for in constructing G[m], the ideal Iλ

contains the relations coming from the highest-weight conditions (2.4), and from the
integrability conditions (3.4).

The integrability conditions mean that Ufi(x)k+1U ⊂ Iλ, which means that

g1(x)|
x

(α)
1 =···=x

(α)
k+1

= 0, (3.8)

for all g(x) ∈ Fλ[m] and for all α.
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The ideal Iλ contains the left ideal generated by fα[n], n > 0 for any α. We see from
(3.5) that for functions in Fλ[m], g1(x) can have at most a simple pole at x

(α)
1 = 0. Let

us define the function g2(x) by

g(x) = g2(x)
∏

α,i(x
(α)
i )

∏

α,i,j (x
(α)
i − x

(α+1)
j )

, (3.9)

where g2(x) is a polynomial in x
(α)
i for all i, α.

In order to account for the relation Ufβ [n] ⊂ Iλ for β = αi + · · · + αi+h, where
n > 0, we need to impose an additional restriction on g2(x), because of the prefac-
tor (x

(α)
1 x

(α+1)
1 · · · x(α+h)

1 )−1 in (3.9). The function g1(x), after evaluation at the point

u = x
(α)
1 = x

(α+1)
1 = · · · = x

(α+h)
1 , must be of degree greater than or equal to −1 in

the variable u if it is to couple trivially to fβ [n] for n > 0. Therefore, we see that g2(x)

satisfies:

g2(x)|
x

(α)
1 =x

(α+1)
1 =···=x

(α+h)
1 =u

vanishes as uh as u → 0. (3.10)

Finally we need to take into account the integrability conditions for the top compo-
nent: Ufβ [0]λ(β)+1 ⊂ Iλ for each positive root β. For simple roots, this means that

g2(x)|
x

(α)
1 =···=x

(α)
lα+1=0

= 0. (3.11)

When β is not a simple root, then the relations are more complicated, involving variables
corresponding to different roots. These are sufficiently complicated that we do not know
how to compute the character of the space in this case.

However, at this point let us note that for the special case of rectangular represen-
tations, the situation is much simpler. The relation (3.10) is automatically satisfied for
such representations. For suppose we consider the representation with lβ = 0 for at most
one index β. Then since Ufβ [0] ⊂ Iλ, whereas Ufα[0] ⊂ Iλ for α = β, we have that in
this special case,

g1(x) =
∏

j

(x
(β)
j )−1g2(x), (3.12)

where g2(x) is a polynomial in all the variables, satisfying (3.11) for the index β only,
as well as the integrability conditions and the Serre relation. The relation (3.10) is not
an extra condition in this case.

Let us summarize the result for rectangular representations, therefore.

Theorem 3.4. Let �β = lωβ + k�0 for some 1 ≤ β ≤ r . Then the dual space of func-
tions to the graded component of the principal subspace Wlωβ [m] is the space of rational
functions of the form (3.6), where g1(x) is a function of the form (3.12), where g2(x) is a
polynomial in the variables x

(α)
i satisfying the Serre relation (3.7), symmetric under the

exchange of variables x
(α)
i ↔ x

(α)
j for all α, vanishing when x

(β)
1 = · · · = x

(β)
l+1 = 0, or

when any k+1 variables of the same superscript coincide, x(α)
1 = · · · = x

(α)
k+1 for any α.

In the next section, we will show how to compute the character of this space using a
filtration on the space.

For non-rectangular representations there is no such simple description of the space.
The purpose of this paper is to explain how to compute the character for non-rectangular
representations as a linear combination of characters of rectangular representations.
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3.4. Filtration of the dual space Fλ. In this subsection, we will assume that � = �β =
λ+k�0, λ = λβ = lωβ for some fixed 1 ≤ β ≤ r . This corresponds to aYoung diagram
of rectangular form (with l columns and β rows).

As explained above, the space Fλ is h-graded, Fλ = ⊕

m Fλ[m], where Fλ[m] is a

subspace of the space of rational functions in the variables x = {x(α)
i |α = 1, . . . , r ; i =

1, . . . , m(α)} of the form

G(x) = g(x)
∏

i (x
(β)
i )

∏r−1
α=1

∏

i,j (x
(α)
j − x

(α+1)
j )

, (3.13)

where g(x) is polynomial, symmetric under exchange of variables with the same value
of α (which we will refer to as the color index), x

(α)
i ↔ x

(α)
j . The index β corresponds

to the fundamental weight wβ , where λβ = lwβ . In addition, g(x) vanishes when any
of the following conditions is met

x
(α)
1 = · · · = x

(α)
k+1, (3.14)

x
(α)
1 = x

(α)
2 = x

(α±1)
1 , (3.15)

x
(β)
1 = · · · = x

(β)
l+1 = 0. (3.16)

Our goal is to compute the character of this space, for which purpose we will introduce
a filtration and an associated graded space. We will be able to compute the characters of
the graded pieces easily.

To simplify the calculations below, let us define the closely related space Fλ[m]. This
space is a subspace of the space of all rational functions in the variables x, which are
given by

G(x) = g(x)
∏r−1

α=1
∏

i,j (x
(α)
i − x

(α+1)
j )

, (3.17)

where g(x) is as in (3.13), so G(x) = ∏

i x
(β)
i G(x). In the following, we will fix m and

l, and study a filtration of this space Fλ[m] (which we will refer to by F), which can be
described as follows.

Let µ = (µ(1), . . . , µ(r)) be a collection of partitions, where each µ(α) is a partition
of m(α) and has m

(α)
a rows of length a.

We can now rename the variables x
(α)
i by associating each of them to a box of the

Young diagram associated with the partitions µ(α). As a result of this renaming, we have
variables x

(α)
a,i,j , which correspond to the Young diagram of partition µ(α), namely to

column j of the ith row (counted from top to bottom) of length a. See the left part of
Fig. 1 for an explicit example. In the proofs which follow, we will simplify this notation
as much as possible. Note that, due to the symmetry properties of g(x), how we rename
the variables is irrelevant.

Let H be the space of rational functions in the variables y = {y(α)
a,i |α = 1, . . . , r; a ≥

1; i = 1, . . . , m
(α)
a }. Define the evaluation map ϕµ(α) , which sets all the variables in the

same row of the (Young diagram associated to the) partition µ(α) to the same value,
x

(α)
a,i,j �→ y

(α)
a,i . The effect of the evaluation map on the variables corresponding to the
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x
(α)
k,1,1 x

(α)
k,1,2 x

(α)
k,1,k−1 x

(α)
k,1,k

x
(α)
k,mk,1 x

(α)
k,mk,2 x

(α)
k,mk,k−1

x
(α)
k,mk,k

x
(α)
k−1,1,1 x

(α)
k−1,1,2 x

(α)
k−1,1,k−1

x
(α)
k−1,mk−1,1

x
(α)
k−1,mk−1,2 x

(α)
k−1,mk−1,k−1

x
(α)
2,1,1 x

(α)
2,1,2

x
(α)
2,m2,1 x

(α)
2,m2,2

x
(α)
1,1,1

x
(α)
1,m1,1

−→

y
(α)
k,1 y

(α)
k,1y

(α)
k,1y

(α)
k,1

y
(α)
k,mk

y
(α)
k,mk

y
(α)
k,mk

y
(α)
k,mk

y
(α)
k−1,1y

(α)
k−1,1y

(α)
k−1,1

y
(α)
k−1,mk−1

y
(α)
k−1,mk−1y

(α)
k−1,mk−1

y
(α)
2,1y

(α)
2,1

y
(α)
2,m2

y
(α)
2,m2

y
(α)
1,1

y
(α)
1,m1

Fig. 1. The evaluation map for the variables x(α). Note that we dropped the superscripts (α) in m
(α)
a

partition µ(α) is shown in Fig. 1. We define the evaluation map ϕµ : F → H to be
ϕµ = ∏r

α=1 ϕµ(α) .

By (3.14), ϕµ(g(x)) = 0 (where g(x) is as in (3.13) with G(x) ∈ F), if any of the
partitions µ(α) has a part which is greater than k. Hence, in the following, we will assume
that none of the partitions has a part greater than k, and refer to these (multi)-partitions
as k-restricted.

Our strategy will be to study the image of F under the evaluation map.

Definition 3.5. Let Hµ be the space of functions in the variables y, and let Hµ ⊂ Hµ

be the subspace spanned by functions of the form

H(y) = Hµ(y)h(y), (3.18)

where h(y) is an arbitrary polynomial in y, symmetric under the exchange y
(α)
a,i ↔ y

(α)
a,j ,

and

Hµ(y)=
∏

α=1,... ,r
(a,i)>(b,j)

(y
(α)
a,i − y

(α)
b,j )2Aab

∏

α=1,... ,r−1
(a,i);(b,j)

(y
(α)
a,i − y

(α+1)
b,j )−Aab

∏

(a,i)

(y
(β)
a,i )max(0,a−l).

(3.19)

Here, Aab = min(a, b) and (a, i) ∈ Ik × Imα (where Im = {1, . . . , m}). The ordering
(a, i) > (b, j) is defined as follows. The index i increases downwards, and we say that
(a, i) > (b, j) if a > b, or, if a = b, when i < j .
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Let us define a lexicographic ordering on multi-partitions. That is, the usual lexico-
graphic ordering is taken on partitions µ(α), and ν > µ if ν(α) = µ(α) for all α < γ and
ν(γ ) > µ(γ ).

Let ker ϕµ be the kernel of the evaluation map ϕµ acting on F. We can now define
the subspaces

µ =
⋂

ν>µ

ker ϕν , ′
µ =

⋂

ν≥µ

ker ϕν . (3.20)

Thus, µ is the space of rational functions which are annihilated by every evaluation
map with ν > µ.

By definition, ν ⊂ µ if ν < µ, and ′
µ ⊂ µ. In addition, ′

(1m(1)
,... ,1m(r)

)
= {0}.

Therefore, µ defines a filtration on F. Define the associated graded space

Gr  =
⊕

µ

Grµ , (3.21)

where Grµ  = µ/′
µ and the sum is over multi-partitions of m. The main purpose of

this section is to prove

Theorem 3.6. The induced map

ϕµ : Grµ  → Hµ (3.22)

is an isomorphism of graded vector spaces.

This is very similar to the proof found in [7] for the case which corresponds to ŝl3, and
we use the same ideas here.

To prove the theorem, we need to show three things. First, the evaluation map

ϕµ : µ → Hµ (3.23)

is well-defined. Second, it is surjective, and third, the induced map (3.22) is well defined
and injective.

3.4.1. The evaluation map is well-defined. To prove that the map ϕµ : µ → Hµ, is
well defined, we must show that the rational functions obtained after the evaluation are
indeed of the form (3.18) and (3.19). We will do this by showing that the structure of
the poles and zeros of the image of the functions (3.17) in Fm under the evaluation map
is precisely of the form (3.19).

Lemma 3.7. Let G(x) ∈ µ. Then, the function ϕµ(G(x)) has a zero of order at least

2 min(a, a′) when y
(α)
a,i = y

(α)

a′,i′ , ∀α.

Proof. The proof is independent of α, and so we can use the argument used in the case
of ŝl2 in [2]. We will repeat that argument here for completeness.

It is sufficient to consider the dependence of G(x) on the two sets of variables of the
same color α, which we denote by {xa,i | i = 1, . . . , a} and {xa′,i′ | i′ = 1, . . . , a′}. We
can assume that a ≥ a′ without loss of generality.

We can carry out the evaluation map in two steps: ϕµ = ϕ2 ◦ ϕ1. Here ϕ1 consists
of evaluating all the variables except the set {xa′,i′ | i′ = 1, . . . , a′} and ϕ2 consists of
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setting xa′,1 = · · · = xa′,a′ = ya′ (note that under ϕ1, the variables xa,1, . . . , xa,a are
all set to ya).

Let

g1(ya; xa′,1, . . . , xa′,a′) = ϕ1(G(x)). (3.24)

Because G(x) ∈ µ, G(x) is annihilated by all ϕν with ν > µ. Therefore

g1(ya; xa′,1, . . . , xa′,a′)
∣
∣
xa′,i′=ya

= 0 for all i′, (3.25)

because this corresponds to an evaluation corresponding to a multi-partition greater than
µ. Therefore,

g1(ya; xa′,1, . . . , xa′,a′) =
a′
∏

i′=1

(xa − xa′,i′)g̃1(ya; xa′,1, . . . , xa′,a′). (3.26)

Now g1(ya; xa′,1, . . . , xa′,a′) was obtained from a symmetric function in x
(α)
i , and

so, for each i′,

∂g1

∂ya

∣
∣
∣
∣
xa′,i′=ya

= a
∂g1

∂xa′,i′

∣
∣
∣
∣
xa′,i′=ya

. (3.27)

However (3.26) tells us that, again for each i′,

∂g1

∂ya

∣
∣
∣
∣
xa′,i′=ya

= − ∂g1

∂xa′,i′

∣
∣
∣
∣
xa′,i′=ya

=
a′
∏′

i′′=1

(ya − xa′,i′′)g̃1

∣
∣
∣
∣
∣
∣
xa′,i′=ya

, (3.28)

the prime on the product meaning that the term with i′′ = i′ is to be omitted. The
only way to reconcile (3.27) with (3.28) is for g̃1|xa′,i′=ya to be zero. Thus the zero at
xa′,i′ = ya is at least of order two

g1(ya; xa′,1, . . . , xa′,a′) =
a′
∏

i′=1

(ya − xa′,i′)
2g̃2(ua; xa′,1, . . . , xa′,a′). (3.29)

We now evaluate the right-hand-side of (3.29) at xa′,1 = · · · = xa′,a′ = ya′ and, recalling
the condition that a ≥ a′, we have

ϕµ(G(x)) =
∏

(ya − ya′)2Aa,a′ G̃. (3.30)

��

Lemma 3.8. The image under the evaluation map ϕµ of any function in F (and hence

µ) has a pole of maximal order min(a, a′) whenever y
(α)
a,i = y

(α+1)

a′,i′ .
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Proof. We will prove this lemma by looking at the zeros of g(x), which arise because
we need to satisfy the Serre relations, g|

x
(α)
1 =x

(α)
2 =x

(α+1)
1

= 0 and g|
x

(α)
1 =x

(α+1)
1 =x

(α+1)
2

= 0

for α = 1, . . . , r − 1. These relations depend on two sets of variables only.
Consider the dependence of g on the two sets of variables xi = x

(α)
i , with

i = 1, . . . , a and x̄j = x
(α±1)
j , with j = 1, . . . , a′. Under the evaluation map, these

variables map to ϕµ(xi) = y and ϕµ(x̄i) = ȳ respectively.
Note that x and x̄ are variables corresponding to two adjacent roots. Again without

loss of generality, assume that a ≥ a′.
When x1 = x̄1 = x̄j or x1 = xj = x̄1, g vanishes, so we find

g(x1, . . . , xa; x̄1, . . . , x̄a′ ; . . . )|x1=x̄1=z1

=
a∏

i=2

(xi − z1)

a′
∏

j=2

(x̄i − z1)g
′(z1; x2, . . . , xa; x̄2, . . . , x̄a′ ; . . . ). (3.31)

Repeating the argument for g′ we find

g′(x2, . . . , xa; x̄2, . . . , x̄a′ ; . . . )|x2=x̄2=z2

=
a∏

i=3

(xi − z2)

a′
∏

j=3

(x̄i − z2)g
′′(z1, z2; x3, . . . , xa; x̄3, . . . , x̄a′ ; . . . ). (3.32)

We can repeat this argument a′ times with the result

g(x1, . . . , xa; x̄1, . . . , x̄a′ ; . . . )|{xi=x̄i=zi }a′
i=1

=
a′
∏

i=1

a∏

j=i+1

(xj − zi)

a′
∏

i=1

a′
∏

j ′=i+1

(x̄j ′ − zi)g̃(z1, . . . , za′ ; xa′+1, . . . , xa; . . . ).

(3.33)

We find that ϕµ(g) has a zero of order at least aa′ −min(a, a′) when y = ȳ, by counting
the number of zeros in (3.33) and using that a′ ≤ a. Taking into account the poles
of (3.17), which after applying the evaluation map becomes a pole of order aa′ when
y = ȳ, we find that the image of Fm has a pole of order at most min(a, a′), when
x

(α)
a,j = x

(α±1)

a′,j ′ . ��

Lemma 3.9. The image of ϕµ acting on a function G ∈ µ has a zero of order at least

max(0, a − l) when y
(β)
a,i = 0.

Proof. To prove this lemma, we will study the effect of the evaluation map on g(x) in
Eq. (3.13). We focus on the variables of a row of length a (where we assume that a > l),
{x(β)

j | j = 1, . . . , a}. Under the evaluation map, these variables map to ϕµ(x
(β)
j ) = y(β).

We know that the function

g1(x
(β)
1 , . . . , x(β)

a ) = g(x)|
x

(β)
1 =···=x

(β)
l =0

(3.34)

contains a factor
∏a

j=l+1 x
(β)
j , because it vanishes if any of the remaining variables x

(β)
j

is set to zero (because of the condition (3.16) on g(x)). Thus, the image of g1 under the
evaluation map has a zero of order at least max(0, a − l) whenever y

(β)
a,i = 0. ��
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Lemma 3.10. The map ϕµ : µ → Hµ is well defined.

Proof. This follows from Lemmas 3.7, 3.8, 3.9 and the definition of the space Hµ. ��

3.4.2. Proof of surjectivity We will continue with the proof that the map (3.23) is sur-
jective. We have to prove that for each function of the form defined by (3.18) and (3.19),
there is at least one function in the pre-image in µ. We do this by explicitly giving the
form of these pre-images, showing that they are elements of F and finally, proving that
these pre-images are indeed in the kernel of ϕν for each ν > µ, which shows that they
are in µ.

For each (k-restricted) multi-partition µ, we consider the function

F(x) = Sym f (x)

p(x)
, (3.35)

where f (x) and p(x) are a polynomials of the form (we identify the variables
x

(α)
a,i,a+1 = x

(α)
a,i,1)

f (x) = f̃ (x)
∏

α,a,i
j>l

x
(β)
a,i,j

∏

α
a,i,j

a′,i′;j ′ =j

(x
(α)
a,i,j − x

(α+1)

a′,i′,j ′)

×
∏

α
(a,i)>(a′,i′)
j=1,... ,m

(α)

a′

(x
(α)
a,i,j − x

(α)

a′,i′,j )(x
(α)
a,i,j+1 − x

(α)

a′,i′,j ) (3.36)

p(x) =
∏

α=1,... ,r−1
a,i,j

a′,i′,j ′

(x
(α)
a,i,j − x

(α+1)

a′,i′,j ′), (3.37)

where f̃ (x) is an arbitrary polynomial. The symmetrization is over each of the r sets
of variables {x(α)

i } with the same value of α. As we did before, we will drop as many
indices as possible in the following lemmas.

Lemma 3.11. The functions F(x) of (3.35) are elements of F.

Proof. We have to show that f (x) satisfies the vanishing conditions (3.14), (3.15) and
(3.16). First of all, we easily see that f (x) is zero when any k + 1 variables of the same
color are set to the same value. Because the partitions have rows of maximum length k,
these k + 1 variables can not all be placed in the same row, which implies that the factor
∏

(x
(α)
a,i,j − x

(α)

a′,i′,j ′) evaluates to zero under ϕµ.
To show that the Serre relations are satisfied, we have to show that the zeros

∏

α
a,i,j

a′,i′;j ′ =j

(x
(α)
a,i,j − x

(α+1)

a′,i′,j ′) (3.38)

satisfy the Serre relations. Let xa,j = x
(α)
a,i,j and x̄a′,j ′ = x

(α+1)

a′,i′,j ′ , for some choice of α,
i and i′.
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For every x, there is a zero with every x̄, except those appearing in the column which
has the same number as the x (i.e. for j = j ′). Note that if we set two variables x,
which belong to the same column, to the same value, f (x) is zero, because the factor
∏

(x
(α)
a,i,j −x

(α)

a′,i′,j ′) is zero in that case. Hence, we set xa,j = x̄a′,j ′ = x̃ (j ′ = j). Focus-
ing on this variable, we find the following zeros (x̃ − x̄a,i )(x̃ − x̄a′,i′)

∏

a′′;i′′ =i,i′(x̃ −
x̄a′′,i′′)

2 So, indeed x̃ has zero with every x̄. Similarly, we find that there is at least a zero
of order one when we set x1 = x̄1 = x̄2.

To complete the proof of this lemma, we need to show that f (x) satisfies the condition
(3.16). This easily follows from the factor

∏

j>l x
(β)
a,i,j , combined with the zeros which

give rise to the condition (3.14). ��
Remark 3.12. It is instructive to note that all the zeros in (3.38) are necessary to satisfy
the Serre relations. We need to show that if we remove any of these zeros, we will violate
a Serre relation.

To show that this is true, it is important that we take the zeros between variables of the
same color into account. Let us remove the zero (xa,j − x̄a′,j ′), where j = j ′. Without
loss of generality, we can assume that j < j ′. The two variables are indicated in Fig. 2
by the black boxes. The gray boxes denote the zeros with the variables corresponding
to the black box from the same partition.

All we need to do is show that there is at least one variable, of either partition, such
that when this variable is set to the same value as the two ‘black variables’, we do not
get a zero, and thus violate a Serre relation. This variable is taken to be of color (α + 1),
(if j > j ′, it is of color (α)). More precisely, it is the variable x̄a′,j , taken from the same
row as x̄a′,j ′ (denoted by the ‘slanted’ box), which always exists, because j < j ′.

There is no zero at x̄a′,j ′ = x̄a′,j , because both variables are taken from the same row.
In addition, there is no zero at xa,j = x̄a′,j , because it is not present in the factor (3.38)
and the zero at xa,j = x̄a′,j ′ is the one we removed. We conclude that after we remove
the (arbitrary) zero at xa,j = x̄a′,j ′ , we do not have a zero when xa,j = x̄a′,j ′ = x̄a′,j .
Thus, we have shown that by removing any of the zeros in (3.38), we violate a Serre
condition. We conclude that the zeros are indeed necessary.

Lemma 3.13. The function F(x) of (3.35) associated to a k-restricted multi-partition
µ is an element of the kernel of ϕν for any ν > µ.

��

(α) (α + 1)

Fig. 2. A violation of the Serre relations if the zero corresponding to the black squares is removed from
(3.36). The left partition corresponds to the variables of color (α), the right one to color (α + 1). The
‘slanted’ box is the third variable, in addition to the two black ones, for which the Serre condition is
violated. The gray boxes denote the zeros with the variable corresponding to the black box of the same
partition, coming from the integrability conditions
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Proof. Let us take a ν > µ, and let ν(α) be the first partition such that ν(α) > µ(α). We
will focus on the variables x(α) and show that the function F(x) can not be non-zero
under the evaluation map ϕν .

Two variables in the same column of µ(α) have a zero, so they can not be placed in
the same row in ν(α), if the result is to be non-zero, because in that case, acting with the
evaluation map gives a zero.

However, because ν(α) > µ(α), we can not avoid placing variables of the same col-
umn in µ(α) in the same row of ν(α). To show this, let us denote the length of the rows of
the partitions by µ

(α)
i and ν

(α)
i , such that the index i is increasing going downwards. The

only way to avoid placing variables of the same column of µ(α) in the same row of ν(α)

is by placing the variables of µ(α) in rows of the same length in ν(α). However, because
ν(α) > µ(α), there will be an ı̃ such that ν

(α)

ı̃
> µ

(α)

ı̃
. Let us focus on the smallest ı̃. We

have to place a variable of a row µ
(α)
i with i > ı̃ in the row ν

(α)

ĩ
. Because µ

(α)
i ≤ µ

(α)

ı̃
,

this variable belongs to the same column of another variable in ν
(α)

ı̃
. We conclude that

F(x) is zero under the evaluation map ϕν with ν > µ. ��
Lemma 3.14. The function F(x) of (3.35) is an element of µ.

Proof. This follows from Lemmas 3.11 and 3.13. ��
As a last step in the proof of surjectivity, we have to show that the image of F(x)

under the evaluation map is indeed of the form (3.18) and (3.19). In particular, it con-
tains as a factor the functions h(y), which are symmetric under the exchange of variables
y

(α)
a,i ↔ y

(α)

a,i′ .

Lemma 3.15. The image of F(x) under the evaluation map ϕµ is a scalar multiple of
the function H(y) in (3.18).

Proof. To prove this lemma, we can follow the same approach as we did in our paper on
the ŝl2 case, because the argument does not depend on the color of the variables. We will
focus on the variables x(α), and determine the permutations σ , for which ϕµ(f (σ (x(α))))

is non-zero. So, we consider
∑

σ∈S
m(α)

f (σ {x(α)}). (3.39)

In the following, we will omit the label α. Recall that the variable xa,i,j corresponds to
the j th column in the ith row of length a. Under the evaluation map, xa,i,j �→ ya,i ∀j .

Suppose that for some σ , we have σ(xa,i,j ) = xa′,i′,j ′ with (a′, i′) < (a, i) and
that (a, i) is the largest row for which this is true. This means that all rows above (a, i)

undergo only a permutation within the row. Suppose that the pre-factor

ϕµ ◦ σ




∏

(a,i)>(a′,i′)
(xa,i,j − xa′,i′,j )(xa,i,j+1 − xa′,i′,j )



 (3.40)

is to be non-zero. Then xa′,i′,j ′ can not be in a column directly below or to the left of the
permutation image of any other element from row (a, i). This means that at least one
other element from row (a, i) should be mapped to a row below (a, i). If it is mapped
to the row (a′, i′) it can appear in any column other than j ′. If it is mapped to any other
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row, it can appear in any other column than j ′ and an adjacent column (to the right or
left depending on whether it is above or below (a′, i′).) Now we repeat this argument
for this new element, concluding that at least one more element of row (a, i) is mapped
to a lower row, and so forth, until eventually we find that all elements are permuted to
a row below (a, i). If the elements are permuted to the same row, they can be placed in
adjacent columns. Elements which are permuted to different rows can not be placed in
adjacent columns, this being due to the factor linking adjacent columns in the pre-factor.
There are at most a columns in µ(α) in rows below (a, i), and hence the elements must
all appear in the same row, which is therefore of length a. Thus all the variables in rows
of length a are mapped to another row of length a, for the same reason. As a result, the
only permutations which give a non-zero contribution to ϕµ(f (σ (x(α)))) are those that
permute variables within each row, or those that permute rows of equal length. Under the
evaluation map, the former contribute equal terms to the sum, while row interchanges
correspond to the symmetrization over the variables y

(α)
a,i with the same values of α and a

in h(y). Note that the other factors in the function F are symmetric under the permutation
of rows of equal length, so these factors do not interfere with the argument above. ��
Lemma 3.16. The map ϕµ : µ → Hµ is surjective.

Proof. This follows from Lemmas 3.14 and 3.15. ��

3.4.3. Injectivity proof

Lemma 3.17. The induced map ϕµ : Grµ  → Hµ (3.22) is well defined and injective.

Proof. To prove that the map (3.22) is well defined, we use Lemma 3.10 and observe
that the image of ′

µ under ϕµ is zero by using the definition of ′
µ. It follows that we

can define the induced map ϕµ acting on the quotient Grµ  = µ/′
µ. Moreover, the

difference between two different functions in µ that map to the same rational function
in Hµ is in µ. Hence, the map is also injective. ��

We have now completed the proof of Theorem 3.6, because the theorem follows from
Lemmas 3.17 and 3.16.

The map (3.22) is degree preserving, and thus we can count the functions of homo-
geneous degree d in Hµ to obtain the character of the space F.

To compute the character of Fλ, we add the poles
∏

(x
(β)
a,i,j )

−1, which are present in
the functions G(x) in (3.13). The only thing in the calculation of the character which
changes is the fact that due to these poles, the zeros

∏
(y

(β)
a,i )max(0,a−l) in (3.19) become

poles
∏

(y
(β)
a,i )− min(a,l).

3.5. Character of the dual space. Using the results of the previous section, we can
calculate the character of the dual space Fλ, where λ = lωβ .

First, let us define the character of Wλ as follows:

chqWλ =
∑

d,m(α)

dim Wλ[m]d qdeλ−ωT Cr m, (3.41)

where Wλ[m]d is the subspace generated by elements in U(̃n−) of homogeneous degree
m(α) in fα , and homogeneous degree −d in t . Here, ω = (ω1, . . . , ωr)

T .
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The spaceFλ is a space of functions in the variablesx
(α)
i . If we define its (m, d)-graded

component to be the space of functions in m(α) variables x
(α)
i and total homogeneous

degree d̃ in all the variables, then, due to the way we defined the generating functions
fα(x) (or, equivalently, the coupling), we have that Fλ[m]d̃ is the dual to Wλ[m]d , where
d = d̃ + ∑

α m(α).
Thus,

chqWλ =
∑

m

chWλ[m] =
∑

m

∑

d

qd+∑

α m(α)

eλ−ωT Cr m dim(Fλ[m])d , (3.42)

where dim(Fλ[m])d denotes the dimension of the subspace of functions in Fλ[m] which
have homogeneous degree d . The powers of z correspond to the components of the
weights in terms of the simple roots. Recall that here, λ = λβ = lωβ .

We will calculate this character by actually summing over all the functions in H, and
counting their homogeneous degree. The character of the space of symmetric functions
h(y) in m

(α)
a variables is given by

1
∏r

α=1
∏k

a=1(q)
m

(α)
a

, (3.43)

where (q)m = ∏m
i=1(1 − qi) for m ∈ N and (q)0 = 1.

The homogeneous degree of the rational function Hµ(y), combined with the addi-

tional poles
∏

(a,i)(y
(α)
a,i )

−a is given by

deg

(

Hµ(y)
∏

(a,i)(y
(α)
a,i )

a

)

=
∑

α,α′,a,a′

1

2
m(α)

a (Cr)α,α′Aa,a′m(α′)
a′ −

∑

a

Aa,lm
(β)
a −

∑

α

m(α).

(3.44)

It follows that the character of W
(0)
λ is

chqW
(0)
lωβ

=
∑

→
m∈Z

r×k
≥0

q
1
2

→
m

T
(Cr⊗A)

→
m−(id⊗A

→
m)

(β)
l

(q)→
m

elωβ−ωT Cr m. (3.45)

Here (A)a,b = min(a, b) is a k ×k matrix, and Cr is the Cartan matrix of slr+1. Also,
→
m

denotes the vector (m
(1)
1 , . . . , m

(1)
k ; · · · ; m

(r)
1 , . . . , m

(r)
k ). We made use of the definition

(q)→
m

=
r∏

α=1

k∏

a=1

(q)
m

(α)
a

.

4. Characters for Rectangular Highest-Weight ŝlr+1-Modules

In this section, we will show that we can use the characters of the principal subspace
Wλ to obtain the character of the full integrable module Vλ. We will be able to do this
by using the invariance of the weight multiplicities of Vλ under the action of the affine
Weyl group, in particular the affine Weyl translations tα . More specifically, we will show
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that acting with an affine Weyl translation on the principal subspace, and taking an
appropriate limit, we obtain the full integrable module.

Let � be an affine weight of level k. It can be written as

� = λ + k�0 − mδ,

where λ is the weight with respect to h ∈ slr+1. Let tα be the affine Weyl translation cor-
responding to the root α (see [11], Eq. (6.5.2)), and define the translation tN = ∏

i tNiαi
,

where N = (N1, . . . , Nr)
T . Then

tN(�) = λ + kNT · α + k�0 − (m + NT · l + 1

2
kNT CrN)δ. (4.1)

Again, l = (l1, . . . , lr )
T , where λ = ∑

i liωi , and α = (α1, . . . , αr)
T . Also note that α

in terms of the weights is given by α = Crω.
Consider the principal subspace W(N) = U(̃n−)tNvλ. It has a dual space description

which is similar to Fλ, if we choose the vector N carefully. Given that if fα[m]vλ = 0,
then fα[m + (Cr · N)α]tNvλ = 0 (since the Weyl group preserves weight space multi-
plicities), we choose N such that (Cr · N)α = 2N for all α, for some N ∈ Z+. In the
case of slr+1, we have (N)i = Ni(r + 1 − i).

Then fα[2N + δα,β ]tNvλ = 0, where λ = lωβ , and fα[2N − 1 + δα,β ]tNvλ = 0.
Note also that the extremal vector tNvλ is a basis for the one-dimensional weight

subspace of weight

tN(λ) = λ + kNT α + k�0 − (
(λ, NT α) + 1

2
kNT CrN

)
δ.

In the case of interest here, this becomes

tN(lωβ) = lωβ + kNT α + k�0 − (lNβ + kN |N|)δ,
where |N| = ∑

i Ni .

Thus, the space dual to W
(N)
λ is the space of functions of the form

∏

α,i

(x
(α)
i )−2NG(x),

where G(x) is the function in Eq. (3.13).
Thus, we find that the character of W

(N)
lωβ

differs from the character of W
(0)
lωβ

by a

change in the exponent of q by lNβ + kN |N| − 2N |m| (where |m| = ∑

α m(α)) and a
change in the weight by ωT CrkN, which leads to

chqW
(N)
lωβ

=
∑

→
m∈Z

r×k
≥0

q
1
2

→
m

T
(Cr⊗A)

→
m−(id⊗A

→
m)

(β)
l

(q)→
m

qlNβ+kN |N|−2N |m|elωβ−ωT Cr (m−kN).

A form suitable for taking the limit N → ∞ is obtained by eliminating the summa-
tion variable m

(α)
k in favor of m(α) = ∑k

a=1 am
(α)
a . This gives for the character of W

(0)
lωβ

(we define m(α) = ∑k−1
a=1 am

(α)
a )
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chqW
(0)
lωβ

=
∑

m∈Z
r
≥0

q
1

2k
mT Cr m− 1

k
lm(β)

elωβ−ωT Cr m

×
∑′

→
m∈Z

r×(k−1)
≥0

q
1
2

→
m

T
(Cr⊗C−1

k−1)
→
m−

(
(id⊗C−1

k−1)
→
m
)(β)

l
δl<k

∏r
α=1

∏k−1
a=1(q)

m
(α)
a

(q)m(α)−m(α)

k

, (4.2)

where the prime on the sum denotes the constraints m(α) ≤ m(α) and m(α) ≡ m(α)

mod k. Here, Ck−1 denotes the Cartan matrix of slk . The symbol δl<k is 1 for the inte-
gers in the range l = 1, . . . , k − 1 and zero otherwise.

The character of W
(N)
lωβ

has an extra factor of

qlNβ+ 1
2 kNT Cr N−mT Cr N.

Combining this power of q with the power in the first line of (4.2), we use the change
of variables m̃(α) = m(α) − kNα , since the combined power in this new variable is

1

2k
mT Crm + 1

2
kNT CrN − mT CrN − l

k
(m(β) − kN(β)) = 1

2k
m̃T Crm̃ − l

k
m̃(β).

Making this substitution, we have

chqW
(N)
lωβ

=
∑

m̃≥−kN

q
1

2k
m̃T Cr m̃− 1

k
lm̃β elωβ−ωT Cr m̃

×
∑′

→
m∈Z

r×(k−1)
≥0

q
1
2

→
m

T
(Cr⊗C−1

k−1)
→
m−

(
(id⊗C−1

k−1)
→
m
)(β)

l
δl<k

∏r
α=1

∏k−1
a=1(q)

m
(α)
a

(q) m̃(α)−m(α)

k
+Nα

, (4.3)

where the prime denotes the constraints m(α) ≤ m̃(α) + kNα and m(α) = m̃(α) mod k.
We can now easily obtain the characters of the integrable level-k modules corre-

sponding to rectangular highest weights by taking the limit N → ∞ while keeping m̃
finite. This gives

chqW
(∞)
lωβ

=
∑

m̃∈Zr

q
1

2k
m̃T Cr m̃− 1

k
lm̃(β)

elωβ−ωT Cr m̃

× 1

(q)r∞

∑′

→
m∈Z

r×(k−1)
≥0

q
1
2

→
m

T
(Cr⊗C−1

k−1)
→
m−

(
(id⊗C−1

k−1)
→
m
)(β)

l
δl<k

(q)→
m

, (4.4)

with the constraint m(α) = m̃(α) mod k.
The nice feature of this character formula is that it manifestly splits the character into

a sum over all the finite weights, each of which contributes a string function to the full
character. These string functions are proportional to ‘the second line’ of Eq. 4.4.

We can make the appearance of the characters slightly more compact, by rewriting

it in terms of the r × k-vector
→
m again. This results in

chqW
(∞)
lωβ

= 1

(q)r∞

∑

→
m

m
(α)
k ∈Z,m

(α)
a<k∈Z≥0

q
1
2

→
m

T
(Cr⊗A)

→
m−

(
(id⊗A)

→
m
)(β)

l

∏r
α=1 R

∏

a<k(q)
m

(α)
a

elωβ−ωT Cr m, (4.5)
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which, again, holds in the case of rectangular representations. Comparing this to the
known character formulæ for the integrable representations which appear, for example,
in [9], we see that this is indeed the character of the integrable, level-k ŝlr+1-module
with highest weight λ = lωβ , i.e. the module Vlωβ . Hence, we have the following result

Theorem 4.1. The character of the integrable, level-k ŝlr+1-module with highest weight
λ = lωβ is given by

chqVlωβ = chqW
(∞)
lωβ

,

where chqW
(∞)
lωβ

is given by Eq. (4.5).

The remainder of the paper will be devoted to obtaining character formulæ for general
irreducible representations.

5. Conformal Blocks and Their Dual Spaces

5.1. Modules localized at ζ = 0. Above, we considered the standard action of the cen-
tral extension of the loop algebra, g̃ = g ⊗ C[t, t−1] on integrable modules Vλ of level
k. Such modules can be considered as “localized” at the point 0.

For a generic point ζ ∈ CP 1, let tζ = t − ζ denote a local variable at ζ , and consider
the action of the current algebra g̃(ζ ) = g ⊗ C[tζ , t

−1
ζ ] on a module Vλ(ζ ), “localized”

at the point ζ , which is isomorphic to Vλ.
Specifically, the generator x ⊗ tnζ acts as x[n] on the module Vλ(ζ ). In the physics

literature [3], this action is sometimes denoted by xn(ζ ). Equivalently, in terms of the
generating current x(z) = ∑

n∈Z
x[n]z−n−1, let v ∈ Vλ(ζ ). The action of x ⊗ tnζ may

be written as

x ⊗ tnζ · v = 1

2πi

∮

Cζ

dz(z − ζ )nx(z)v,

where Cζ is a contour around ζ .
The central extension of g̃(ζ ) is isomorphic to ĝ′, where the cocycle acts in the same

way as on modules localized at 0:

〈x ⊗ f (tζ ), y ⊗ g(tζ )〉 = 〈x, y〉 1

2πi

∮

tζ =0
f ′(tζ )g(tζ )dtζ ,

where 〈x, y〉 is the symmetric bilinear form on g. We call the centrally extended algebra
with this cocycle ĝ′

(ζ ). Obviously, its representations are isomorphic to those of ĝ′.
We also allow the point ζ = ∞, and at that point we choose the local variable to be

t∞ = t−1.

5.2. Fusion product of ĝ′
ζ -modules. Let N ∈ N and let (ζ1, . . . , ζN) be N distinct, finite

points in CP 1 (for convenience we choose ζp = 0). Denote the local variable at each
point by tp = t − ζp.

At each point ζp, we localize an integrable ĝ′
(ζp)-module Vp = Vµp(ζp) of level k,

and top component πp = πµp . We choose to consider only modules with highest weights



448 E. Ardonne, R. Kedem, M. Stone

of the form µp = apωαp , where 1 ≤ αp ≤ r and ap ∈ Z≥0. That is, highest weights
corresponding to rectangular Young diagrams.

The completed loop algebra U = ⊕pg ⊗ C[tp, t−1
p ] ⊂ g ⊗ C(t) acts on the tensor

product of these modules, V1 ⊗ · · · ⊗ VN by the usual coproduct,

�N
ζ (x ⊗ f (t)) =

N∑

p=1

(
x ⊗ f (tp + ζp)

)

(p)
,

where the pth term in the sum above acts on the pth factor in the tensor product only:

x(p)w1 ⊗ · · · ⊗ wN := w1 ⊗ · · · ⊗ x · wp ⊗ · · · ⊗ wN, x ∈ U.

Here, by C(t) we mean rational functions in t , although we need only consider for our
purposes the smaller space of rational functions with poles at at most ζ1, . . . , ζN .

This action has a central extension, where the cocycle acts as

〈x ⊗ f (t), y ⊗ g(t)〉 = 〈x, y〉
N∑

p=1

1

2πi

∮

t=ζp

f ′(t)g(t)dt, f (t), g(t) ∈ C(t).

Thus, the level of the action of the centrally extended, completed algebra Û = U⊕Cc is
also k, which is the same as the level of each localized module Vi . This action is called
the fusion action in the physics literature. Since it differs from the usual action on the
tensor product of ĝ-modules (which has level Nk), it is denoted in [4] by the symbol �
rather than the usual ⊗:

Vµ(ζ )
def= Vµ1(ζ1) � · · · � VµN

(ζN), µ = (µ1, . . . , µN). (5.1)

5.3. Coinvariant spaces. The fusion product is an integrable ĝ′-module of level-k, thus,
there is a sense in which it is completely reducible (see Appendix I of [6] for the precise
explanation and proofs). The “multiplicity” of the irreducible ĝ′-module Vλ(0) in the
fusion product is given by the Verlinde numbers [24], which we denote by K

(k)
λ,µ. If k

is sufficiently large (that is, k ≥ ∑

p ap), these numbers are just the sums of products
of the usual Richardson-Littlewood coefficients. In this paper, we only need to consider
this case in order to obtain the character formulæ.

Remark 5.1. In the case where αp = 1 for all p and k is sufficiently large, the multiplici-
ties are the usual Kostka numbers Kλ,µ in the notation of [18], where µ = (a1, . . . , aN)

and λ is a partition of length r + 1 with |λ| = |µ|, such that λi − λi+1 = λ(αi), where
αi are the simple roots.

In complete generality, the multiplicity K
(k)
λ,µ is equal to the dimension of the coin-

variant space [24, 6]

Cλ,µ(ζ ) := Vλ∗(∞) � Vµ(ζ )/〈g ⊗ A〉,
where the quotient is taken with respect to the image of g⊗A acting on the fusion prod-
uct, where A is the space of meromorphic functions with possible poles at the points ζp

and ∞ (it has trivial central extension). Here, λ∗ refers to the highest weight of the dual
module to πλ: λ∗ = −ω0(λ) where ω0 is the longest element in the Weyl group.
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5.4. The coinvariant space as a quotient of principal subspaces. The dimension of the
coinvariant space Cλ,µ was the subject of the paper [4], where a grading was defined on
the space, compatible with the action of the current algebra. We will use the results about
this space here, and compute the graded dimension for the special case of rectangular
Young diagrams, with sufficiently large k.

Theorem 5.2 ([4] (1.6), slightly modified). There is a surjective map

uλ∗(∞) ⊗ π1 ⊗ · · · ⊗ πN → Cλ,µ(ζ ),

where uλ∗(∞) is the lowest weight vector of the top component of the module Vλ∗(∞)

with respect to the action of g, and πp are the top components of the modules Vµp(ζp).

Thus we can conclude that the coinvariant is a quotient of the fusion product of prin-
cipal subspaces Wp = Wµp(ζ ) = U(n− ⊗ C[t−1

p ])vp, where vp is the highest-weight
vector of Vp, because πp ⊂ Wp. The fusion product of principal subspaces is the space

Wµ(ζ ) = W1 � · · · � WN = U(n− ⊗ C(t))v1 ⊗ · · · ⊗ vN,

where we allow poles at t = ζp.
That is, in exactly the same way as for the integrable modules, the fusion product of

principal subspaces can be decomposed as a direct sum of principal subspaces Wλ(0),
with multiplicities given by the Verlinde numbers K

(k)
λ,µ.

We can compute these multiplicities by computing the dimension of the space of high-
est-weight vectors (with respect to the action of g) in the space U(n−⊗C[t])v1⊗· · ·⊗vN .
Notice that x ⊗ tn acts on the pth factor by xζn

p . (Here, we do not allow poles at ζp,
because they generate vectors in Wp which are not in the top component πp.)

Remark 5.3. The naturally graded version of the space described in the previous para-
graph is the Feigin-Loktev “fusion product” [8].

5.5. Dual space of functions to the coinvariant. Again, in this paper, we do not incor-
porate the level-restriction for k, but we simply assume k to be sufficiently large, with
respect to the collection of weights µp: if µp = apωαp , then the assumption is equiv-

alent to k ≥ ∑

p ap. In this case, the Verlinde number K
(k)
λ,µ is equal to the Littlewood

Richardson coefficient Kλ,µ. This is all we need in this paper to compute the characters
of Wλ for generic λ ∈ P +

k .
Consider the space of matrix elements Cλ,µ, also known as the space of conformal

blocks:

Cλ,µ = {〈uλ∗ |U(n− ⊗ C[t])v1(ζ1) ⊗ · · · ⊗ vN(ζN)〉} . (5.2)

Here, uλ∗ is the lowest weight vector of Vλ∗(∞), considered as ĝ(0)-module with ĝ(0)

acting to the left. (Thus, n− ⊗ C[t−1] acts on uλ∗ trivially.)
If ζj are pairwise distinct, the action of n− ⊗ C[t] on the product of highest-weight

vectors generates all of π1 ⊗ · · · ⊗ πN (cf. the fusion product of [8]). The multiplicity
of vλ ∈ πλ in this tensor product is the Littlewood Richardson coefficient Kλ,µ.

This space has a filtration by degree in t inherited from the corresponding filtration on
the universal enveloping algebra. Let U≤n be the subspace of elements in U(n− ⊗C[t])
of degree less than or equal to n in t . Let C

≤n
λ,µ be the subspace of matrix elements of
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U≤n. Let Cλ,µ[n] = Grn Cλ,µ be the graded component of degree n. We define the
graded coefficients Kλ,µ(q−1) to be

Kλ,µ(q−1) =
∑

n

q−n dim Cλµ[n]. (5.3)

We choose powers of q−1 rather than q in order to be consistent with the grading in
the last section, where we defined the degree of f [n] to be −n, as in (2.1). Therefore,
Kλ,µ(q) is a polynomial in positive powers of q. (Notice that this is by definition the
coefficient of πλ in the fusion product of Feigin and Loktev [8].)

Let G(ζ )λ,µ be the space of generating functions for matrix elements of the form
(5.2). That is,

Gλ,µ(ζ ) =
{

〈uλ∗ |fα1(x
(α1)
1 ) · · · fαm(x

(αm)

m(αm))v1(ζ1) ⊗ · · · ⊗ vN(ζN)〉
}

, (5.4)

where fα(x) = ∑

n fα[n]x−n−1 and 1 ≤ α ≤ r .
Obviously, for this matrix element to be non-zero, the sum of the h-weights should be

0, that is, the matrix element should be g-invariant. If there are exactly m(α) generating
currents of the form fα(x

(α)
i ) in the matrix element (5.4), define m = (m(1), . . . , m(r))T .

Then m is fixed by the zero-weight condition on the matrix element. Specifically, let
ω = (ω1, . . . , ωr)

T . Then the zero-weight condition on m is
∑

p

µp − ωT Crm − λ = 0. (5.5)

Recall the notation λ = ∑

α lαωα , and l = (l1, . . . , lr )
T . Let

n(α)
a = number of weights of the form µp = aωα,

and n(α) = ∑

a an
(α)
a , n = (n(1), . . . , n(r))T . Then

∑

p µp = ∑

α n(α)ωα . We can
rewrite (5.5) more compactly as

m = C−1
r (n − l), (5.6)

where Cr is the Cartan matrix of slr+1.
Let g(x) ∈ Gλ,µ(ζ ), where x = {x(α)

i , i = 1, . . . , m(α); α = 1, . . . , r}. We define
the pairing between functions g(x) and an element in U(n− ⊗C(t)) of the form M(fα ⊗
tnp)(p), where M ∈ U(n− ⊗ C[t]) and x(p) is an element in the algebra which acts on
the pth factor only. The pairing is again defined inductively as in (3.5), but the integral
is modified to

(g(x), M(fα ⊗ tnp)(p)) =
( 1

2πi

∮

Cp

g(x)(x
(α)
1 − ζp)ndx

(α)
1 , M

)

, (5.7)

where Cp is a contour around the point ζp, and so forth.
We now describe the zero and pole structure of the space of functions Gλ,µ(ζ ). First

we note that Gλ,µ(ζ ) is a subspace of the dual space G[m] to U(n− ⊗ C[t, t−1])[m],
which is described in Theorem 3.3:

G[m] =
{

g1(x)
∏

(x
(α)
i − x

(α+1)
j )

∣
∣
∣
∣
∣

g1(x)|
x

(α)
1 =x

(α)
2 =x

(α±1)
1

= 0, g1(x)|
x

(α)
i ↔x

(α)
j

= g1(x).

}

.
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Also, recall that fα ⊗ t0
p = fα[0](ζp) acts trivially on vp, unless µp = apωα , in

which case, (fα[0])ap+1 acts trivially on vp. In addition, fα ⊗ tnp acts trivially on vp for
all n > 0 and all α.

This implies, from the pairing (5.7), that for g(x) ∈ Gλ,µ(ζ ), g1(x) in Eq. (3.6) can

have at most a simple pole whenever x
(αp)

i = ζp. There is no pole when x
(β)
i = ζp if

β = αp. That is,

g(x) = g2(x)
∏

(x
(α)
i − x

(α+1)
j )

∏

p(x
(αp)
a − ζp)

∈ Gλ,µ(ζ ), (5.8)

where the function g2(x) satisfies

g2(x)|
x

(αp)

1 =···=x
(αp)

ap+1=ζp
= 0, ∀p. (5.9)

(Recall that we assume ζp = 0, so that there is no pole at x
(α)
i = 0.) Thus, g2(x) is a

polynomial in x
(α)
i .

Finally, the currents in U(n− ⊗ C[t]) may act to the left, on uλ∗ sitting at infinity.
The pairing at infinity is

(g(x), (fα ⊗ tn)(∞)M) =
( 1

2πi

∮

C∞
g(x)(x

(α)
1 )ndx

(α)
1 , M

)

=
( 1

2πi

∮

C0

(x
(α)
1 )−n−2g((x

(α)
1 )−1, x

(α)
2 , . . . )dx

(α)
1 , M

)

(the contour around infinity is clockwise). Since fα[n] acts trivially at ∞ if n ≤ 0, this
integral should be zero for n ≤ 0 if g(x) ∈ Gλ,µ(ζ ). This shows that

deg
x

(α)
i

g(x) ≤ −2 for all i, α. (5.10)

In summary, we have that, for k sufficiently large,

Theorem 5.4. The dual space Gλ,µ(ζ ) to the space coinvariants Cλ,µ(ζ ), with respect

to the pairing (5.7), is the space of functions in the variables x = {x(α)
i | α = 1, . . . , r;

i = 1, . . . , m(α)}, where m(α) is determined by (5.6), of the form (5.8), where g2(x) is a
polynomial, symmetric with respect to exchange of variables with the same superscript
(α), satisfying the Serre relation (3.7) and the vanishing condition (5.9), with the degree
of g(x) in each variable less than or equal to −2.

In the next section, we compute the character of this space.

5.6. Filtration of the dual space. The space Gλ,µ(ζ ) is filtered by homogeneous (total)

degree in x
(α)
i . Let Gλ,µ(ζ )[n] be the graded component. This space is dual to the space

Cλ,µ[n + |m|] (because the definition of the pairing involves taking the residue). We
normalize the degree of the cyclic vector to be 0. Therefore we have

chqCλ,µ = chqCλ,µ = q−|m|chqGλ,µ(ζ ) =
∑

n

q−n−|m|Gλ,µ(ζ )[n] = Kλ,µ(q−1).

(5.11)
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We use the same filtration argument as in Sect. 3. That is, consider the lexicographic
ordering on r-tuples of partitions ν, where ν(α) is a partition of m(α). (Since k plays no
role in the filtration argument except in limiting the types of partitions allowed in the
filtration, there is no difference in the zero and pole structure related to k). We act with
the evaluation maps φν on the space Gλ,µ(ζ ) and consider the image in the space H[m]
of functions in the variables

{y(α)
a,i | a ≥ 1, i = 1, . . . , m(α)

a , m(α)
a = Card({ν(α)

i = a})}
of the subspaces ν = ∩ν′>νKerφν′ . We take the associated graded space, and compute
the character of the graded components ν/′

ν , where ′
ν = ∩ν′≥νKerφν′ . Define Hν

to be the image of the induced map ϕν : ν/′
ν .

The results are as follows.

Lemma 5.5. Let g(x) ∈ Gλ,µ(ζ ). Then

φν(g(x)) =
∏

α;(a,i)<(a′,i′)
(y

(α)
a,i − y

(α)

a′,i′)
2Aa,a′ h1(y).

Proof. This follows from Lemma 3.7. The only difference in the two situations is that
the partitions are only restricted by m(α), not k. ��

The next lemma gives the pole structure due to the nontrivial commutation relations
together with the Serre relations. Its proof is identical to Lemma 3.8.

Lemma 5.6. Let h1(y) be defined as in Lemma 5.5. Then

h1(y) =
r−1∏

α=1

∏

a,a′,i,i′
(y

(α)
a,i − y

(α+1)

a′,i′ )−Aa,a′ h2(y),

where h2(y) is regular when y
(α)
a,i = y

(α+1)

a′,i′ .

The following lemma is a slight modification of Lemma 3.9.

Lemma 5.7. Let h2(y) be as in Lemma 5.6. Then h2(y) as a pole of order at most

min(a, ap) whenever y
(αp)

a,i = ζp.

Thus, we have

φν(g(x)) = h(y) =
∏

(y
(α)
a,i − y

(α)

a′,i′)
2Aa,a′

∏
(y

(α)
a,i − y

(α+1)

a′,i′ )Aa,a′

∏

p

(y
(αp)

a,i − ζp)−Aa,ap h3(y), (5.12)

where h3(y) is a polynomial in the variables {y(α)
a,i | a ≥ 1, i = 1, . . . , m

(α)
a ,

α = 1, . . . , r}, with
∑

a am
(α)
a = m(α), symmetric under the exchange of variables

y
(α)
a,i ↔ y

(α)

a,i′ . Here, m
(α)
a is the number of parts of length a in the partition ν(α).

Remark 5.8. It is important to note that, since we are only interested in the character of
the space of functions of the form (5.12), we can now set all ζp = 0 in the space of
polynomials without changing the character of the space.



Fermionic Characters of ŝlr+1 453

There is a further restriction on h(y) coming from the degree restriction (5.10) on
g(x). (This ensures that the space of coinvariants is finite-dimensional.) The evaluation
map is degree preserving, which implies that

deg
y

(α)
a,i

h(y) ≤ −2a.

This gives the following restriction on the degree of h3(y):

Lemma 5.9. Let h3(y) be as in Eq. (5.12). Then h3(y) is a polynomial in the variables
{y(α)

a,i }, with

0 ≤ deg
y

(α)
a,i

h3(y) ≤ −
∑

b,β

(Cr)α,βAa,bm
(β)
b +

∑

b

Aa,bn
(α)
b ,

where n
(α)
a is the number of g-modules with highest weight aωα .

The injectivity of the induced map ϕν : ν/′
ν → Hν follows from the injectivity

argument of Lemma 3.17.
We do not show surjectivity. Instead, we compute the graded character of the coin-

variant using the above space of functions, evaluate it at q = 1, and show that it is equal
to the desired multiplicity given by the Littlewood-Richardson rule, by comparing with
the known result [15] for generalized Kostka polynomials.

The argument is as follows. The injectivity of the map ϕν , which is a degree preserving
map, implies that

dim Gλ,µ(ζ )[n] ≤
∑

ν

dim Hν[n],

where by [n] means the graded component with respect to the homogeneous grading
in the variables y. We will show that dim Gλ,µ(ζ ) = ∑

ν dim Hν , by computing the
q-character of Hν , and showing that dim Hν = Kλ,µ, which is the dimension of the
space of coinvariants. This proves the surjectivity of the evaluation map ϕν , and also
gives the q-character of Gλ,µ(ζ ).

Define the character of the space Hν to be

chqHν =
∑

n

q−nHν[n].

This character can be computed by setting ζp → 0 for all p. Recall that we must multiply
by q−|m| to obtain the character of the coinvariant. We use the Gaussian polynomial,

[
m + n

m

]

q

= (q)m+n

(q)m(q)n
, m, n ∈ Z≥0.

Lemma 5.10. Let Hν be the space of functions of the form (5.12) with degree restrictions
(5.9), and ζp = 0. Then

q−|m|chqHν = qQ(m,n)
∏

a,α

[
P (α)

a + m(α)
a

m(α)
a

]

q

,
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where

Q(m, n) = 1

2

∑

a,b,α,β

m(α)
a (Cr)α,βAa,bm

(β)
b −

∑

a,b,α

m(α)
a Aa,bn

(α)
b

and

P (α)
a =

∑

b

Aa,bn
(α)
b −

∑

β,b

(Cr)α,βAa,bm
(β)
b .

Here, m(α)
a is the number of parts of ν(α) of length a, and n

(α)
a is the number of g-modules

of highest weight aωα .

Since the evaluation maps φν are degree preserving, we can conclude that

chqGλ,µ(ζ ) ≤
∑

ν

chqHν,

where by the inequality, we mean the inequality in the coefficient of each power of q.
Recall the identity

[
m + n

m

]

q

= qmn

[
m + n

m

]

1
q

.

We can now conclude that we have an equality.

Theorem 5.11. The graded character of the space of conformal blocksCλ,µ isKλ,µ(q−1),
where

Kλ,µ(q) =
∑

→
m

q
1
2

→
m

T
Cr⊗Ak

→
m
∏

[
P (α)

a + m(α)
a

m(α)
a

]

q

, (5.13)

where
→
m is a vector with entries m

(α)
a restricted by (5.6), namely m = C−1

r (n − l), and
→
P = (id ⊗ Ak)

→
n − (Cr ⊗ Ak)

→
m.

Proof. A direct comparison of the fermionic formula on the right hand side of (5.13)
with Eq. (2.6) of [15] shows that

Kλ,µ(q) = K
λ

t
,Rt (q), (5.14)

in the notation of [15] (where Kλ,R(q) is the co-charge Kostka polynomial). Here, λ is
theYoung diagram obtained from the weight λ by adjoining to the correspondingYoung
diagram of λ columns of length r + 1, so that the equality |λ| = |R| is satisfied (the
Kostka polynomial is zero unless |R| − |λ| ≡ 0 mod (r + 1), as a consequence of the
restriction on the summation over mα

a , see part (4) of Lemma 5.12 below). The sequence
R = (R1, . . . , RN), with Rp = (ap)αp , is the sequence of rectangular Young diagrams
corresponding to the weights µp.

We use a duality theorem for generalized Kostka polynomials [14]

Kλt ;Rt (q) = qn(R)Kλ,R(q−1), (5.15)

where n(R) = ∑

1≤p<p′≤N min(αp, αp′) min(ap, ap′). Then using the fact that

Kλ,R(1) = dim Homg(πλ, πµ1 ⊗ · · · ⊗ πµN
)

(where g = slr+1 or glr+1) is the dimension of the space of conformal blocks Cλµ, we
conclude the equality of q-dimensions in the theorem holds. ��
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5.7. A remark about the structure of Kλ,µ(q). In this paper, since we are concerned
with representations of slr+1, we have labeled the representations with highest weight λ

with respect to the slr+1 weights, λ = l1ω1 + · · · + lrωr , and similarly for the weights
µp = apωαp with αp ≤ r .

Define S
(k)
N to be the set of all unordered N -tuples of slr+1 dominant weights of the

form µp = apωαp , with
∑

p ap ≤ k. Let P(r, k) be the set of partitions of length at

most r and width at most k. Define ν : S
(k)
N → P(r, k) to be the “horizontal concatena-

tion” map:

(ν(µ))β =
r∑

α=β

n(α), 1 ≤ β ≤ r, µ ∈ S
(k)
N .

Note that this map is surjective but in general not injective.
Let Sr be the subset of S

(k)
r consisting of precisely r weights of the form µp = apωp

(again with
∑

ap ≤ k). That is, n(α) = aα . Then ν is now a natural isomorphism,

ν : Sr
∼→ P(r, k). The inverse map is ν−1(µ) = µ = (µ1, . . . , µr), with µp =

(µp − µp+1)ωp, with µr+1 = 0 by definition.
In this paper we need to consider only the cases where µ ∈ Sr and λ ∈ P(r, k). In

this special case, we have the following properties of the Kostka polynomial.

Lemma 5.12. Let µ ∈ Sr and λ ∈ P(r, k). Then the following statements are true for
the Kostka polynomial of Eq. (5.13):

1. Kλ,µ(q) = 1 if ν(µ) = λ;
2. Kλ,µ(q) = 0 if λ1 > ν(µ)1;
3. Kλ,µ(q) = 0 if λ1 = ν(µ)1 and λs > ν(µ)s , where s is the smallest integer such

that λs = ν(µ)s;
4. Kλ,µ(q) = 0 if 1

r+1 (|ν(µ)| − |λ|) /∈ Z≥0.

Let K(q) be the matrix with entries (K(q))λ,ν(µ) = Kλ,µ(q) with µ ∈ Sr and
λ ∈ P(r, k). The lemma implies in particular that K(q) is upper unitriangular with
respect to the ordering on partitions which looks like the lexicographic ordering on par-
titions, applied to partitions which are not of the same size: λ < µ if λi = µi for all
i < s ≤ r , and λs < µs .

Proof. 1. The constraint Crm = n−l means, when n = l (i.e. λ = ν(µ)), that m(α) = 0
for all α, hence only the term with m

(α)
a = 0 contributes to the sum.

2. Suppose that λ1 > ν(µ)1, which implies that
∑r

α=1(n
(α) − lα) < 0. However, the

constraint implies that

r∑

α=1

(n(α) − lα) =
r∑

α=1

(Crm)α = m(1) + m(r), (5.16)

and since m(α) ≥ 0 for non-zero Kostka polynomials, this gives the desired result.
3. Arguments similar to the proof of item (2) show that λ1 = ν(µ)1 implies m(1) =

m(r) = 0, and also that s < r . Note that from λα = ν(µ)α for α ≤ s − 1 it follows
that n(α) = lα for α ≤ s − 2. From the constraint, we now obtain the relations

t∑

α=1

(Crm)α = m(1) + m(t) − m(t+1) = m(t) − m(t+1) = 0 1 ≤ t ≤ s − 2,
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which imply that m(t) = 0 for 1 ≤ t ≤ s − 1, in order for the Kostka polynomials to
be non-zero. From the assumption that λs > ν(µ)s , we obtain ls−1 < n(s−1). Thus,
we find that

s−1∑

α=1

(Crm)α = m(1) + m(s−1) − m(s) = −m(s) = n(s−1) − ls−1 > 0,

which implies that the Kostka polynomial indeed vanishes, because m(s) < 0.
4. This comes from the fact that m(r) ∈ Z≥0, and

m(r) =
r∑

α=1

(C−1
r )r,α(n(α) − lα) = 1

r + 1

r∑

α=1

α(n(α) − lα) = 1

r + 1
(|ν(µ)| − |λ|).

(5.17)

��
We can also make contact with the usual combinatorial notation for Kostka polyno-

mials, which are labeled by Young diagrams, that is, glr+1 representations. Let λ be the
partition of length at most r + 1, obtained from λ by defining

λβ = m(r) + λβ, 1 ≤ β ≤ r + 1,

where m = C−1
r (n − l). Let µ = ν(µ). Then Eq. (5.17) implies |λ| = |µ|, which is the

usual condition in the Kostka polynomial labeled by glr+1-weights. The partition λ can
be pictured as that obtained by adding m(r) columns of length r + 1 to the left of the
Young diagram corresponding to λ.

The Kostka polynomial is defined for any r . If we choose to fix |µ| = m, and choose
r sufficiently large (r ≥ m), then n(α) = lα = 0 if α > m. We have the following
generalization of the triangularity property for Kostka polynomials:

Lemma 5.13. The generalized Kostka polynomial Kλ,µ(q) = 0 unless λ � µ = ν(µ)

according to the dominance ordering on partitions.

Proof. The dominance ordering on partitions is

β∑

α=1

λα ≤
β∑

α=1

µα, for all β ∈ 1, . . . , r + 1.

Recast in terms of the variables n and l this means that

A(n − l)β − βlr+1 = A(n − l)β − βm(r) ≥ 0 for all β. (5.18)

For β = r+1 the equality holds due to the condition |λ| = |µ|, so we need only consider
β ≤ r . Using the fact that

m(r) = 1

r + 1

r∑

α=1

α(n(α) − lα),

Eq. (5.18) becomes
r∑

α=1

(Aβα − βα

r + 1
)(n(α) − lα) = (C−1

r (n − l))β = m(β).

Since m(β) ≥ 0 in the summation in Kλ,µ(q), this proves the lemma. ��
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Note also that if m(β) = 0 for all β, then λ = µ. In that special case, Kλ,µ(q) = 1.
To tie in with the usual notion of the unitriangularity of the Kostka matrix, let Sr [m] ∼

P(r, k)[m] be the subsets of (multi-) partitions of m, and fix max(k, r) ≥ m. The num-
ber of elements of both sets is the number of partitions of m. Let λ � m. The last
lemma implies that the square matrix K(q), with entries indexed lexicographically by
the partitions ν(µ) with µ ∈ Sr [m] and λ is upper unitriangular. That is, define

(K(q))λ,µ = Kλ,µ, µ ∈ Sr [m], µ = ν(µ), max(k, r) ≥ |λ| = |µ|.

Then K(q)λ,µ = 0 if λ � µ, and it is equal to 1 if λ = µ.
In the case in which we are interested, in which r is fixed and may be smaller than

|µ|, we take the subset of the elements of this matrix which have the length of µ to be
at most r , and the length of λ to be at most r + 1.

6. Characters for Arbitrary Highest-Weight ŝlr+1-Modules

Let λ ∈ P +
k and let Vλ be the highest-weight ŝlr+1-module of level k. We are interested

in computing a fermionic formula for the character of this space, for arbitrary λ, similar
in form to the one found in Sect. 3.

We compute this character in several steps. First, we compute the character of
the fusion product of several principal subspaces corresponding to rectangular high-
est weights µp. We then use a Weyl translation to find the character of the fusion product
of integrable modules corresponding to the same highest weights.

At this point, we choose a very particular set of r rectangular highest weights, of the
form µp = apωp with p = 1, . . . , r . We use the decomposition of the fusion product
into the graded sum over irreducible highest-weight modules, with coefficients given by
the generalized Kostka polynomials. This means that the character of the fusion product
is the sum over characters of irreducible modules, with coefficients given by the Kostka
polynomial.

This relation between the characters is invertible, so we use it to write the character
of the irreducible module in terms of a finite sum over characters of particular fusion
products. The coefficients in the sum are polynomials in q−1 whose coefficients are not
necessarily positive, since they are given by the entries of the inverse of the matrix of
generalized Kostka polynomials in q−1.

6.1. Character of the fusion product of principal subspaces. Consider the fusion product
of principal subspaces:

Wµ(ζ ) = W1(ζ1) � · · · � WN(ζN) = U(n− ⊗ C(t))v1 ⊗ · · · ⊗ vN,

where we allow singularities at t = ζp. Here, vp is the highest-weight vector of Vµp(ζp),
the module of level-k, with highest weight of the form µp = apωαp , localized at ζp.

We choose k sufficiently large – that is, k ≥ ∑

p ap, so that the level-restriction in
the decomposition coefficients does not play a role.

Note once more that the algebra U(n− ⊗ C(t)) is filtered by degree in t , and that,
defining the cyclic vector ⊗vp to have degree 0, the fusion product Wµ(ζ ) inherits
this filtration. Hence, we can define the q-character of Wµ(ζ ) as the Hilbert series of
the associated graded space – it is a Laurent series in q, which we can compute for
sufficiently simple µp.
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As an n− ⊗ C[t, t−1]-module, Wµ(ζ ) decomposes as a direct sum of principal sub-
spaces Wλ(0), with graded coefficients which are equal to the generalized Kostka poly-
nomials in the previous section. This follows from the fact that Wλ(0) is generated by
the action of n− ⊗ C[t, t−1] on the highest weight vector of Vλ(0), and in the previous
section we computed the graded space of multiplicities of these highest-weight vectors
in the fusion product of integrable modules to be generalized Kostka polynomials.

Thus, we can see that

chqWµ(ζ ) =
∑

λ

Kλ,µ(q−1)chqWλ. (6.1)

Note that the sum over λ is finite, because Kλ,µ(q) = 0 when λ1 > (ν(µ))1.
In this subsection we will compute the character of the fusion Wµ(ζ ), by character-

izing the dual space of n− ⊗ C(t) acting on the cyclic vector ⊗vp.
The dual space is the space of generating functions for matrix elements of the form

{〈w|U(n− ⊗ C(t))v1 ⊗ · · · ⊗ vN 〉, | w ∈ Wλ∗(∞), λ ∈ P +
k

}
.

Thus, the dual space Fµ(ζ ) is the space of functions in the variables x
(α)
i (with 1 ≤ α ≤ r

and 1 ≤ i ≤ m(α)), with pairing defined in the same way as in Eq. (5.7). Thus it is the

space of functions with possible simple poles at x
(αp)

i = ζp and x
(α)
i = x

(α±1)
j , such

that the polynomial f (x) defined by

F(x) = f (x)
∏

p,i(x
(αp)

i − ζp)
∏r−1

α=1
∏

j,k(x
(α)
j − x

(α+1)
k )

∈ Fµ(ζ ) (6.2)

is symmetric under the exchange x
(α)
i ↔ x

(α)
j . In addition, it vanishes due to the Serre

relation whenever

x
(α)
1 = x

(α)
2 = x

(α±1)
1 .

There is no degree restriction on f (x), since we allow for poles at infinity in
U(n− ⊗ C(t)), as well as at t = ζp. We do not allow for zeros at t = ζp, so the
pole structure at t = ζp is as before. Moreover we have, as in the calculation of the
coinvariant, the condition that f (x) vanishes whenever

x
(αp)

1 = · · · = x
(αp)

ap+1 = ζp, p = 1, . . . , N. (6.3)

Finally, it is possible now to have currents fα(z)k+1 acting non-trivially on the tensor
product of highest-weight vectors. Since Wλ(0) is a subspace of an integrable module,
where such currents act trivially, the dual space is in the subspace which couples trivially
to such currents. That is, we must impose the integrability condition, that f (x) vanishes
whenever

x
(α)
1 = · · · = x

(α)
k+1. (6.4)

These conditions characterize the space Fµ(ζ ). In order to compute the character
of the h-graded component Fµ(ζ )[m], we introduce the same filtration as in Sect. 3.4.
That is, let ν be a multi-partition consisting of r partitions, where ν(α) � m(α), (we
denote this as ν � m). We order multi-partitions lexicographically, and introduce the
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evaluation maps ϕν as in Sect. 3.4. The evaluation maps act on the space Fµ(ζ ). Let
ν = ∩ν′>ν ker ϕν′ etc., where the kernel now refers to that of the evaluation map acting
on Fµ(ζ ). Define the graded components Grν = ν/′

ν .
We compute the image of the induced map ϕν : Grν → Hν . Here, Hν is the space

of rational functions in the variables

y =
{

yα
a,i | 1 ≤ α ≤ r, 1 ≤ i ≤ m(α)

a , 1 ≤ a ≤ k
}

,

where m
(α)
a is the number of rows of length a in ν(α), with possible poles at y(α)

a,i = y
(α+1)

a′,i′

and at y
(αp)

a,i = ζp.

Definition 6.1. Let H̃ν ⊂ Hν be the subspace of functions spanned by functions of the
form

H(y) = Hν(y)h(y), (6.5)

where h(y) is a polynomial, symmetric under the exchange of variables with the same
values of α and a, and

Hν(y) =
∏

α=1,... ,r
(a,i)>(a′,i′)

(y
(α)
a,i − y

(α)

a′,i′)
2Aa,a′

∏

α=1,... ,r−1
(a,i);(a′,i′)

(y
(α)
a,i − y

(α+1)

a′,i′ )−Aa,a′

×
∏

p,(a,i)

(y
(αp)

a,i − ζp)−Aa,ap . (6.6)

By using almost identical arguments to those in Sect. 3.4, we conclude that

Theorem 6.2. The induced map

ϕν : Grν  → H̃ν (6.7)

is an isomorphism of graded vector spaces.

Therefore we have that

chqFµ(ζ ) =
∑

m

∑

ν�m

chqH̃ν .

To compute the character of H̃ν we can set ζp = 0 in Hν(y), as it does not change the
character. Also recall that chqWµ(ζ )[m] = q |m|chqFµ(ζ ). Thus we have

chqWµ(ζ ) =
∑

→
m∈Z

r×k
≥0

q
1
2

→
m

T
(Cr⊗A)

→
m−→

m
T
(id⊗A)

→
n

(q)→
m

eωT ·n−ωT Cr m. (6.8)

Recall that n = (n(1), . . . , n(r))T , with n(α) = ∑

a≥0 an
(α)
a , where n

(α)
a is the number

of highest weights of the form µp = aωα .
In order to calculate the character for general principal subspaces of ŝlr+1, we can

restrict ourselves to sequences of r partitions of the formµp = apωp, withp = 1, . . . , r .
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The results of Sect. 5.7 show that the matrix K(q) with elements (K(q))λ,ν(µ) =
Kλ,µ(q) is invertible, so we can invert the relation (6.1) and conclude that the character
of the principal subspace of a general highest weight is given by

chqWλ =
∑

µ

(K−1(q−1))ν(µ),λ chqWµ(ζ ), (6.9)

where the finite sum is over sequences of partitions of the formµ = (n(1)ω1, . . . , n(r)ωr),
i.e. sequences of rectangular weights, such that ν(µ) ≤ λ (in the sense of Lemma 5.12).

6.2. Characters for general highest-weight modules of ŝlr+1. We can now use the results
of Sect. 4, to obtain the character formulæ for the Weyl translated principal subspac-
es and, in particular, the characters of general integrable irreducible representations of
ŝlr+1.

Let us denote the limit of N → ∞ of T NchqVµ(ζ ) (where N is chosen in such a way
that (Cr · N)α = 2N , for all α) by chqVµ(ζ ). Using the results and notation of Sect. 4,
we find

chqVµ(ζ ) =
∑

m̃∈Zr

q
1

2k
m̃T Cr m̃− 1

k
nT ·m̃ eωT ·n−ωT Cr m̃

× 1

(q)r∞

∑′

→
m∈Z

r×(k−1)
≥0

q
1
2

→
m

T
(Cr⊗C−1

k−1)
→
m−→

n
T
(id⊗C−1

k−1)
→
m

∏r
α=1

∏

a<k(q)
m

(α)
a

, (6.10)

where the prime denotes the constraint
∑k−1

a=1 am
(α)
a = m̃(α) mod k. As in the case of

the fusion of the principal spaces, the second line of Eq. (6.10) leads to an expression
for the string functions, in this case associated to general modules of ŝlr+1. However,
we can make the character simpler in appearance by reintroducing m

(α)
k in favor of m(α).

This gives

chqVµ(ζ )= 1

(q)r∞

∑

→
m

m
(α)
k ∈Z,m

(α)
a<k∈Z≥0

q
1
2

→
m

T
(Cr⊗A)

→
m−→

n
T
(id⊗A)

→
m

∏r
α=1

∏k−1
a=1(q)

m
(α)
a

eωT ·n−ωT Cr m. (6.11)

This character decomposes into characters of the integrable modules in the following
way

chqVµ(ζ ) =
∑

λ≤ν(µ)

Kλ,µ(q−1) chqVλ, (6.12)

where the sum is over dominant weights of slr+1.
We can now invert the relation (6.12), to obtain the character of a general integrable

highest-weight module of ŝlr+1.

Theorem 6.3. The character chqVλ of any integrable, level-k ŝlr+1 module with highest
weight λ is given by

chqVλ =
∑

µ

(K−1(q−1))ν(µ),λ chqVµ(ζ ), (6.13)
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where chqVµ(ζ ) is given by Eq. (6.11) and the elements of the invertible matrix K are
given by (K(q))λ,ν(µ) = Kλ,µ(q), where Kλ,µ(q) is given by Eq. (5.13). The finite sum
is over sequences of rectangular partitions of the form µ = (n(1)ω1, . . . , n(r)ωr), such
that ν(µ) ≤ λ in the sense of Lemma 5.12.

We note some features of this formula. It is a finite sum, with coefficients in Z[q−1].
Therefore, not only is the positivity of the coefficients of qn not manifest from this
formula, neither is the fact that the character is in fact a series in positive powers of q

only.

6.3. Some examples. Let us consider some explicit examples of the matrices of gener-
alized Kostka polynomials, and, as a result, some character formulæ for non-rectangular
representations. We will do this for ŝl3 in full generality, and for ŝl4 at fixed level.

6.3.1. The case ŝl3. In this case, it is very easy to write down the elements of the matrix
Kλ;ν(µ). For a given partition λ, let li = λi+1 − λi . Using this notation, we have the
following result

K(l1,l2);(l1−i,l2−j) = δi,j q
i, (6.14)

where we have the constraints 0 ≤ i, j ≤ min(l1, l2). The non-zero elements of K
−1

are also easily obtained

K
−1
(l1,l2);(l1,l2)(q) = 1, (6.15)

K
−1
(l1,l2);(l1−1,l2−1)(q) = −q, l1, l2 > 0, (6.16)

while all the other elements are zero. For the characters of arbitrary ŝl3 representations,
this implies for non-rectangular representations (i.e. l1, l2 > 0),

chqV(l1,l2) = chqV(l1,l2)(ζ ) − 1

q
chq V(l1−1,l2−1)(ζ ), (6.17)

where chqVµ(ζ ) is given by Eq. (6.10) or (6.11).

6.3.2. An ŝl4 example. We give an explicit example for the matrix K for representations
of ŝl4, with level k ≤ 4. In addition, we will restrict ourselves to representations with
∑3

i=1 ili = 0 mod 4 (see Sect. 5.7). There are 10 representations of this kind, and we
will use the ordering

(0, 0, 0); (1, 0, 1), (0, 2, 0); (2, 1, 0), (0, 1, 2); (4, 0, 0),

(2, 0, 2), (1, 2, 1), (0, 4, 0), (0, 0, 4).
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With this ordering, we obtain the following Kostka matrix

K(q) =


















1 q 0 0 0 0 q2 0 0 0
0 1 0 q q 0 q q2 0 0
0 0 1 0 0 0 0 q + q2 0 0
0 0 0 1 0 0 0 q 0 0
0 0 0 0 1 0 0 q 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


















. (6.18)

The inverse is

K
−1(q) =


















1 −q 0 q2 q2 0 0 −q3 0 0
0 1 0 −q −q 0 −q q2 0 0
0 0 1 0 0 0 0 −q − q2 0 0
0 0 0 1 0 0 0 −q 0 0
0 0 0 0 1 0 0 −q 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


















. (6.19)

Note that the inverse Kostka matrix has off-diagonal elements with both signs. As an
example, we find that (by making use of Eq. (6.13))

chqV(1,2,1) = chqV(1,2,1)(ζ ) − 1

q
chqV(2,1,0)(ζ ) − 1

q
chqV(0,1,2)(ζ )

−( 1

q
+ 1

q2

)
chqV(0,2,0)(ζ ) + 1

q2 chqV(1,0,1)(ζ ) − 1

q3 chqV(0,0,0)(ζ ),

(6.20)

with chqVµ(ζ ) given by Eq. (6.10).

7. Conclusion

The main purpose of this paper was to find explicit fermionic character formulæ for arbi-
trary integrable highest-weight modules of ŝlr+1, using a generalization of the methods
of Feigin and Stoyanovskiı̆ [23]. Because the functional realization of the dual space for
non-rectangular highest weights is too complex for computation of a fermionic character
(see Sect. 3.3.2), we did not compute purely fermionic characters, which would have the
nice feature that they are manifestly power series in q, with non-negative coefficients.
Instead, we found explicit character formulæ as a finite sum of fermionic characters with
coefficients in Z[q−1].

To obtain these explicit characters, we used the following strategy: we computed the
fermionic character formula for the (non level-restricted) fusion product of N integrable
modules with rectangular highest weights µp = apωαp , Eq. (6.11), and of the space of
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conformal blocks associated with this fusion product, the generalized Kostka polynomial
of Theorem 5.11.

We thus provided a proof of the conjecture of Feigin and Loktev [8], concerning the
relation between their graded tensor product and the generalized Kostka polynomials
[22, 16] in this case. It is also a direct proof of the independence of the dimension of
the FL-fusion product of the evaluation parameters (the points ζp), since the associated
graded space whose character we computed corresponds to the limit ζp → 0 for all p.

We then used the characters for the special case of these fusion products, together
with the relation (6.12), to obtain a formula for the characters of integrable modules
of ŝlr+1 of arbitrary (non-rectangular) highest weight, in terms of the inverse matrix of
certain generalized Kostka polynomials, see Theorem 6.3.

The generalization of the discussion in this paper to other simple Lie algebras requires
us to consider the so-called Kirillov-Reshetikhin modules (or rather, their limit to the
loop algebra case, as KR-modules were originally defined for Yangians). These take
the place of irreducible g-modules with rectangular highest weights but as g-modules,
they are not necessarily irreducible. We will explain this generalization in an upcoming
publication.
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