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Abstract: In this paper we prove the orbital stability of double solitons for the
Benjamin-Ono equation. In the case of the KdV equation, this stability has been proved
in [17]. Parts of the proof given there rely on the fact that the Euler-Lagrange equations
for the conserved quantities of the KdV equation are ordinary differential equations.
Since this is not the case for the Benjamin-Ono equation, new methods are required. Our
approach consists in using a new invariant for multi-solitons, and certain new identities
motivated by the Sylvester Law of Inertia.

1. Introduction

A common feature of integrable evolution equations describing nonlinear wave motion
is that they have an infinite sequence of conservation quantities (first integrals) V1(u),

V2(u), V3(u), . . . In concrete examples, the solutions of the equation V ′
2(u)+ cV ′

1(u) =
0 are one-solitons (traveling waves, standing waves). These solutions evolve without
changing their shape and their stability has been proved in [2, 4 and 10] for the KdV
equation and in [1] for the Benjamin-Ono (BO) equation. On the other hand, the higher
order Euler-Lagrange equation

V ′
3(u)+ αV ′

2(u)+ βV ′
1(u) = 0 (1.1)

gives rise to more complicated solutions called double solitons (or two-solitons). In
some sense, these solutions represent the superposition of two one-solitons and their
speeds are related to the multipliers α and β through an algebraic equation. As in the
case of the one-soliton, to prove that the double soliton is stable we have to show that
they locally minimize V3 subject to given values of V1 and V2. This proof involves the
spectral analysis of the one-parameter family of self-adjoint operators L(t), which are
the linearization of (1.1) at the double soliton.
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An alternative way to construct double solitons is to use the self-adjoint operator M
that appears in the Lax pair associated to the integrable equation (see [7] for the con-
struction of the Lax pair for the Benjamin-Ono equation). The double solitons are the
potentials for which the self-adjoint operator M has two eigenvalues.

Although the discreteness of the spectrum of M combined with Inverse Scattering
Theory might suggest some stability property of the double solitons, the first rigorous
proof of the Liapunov stability of double solitons for the KdV equation has been given
in [17] using the variational approach introduced above. In this case, the linearized oper-
ator L(t) is a fourth order self-adjoint linear ordinary differential operator. In [17] the
authors first give spectral conditions for critical points of abstract constrained variational
problems to be local minimizers. As a consequence of this abstract result, they show that
the stability of the double soliton follows from the following spectral conditions:

C.1 for any t , L(t) has exactly one negative eigenvalue;
C.2 for any t , zero is a double eigenvalue of L(t).

Their method to show that these two conditions are indeed satisfied relies very heav-
ily on the ODE structure of L(t). More specifically, they use the concept of stable and
unstable subspaces for linear equations to show that the multiplicity of zero as an eigen-
value of L(t) is exactly two for any t . They also use some results from the Calculus of
Variations that are related to the concept of conjugate points (for unbounded intervals)
to count the number of negative eigenvalues of L(t).

In this paper we prove the stability of double solitons for the BO equation. As in
the case of the KdV equation, to prove this stability we have to show that the family
of self-adjoint operators L(t) satisfies Conditions C.1 and C.2 above. However, in the
case of BO equation, L(t) is not an ordinary differential operator anymore because the
Hilbert transform appears in it. This makes the spectral analysis more complicated and
then a new approach is required.

The first step of our method (which is presented in Sects. 2 and 3) consists in making a
simplification in the spectral problem to reduce the spectral analysis of the one-parameter
familyL(t) to the analysis of the spectra of two stationary operatorsL1 andL2. We now
describe this simplification in more detail.

We begin by describing how the operators L1 and L2 are constructed. The double
soliton u(t) appears in the coefficient of the self-adjoint operator L(t). For instance, in
the case of the KdV equation, L(t) is given by

L(t)h = h(4) + 10uhxx + 10uxxh+ 10uxhx + 30u2h+ α(−hxx − 6uh)+ βh,

where u = u(t) is the double soliton. Let u1 and u2 be the one-solitons associated to
that double soliton u(t) and let L1 and L2 be the stationary “limit operators” that we get
when we replace u(t) by u1 and u2 in L(t), respectively. The notation is such that u1 is
the soliton with lower speed.

Suppose we can show the following properties of the spectra of L1 and L2:

C.3 L1 has one negative eigenvalue and L2 has no negative eigenvalue;
C.4 zero is a simple eigenvalue of L1 and of L2.

Our reduction procedure consists in proving that conditions C.3 − C.4 imply C.1 − C.2.
In other words, what we do is to reduce the proof of the stability of the double soliton
to the study of the stationary “limit” uncoupled operators L1 and L2, whose coefficients
depend only on the one-solitons u1 and u2, respectively. This fact is implicit in [17], but
that is so because they use techniques which are very specific to variational problems
whose Euler-Lagrange equations are ODE’s.
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To carry out this simplification we use a new invariant for multi-solitons (part two
of Theorem 3) which has been introduced by one of the authors in [16]. We also use
a theorem about the asymptotic behavior of the spectrum of a sequence of self-adjoint
operators (Theorem 4). This simplification is done in an abstract framework. Hence,
in principle, it works for any integrable equation, independently of the structure of the
Euler-Lagrange equations for the conserved quantities. However, the procedure to verify
that the spectral conditions C.3 − C.4 are satisfied is specific to the integrable equation
under study.

In the case of BO equation our method to verify those conditions is based on certain
new identities (and some variants of them) of the type

MQMt = NQ0N
t . (1.2)

In (1.2) Q is a certain self-adjoint operator, M and N are auxiliary operators and Q0 is
another self-adjoint operator which is “simpler” than Q. Identities of type

MQ = Q0M (1.3)

are well-known and they are related to the Darboux factorization ([5] and [6]). If the
spectrum of Q0 is known, the kernel of M has dimension one and (1.3) holds, then the
spectrum of Q can be calculated. We will come back to this point later in this paper.
However, for some linear operators that we encounter in this paper, identities of type
(1.3) do not seem to exist, while identities of type (1.2) can still be found. Identities of
type (1.2) are motivated by the Sylvester Law of Inertia (Theorems 1 and 2). As we will
see, if (1.2) holds and we have some information about the spectrum ofQ0 and about the
kernel and image ofM and ofN , then certain qualitative properties of the spectrum ofQ
can be obtained. In other words, identities of type (1.3) are stronger in the sense that they
allow us to calculate spectra while identities of type (1.2) give qualitative information
only. Fortunately, this qualitative information is enough for our needs.

To illustrate how our method works, we first use it to provide an alternative proof of
the stability of double solitons for the KdV equation. Then, we extend the method to the
new case of the BO equation.

As in [17], our approach is purely variational. In particular, Inverse Scattering Theory
is not used here. Inverse scattering has been used in [21] to prove stability results for
the KdV equation but, in that case, the distances between the initial conditions and the
corresponding solutions at later times are measured by different norms. In [17] and in
the present paper, the phase space where stability is proved is the largest Sobolev space
where the first integrals V1, V2 and V3 make sense (H 2(IR) for the KdV equation and
H 1(IR) for the BO equation.)

It is likely that our method can be extended to multi-solitons of the BO equation
and of its hierarchy but the algebra may become prohibitive. The hierarchy for the BO
equation has been constructed in [8]. The possibility of extending our method to show
stability of double solitons (and one-solitons also) for other integrable equations depends
only on finding identities of type (1.2) for these equations.

Perhaps we should expect that, for general integrable equations, the stability of multi-
solitons should be a consequence of stability of one-solitons. Unfortunately, such a result
has not been proved yet. Using the method we develop in this paper it can conceivably
be shown that if the one-solitons are stable for all equations in its hierarchy, then multi-
solitons are also stable.

In [18] some results of stability and asymptotic stability are proved for the gener-
alized KdV equations for subcritical powers of the nonlinearity. To be more specific,
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it is shown in [18] that if the profile of an initial condition for the generalized KdV
equation is close to the profile ofN traveling waves which are far apart, then this profile
is preserved for positive time. This type of stability (which holds also for non-integrable
nonlinearities) does not include the results of [17] (neither does ours.) The reason is that
when we minimize conserved quantities, we get the stability of the whole orbit of the
double soliton (and not just of its tail) for both positive and negative times.

This paper is organized as follows: in Sect. 2 we recall a new invariant for multisoli-
tons which has been introduced in [16]. In Sect. 3 we prove a result about the asymptotic
behavior of the spectrum of a certain sequence of self-adjoint operators. With these two
abstract results we will be able to make the simplification of the spectral problem. In
Sect. 4 we recall a result that gives the spectral condition for critical points of constrained
variational problems to be local minimizers. In Sect. 5 we introduce identities of type
(1.3) for the KdV equation and we prove the stability of double solitons for that equa-
tion. Finally, in Sect. 6 we extend the method to the BO equation. We also include an
appendix where we recall some properties of the Hilbert transform; the proofs of some
lemmas which depend on long calculations involving Hilbert transform are also left to
the appendix.

2. A New Invariant for Multi-Solitons

We begin by recalling the definition of inertia of a real symmetric matrix.

Definition 1. If A is a real N × N symmetric matrix then the inertia in(A) is a triplet
(n, z, p) of nonnegative integers where n, z and p are the number of negative, zero and
positive elements (counted according to their multiplicity) of the spectrum of A .

The next result is known as the Sylvester Law of Inertia (see [9]).

Theorem 1. If A is a real symmetric N × N matrix and M is a real nonsingular (not
necessarily orthogonal) N ×N matrix, then in(MAM∗) = in(A).

The unbounded self-adjoint operators L we will be dealing with in this paper satisfy
the following property: there is a δ > 0 such that the spectrum of L to the left of δ con-
sists of a finite number of eigenvalues and the corresponding spectral projections have
finite dimensional range. For that class of self-adjoint operators we give the following:

Definition 2. The inertia in(L) of a self-adjoint operator as above is the pair (n, z) of
nonnegative integers where, as in the case of matrices, n is the dimension of the negative
subspace of L and z is the dimension of the null space of L.

Now we can state the Generalized Sylvester Law of Inertia:

Theorem 2. If L with domain D(L) is a self-adjoint operator as above and M is an
invertible bounded operator, then in (MLM∗) = in (L), where MLM∗ is the self-
adjoint operator with domain (M∗)−1(D(L)).

The proof of Theorem 2 follows exactly as in the matrix case [9] because the only
thing it only uses is the variational characterization of the eigenvalues of self-adjoint
operators.

We now introduce certain one-parameter families of self-adjoint operators L(t) that
are isoinertial, that is, have a constant inertia. The families of self-adjoint operators that
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arise in the stability theory of multi-solitons fit in that class. Let us consider an abstract
evolution equation

u̇ = f (u) (2.1)

in a Hilbert space X. We suppose that it has a first integral V (u). In order to be precise,
we consider three Hilbert spaces X,X1 and X2 and we make the following hypotheses:

H.1 X2 ⊂ X1 ⊂ X with continuous embedding; the embedding from X2 into X1 will
denoted by i;

H.2 V : X1 → R is a C3 functional;
H.3 f : X2 → X1 is a C2 function;
H.4 for any u ∈ X2 we have

V ′(i(u))f (u) = 0. (2.2)

If u(t) is a strong solution of (2.1) and 〈, 〉 is the scalar product of X, we suppose
that there is a self-adjoint operator L(t) : D(L) ⊂ X → X with constant domainD(L)
such that 〈L(t)h, k〉 = V ′′(u(t))(h, k) for h and k in a subspace Z ⊂ D(L)∩X2 which
is dense in X. We consider also another operator B(t) : D(B) ⊂ X → X such that
B(t)h = −f ′(u(t))h for h ∈ Z and we make the final assumption

H.5 The closed operators B(t) and B∗(t) have a common domain independent of t , and
the Cauchy problems

u̇ = B(t)u u̇ = B∗(t)u

are well posed for both positive and negatives times in the space X.

Theorem 3. Let u(t) be a strong solution of (2.1) and suppose H1 to H5 are satisfied.

– (P.Lax [15]) If for some t0 we have V ′(u(t0)) = 0 then V ′(u(t)) = 0 for any t; in
other words, the set of the critical points of the first integral V (u) is invariant under
(2.1).

– If u(t) is as in the first part (that is, u(t) is a solution of (2.1) satisfying V ′(u(t)) = 0
for all t ∈ R), then the inertia in(L(t)) of the self-adjoint operator L(t) that repre-
sents V ′′(u(t)) as above is independent of t .

The proof of Theorem 3 is given in [16] but we recall what is the main idea for the sec-
ond part. A very famous device for finding isospectral families of self-adjoint operators
(families with constant spectrum) is the Lax pair ([14]). The motivation is the following:
let L(t) be a family of self-adjoint operators and let us impose that

L(t) = M(t)L(0)M∗(t) (2.3)

for any t , where M(t) is orthogonal and satisfies

Ṁ(t) = B(t)M(t) M(0) = I (2.4)

with B(t) skew-adjoint. Differentiating (2.3) with respect to t and using (2.4) we get

L̇(t) = B(t)L(t)− L(t)B(t). (2.5)

Conversely, if (2.5) holds with B(t) skew-adjoint then L(t) = M(t)L(0)M∗(t), where
M(t) is orthogonal and this implies that the spectrum of L(t) is constant.
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Suppose that instead of constructing isospectral families, we want to construct
isoinertial families. Then in view of Theorem 2 we impose

L(t) = M(t)L(0)M∗(t) (2.6)

and we assume that M(t) evolves in time satisfying a linear equation

Ṁ(t) = B(t)M(t) M(0) = I. (2.7)

Differentiating (2.6) with respect to t and using (2.7) we get

L̇(t) = B(t)L(t)+ L(t)B∗(t). (2.8)

Conversely, if (2.8) is satisfied then (2.6) holds and, ifM(t) is invertible (which is guar-
anteed by assumption H.5), then according to Theorem 2 the inertia in(L(t)) of L(t)
is constant. Therefore, without imposing that B(t) is skew-adjoint, Eq. (2.8) governs
isoinertial families of operators.

The proof of part two of Theorem 3 consists in showing that the self-adjoint operator
L(t) satisfies Eq. (2.8) and this follows easily differentiating (2.2) one and two times
with respect to u (details are given in [16].)

As we have pointed out in the introduction, to prove the stability of double solitons we
have to verify the spectral conditions C.1 and C.2 for a certain one-parameter family of
self-adjoint operators L(t) whose coefficients depend on the double soliton u(t). These
two conditions mean precisely that the inertia of L(t) is the pair (1,2). Since multi-sol-
itons fit in the framework of Theorem 3, we conclude that the inertia in(L(t)) of L(t)
is independent of t . Therefore, we can choose a convenient t to calculate the inertia and
the best thing we can do is to calculate the inertia in(L(t)) as t goes to ∞. In that case
the double soliton splits into two one-solitons u1 and u2 far apart. If L1 and L2 are the
operators that we get when we replace u(t) by u1 and u2 in L(t), respectively, then in
the next section we show that, as t goes to ∞, the spectrum σ(L(t)) of L(t) converges
to the union of the spectra σ(L1) and σ(L2) of L1 and of L2.

3. Asymptotic Behavior of the Spectrum of Certain Sequences of Self-Adjoint
Operators

As a model for the main result of this section we take X = L2(R) and we denote by τn
the family of isometries (τnh)(x) = h(x−n). We consider also the following symmetric
operators:

(Ah)(x) = h(4)(x)+ αh′′(x)+ βh(x),

where α and β are such that A is invertible;

(Bh)(x) = b(x)h′′(x)+ b′(x)h′(x)+ b0(x)h(x);
(Ch)(x) = c(x)h′′(x)+ c′(x)h′(x)+ c0(x)h(x);
(Cnh)(x) = (τ−1

n Cτnh)(x) = c(x + n)h′′(x)+ c′(x + n)h′(x)+ c0(x + n)h(x);
(Dnh)(x) = dn(x)h

′′(x)+ d ′
n(x)h

′(x)+ d0,n(x)h(x).

The functions b(x), b0(x), c(x) and c0(x) are smooth and, together with some deriva-
tives, tend to zero at infinite; dn(x) and d0,n(x) are sequences of smooth functions whose
L∞ norm and of some of their derivatives tend to zero as n tends to ∞.
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In the model above, the operator Ln = A+ B + Cn +Dn is the sum of an operator
A which is translation invariant, an operator Dn whose coefficients tend to zero as n
goes to ∞ and two other operatorsB andCn whose coefficients have “support” far apart
when n tends to infinity. We will show that as n gets large, the spectrum of Ln tends to
the union of the spectra of A+ B and of A+ C.

The abstract framework is the following: let X be a real Hilbert space and τn be a
sequence of isometries ofX. Suppose also that A,B,C are linear operators, Cn,Dn are
two sequences of linear operators withCn = τ−1

n Cτn and that the following assumptions
are satisfied:

A.1 A,A+B,A+C,A+Cn,A+B+Cn+Dn are self-adjoint with the same domain
D(A);

A.2 A is invertible and A commutes with τn, that is, τ−1
n Aτn = A;

A.3 there is a number δ > 0 such that the spectra of all self-adjoint operators A,A +
B,A+ C,A+ B + Cn +Dn to the left of δ consists of a finite number of eigen-
values and the spectral projection corresponding to any such eigenvalue has finite
dimensional range;

A.4 for any λ ∈ ρ(A+ B) ∩ ρ(A+ C), the operators A(A+ C − λI)−1 and A(A+
B − λI)−1 are bounded ;

A.5 |DnA−1| tends to zero as n tends to ∞;
A.6 for any element u ∈ D(A), |Cnu| → 0 as n tends to ∞;
A.7 for any element u ∈ X, τnu tends to zero weakly in X as n tends to infinity;
A.8 for any λ in the resolvent set ρ(A+ C) of A+ C, the operator

B(λI − A− C)−1 is compact.

Theorem 4. Under assumptions A.1 to A.8, if λ < δ and
λ ∈ ρ(A+B)∩ρ(A+C), then there is a numberN0 such that for n ≥ N0, λ belongs to
the resolvent setρ(Ln) ofLn = A+B+Cn+Dn. Moreover, ifλ0 ∈ σ(A+B)∪σ(A+C)
and ε > 0 is given, then there is an integer N1 such that for n ≥ N1, the dimension of
the range of the spectral projection of Ln corresponding to the circle centered at λ0 and
radius ε is equal to the sum of the dimensions of the ranges of the spectral projections
of A+ B and A+ C associated to λ0.
In particular, if the dimension of the null space of Ln is constant and ≥ 2 and the sum of
the dimensions of the null spaces ofA+B andA+C is equal to 2, then the dimension of
the null space of Ln is equal to 2; moreover, as n tends to infinity, a nonzero eigenvalue
of Ln cannot accumulate at zero.

Proof. First of all we notice that λ ∈ ρ(A+ C) if and only if λ ∈ ρ(A+ Cn) and

(A+ Cn − λI)−1 = τ−1
n (A+ C − λI)−1τn. (3.1)

If λ ∈ ρ(A + B) ∩ ρ(A + C), λ < δ and n is large, we have to show that λ ∈ ρ(Ln).
From Assumption A.3, all we have to do is to show u = 0 is the unique solution of

Au+ Bu+ Cnu+Dnu− λu = 0. (3.2)

Therefore, assuming that u solves (3.2) we get

u = (A+ B − λI)−1(−Cnu−Dnu) (3.3)

and

u = (A+ Cn − λI)−1(−Bu−Dnu). (3.4)
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If we replace the u following B in (3.4) by the value of u given by (3.3) we get:

u = Wnu=̂ (A+ Cn − λI)−1B(A+ B − λI)−1(Cnu+Dnu) (3.5)

−(A+ Cn − λI)−1Dnu.

Now we claim that

|(A+ C − λI)(A+ Cn − λI)−1| = (A+ C − λI)τ−1
n (A+ C − λI)−1τn|

is uniformly bounded. In fact, we have Aτ−1
n (A+C − λI)−1 = τ−1

n A(A+C − λI)−1

and Cτ−1
n (A+ C − λI)−1 = CA−1Aτ−1

n (A+ C − λI)−1 and then the claim follows
from Assumption A.4.

Using the fact that the norm of a bounded operator is equal to the norm of its adjoint
we can write the following:

|(A+ Cn − λI)−1B(A+ B − λI)−1Cn| = |Cn(A+ B − λI)−1B(A+ Cn − λI)−1|
= |Cn(A+ B − λI)−1B(A+ C − λI)−1

(A+ C − λI)(A+ Cn − λI)−1|.
Since Cn(A+ B − λI)−1 = CnA

−1A(A+ B − λI)−1 converges to zero in the strong
operator topology in view ofAssumptionsA.4 andA.6, andB(A+C−λI)−1 is compact
in view of Assumption A.8, we see that

|(A+ Cn − λI)−1B(A+ B − λI)−1Cn|
tends to zero.

Putting this information together with Assumption A.5, we conclude that the norm
|Wn| of the operator Wn given by (3.5) tends to zero as n gets large. Then u = 0 for n
large and this proves the first part of the theorem.

To prove the second part, suppose that λ0 < δ, λ0 ∈ σ(A + B) ∪ σ(A + C) and
ε > 0 is given. From the first part we know that there is N0 such that if n ≥ N0 and
λ ∈ IC is such that |λ− λ0| = ε then λ ∈ ρ(Ln). If we set (λI − Ln)

−1f = −u then u
is the unique solution of

Au+ Bu+ Cnu+Dnu− λu = f. (3.6)

To find a more convenient form for the resolvent operator (λI −Ln)−1f , we argue as in
the first part in the following way: if u is the unique solution of (3.6) then u also solves

u = (A+ B − λI)−1(−Cnu−Dnu+ f ) (3.7)

and

u = (A+ Cn − λI)−1(−Bu−Dnu+ f ). (3.8)

If we replace the u following B in (3.8) by the value of u given by (3.7) we get:

u = Wnu− (A+ Cn − λI)−1B(A+ B − λI)−1f + (A+ Cn − λI)−1f, (3.9)

where Wnu is given by (3.5). As we have proved in the first part, for |λ − λ0| = ε the
norm |Wn| of Wn goes to zero as n goes to infinity and this implies that the unique
solution of (3.9) is u = Yn(λ)f with

Yn(λ)f = (I −Wn)
−1[−(A+ Cn − λI)−1B(A+ B − λI)−1f

+(A+ Cn − λI)−1f ] (3.10)
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and then (λI − Ln)
−1f = −Yn(λ)f .

We denote by	 the circle centered at λ0 with radius ε and oriented counterclockwise.
To calculate the spectral projection

Tn=̂ 1

2πi

∫

	

(λI − Ln)
−1 dλ = − 1

2πi

∫

	

Yn(λ) dλ

of Ln corresponding to the disk |λ− λ0| = ε, we start by calculating the operator

Sn= 1

2πi

∫

	

[(A+ Cn − λI)−1 − (A+ Cn − λI)−1B(A+ B − λI)−1] dλ. (3.11)

The first term of Sn is simply −Qn,Qn being the spectral projection ofA+Cn associated
to the eigenvalue λ0. If we denote byQ the spectral projection of A+C corresponding
to the eigenvalue λ0, from (3.1) we haveQn = τ−1

n Qτn; in particular, the ranges ofQn

and of Q have the same dimension.
To calculate the second term in (3.11) we use the following result (see [12]): ifU is a

self-adjoint operator and λ0 is an isolated point of the spectrum σ(U), then the function
(λI − U)−1 has a simple pole at λ0 and

(λI − U)−1 = P

(λ− λ0)
+ P⊥(λ0I − U)−1P⊥ + V (λ), (3.12)

where P is the orthogonal spectral projection corresponding to λ0, P⊥ = I − P and
V (λ) is analytic at λ = λ0 with V (λ0) = 0.

Therefore, if we denote by P the spectral projection associated to the operatorA+B
at λ0 and Qn is as before we can write:

Rn(λ) =̂ (λI − A− Cn)
−1B(λI − A− B)−1

= [
Qn

λ− λ0

+Q⊥
n (λ0I − A− Cn)

−1Q⊥
n

+Vn(λ)]B
[

P

λ− λ0
+ P⊥(λ0I − A− B)−1P⊥ + V (λ)

]

,

where Vn(λ) and V (λ) are analytic at λ = λ0 and vanish there. Then the residue of
Rn(λ) at λ0 is equal to

QnBP
⊥(λ0I − A− B)−1P⊥ +Q⊥

n (λ0I − A− Cn)
−1Q⊥

n BP. (3.13)

Since P projects on the null space of A + B − λ0I , we have BP = (A − λ0I )P and
then the second term of (3.13) can be written as

Q⊥
n (λ0I − A− Cn)

−1Q⊥
n BP = Q⊥

n (λ0I − A− Cn)
−1Q⊥

n (A− λ0I )P

= Q⊥
n (λ0I − A− Cn)

−1Q⊥
n [(A+ Cn − λ0I )− Cn]P

= Q⊥
n P −Q⊥

n (λ0I − A− Cn)
−1QnCnP

= P −QnP −Q⊥
n (λ0I − A− Cn)

−1QnCnP.

Moreover, if P and Q are expressed as

Pu =
N∑

i=1

〈u, φi〉φi, Qu =
M∑

j=1

〈u,ψj 〉ψj ,
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where φi and ψj are unity vectors, from Assumption A.7 we see that the norm of the
operator

QτnPu =
∑

i,j

〈u, φi〉〈τnφi, ψj 〉ψj

goes to zero as n goes to ∞ and then the norm of QnP = τ−1
n QτnP also goes to zero.

According to Assumption A.6 the norm of CnP goes to zero. The norm of Wn, as
we have seen in the proof of the first part, also goes to zero. Therefore, we see that the
norm |Tn − (−Sn)| goes to zero and putting all these things together we conclude that
the norm of Tn −Qn − P tends to zero and this proves the second part of the theorem.
The final assertions follow immediately from the first and second parts and the theorem
is proved.

4. Local Minimizers for Constrained Variational Problems

In this section we recall a result proved in [17] and [10] which gives the spectral condi-
tion for a critical point of a constrained variational problem to be a local minimizer. For
simplicity we consider the case of two constraints only. Therefore, we consider three
smooth functionals V1(u), V2(u) and V3(u) in a Hilbert spaceX and we assume that for
real numbers α and β in a certain range, u = u(α, β) is a smooth family of solution of
the Euler-Lagrange equation

V ′
3(u)+ αV ′

2(u)+ βV ′
1(u) = 0. (4.1)

We consider also the second derivative V ′′
3 (u) + αV ′′

2 (u) + βV ′′
1 (u) of the augmented

lagrangian V3(u) + αV2(u) + βV1(u) and we calculate it at u = u(α, β). That sec-
ond derivative is a continuous bilinear form in the Hilbert space X that can be repre-
sented by an (in general) unbounded self-adjoint operator L = L(α, β) with a certain
domain. We assume that there is a δ > 0 such that the essential spectrum of L is
contained in [δ,+∞) and that the family u(α, β) is nondegenerate in the sense that
zero is not an eigenvalue of L. Considering also the real valued function V (α, β) =
V3(u(α, β))+ αV2(u(α, β))+ βV1(u(α, β)) we can state the following result:

Theorem 5. The family of critical points u(α, β) is a local minimizer for V3 subject to
V2(u) = k2 and V1(u) = k1 iff the number of negative eigenvalues of L = L(α, β) is
equal to the number of positive eigenvalues of the hessian matrix V ′′(α, β).

To prove the orbital stability of double solitons, we have to show that a certain two
dimensional manifold u(t, τ ) is a local minimizer for a certain constrained variational
problem. In the notation u(t, τ ), t will be time and τ denotes translation in the space
variable x. Then, instead of having a single operator Lwe have a familyL(t, τ ) of oper-
ators. As it has been remarked in [17], the manifold u(t, τ ) is made of degenerate critical

points because
∂u

∂t
and

∂u

∂x
are eigenfunctions of L associated to the zero eigenvalue.

Since the definition of orbital stability takes those degeneracies in account, the condi-
tion for the critical points u(t, τ ) to be nondegenerate is that the kernel of L(t, τ ) has
dimension two; in other words, the kernel of L(t, τ ) is spanned by the tangent vectors
∂u

∂t
and

∂u

∂τ
to the orbit u(t, τ ).
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Due to the noncompactness of the orbit u(t, τ ), another question we have to worry
about is to verify that a nonzero eigenvalue of L(t, τ ) cannot accumulate at zero as t
goes to infinity. The fact that this cannot happen in our case will become clear from our
arguments and it has already been considered in Theorem 4.

5. Stability of Double Solitons for the KdV Equation

The stability of double solitons of the KdV equation

ut + 6uux + uxxx = 0 (5.1)

has been proved in [17]. In this section, using the results we have proved in Sects. 2 and
3 and further arguments, we give an alternative proof for that result. In Sect. 6 we extend
that method to the BO equation. The first three conserved quantities for (5.1) are

V1(u) = 1

2

∫ +∞

−∞
u2 dx,

V2(u) = 1

2

∫ +∞

−∞
(u2
x − 2u3) dx,

V3(u) = 1

2

∫ +∞

−∞
(u2
xx − 10uu2

x + 5u4) dx.

Defining ηi = −bix + 4b3
i t for i = 1, 2 and A = (b2 − b1)

2/(b1 + b2)
2, the double

soliton is given by

u(t, x) = 2
d2

dx2 log(1 + e2η1(t,x) + e2η2(t,x) + Ae(2η1(t,x)+2η2(t,x))) (5.2)

(see [11]) and the speeds are ci = 4b2
i . The traveling wave with speed c = 4b2 is

uc = u(t, x) = 2b2sech2(b(x − 4b2t)) = 1

2
sech2(

√
c

2
(x − ct)). (5.3)

As t tends to +∞, the double soliton splits in two separate one-solitons that are far apart
in the following sense: if we define

w(t, x) = u(t, x)− 2b2
1sech2b1(x − b2

1t)− 2b2
2sech2b2(x − b2

2t +�2),

where �2 = logA is the phase shift, then

lim
t→+∞ ‖w(t)‖k,p = 0 1 ≤ p ≤ ∞ k ∈ N (5.4)

and

lim
t→+∞ ‖un1(t)um2 (t)‖k,p = 0 1 ≤ p ≤ +∞ m, n ∈ N,m, n ≥ 1, (5.5)

where |.|k,p denotes the norm in the Sobolev space Wk,p(R).

The Euler-Lagrange equation V ′
3(u)+ αV ′

2(u)+ βV ′
1(u) = 0 is

u(4) + 10uuxx + 5u2
x + 10u3 + α(−uxx − 3u2)+ βu = 0 (5.6)
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and the soliton (5.2) solves (5.6) if

c1 + c2 = α and c1c2 = β; (5.7)

(see [14]). In other words, the constants c1 and c2 are related to the multipliers through
the quadratic equation

c2 − αc + β = 0. (5.8)

The linearized operator of (5.6) at the double soliton u(t, ·) is

L(t)h = h(4)+10uhxx+10uxxh+ 10uxhx + 30u2h+ α(−hxx − 6uh)+ βh. (5.9)

Definition 3. We say that the double soliton (5.2) is orbitally stable if defining the two
dimensional set S = {u(t, · + τ), t, τ ∈ R}, where u(t, ·) is the double soliton, then
for any ε > 0, there is δ > 0 such that if u0 ∈ H 2(IR) and d(u0, S) < δ, then
d(u(t, u0), S) < ε, where d is the distance taken in theH 2(IR) norm and u(t, u0) is the
solution of (5.1) such that u(0, u0) = u0.

This section is devoted to prove the following:

Theorem 6. The double soliton (5.2) is orbitally stable.

The proof of Theorem 6 will be done as follows: we write a chain of statements S.i,
i = 0, . . . , 4 where S.0 is Theorem 6 and S.4 is Theorem 7 below. Using the theory that
we have developed in the previous sections together with simple arguments, we show
that each statement implies the previous one and at the end we prove Theorem 7.

Since the Cauchy problem for (5.1) is well posed in the spaceH 2(IR) and V1, V2 and
V3 are conserved quantities (see [13]), then, as in [17], Theorem 6 follows from:

Statement S.1: The set S is made of local minimizers of V3 for given values of V2 and
of V1.

Defining V (α, β) = V3(u(t)) + αV2(u(t)) + βV1(u(t)), where u(t) is the double
soliton, it has been proved in [17] that det (V ′′(α, β)) < 0. Therefore the hessian matrix
V ′′(α, β) has one positive eigenvalue and one negative one. In view of Theorem 5 and
the comments following it, we see that Statement S.1 is a consequence of

Statement S.2: For every t ∈ IR, the operator L(t) defined by (5.9) has exactly one
negative eigenvalue, it has zero as a double eigenvalue and there is no
accumulation of the spectrum of L(t) at zero as t tends to infinity.

As we have pointed out in the introduction, Statement 2 has been proved in [17] using
ODE methods. We now present a different proof that can be extended to BO equation.

The stationary limit operators obtained by replacing in (5.9) the double soliton u(t, x)
by the one-solitons ui are:

Lih = h(4) + 10uihxx + 10ui,xxh

+10ui,xhx + 30u2
i h+ α(−hxx − 6uih)+ βh. (5.10)

The notation is such that c1 < c2. According to Theorem 3, part ii, the inertia of L(t) is
constant; moreover, from (5.4) and (5.5) we see that the assumptions of Theorem 4 are
satisfied for any sequence tn that goes to infinity; therefore Statement S.2 follows from
the following:
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Statement S.3:
– L1 has zero as a simple eigenvalue and no negative eigenvalues;
– L2 has zero as a simple eigenvalue and exactly one negative eigen-

value.

In order to simplify the calculations, we normalize one speed taking c = 4; in this
case, from (5.8) we get α = 4 + β

4 . The profile of the traveling wave with speed c = 4
is 2sech2x; from now on, this profile will be denoted by u = u(x) and we use capitals
to denote the multiplication operator by the corresponding function. The operators L1
and L2 given by (5.10) calculated at this particular wave is

L = D4 + 10UD2 + 10Uxx + 10UxD + 30U2 + α(−D2 − 6U)+ β, (5.11)

where D = d

dx
. If in this last equation we replace α by 4 + β

4
as above, we get

L = Lβ = Q+ β

4
K, (5.12)

where

Qh = D4 + (10U − 4)D2 + 10Uxx + 10UxD + (30U2 − 24U) (5.13)

and

K = −D2 − 6U + 4I. (5.14)

Notice that c = 4 is the lower speed if β < 16 and c = 4 is the higher speed if β > 16.
Finally, using a simple scaling argument it is easy to show that Statement S.3 follows
from

Theorem 7.

– For 0 < β �= 16, zero is a simple eigenvalue eigenvalue of Lβ;
– for 0 < β < 16, Lβ has one negative eigenvalue and for β > 16, Lβ has no
negative eigenvalue.

We use the subscript odd to denote space of odd functions and the subscript ev to
denote space of even functions. Notice that K and Q map even functions in even func-
tions and odd functions in odd functions. We now state three lemmas from which the
proof of Theorem 7 follows.

Lemma 1.

1. For h ∈ H 1
odd(IR)we have 〈Kh, h〉 ≥ 0 and 〈Kh, h〉 = 0 if and only if h is a multiple

of v = u′;
2. in H 1

ev the operator K has exactly one negative eigenvalue and zero is not an eigen-
value.

Lemma 2. For any h ∈ H 2(IR)we have 〈Qh, h〉 ≥ 0 and 〈Qh, h〉 = 0 iff h is a multiple
of u′ = v.
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Lemma 3. For β = 16 the function

1

2
(x tanh x − 1)sech2x = duc(x)

dc

∣
∣
∣
∣
c=4
,

where uc(x) is the one-soliton (5.3), is an (even) eigenfunction of L16 associated to the
zero eigenvalue.

Remark 1. The spectral conditions given by Lemma 1 are precisely the conditions that
are needed to prove the orbital stability of one-solitons.

Admitting Lemmas 1, 2 and 3 we prove Theorem 7.

Proof of Theorem 7. First we analyse the operatorLβ in the spaceH 2
odd(IR).As we have

pointed out,Qu′ = 0 = Ku′.Moreover, from Lemmas 1 and 2 we see that, in the space
H 2
odd(IR), the operators Q and K are positive in the subspace of functions orthogonal

to u′; hence, zero is an eigenvalue of Lβ associated to the eigenfunction v = u′ and Lβ
is also positive in the subspace orthogonal to u′ . Therefore, inH 2

odd(IR), for any β > 0,
Lβ has zero as a simple eigenvalue with eigenfunction u′ and all other eigenvalues are
positive.

Now we turn to H 2
ev(IR). If we divide Lβ by β/4 the sign of the eigenvalues are

preserved. Then we define γ = 4/β and the operator

L̃γ = γQ+K (5.15)

and we denote by λ1(γ ) the lowest eigenvalue of L̃γ in H 2
ev(IR). For γ = 0, from

Lemma 1 we conclude that λ1(γ ) is negative and all the other eigenvalues of L̃0 are
positive. Since 〈Qh, h〉 > 0 for h ∈ H 2

ev(IR), h �= 0, from the variational character-
ization of the eigenvalues for self-adjoint operators, we conclude that all eigenvalues
of L̃γ move strictly to the right as γ increases. Moreover, from Lemma 3 we see that
λ1(1/4) = 0; we conclude that λ1(γ ) < 0 for γ < 1/4 and λ1(γ ) > 0 for γ > 1/4 and
this proves the theorem.

Then, all is left is to prove Lemmas 1, 2 and 3. The proof of Lemma 3 follows by
elementary calculation and the rest of this section will be devoted to prove Lemmas 1
and 2. We start defining two auxiliary linear operators that will play a crucial role in the
proof of Lemma 1 and Lemma 2 and later in our method:

Mh = h′(x)+ 2 tanh xh(x), Mth = −h′(x)+ 2 tanh xh(x). (5.16)

We also define

K0 = −D2 + 4I. (5.17)

��

Lemma 4. The following identity holds:

MKMt = MtK0M. (5.18)
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The proof of (5.18) follows by expansion of both sides. Before using that identity to
prove Lemma 1, we make a few comments. First let us recall that if

Kh = −hxx + p(x)h and K0h = −hxx + p0(x)h (5.19)

are second order ordinary differential operators and the spectrum of K0 is known, then
the spectrum of K can be calculated if an identity of type

MK = K0M (5.20)

holds. In (5.20) M is an auxiliary operator whose kernel and range are known. This
method has been used in [5] (see also [6], Sect. 2.4 for a presentation of it). Starting with
an operator with constant coefficients and imposing (5.20) recursively, it can be shown
that for the reflectionless potentials p(x) = −m(m+ 1)sech2x, where m is an integer,
the spectrum ofK given by (5.19) can be calculated explicitly. The auxiliary operatorM
in (5.20) is given by Mh = h′(x)+ n tanh x, where n is an integer related to m. Since
in the definition (5.14) of the operator K u is given by u = 2sech2(x), we see that the
potential −6u in (5.14) is equal to −12sech2(x). Then it is the reflectionless potential
with m = 3 and we conclude that the spectrum of K can be calculated explicitly. In
other words, (5.20) gives information which is much better than Lemma 1. However, as
we have pointed out in the introduction, in the study of the stability of double solitons,
we will have to make the spectral analysis of some higher order operators for which,
at least apparently, there is no identity of type (5.20) but there is an identity of type
(5.18). Therefore, we give the proof of Lemma 1 using identity (5.18) to illustrate how
our method works. The first thing is to find the kernel and the range of the auxiliary
operators M and Mt.

Lemma 5. If

M,Mt : D(M) = D(Mt) = H 1(R) ⊂ L2(R) → L2(R)

are given by (5.16) then

i) the null space of M is spanned by u and Mt is injective;
ii) M is onto and the image of Mt is the subspace orthogonal to u.

Proof. The general solution of

h′(x) = −2 tanh(x)h(x) and h′(x) = 2 tanh(x)h(x)

are

h(x) = Csech2(x) and h(x) = C cosh2(x)

respectively, and this proves part one. If h ∈ L2(R) is given, it is easy to see that

g(x) = sech2(x)

∫ x

0
cosh2(s)h(s) ds solves g′(x) + 2 tanh(x)g(x) = h(x) and it

remains to show that the operator (T h)(x) = g(x) maps L2(R) boundedly into it-

self. Since |
∫ x

0
cosh2(s) ds ≤ cosh(x) sinh(|x|)we see that T mapsL∞(R) boundedly
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into itself. Moreover, for b > 0 we have
∫ b

0
sech2(x)

∫ x

0
cosh2(s)|h(s)| ds dx =

∫ b

0

(∫ x

0
cosh2(s)|h(s)| ds)(tanh(x)

)′
dx

= tanh(b)
∫ b

0
cosh2(x)|h(x) dx

−
∫ b

0
tanh(x) cosh2(x)|h(x)| dx

=
∫ b

0
(tanh(b)− tanh(x)) cosh2(x)|h(x)| dx

≤
∫ b

0
(1 − tanh(x)) cosh2(x)|h(x)| dx.

Furthermore, from (1 − tanh(x)) cosh2(x) = (1 + exp−x)/2 ≤ 1 for x ≥ 0, we get

∫ b

0
sech2(x)

∫ x

0
cosh2(s)|h(s)| ds dx ≤

∫ b

0
|h(x) dx.

The case b < 0 is treated in a similar way. This shows that T maps L1(R) boundedly
into itself and then, by interpolation, T maps L2(R) boundedly into itself.

Finally, if h belongs to the range ofMt then it has to be orthogonal to the null space of

Q, that is,hhas to be orthogonal tou. Conversely, suppose that
∫ +∞

−∞
sech2(x)h(x) dx =

0 and let us define

g(x) = −
∫ x

−∞
cosh2 x

cosh2 s
h(s) ds =

∫ +∞

x

cosh2 x

cosh2 s
h(s) ds.

An easy calculation shows that g(x) solve the equation −g′(x)+ 2 tanh(x)g(x) = h(x)

and then, it remains to show that the operatorS(h) = gmapsL2(R)boundedly into itself.

First we define (S1h)(x) = −
∫ x

−∞
cosh2 x

cosh2 s
h(s) ds for x ≤ 0. Arguing exactly as above

we can show that S1 maps L∞((−∞, 0]) boundedly into itself and also L1((−∞, 0])
boundedly itself. For x ≥ 0 we get the same estimates for the operator (S2h)(x) =
∫ +∞

x

cosh2 x

cosh2 s
h(s) ds and this proves the lemma. ��

Proof of Lemma 1. First we notice thatM andMt map odd functions in even functions
and even functions in odd functions. According to Lemma 5, any h ∈ H 2(IR) can be
written as h = αu+Mtk.We consider first the case h ∈ H 2

odd(IR). In this case, α = 0,
k is even and using (5.18) we get:

〈Kh, h〉 = 〈KMtk,Mtk〉 = 〈MKMtk, k〉 = 〈MtK0Mk, k〉 = 〈K0M
tk,Mtk〉.

Since 〈K0s, s〉 ≥ 0 for any s ∈ H 2(IR) and 〈K0s, s〉 = 0 iff s = 0, we conclude that if
h ∈ H 2

odd(IR), we have 〈Kh, h〉 ≥ 0 and 〈Kh, h〉 = 0 iff Mtk = 0. Moreover, accord-
ing to Lemma 5, Mtk = 0 implies that k has to be a multiple of u and then h = Mtk is
also a multiple of u′.
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Suppose now that h is even; then h = αu+Mtk, with k odd. In the hyperplane α = 0
we have 〈Kh, h〉 = 〈K0Mk,Mk〉 ≥ 0 and 〈Kh, h〉 = 0 iff Mk = 0 and, according to
Lemma 5, this implies k = 0 because k is even. Therefore 〈Kh, h〉 > 0 in a hyperplane
and this implies thatK can have at most one nonpositive eigenvalue. SinceKu = −3u2

we see that 〈Ku, u〉 < 0 and this implies that K has exactly one negative eigenvalue in
H 2
ev(IR) and the lemma is proved.

It remains to deal with the more complicated higher order operator Q defined by
(5.13). First we need a lemma whose proof follows expanding both sides of the identity.
��
Lemma 6. Defining

Q0 = D4 − 4D2 (5.21)

we have

MQMt = MtQ0M, (5.22)

where M and Mt are given (5.16)

Remark 2. From (5.18) and (5.22), we see that the auxiliary operatorM that conjugates
K with K0 is the same that conjugates Q with Q0.

Proof of Lemma 2. According to Lemma 5, any h ∈ H 2(IR) we can be written as
h = αu+Mtk and then

〈Qh, h〉 = α2〈Qu, u〉 + 2α〈MQu, k〉 + 〈MQMtk, k〉
= α2〈Qu, u〉 + 2α〈MQu, k〉 + 〈Q0Mk,Mk〉.

If we define s by k = αq + s and we denote by T = MtQ0M the right-hand side of
(5.22) we get

〈Qh, h〉 = α2(〈Qu, u〉 − 〈T q, q〉 − 2〈MQu− T q, q〉)
+2α〈(MQu− T q), s〉 + 〈T s, s〉.

To eliminate the cross term of this quadratic form in α and s we have to choose q in such
way that

MQu = T q (5.23)

and, in this case,

〈Qh, h〉 = α2(〈Qu, u〉 − 〈T q, q〉)+ 〈T s, s〉.

We can verify that q = 1

3
xsech2x satisfies (5.23) and then performing some calculation

we get:

〈Qh, h〉 = 36608

315
α2 + 〈T s, s〉 = 36608

315
α2 + 〈Q0Ms,Ms〉.

Since 〈Q0y, y〉 ≥ 0 and 〈Q0y, y〉 = 0 iff y = 0, we conclude that 〈Qh, h〉 ≥ 0 and
〈Qh, h〉 = 0 iff α = 0 andMs = 0.Moreover, according to Lemma 5,Ms = 0 implies
that s has to be a multiple of u and then k = s is also a multiple of u. Hence, h = Mts

is a multiple of u′ and this proves the lemma.

Remark 3. For the operator K , zero is an isolated eigenvalue; however, for the operator
Q, zero belongs to its essential spectrum. ��
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6. Stability of Double Solitons for the BO Equation

In this section we extend the method we used in Sect. 5 to prove the stability of double
solitons of the Benjamin-Ono equation

∂u(t, x)

∂t
+ 4u(t, x)ux(t, x)+H(uxx(t, x)) = 0, (6.1)

whereH is the Hilbert transform. In the appendix we give the definition and some prop-
erties of the Hilbert transform that will be used. We also develop a calculus involving

the Hilbert transform and the function u = 1

1 + x2 . The proofs of some identities are

also left to the appendix.
The first three first integrals of (6.1) are:

V1(u) = 1

2

∫ +∞

−∞
u2 dx,

V2(u) = 1

2

∫ +∞

−∞
(−uHux − 4

3
u3) dx,

V3(u) = 1

2

∫ +∞

−∞
(u2
x + 3u2Hux + 2u4) dx.

These three first integrals will be considered in the space H 1(R) and they can be found
in [20] (a change of scale has to be made because the coefficients of BO equation in [20]
are different from ours).

Formulae (6.2)–(6.7) can be found in [19]. The one-soliton with speed c > 0 for
(6.1) is:

u(t, x) = c

c2(x − ct)2 + 1

and its profile

uc(x) = c

c2x2 + 1
(6.2)

satisfies

−Hu′
c − 2u2

c + cuc = 0. (6.3)

The double soliton with speeds c1 > 0 and c2 > 0, c1 < c2 is

u(t, x) = c2θ
2
1 + c1θ

2
2 + (c1 + c2)c12

(θ1θ2 − c12)2 + (θ1 + θ2)2
, (6.4)

where θn = cn(x − cnt), n = 1, 2 and c12 =
(
c1 + c2

c1 − c2

)2

.

If we define

f = −θ1θ2 + i(θ1 + θ2)+ c12, (6.5)
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then the double soliton (6.4) is also given by

u(t, x) = i

2

∂

∂x
ln
f ∗(t, x)
f (t, x)

(6.6)

and

Hu(t, x) = −1

2

[
1

f (t, x)

∂f (t, x)

∂x
+ 1

f ∗(t, x)
∂f ∗(t, x)
∂x

]

. (6.7)

The double soliton is a superposition of two one-solitons in the following sense:

– if we define w(t, x) = u(t, x) − u1(t, x) − u2(t, x), where u1 and u2 are the one-
solitons with speeds c1 and c2, respectively, then

lim
t→+∞ ‖w(t)‖k,p = 0 1 ≤ p ≤ +∞ k ∈ N, (6.8)

where |.|k,p denotes the norm in the Sobolev spaceWk,p(R) (as it has been remarked
in [19], unlike the KdV equation, no phase shift appears as the result of collisons
between solitons of BO equation);

–

lim
t→+∞ ‖un1(t)um2 (t)‖k,p = 0 1 ≤ p ≤ +∞ m, n ∈ N,m, n ≥ 1. (6.9)

If α and β are constants the Euler-Lagrange equation

V ′
3(u)+ αV ′

2(u)+ βV ′
1(u) = 0

is

−uxx + 3uHux + 3H(uux)+ 4u3 + α(−Hux − 2u2)+ βu = 0. (6.10)

As in the case of the KdV, we have to find the relationship between the speeds c1 and
c2 and the multipliers α and β in such way that the double soliton (6.4) satisfies (6.10).
Applying the operatorH on both sides of Eq. (6.1) and taking in account thatH 2 = −I
we see that

H(uux) = 1

4

[

uxx(t, x)− ∂Hu(t, x)

∂t

]

.

Therefore, all terms in (6.10) can be calculated in terms of f given by (6.5) and per-
forming the calculation we find that (6.10) is satisfied if

c1 + c2 = 4α

3
and c1c2 = 4β

3
. (6.11)

In other words, for given multipliers α and β in a certain range, the speeds of the double
soliton are the positive solutions of the quadratic equation

c2 − 4α

3
c + 4β

3
= 0. (6.12)

The profiles of the corresponding one-solitons are:

u1(x) = c1

c2
1x

2 + 1
u2(x) = c2

c2
2x

2 + 1
. (6.13)
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Definition 4. We say that the double soliton (6.4) is orbitally stable if defining the two
dimensional set S = {u(t, · + τ), t, τ ∈ R}, where u(t, ·) is the double soliton, then for
any ε > 0 there is δ > 0 such that ifu0 ∈ H 1(IR)andd(u0, S) < δ thend(u(t, u0), S) <

ε, where d is the distance taken in the H 1(IR) norm and u(t, u0) is the solution of (6.1)
such that u(0, u0) = u0.

This section is devoted to prove the following:

Theorem 8. The double soliton (6.4) is orbitally stable.

The proof follows the same steps as in the case of the KdV equation. However, the
proof of Theorem 9 below is much more diffficult than the proof of Theorem 7. The
linearized operator for (6.10) at the double soliton is

L(t)h = −hxx + 3hHux(t, x)+ 3u(t, x)Hhx + 3H(ux(t, x)h)+ 3u(t, x)hx
+ 12u(t, x)2h+ α(−Hhx − 4u(t, x)h)+ βh. (6.14)

We denote by L1 and L2 the reduced operators obtained by replacing the double soliton
u(t, .) in (6.14) by the one-solitons u1 and u2 given by (6.13). If we normalize one of
the speeds to be equal to one then, in view of (6.12), we have

α = β + 3

4
. (6.15)

Therefore, the reduced operator calculated at the one-soliton u = 1

1 + x2 with speed

one is

Lβ = Q+ βK, (6.16)

where

Q = −D2 + 6U2 + 3UHD + 3HV + 3HUD − 3

4
HD (6.17)

and

K = −HD − 4U + I. (6.18)

In (6.17) and (6.18), v = u′ = −2xu2, the capitals U and V denote multiplication

operators and D = d

dx
. Moreover, c = 1 is the lower speed if β < 3/4 and it is the

higher speed if β > 3/4.
To formulate the spectral condition for stability of the double soliton, according to

Sect. 4, first we have to calculate

V (α, β) = V (u(t, x, α, β))

= V3(u(t, x, α, β))+ αV2(u(t, x, α, β))+ βV1(u(t, x, α, β)),

where u(t, x, α, β) is the double soliton. Since V3, V2 and V1 are first integrals, to cal-
culate V (α, β) we can pass to the limit as t → +∞. Using estimates (6.8) and (6.9) we
see that

V (α, β) = V3(u1)+ V3(u2)+ α(V2(u1)+ V2(u2))+ β(V1(u1)+ V1(u2)),
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where u1 and u2 are given by (6.13). If, as before, uc(x) = c

c2x2 + 1
is the profile of

a simple wave with speed c and we define In =
∫ +∞

−∞
1

(1 + x2)n
, we have I1 = π ,

I2 = π/2, I3 = 3π/8, I4 = 15π/48 and
∫ +∞

−∞
u2
c(x) dx = cI2,

∫ +∞

−∞
u3
c(x) dx = c2I3,

∫ +∞

−∞
u4
c(x) dx = c3I4.

Morever, since uc satisfies (6.3) we have
∫ +∞

−∞
uc(x)Hu

′
c(x) dx = −2

∫ +∞

−∞
u3
c(x) dx + c

∫ +∞

−∞
u2
c(x) dx

and
∫ +∞

−∞
u2
c(x)Hu

′
c(x) dx = −2

∫ +∞

−∞
u4
c(x) dx + c

∫ +∞

−∞
u3
c(x) dx.

Furthermore
∫ +∞

−∞
u′
c(x)

2(x) dx = 4c6
∫ +∞

−∞
x2

(c2x2 + 1)4
dx = 4c3

∫ +∞

−∞
y2

(y2 + 1)4
dy

= 4c3
∫ +∞

−∞
(y2 + 1)− 1

(y2 + 1)4
dy = 4c3(I3 − I4).

Collecting all calculations we get

V3(uc) = c3(−2I4 + 3I3),

V2(uc) = c2(−2I3 + 2I2), (6.19)

V1(uc) = cI2/2.

From (6.11) we also get

c2
1 + c2

2 = (c1 + c2)
2 − 2c1c2 = 16

9
α2 − 8

3
β,

c3
1 + c3

2 = (c1 + c2)(c
2
1 − c1c2 + c2

2) = 64

27
α3 − 16

3
αβ, (6.20)

and, finally, using (6.19), we find that

V (α, β) = (c3
1 + c3

2)(−2I4 + 3I3)+ α(c2
1 + c2

2)(2I3 + 2I2)+ β(c1 + c2)I2/2

= π

27
(116α3 − 189αβ).

The determinant of the hessian matrix V ′′(α, β) is independent of α and β and it is equal
to −49π2 < 0; this implies that V ′′(α, β) has exactly one positive and one negative
eigenvalue.

The well-posedness of the Cauchy problem for (6.1) in the space H 1(IR) has been
proved in [23].

From the comments above we see that the proof of Theorem 8 goes exactly as in the
case of the KdV equation and the only thing that we have to prove is the counterpart of
Theorem 7 which is the following:



778 A. Neves, O. Lopes

Theorem 9.

1. For 0 < β �= 3/4 the operator Lβ defined by (6.16) has zero as a simple eigenvalue;
2. for 0 < β < 3/4, Lβ has one negative eigenvalue and for 3/4 < β the operator Lβ

has no negative eigenvalue.

We use the subscript odd to denote space of odd functions and the subscript ev to
denote space of even functions. Notice that K and Q map even functions in even func-
tions and odd functions in odd functions. As in the case of the KdV equation, the proof
of Theorem 9 is a consequence of the following three lemmas:

Lemma 7.

1. For h ∈ H 1
odd(IR)we have 〈Kh, h〉 ≥ 0 and 〈Kh, h〉 = 0 if and only if h is a multiple

of v = u′;
2. in H 1

ev K has exactly one negative eigenvalue and zero is not an eigenvalue.

Lemma 8. For any h ∈ H 1(IR)we have 〈Qh, h〉 ≥ 0 and 〈Qh, h〉 = 0 iff h is a multiple
of u′ = v.

Lemma 9. For β = 3/4 the function

−u+ 2u2 = duc(x)

dc

∣
∣
∣
∣
c=1
,

where uc is given by (6.2), is an (even) eigenfunction of L3/4 associated to the zero
eigenvalue.

Remark 4. As in the case of the KdV equation, the spectral conditions given by Lemma
7 are precisely the conditions that are needed to prove the orbital stability of one-solitons
for the BO equation.

The proof of Theorem 9 admitting Lemmas 7, 8 and 9, follows exactly as the proof of
Theorem 7 for the KdV equation and we will not repeat it.

To prove Lemma 9 we simply replace −u+2u2 in L3/4 and we make the calculation
according to formulae given in the appendix. The rest of this section will be dedicated
to the proofs of Lemmas 7 and 8. As we will see, the proofs of them are much more
difficult than the proofs of Lemmas 1 and 2. We start analysing the operator K given
by (6.18) which is precisely the linearized operator for the one-soliton. The one-soliton
with speed c = 1 is

u = 1

1 + x2 (6.21)

and it solves

−HDu− 2u2 + u = 0. (6.22)

The linearized operator for (6.22) is the operator K given by (6.18).

Remark 5. In [3] a resolution of the identity for the operator K has been found; in par-
ticular, the spectrum of K has been calculated explicitly and Lemma 7 actually follows
from that. However, as in the case of the KdV equation, we give a proof for Lemma 7
because the method will be used to prove the much more complicated Lemma 8.
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To extend the method we have used for the KdV equation, we have to find identities
similar to (5.18). We start defining the following functions:

a = a(x) = x2 − 1; b = b(x) = −2x; u = u(x) = 1

1 + x2 ;
v = v(x) = u′(x) = −2xu2; w = w(x) = u− 2u2;

and we denote byA,B,U, V andW the operators defined by multiplication by a, b, u, v
and w, respectively. Notice that au = 1 − 2u. We also define the following bounded
operators from L2(IR) into itself:

M = AUH + BU N = −AUH + BU, (6.23)

and their adjoint

Mt = −HAU + BU Nt = HAU + BU. (6.24)

Lemma 10. Setting

K0 = −HD + I, (6.25)

then the following identity holds

MKMt = NK0N
t . (6.26)

The proof of Lemma 10 will be given in the appendix.

Remark 6. If we look at identity (5.18), instead of (6.26) it would be more natural to
look for an identity of the type:

MKMt = MtK0M (6.27)

(that is the way we started). Formally, (6.27) holds withM = H + 2x

1 − x2 . To eliminate

the singularity we multiply both sides of (6.27) on the right and on the left by 1 − x2.

We also compose the resulting equation with U to get bounded auxiliary operators and
the result is identity (6.26).

To use identity (6.26) to prove Lemma 7, we need to calculate the image and the null
space of the auxiliary operators appearing there. Notice that if h is an even (odd) func-
tion, then M(h),N(h),Mt(h),Nt (h) are odd (even). Denoting by Ker(T ) and Im(T )
the null space and the image of a bounded operator T then the following is true:

Lemma 11. If M and N are considered from L2(IR) into itself then

1. Ker(M) = [w, xw];
2. Ker(Nt ) = [u, xu];
3. Im(Mt) = [w, xw]⊥;
4. Im(N) = [u, xu]⊥;
5. MN = I ;
6. NtMt = I.

In particular, Mt and N are one-to-one and M and Nt are onto.

The proof of Lemma 11 will be given in the appendix. We denote byH 1
ev(IR) the set

of the elements of H 1(IR) which are even and by H 1
odd(IR) the odd ones.
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Proof of Lemma 7. First we notice that 〈K0s, s〉 ≥ 0 and 〈K0s, s〉 = 0 iff s = 0 because
−̂Hs′(ξ) = |ξ |ŝ(ξ ) (see the appendix.) If h is odd then, according to Lemma 11, Part
3, h can be decomposed as h = αxw+Mtk, where k is even and then, using (6.26) we
get

〈Kh, h〉 = α2〈K(xw), xw〉 + 2α〈MK(xw), k〉 + 〈MKMtk, k〉
= πα2

4
+ 〈NK0N

tk, k〉

because MK(xw) = M(xw) = 0 and 〈K(xw), xw〉 = π/4. Therefore, 〈Kh, h〉 ≥ 0
and 〈Kh, h〉 = 0 iff α = 0 and Ntk = 0 and this implies k = cu (Lemma 11, Part 2).
Hence, h = cMtu = −4cxu2 = 2cu′ and this proves the first part of Lemma 7.

To prove the second, we first notice that 〈Ku, u〉 < 0 because K(u) = −2u2. This
implies that K has at least one negative eigenvalue in the space of the even functions.
Moreover, if h is even then, according to Lemma 11, Part 3, we can make the decom-
position h = αw + Mtk, k odd. Taking α = 0 and using identity (6.26) we see that
〈Kh, h〉 = 〈NK0N

tk, k〉 ≥ 0 and 〈Kh, h〉 = 0 only if Ntk = 0 and this implies
k = cxu (Lemma 11, Part 2). We conclude that 〈Kh, h〉 ≥ 0 for h belonging to the
codimension one subspace Im(Mt)ev and thenK cannot have two negative eigenvalues.
It remains to prove that zero is not an eigenvalue of K in H 1

ev(IR). By contradiction,
suppose K has one negative eigenvalue with eigenfunction φ1 and one zero eigenvalue
with eigenfunction φ2. In this case, the codimension one subspace Im(Mt)ev has to
intercept the subspace spanned by φ1 and φ2; since 〈Kh, h〉 ≤ 0 in S = [φ1, φ2] and
〈Kh, h〉 = 0 for h ∈ S only if h is a multiple of φ2 we see that Im(Mt)ev has to intercept
S in [φ2]. However, as before, 〈Kh, h〉 = 0 for h ∈ Im(Mt)ev only if h is a multiple of
Mt(xu) = 4(u2 − u); since the function u2 − u is not an eigenfunction ofK associated
to the zero eigenvalue we conclude that K cannot have a zero eigenvalue in the space
of the even functions and Lemma 7 is proved.

Now we concentrate on the proof of Lemma 8 which will be broken in several lemmas.
As in the case of the KdV equation, the spectrum ofQ considered in bothH 1

odd(IR) and
H 1
ev(IR) accumulate at zero (from the right.) Arguing as in the case of the KdV equa-

tion, we start trying to find an identity of type (5.22) involving the operator Q under
consideration and a “better” operatorQ0. In view of identities (5.18), (5.22) and (6.26),
perhaps we should expect that the following identity holds

MQMt = N(−D2 − 3

4
HD)Nt ,

because −D2 − 3
4HD is the part of Q that has constant coefficients. Regretfully, this

identity is false! The next attempt is to find coefficients k1, k2 and k3 in such way that

Q0 = −D2 + k1U + k2U
2 + k3UHD + k3HV + k3HUD − 3

4
HD

is “better” than Q and

MQMt = NQ0N
t . (6.28)

We show how to accomplish that. According to formulae presented in the appendix, for
any integer m the operators

H(umh)− umHh and H(xumh)− xumHh
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have finite dimensional range. Therefore, modulo a finite dimensional range operator,
H commutes with Um and xUm. With this fact in mind and expanding both sides of
(6.28), we see that the infinite dimensional part of (6.28) is satisfied if k1 = 3, k2 = −2
and k3 = −1. Using these coefficients to define the operator

Q0 = −D2 + 3U − 2U2 − UHD −HV −HUD − 3

4
HD (6.29)

we start with ��
Lemma 12. The following identity holds:

Q0 = (HD − U)2 + 3U(1 − U)− 3

4
HD. (6.30)

In particular 〈Q0h, h〉 ≥ 0 and 〈Q0h, h〉 = 0 iff h = 0.

Proof. The verification of (6.30) is trivial.The final statement follows from 0 < u(x) ≤ 1
and u(x) = 1 only for x = 0 and the lemma is proved.

SinceQ0 is positive and we want to prove thatQ is positive, some progress has been
made. However, usingQ0 defined by (6.29) to calculateMQMt −NQ0N

t we see that
this difference is a nonzero operator with finite dimensional range. In other words, the
infinite dimensional part of both sides of (6.28) are equal but the difference of them
contains a residue (an operator with finite dimensional range). We state this as ��
Lemma 13. If M,N,Q and Q0 are as above then

MQMt = NQ0N
t + R, (6.31)

where

Rk = 1

π

[

〈9u− 12u2, k〉u+ 〈−12u+ 16u2, k〉u2 (6.32)

+〈xu+ 8xu2, k〉xu+ 〈8xu− 16xu2, k〉xu2
]

. (6.33)

The proof of Lemma 13 will be given in the appendix. For reasons that will be given
later, identity (6.31) still is not convenient. To prove Lemma 8 we will use variants of
(6.31) which are obtained perturbing M by an operator with finite dimensional range;
in other words, we will use identities like

M1QM
t
1 = NQ0N

t + R1. (6.34)

Suppose we have proved an identity of type (6.34) in such way that for any h ∈ H 1(IR),
there is a decomposition h = αφ +Mt

1k where φ spans ker(M1). Then

〈Qh, h〉 = α2〈Qφ, φ〉 + 2α〈Qφ,Mt
1k〉 + 〈QMt

1k,M
t
1k〉

= α2〈Qφ, φ〉 + 2α〈M1Qφ, k〉 + 〈M1QM
t
1k, k〉.

Defining s = k + αq, where q will be found, and denoting by T the right-hand side of
(6.34) we have

〈Qh, h〉 = α2 (〈Qφ, φ〉 − 〈T q, q〉 − 2〈M1Qφ − T q, q〉)
+2α〈(M1Qφ − T q), s〉 + 〈T s, s〉. (6.35)
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We look at this last equality as a quadratic form in α and s and to eliminate the cross
term we have to choose φ and q in such way that

M1Qφ = T q. (6.36)

In this case,

〈Qh, h〉 = α2(〈Qφ, φ〉 − 〈T q, q〉)+ 〈T s, s〉. (6.37)

Since we want to show that Q is positive, the solution q of (6.36) has to be known
explicitly because we need to know that the coefficient of α2 in (6.37) is positive. Also,
we have to choose certain parameters appearing in the definition ofM1 in such way that
we can conclude that the operator T given by the right side of (6.34) is positive. We
analyse the case of even and odd functions separately. As we will see, the case of even
functions is much more difficult.

We start with the case of odd functions. The reason for (6.31) not to be convenient
is that, apparently, Eq. (6.36) cannot be solved explicitly in q for φ in the Kernel of M .
Our next attempt is to perturb M in order to incorporate the residue R in the perturbed
operator. To be more specific we have:

Lemma 14. Defining

M1(h) = M(h)+m5〈xu, h〉u+m6〈xu, h〉u2 (6.38)

for h odd and

Mt
1(k) = Mt(k)+m5〈u, k〉xu+m6〈u2, k〉xu (6.39)

for k even, with m5 = 12/π and m6 = −16/π, and M and Mt given by (6.23) and
(6.24), then for k ∈ H 2

ev(IR) we have

M1QM
t
1(k) = NQ0N

t(k). (6.40)

The proof of Lemma 14 will be given in the appendix. Notice thatM1 (asM and N )
maps even functions in odd functions and odd functions in even functions. To carry out
the procedure above we need the following proposition whose proof is also left to the
appendix:

Lemma 15. If φ = −5xu2 + 8xu3 then Ker(M1) = [φ] and Im(Mt
1) = [φ]⊥, where

ker(M1) is taken in the space of odd functions and Im(Mt
1) is calculated for Mt

1 as a
map from even functions into odd functions.

Proof of Lemma 8 for h odd. If h ∈ H 1
odd(IR) then, according to Lemma 15, we have

the decomposition h = αφ+Mt
1k with k even. If we define s = k+αq then 〈Qh, h〉 is

given by (6.35), where T = NQ0N
t (the right-hand side of (6.40)). Moreover, taking

q = −2u2 we have M1Qφ = T q and then, according to (6.37) and performing some
calculation, we get

〈Qh, h〉 = 9πα2

64
+ 〈NQ0N

ts, s〉.
SinceQ0 is positive definite by Lemma 12, we conclude that 〈Qh, h〉≥0 and 〈Qh, h〉=0
iff α=0 and Nts = 0 = Ntk. In this case, according to Lemma 11, Part 2, k has to be
a multiple of u and this implies that h has to be a multiple of Mt

1(u) = 2u′ and Lemma
8 is proved for odd functions.

Now we turn to the more complicated case of even functions. We start with the
following identity whose proof is left to the appendix: ��
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Lemma 16. Defining

M2h = Mh+ 32

π
〈u2, h〉xu2 (6.41)

for h even and

Mt
2k = Mtk + 32

π
〈xu2, k〉u2 (6.42)

for k odd, where M and Mt are given by (6.23) and (6.24), then for k odd we have

M2QM
t
2(k) = NQ0N

t(k)+ R2(k), (6.43)

where

R2(k) = c11〈xu, k〉xu+ c12〈xu2, k〉xu+ c12〈xu, k〉xu2 + c22〈xu2, k〉xu2 (6.44)

with

c11 = 1

π
c12 = −28

π
c22 = 400

π
. (6.45)

Remark 7. If instead of (6.41) we define

M2(h) = M(h)+m1〈u, h〉xu+m2〈u, h〉xu2 +m3〈u2, h〉xu+m4〈u2, h〉xu2,

where the parameters m4 and m2 are given by

m4 = −4m3 − 32

π
m2 = −4m1 + 32

π

and m1 and m3 belong to the (nonempty) ellipse

13π2m2
1 + 19π2m1m3 + 7π2m2

3 − 48πm1 − 36πm3 + 16 = 0,

then (6.43) holds with no residue (R2 = 0). However, in that case,KerM2 has dimension
two and, apparently, the equation

M2Qφ = T q = NQ0N
tq

cannot be explicitly solved in q for two linearly independent functions φ belonging to
Ker(M2). Probably this is related to the fact that the infimum of 〈Qh, h〉 in H 1

ev(IR)

(which is zero) is not achieved (at a nonzero element). Besides the choice given by

(6.41), which corresponds to m1 = m2 = m3 = 0,m4 = 32

π
, there may be others that

may work (with different nonzero residue R2).

Lemma 17. If T = NQ0N
t + R2 is the right-hand side of (6.43) and s is odd then

〈T s, s〉 ≥ 0 and 〈T s, s〉 = 0 iff s = 0.
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Proof. We define Nts = p and then s = αxu+Mtp (Lemma 11, Parts 4 and 6) and

〈xu, s〉 = 〈xu, αxu+Mtp〉 = α〈xu, xu〉 + 〈M(xu), p〉 = απ

2
− 〈u, p〉

and

〈xu2, s〉 = 〈xu2, αxu+Mtp〉 = α〈xu2, xu2〉 + 〈M(xu2), p〉 = απ

8
− 1

2
〈u, p〉.

Therefore,

〈R2s, s〉 = π2

64
(16c11 + 8c12 + c22)α

2 + π

8
(−8c11 − 6c12 − c22)〈u, p〉α

+1

4
(4c11 + 4c12 + c22)〈u, p〉2. (6.46)

Since 16c11 +8c12 +c22 = 192/π , the coefficient of α2 in (6.46) is positive and then the

minimum of (6.46) considered as a quadratic function of α is achieved at α = 5

π2 〈u, p〉

and the value of this minimum is − 2

π
〈u, p〉2. Then 〈R2s, s〉 ≥ − 2

π
〈u, p〉2 and this

implies that

〈T s, s〉 ≥ 〈Q0p, p〉 − 2

π
〈u, p〉2 (6.47)

and equality holds only for α = 5

π2 〈u, p〉. Hence, Lemma 17 is a consequence of the

following: ��
Lemma 18. Consider the operator

T0(p) = Q0p − 2

π
〈u, p〉u

acting on even functions. Then 〈T0p, p〉 ≥ 0 and 〈T0p, p〉 = 0 if and only if p = 0.

Remark 8. According to Lemma 12, the operator Q0 is positive but it is easy to see that
zero belongs to its essential spectrum. Therefore, the positivity of Q0 is very sensitive

to negative perturbation in any direction. The constant
2

π
is optimal for Lemma 18 to be

true.

Proof of Lemma 18. First let us notice that for any two functionsp, z in the spaceH 1(IR)

we have

〈Q0z, p〉2 ≤ 〈Q0p, p〉〈Q0z, z〉 (6.48)

and equality holds if and only if p and z are linearly dependent. This follows from Sch-
warz inequality because according to Lemma 12, the bilinear form [p, z] = 〈Q0p, z〉 is
a scalar product.

Formally, Lemma 18 follows from (6.48) taking z ≡ 1 because Q0(1) = 2u and
〈u, 1〉 = π . Since the function z ≡ 1 does not belong to the space H 1(IR), that proce-
dure has to be justified. This will be done next.
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Let φ : IR → IR be an even function belonging to H 2(IR) such that φ(0) = 1 and

let us define φλ(x) = φ(
x

λ
). Then Hφ ∈ H 2(IR) and (Hφλ)(x) = (Hφ)(x/λ); in

particular Hφ ∈ L∞. Taking z = φλ in (6.48) we get

〈Q0φλ, p〉2 ≤ 〈Q0, p〉〈Q0φλ, φλ〉. (6.49)

We interrupt the proof of Lemma 18 to analyse the limit of (6.49) as λ tends to
infinity. ��
Lemma 19. As λ tends to infinity

1. 〈Q0φλ, p〉 tends to 〈2u, p〉;
2. 〈Q0φλ, φλ〉 tends to 〈2u, 1〉 − 3

4
〈HDφ, φ〉 = 2π − 3

4
〈HDφ, φ〉.

Proof. The first limit is easier because it is linear in φλ and so we will prove only the
second. A change of variables shows that:

|φ′
λ|L2 = λ− 1

2 |φ|L2 , (6.50)

|φ′′
λ |L2 = λ− 3

2 |φ|L2 . (6.51)

We expand 〈Q0φλ, φλ〉 and first we collect the terms that tend to zero:

|〈φ′′
λ, φλ〉| = |〈φ′

λ, φ
′
λ〉|

1

λ
|φ|2

L2;
|〈uHφ′

λ, φλ〉| = |〈φ′
λ,H(uφλ)〉| ≤ |φ′

λ|L2 |φλ|L∞|u|L2

= |φ′
λ|L2 |φ|L∞|u|L2;

|〈H(uφ′
λ), φλ〉| = |〈uφ′

λ,Hφλ〉| ≤ |uφ′
λ|L1 |Hφλ|L∞ ≤ |u|L2 |φ′

λ|L2 ||Hφλ|L∞

= λ−1/2|u|L2 |φ|L2 |Hφ|L∞ .

The next terms:
∫ +∞

−∞
(3u− 2u2)φ2

λ dx →
∫ +∞

−∞
(3u− 2u2) dx (Lebesgue)

∫ +∞

−∞
H(vφλ)φλ dx =

∫ +∞

−∞
H(vφλ)(φλ − 1) dx +

∫ +∞

−∞
H(v)φλ dx

and
∣
∣
∣
∣

∫ +∞

−∞
H(vφλ)(φλ − 1) dx

∣
∣
∣
∣ ≤ |(v(φλ − 1)|L1 |Hφλ|L∞

= |(v(φλ − 1)|L1 |Hφ|L∞ → 0(Lebesgue)

and
∫ +∞

−∞
H(v)φλ dx →

∫ +∞

−∞
H(v) dx =

∫ +∞

−∞
(u− 2u2) dx (Lebesgue).

Furthermore,

〈−Hφ′
λ, φλ〉 =

∫ +∞

−∞
φ′
λ(Hφλ) dx =

∫ +∞

−∞
φ′(Hφ) dx = 〈−Hφ′, φ〉 dx

and the lemma is proved.
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We see that the term 〈−HDφλ, φλ〉 is self similar with respect to dilations and then
a further limit process will be required. ��
End of proof of Lemma 18. According to Lemma 19, for any even function φ ∈ H 2(IR)

such that φ(0) = 1 and any h ∈ H 1(IR) the following inequality holds:

4〈u, p〉2 ≤ 〈Q0p, p〉(2π − 〈HDφ, φ〉). (6.52)

To get rid of the term 〈HDφ, φ〉 we claim the following: there is a sequence of even
functions φn ∈ H 2(IR) such that φn(0) = 1 and 〈HDφn, φn〉 tends to zero. In fact,
denoting by fn(ξ) = φ̂n(ξ) the Fourier transform of φ and using the inverse Fourier
transform we have

φn(x) = (2π)−1
∫ +∞

−∞
eixξ fn(ξ) dξ

and then

φn(0) = (2π)−1
∫ +∞

−∞
fn(ξ) dξ.

Therefore, it is sufficient to show that there is a sequence fn satisfying the following
conditions:

1. fn is real, even, bounded and has support in the interval [−1, 1];
2.

∫ +∞

−∞
fn(ξ) dξ = 2π;

3.
∫ +∞

0
|ξ |f 2

n (ξ) dξ tends to zero as n tends to infinity.

Let fn be the sequence of even functions defined in the following way for ξ ≥ 0 :

fn(ξ) = cn

ξ
for

1

n
≤ ξ ≤ 1,

fn(ξ) = 0 for ξ > 1.

Imposing
∫ +∞

−∞
fn(ξ) dξ = 2π we get cn = π

log n
and then

∫ +∞

0
|ξ |f 2(ξ) dξ =

π2

4 log n
and this proves the claim.

Replacing φ by φn in (6.52) and passing to the limit in n we get 〈T0p, p〉 ≥ 0 and
this proves the first part of Lemma 18.

Suppose now that for some 0 �= p0 ∈ H 1
ev(IR) we have 〈T0p0, p0〉 = 0. In this case

we must have T0p0 = Q0p0 − 2

π
〈u, p0〉u = 0 because 〈T0p, p〉 has a minimum at

p = p0. If we had 〈u, p0〉 = 0 then Q0p0 = 0 and this would imply p0 = 0 (Lemma
12). Therefore, multiplyingp0 by some constant, we may assume thatQ0p0 = 2u.Since
Q0 is injective and formallyQ0(1) = 2u, we try to show thatQ0p0 = 2u impliesp0 = 1
a.e. In order to justify this conclusion we proceed in the following way: fromQ0p0 = 2u
we get 〈p0,Q0φλ〉 = 2〈u, φλ〉 and from Lemma 19 we also get 2〈p0, u〉 = 2〈u, 1〉.
Moreover, as λ tends to infinity

〈Q0(p0 − φλ), (p0 − φλ)〉 = 〈Q0p0, s0〉 − 2〈Q0p0, φλ〉 + 〈Q0φλ, φλ〉
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tends to −3

4
〈HDφ, φ〉. Furthermore, from (6.30) we conclude that for any finite real

number b we have
∫ b

−b
3u(1 − u)(p0 − φλ)

2 ≤ 〈Q0(p0 − φλ), (p0 − φλ)〉,

and then, passing to the limit in λ, we get
∫ b

−b
3u(1 − u)(p0 − 1)2 ≤ −3

4
〈HDφ, φ〉.

Replacing φ by the sequence φn as above and passing to the limit in n, we conclude that
p0 = 1 a.e. and this is a contradiction because p0 ∈ H 1(IR) and Lemma 18 is proved.

The next lemma, whose proof will be given in the appendix, provides a useful decom-
position of even functions. ��

Lemma 20. If φ = 3

16
u− 9

8
u2 +u3, thenKer(M2) = [φ] and Im(Mt

2) = [φ]⊥, where

Ker(M2) is calculated on even functions and Im(Mt
2) is calculated for Mt

2 as a map
from odd functions into even functions.

Proof of Lemma 8 for h even. For any h ∈ H 1
ev(IR), according to Lemma 20, we have

the decomposition h = αφ+Mt
2k. If we set s = k+αq, where q will be chosen, we get

〈Qh, h〉 = α2(〈Qφ, φ〉 − 〈T q, q〉 − 2〈M2Qφ − T q, q〉)
+2α〈(M2Qφ − T q), s〉 + 〈T s, s〉,

where T is the right-hand side of (6.43). If we take q = −11

64
xu + 1

4
xu2 we have

M2Qφ = T q and then

〈Qh, h〉 = α2(〈Qφ, φ〉 − 〈T q, q〉)+ 〈T s, s〉 = 9

4096
α2 + 〈T s, s〉,

and the conclusion follows from Lemma 17 and Lemma 8 is proved. ��

7. Appendix

In this section we recall some properties of the Hilbert transform and we prove some
lemmas involving it. Following [3], we define the Hilbert transform by:

(Hf )(x) = PV
1

π

∫ ∞

−∞
f (x − y)

y
dy = PV

1

π

∫ ∞

−∞
f (x + y)

y
dy, (7.1)

where PV stands for principal value. In some classical books on Harmonic Analysis
([22], for instance) the definition of Hilbert transform is (7.1) with a minus sign in front
of it.

Some properties of Hilbert transform.

1. Ĥf (ξ) = isign(ξ)f̂ (ξ); ([22]);
2. H is a bounded operator from L2(IR) into itself (follows from 1);
3. H 2 = −I,H ∗ = −H and −̂HDf (ξ) = |ξ |f̂ (ξ) (follow from 1);
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4. H commutes with translation; in particular, HD = DH.

��
Some formulae. Let us recall the definition and some identities involving functions pre-
viously defined:

a = x2 − 1; b = −2x; u = 1

1 + x2 ; au = 1 − 2u;
x2u = 1 − 2u; v = ux = −2xu2; w = u− 2u2 = au2.

��
Theorem 10. For a dense set of functions in L2(IR) the following identities hold:

H(xh) = xH(h)+ 1

π
〈1, h〉, (7.2)

H(x2h) = x2H(h)+ 1

π
[〈x, h〉 + 〈1, h〉x], (7.3)

H(uh) = uH(h)+ 1

π
[−〈xu, h〉u− 〈u, h〉xu], (7.4)

H(ah) = aH(h)+ 1

π
[〈x, h〉 + 〈1, h〉x], (7.5)

H(auh) = auH(h)+ 1

π
[〈2xu, h〉u+ 〈2u, h〉xu], (7.6)

H(u2h) = u2H(h)+ 1

π
[−〈xu2, h〉u− 〈xu, h〉u2

−〈u2, h〉xu− 〈u, h〉xu2], (7.7)

H(xuh) = xuH(h)+ 1

π
[〈u, h〉u− 〈xu, h〉xu], (7.8)

H(xu2h) = xu2H(h)+ 1

π
[〈−u+ u2, h〉u+ 〈u, h〉u2

−〈xu2, h〉xu− 〈xu, h〉xu2], (7.9)

H(xhx) = xH(hx), (7.10)

H(x2hx) = x2H(hx)− 1

π
〈1, h〉, (7.11)

H(uhx) = uH(hx)+ 1

π
[〈−u+ 2u2, h〉u− 〈2xu2, h〉xu], (7.12)

H(xuhx) = xuH(hx)+ 1

π
[〈2xu2, h〉u+ 〈−u+ 2u2, h〉xu], (7.13)

H(xhxx) = xH(hxx), (7.14)

H(x2hxx) = x2H(hxx). (7.15)

Proof. Equation (7.2) follows from (7.1) and (7.3) follows by iteration of (7.2). From
(7.3) we get

H((1 + x2)h) = (1 + x2)H(h)+ 1

π
[〈x, h〉 + 〈1, h〉x];

if in this last identity we replace h by uh and divide the result by 1 + x2 we get (7.4).
All the other formulae follow from the first three and the theorem is proved. ��
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The Hilbert transform of special functions.

H(u) = −xu H(xu) = u H(u2) = −xu2 − 1

2
xu,

H(xu2) = u2 − 1

2
u H(u3) = −xu3 − 1

2
xu2 − 3

8
xu.

The first formula is proved in [3] and the rest follows from formulae given in Theorem
10.

Now we prove some lemmas stated in section 6. ��
Proof of Lemma 11.

Proof. Using the Hilbert transform of the special functions given above it is easy to see
that

[w, xw] ⊂ Ker(M).

On the other hand, if h ∈ Ker(M), we have

auH(h)− 2xuh = 0, (7.16)

and then applying H to both sides of (7.16) and using the relations (7.6) and (7.8) we get

−auh− 2xuH(h) = αu+ βxu, (7.17)

where α and β are constants. Since

det

(−2xu au

−au −2xu

)

= 1,

if we look at (7.16) and (7.17) as a system in h and H(h) and solve it in h, we get
h = au(αu+ βxu) = αw + βxw and this proves Part 1.

From the definitions of the operatorsM and Nt it follows thatM(auh) = auNt(h).
Therefore, Part 2 follows from Part 1.

We always have Im(Mt) ⊂ Ker(M)⊥ and then we have only to prove that [w, xw]⊥
= [au2, xau2]⊥ ⊂ Im(Mt). If h ∈ [au2, xau2]⊥ then, using the Hilbert transform of
the special functions u, xu and the formula (7.6) with h replaced by H(auh), it is easy
to see that

H(auH(auh)) = −a2u2h.

From the formula (7.8) with auh instead h we obtain

H(xau2h) = H(xu auh) = xuH(auh).

Hence, taking f = Nt(h) = H(auh)− 2xuh, we have

Mt(f ) = −H(auH(auh)− 2xau2h)− 2xu(H(auh)− 2xuh)

= (a2u2 + 4x2u2)h = h,

and this proves Part 3.
If h ∈ [u, xu]⊥, one can verify that N(M(h)) = h and this proves Part 4.
Part 5 follows from the relations (7.6) and (7.8) and Lemma 11 is proved.
The proofs of Lemmas 15 and 20 follow in a similar way. ��
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Proof of Lemma 10. Using that H 2 = −I and HD = DH , we first expand both sides
of (6.26):

(AUH + BU)(−HD − 4U + I )(−HAU + BU)(h)

= −auH(axuh)− auH(auhx)+ abxu
2h+ abu2hx + 4auH(uH(auh))

−4auH(bu2h)+ a2u2h+ auH(buh)− baxu
2h− bau2hx − buH(bxuh)

−buH(buhx)+ 4bu2H(auh)− 4b2u3h− buH(auh)+ b2u2h (7.18)

and

(−AUH + BU)(−HD + I )(HAU + BU)(h)

= −auH(axuh)− auH(auhx)− abxu
2h− abu2hx + a2u2h− auH(buh)

+baxu2h+ bau2hx − buH(bxuh)− buH(buhx)+ buH(auh)+ b2u2h.

(7.19)

Making the difference (7.18) - (7.19) we get

2abxu
2h− 2axbu

2h+ 4auH(uH(auh))− 4auH(bu2h)+ 2auH(buh)

+4bu2H(auh)− 4b2u3h− 2buH(auh). (7.20)

Using the relations (7.2)-(7.15), the expression (7.20) can be rewritten in the form

(2abxu
2 − 2axbu

2 − 4a2u3 − 4b2u3)h

+(−4au3b + 2abu2 + 4au3b − 2abu2)H(h)+ R,

where R contains all the finite dimensional terms. If we replace the values of a, b and u
in this last expression we see that the infinite dimensional part (the coefficients of h and
Hh) are zero as well as the finite dimensional part R and the lemma is proved.

The proofs of the identities given by Lemmas 13, 14 and 16 involve much longer
calculations but, similarly to the proof of Lemma 10, they follow by expansion of both
sides and using formulae given by Theorem 10.
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