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Abstract: As a paradigm for heat conduction in 1 dimension, we propose a class of
models represented by chains of identical cells, each one of which contains an energy
storage device called a “tank”. Energy exchange among tanks is mediated by tracer
particles, which are injected at characteristic temperatures and rates from heat baths
at the two ends of the chain. For stochastic and Hamiltonian models of this type, we
develop a theory that allows one to derive rigorously – under physically natural assump-
tions – macroscopic equations for quantities related to heat transport, including mean
energy profiles and tracer densities. Concrete examples are treated for illustration, and
the validity of the Fourier Law in the present context is discussed.
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1. Introduction

Heat conduction in solids has been a subject of intensive study ever since Fourier’s pio-
neering work.An interesting issue is the derivation of macroscopic conduction laws from
the microscopic dynamics describing the solid. A genuinely realistic model of the solid
would involve considerations of quantum mechanics, radiation and other phenomena.
In this paper, we address a simpler set of questions, viewing solids that are effectively
1-dimensional as modeled by chains of classical Hamiltonian systems in which heat
transport is mediated by tracer particles. Coupling the two ends of the chain to unequal
tracer-heat reservoirs and allowing the system to settle down to a nonequilibrium steady
state, we study the distribution of energy, heat flux, and tracer flux in this context.

We introduce in this paper a class of models that can be seen as an abstraction of
certain types of mechanical models. These models are simple enough to be amenable
to analysis, and complex enough to have fairly rich dynamics. They have in common
the following basic set of characteristics: Each model is made up of an array of iden-
tical cells that are linearly ordered. Energy is carried by two types of agents: storage
receptacles (called “tanks”) that are fixed in place, and tracer particles that move about.
Direct energy exchange is permitted only between tracers and tanks. The two ends of the
chain are coupled to infinite reservoirs that emit tracer particles at characteristic rates and
characteristic temperatures; they also absorb those tracers that reach them. To allow for
a broad range of examples, we do not specify the rules of interaction between tracers and
tanks. All the rules considered in this paper have a Hamiltonian character, involving the
kinetic energy of tracers. Formally they may be stochastic or purely dynamical, resulting
in what we will refer to as stochastic and Hamiltonian models.

Via the models in this class, we seek to clarify the relation among several aspects
of conduction, including the role of conservation laws, their relation to the dynamics
within individual cells, and the notion of “local temperature”. We propose a simple
recipe for deducing various macroscopic profiles from local rules (see Sect. 2.2). Our
recipe is generic; it does not depend on specific characteristics of the system. When the
local rules are sufficiently simple, it produces explicit formulas that depend on exactly
4 parameters: the temperatures and rates of tracer injection at the left and right ends of
the chain.

For demonstration purposes, we carry out this proposed program for a few examples.
Our main stochastic example, dubbed the “random-halves model”, is particularly sim-
ple: A clock rings with rate proportional to

√
x, where x is the (kinetic) energy of the

tracer; at the clock, energy exchange between tracer and tank takes place; and the rule of
exchange consists simply of pooling the two energies together and randomly dividing
– in an unbiased way – the total energy into two parts. Our main Hamiltonian example
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is a variant of the model studied in [17, 12]. Here the role of the “tank” is played by a
rotating disk nailed down at its center, and stored energy is ω2, where ω is the angular
velocity of the disk. Explicit formulas for the profiles in question are correctly predicted
in all examples.

In terms of methodology, this paper has a theory part and a simulations part. The the-
ory part is rigorous in the sense that all points that are not proven are isolated and stated
explicitly as “assumptions” (see the next paragraph). It also serves to elucidate the rela-
tion between various concepts regardless of the extent to which the assumed properties
hold. Simulations are used to verify these properties for the models considered.

Our main assumption is in the direction of local thermodynamic equilibrium. For
our stochastic models, a proof of this property seems within reach though technically
involved (see e.g. [5, 22, 10] and [11]); no known techniques are available for Hamilto-
nian systems. Extra assumptions pertaining to ergodicity and mixing issues are needed
for our Hamiltonian models. It is easy to “improve ergodicity” via model design, harder
to mathematically eliminate the possibility of all (small) invariant regions. In the absence
of perfect mixing within cells, actual profiles show small deviations from those predicted
for the ideal case.

In summary, we introduce in this paper a relatively tractable class of models that
can be seen as paradigms for heat conduction, and put forth a program which – under
natural assumptions – takes one from the microscopic dynamics of a system to its phe-
nomenological laws of conduction.

2. Main Ideas

2.1. General setup. The models considered in this paper – both stochastic and Hamil-
tonian – have in common a basic set of characteristics which we now describe.

There is a finite, linearly ordered collection of sites or cells labeled 1, 2, . . . , N . In
isolation, i.e., when the chain is not in contact with any external heat source, the system
is driven by the interaction between two distinct types of energy-carrying objects:

• Objects of the first kind are fixed in place, and there is exactly one at each site. These
objects play the role of storage facility, and serve at the same time to mark the energy
level at fixed locations. For brevity and for lack of a better word, let us call them
energy tanks. Each tank holds a finite amount of energy at any one point in time; it
is not to be confused with an infinite reservoir. We will refer to the energy in the tank
at site i as the stored energy at site i.

• The second type of objects are moving particles called tracers. Each tracer carries
with it a finite amount of energy, and moves from site to site. For definiteness, we
assume that from site i, it can go only to sites i ± 1.

With regard to microscopic dynamics, the following is assumed: When a tracer is at site
i, it may interact – possibly multiple times – with the tank at that site. In each interaction,
the two energies are pooled together and redistributed, so that energy is conserved in
each interaction. The times of interaction and manner of redistribution are determined
by the microscopic laws of the system, which depend solely on conditions within that
site. These laws determine also the exit times of the tracers and their next locations. A
priori there is no limit to how many tracers are allowed at each site. We stress that this
tracer-tank interaction is the only type of interaction permitted: the tanks at different
sites can communicate with each other only via the tracers, and the tracers do not “see”
each other directly.
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All stochastic models considered in this paper are Markovian. Typically in stochastic
rules of interaction, energy exchanges occur when exponential clocks ring, and energy is
redistributed according to probability distributions. In Hamiltonian models, tracers are
usually embodied by real-life moving particles, and energy exchanges usually involve
some types of collisions.

The two ends of the chain above are coupled to two heat baths, which are infinite
reservoirs emitting tracers at characteristic temperature (and also absorbing them). It is
sometimes convenient to think of them as located at sites 0 and N + 1. The two baths
inject tracers into the system according to certain rules (to be described). Tracers at site 1
orN can exit the system; when they do so, they are absorbed by the baths. The actions of
the two baths are assumed to be independent of each other and independent of the state
of the chain. The left bath is set at temperature TL; the energies of the tracers it injects
into the system are iid with a law depending on the model. These tracers are injected at
exponential rates, with mean �L. Similarly the bath on the right is set at temperature TR
and injects tracers into the system at rate �R.

To allow for a broad spectrum of possibilities, we have deliberately left unspecified
(i) the rules of interaction between tracers and tanks, and (ii) the coupling to heat baths,
i.e., the energy distribution of the injected tracers. (Readers who wish to see concrete
examples immediately can skip ahead with no difficulty to Sects. 3.1 and 4.1, where two
examples are presented.) We stress that once (i) and (ii) are chosen, and the 4 parameters
TL, TR, �L and �R are set, then all is determined: the system will evolve on its own, and
there is to be no other intervention of any kind.

Remark 2.1. Our approach can be viewed as that of a grand-canonical ensemble, since
we fix the rates at which tracers are injected into the system (which indirectly determine
the density and energy flux at steady state). An alternate setup would be one in which
the density of tracers is given, with particles being replaced upon exit. In this alternate
setup, the 4 natural intensive variables would be the temperatures TL and TR, the density
of tracers (mean number of tracers per cell) and the mean energy flux. For definiteness,
we will adhere to our original formulation.

We now introduce the quantities of interest. For fixedN , letµN denote the invariant
measure corresponding to the unique steady state of the N -chain (assuming there is a
unique steady state). The word “mean” below refers to averages with respect to µN . The
main quantities of interest in this paper are

• si = mean stored energy at site i ;
• ei = mean energy of individual tracers at site i ;
• ki = mean number of tracers at site i ;
• Ei = mean total energy at site i, including stored energy and the energies of all

tracers present.

For simplicity, we will refer to ei as tracer energy and Ei as total-cell energy.
We are primarily interested in the profiles of these quantities, i.e., in the functions

i �→ si, ei, ki and Ei as N → ∞ with the temperatures and injection rates of the
baths held fixed. More precisely, we fix TL, TR, �L and �R. Then spacing {1, 2, . . . , N}
evenly along the unit interval [0, 1] and letting N → ∞, the finite-volume profiles
i �→ si, ei, ki, Ei give rise to functions ξ �→ s(ξ), e(ξ), k(ξ), E(ξ), ξ ∈ [0, 1]. It
is these functions that we seek to predict given the microscopic rules that define a
system.
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2.2. Proposed program: from local rules to global profiles. We fix N , TL, TR, �L and
�R, and consider anN -chain with these parameters. To determine the profiles in Sect. 2.1,
we distinguish between the following two kinds of information:

(a) cell-to-cell traffic, and
(b) statistical information pertaining to the dynamics within individual cells.

In (a), we regard the cells as black boxes, and observe only what goes in and what comes
out. Where left-right exit distributions are known, standard arguments balancing energy
and tracer fluxes give easily the mean number of tracers and energy transported from site
to site. While these numbers are indicative of the internal states of the cells (for exam-
ple, high-energy tracers emerging from a cell suggest higher temperatures inside), the
profiles we seek depend on more intricate relations than these numbers alone would tell
us.

We turn therefore to (b). Our very naı̈ve idea is to study a single cell, and to bring to
bear on chains of arbitrary length the information so obtained. We propose the following
plan of action:

(i) Consider a single cell plugged to two heat baths (one on its left, the other on its
right), both of which are at temperature T and have injection rate �, T and � being
arbitrary. Finding the invariant measure µT,� describing the state of the cell in this
equilibrium situation is, in general, relatively simple compared to finding µN .

(ii) Suppose the measure µT,� has been found. We then look at an N -chain with TL =
TR = T and �L = �R = �, and verify that the marginals at site i of the invariant
measure µN are equal to µT,�. (By the marginal at site i, we refer to the measure
obtained by integrating out all variables pertaining to all sites �= i.)

(iii) Once the family {µT,�} is found and (ii) verified, we assume that the structure com-
mon to the µT,� passes to all marginals of µN as N → ∞ even when (TL, �L) �=
(TR, �R). More precisely, for all ξ ∈ (0, 1), we assume that all limit points of the
marginals of µN at site [ξN ] (where [x] denotes the integer part of x) inherit, as
N → ∞, the structure common to µT,�.

We observe that (i)–(iii) alone are inadequate for determining the sought-after pro-
files, for they give no information on which T and � are relevant at any given site.
The main point of this program is that (a) and (b) together is sufficient for uniquely
determining the profiles in question.

Remark 2.2. Our rationale for (iii) is as follows: Fix an integer, �. As N → ∞, the
gradients of temperature and injection rate on the � sites centered at [ξN ] tend to 0, so
that the subsystem consisting of these � sites resembles more and more the situation in
(ii). Though rather natural from the point of view of physics [4], this argument does not
constitute a proof. Indeed our program is in the direction of proving the existence of well
defined Gibbs measures and then assuming, when the system is taken out of equilibrium,
that thermodynamic equilibrium is attained locally; in particular, local temperatures are
well defined. The full force of local thermal equilibrium is not needed for our purposes;
however. The assumption in (iii) pertains only to marginals at single sites.

The rest of this paper is devoted to illustrating the program outlined above in concrete
examples.
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3. Stochastic Models

3.1. The “random-halves” model. This is perhaps the simplest stochastic model of the
general type described in Sect. 2.1. The microscopic laws that govern the dynamics in
each cell are as follows: Let δ > 0 be a fixed number. Each tracer is equipped with two
independent exponential clocks. Clock 1, which signals the times of energy exchanges
with the tanks, rings at rate 1

δ

√
x, where x is the (current) energy of the tracer. Clock 2,

which signals the times of site-to-site movements, rings at rate
√
x. The stored energy

at site i is denoted by yi . In the description below, we assume the tracer is at site i.

(i) When Clock 1 rings, the energy carried by the tracer and the stored energy at site
i are pooled together and split randomly. That is to say, the tracer gets p(x + yi)

units of energy and the tank gets (1 − p)(x + yi), where p ∈ [0, 1] is uniformly
distributed and independent of all other random variables.

(ii) When Clock 2 rings, the tracer leaves site i. It jumps with equal probability to sites
i ± 1. If i = 1 or N , going to sites 0 or N + 1 means the tracer exits the system.

It remains to specify the coupling to the heat baths. Here it is natural to assume that the
energies of the emitted tracers are exponentially distributed with means TL and TR.

This completes the formal description of the model.

Remark 3.1. The rates of the two clocks are to be understood as follows: We assume the
energy carried by the tracer is purely kinetic, so that its speed is

√
x. We assume also

that a tracer travels, on average, a distance δ between successive interactions with the
tank, and a distance 1 before exiting each site.

Remark 3.2. As we will show, the invariant measure does not depend on the value of
δ, which can be large or small. The size of δ does affect the rate of convergence to
equilibrium, however.

Remark 3.3. While the tracers do not “see” each other in the sense that there is no
direct interaction, their evolutions cannot be decoupled. The number of tracers present
at a site varies with time. When two or more tracers are present, they interact with the
tank whenever their clocks go off, thereby sharing information about their energies. A
new tracer may enter at some random moment, bringing its energy to the pool; just as
randomly, a tracer leaves, taking with it the energy it happens to be carrying at that time.

3.2. Single-cell analysis.

3.2.1. Single cell in equilibrium with 2 identical heat baths. We consider first the fol-
lowing special case of the model described in Sect. 3.1: N = 1, TL = TR = T , and
�L = �R = �. Each state of the cell in this model is represented by a point in

� =
∞⋃

k=0

�k (disjoint union),

where �k = {({x1, . . . , xk}, y) : x�, y ∈ [0,∞)}. Here {x1, . . . , xk}, is an unordered
k-tuple representing the energies of the k tracers, y denotes the stored energy, and a point
in �k represents a state of the cell when exactly k tracers are present.

Remark 3.4. We motivate our choice of�. During a time interval when there are exactly
k tracers in the cell – with no tracers entering or exiting – it makes little difference
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whether we think of the tracers as named, and represent the state of the cell by a point
in [0,∞)k+1, or if we think of them as indistinguishable, and represent the state by a
point in �k . With tracers entering and exiting, however, thinking of tracers as named
will require that all exiting tracers return later, otherwise the system is transient and has
no invariant measure. Since any rule that assigns to each departing tracer a new tracer to
carry its name is necessarily artificial, and for present purposes exact identities of tracers
play no role, we have opted to regard the tracers as indistinguishable.

We clarify the relationship between [0,∞)k+1 and �k and set some notation: Let
πk : [0,∞)k+1 → �k be the map πk(x1, . . . , xk, y) = ({x1, . . . xk}, y), i.e., πk is the
(k!)-to-1 map that forgets the order in the ordered k-tuple (x1, . . . , xk). For a measure µ̃
on [0,∞)k+1 that is symmetric with respect to the x� coordinates, if µ = (πk)∗µ̃, and
σ̃ and σ are the densities of µ̃ and µ respectively, then σ̃ and σ are related by

σ({x1, . . . , xk}, y) = k! σ̃ (x1, . . . , xk, y) .

We also write d{x1, . . . , xk}dy = (πk)∗(dx1 . . . dxkdy), and use I to denote the char-
acteristic function.

Proposition 3.5. The model in Sect. 3.1 with N = 1, TL = TR = T , and �L = �R = �

has a unique invariant probability measure µ = µT,� on �. This measure has the
following properties:

• the number of tracers present is a Poisson random variable with mean κ ≡ 2�
√
π/T ,

i.e.,

µ(�k) = κ
k

k!
e−κ , k = 0, 1, 2, . . . ; (1)

• the conditional density of µ on �k is ckσkd{x1, . . . , xk}dy, where

σk({x1, . . . , xk}, y) = I{x1,...,xk,y≥0}
1√

x1 · . . . · xk e
−β(x1+···+xk+y) ; (2)

here β = 1/T , and ck = β k! (β/π)k/2 is the normalizing constant.

Proof. Uniqueness is straightforward, since one can go from a neighborhood of any
point in � to a neighborhood of any other point via positive measure sets of sample
paths. We focus on checking the invariance of µ as defined above.

For z, z′ ∈ �, let Ph(dz′|z) denote the transition probabilities for time h ≥ 0 starting
from z. We fix a small cube A ⊂ �k̄ for some k̄, and seek to prove that

d

dh

∫ (∫
IA(z

′)P h(dz′|z)
)
µ(dz)

∣∣∣∣
h=0

= 0 .

On the time interval (0, h), the following three types of events may occur:

Event E1: Entrance of a new tracer
Event E2: Exit of a tracer from the cell
Event E3: Exchange of energy between a tracer and the tank

We claim that with initial distributionµ, the probability of more than one of these events
occurring before time h is o(h) as h → 0. This assertion applies to events both of the



244 J.-P. Eckmann, L.-S. Young

same type and of distinct types. It follows primarily from the fact that these events are
independent and occur at exponential rates. Of relevance also are the exponential tails
of σk and the Poisson distribution of pk := µ(�k) in the definition of µ. To illustrate
the arguments involved, we will verify at the end of the proof that the probability of two
or more tracers exiting on the time interval (0, h) is o(h), but let us accept the above
assertion for now and go on with the main argument.

Starting from the initial distribution µ, we let P(Ei, A) denote the probability that
Ei occurs before time h resulting in a state in A, and let P(Ec1 ∩Ec2 ∩Ec3, A) denote the
probability of starting from a state in A and having none of the Ei occur before time h.
We will prove

P(E1, A)+ P(E2, A)+ P(E3, A)+ P(Ec1 ∩ Ec2 ∩ Ec3, A)− µ(A) = o(h)µ(A). (3)

Notice that A can be represented as the union of disjoint sets ∪iAi, where each Ai is of
the form

Aε(z̄) = {({x1, . . . , xk̄}, y) : x� ∈ [x̄�, x̄� + ε], � = 1, . . . , k̄, y ∈ [ȳ, ȳ + ε]}
for some z̄ = ({x̄1, . . . , x̄k̄}, ȳ) ∈ �, ε � 1, and with the intervals [x̄�, x̄� + ε] pairwise
disjoint for � = 1, 2, . . . , k̄.To prove (3) forA, it suffices to prove it for eachAi provided
o(h) in (3) is uniformly small for all i.

We consider from here on A = Aε(z̄) with the properties above. Let σ denote the
density of µ. With ε sufficiently small, we have µ(A) ≈ σ(z̄)εk̄+1 = pk̄ck̄σk̄(z̄)ε

k̄+1,

where ck and σk are as in the proposition. The other terms in (3) are estimated as follows:
P(E1, A): E1 is in fact the union of 2k̄ subevents, corresponding to a new tracer coming
from the left or right bath and the k̄ approximate values of energy of the new tracer.
For definiteness, we assume the new tracer arrives from the left bath, and has energy in
[x̄1, x̄1 + ε]. That is to say, the initial state of the cell is described by

B = {({x2, . . . , xk̄}, y) : x� ∈ [x̄�, x̄� + ε], y ∈ [ȳ, ȳ + ε]} ⊂ �k̄−1 .

The contribution to P(E1, A) of this subevent is

µ(B) h�

∫ x̄1+ε

x̄1

βe−βxdx ≈ h� µ(B) e−βx̄1 βε

≈ h� pk̄−1ck̄−1 σk̄(z̄)
√
x̄1 βε

k̄+1 .

Here, h� is the probability that a tracer is injected, and the integral above is the proba-
bility that the injected tracer lies in the specified range. Summing over all 2k̄ subevents,
we obtain

P(E1, A) ≈ 2h�β (
k̄∑

�=1

√
x̄�) pk̄−1ck̄−1 σk̄(z̄) ε

k̄+1 . (4)

P(E2, A): In order to result in a state in A, the initial state must be in

C1 = {({x1, . . . , xk̄, x}, y) : x� ∈ [x̄�, x̄� + ε], x ∈ [0,∞), y ∈ [ȳ, ȳ + ε]} ⊂ �k̄+1 .

We assume here that the tracer with energy x exits between time 0 and time h. This gives

P(E2, A) ≈ pk̄+1 ck̄+1 σk̄(z̄) ε
k̄+1

∫ ∞

0
min{h√x, 1} 1√

x
e−βx dx

= pk̄+1 ck̄+1 σk̄(z̄) ε
k̄+1 β−1(h+ o(h)) . (5)
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P(E3, A): For definiteness, we assume it is the tracer with energy near x̄1 that is the
product of the interaction with the tank. To arrive in a state in Aε, one must start from

D = {({x1, . . . , xk̄}, y) : x� ∈ [x̄�, x̄� + ε] for � ≥ 2, x1 + y ∈ [x̄1 + ȳ, x̄1 + ȳ + 2ε]}.
A simple integration using the rule of interaction in Sect. 3.1 gives

P(E3, A) ≈ h

∑k̄
�=1

√
x̄�

δ
pk̄ck̄σk̄(z̄)ε

k̄+1 . (6)

P(Ec1 ∩ Ec2 ∩ Ec3, A): We first note that starting from A, the probability of the tracer
with energy ≈ x̄1 exiting is

pk̄ck̄σk̄(z̄)
√
x̄1e

βx̄1εk̄
∫ x̄1+ε

x̄1

h
√
x

1√
x
e−βxdx = h

√
x̄1 pk̄ck̄σk̄(z̄) ε

k̄+1 ;

the probability of the tracer with energy ≈ x̄1 interacting with the tank is

h

√
x̄1

δ
pk̄ck̄σk̄(z̄) ε

k̄+1 ;

and the probability of a new tracer entering the cell from the left (resp. right) bath is
h� µ(Aε). Thus

P(Ec1 ∩ Ec2 ∩ Ec3, A)≈pk̄ck̄σk̄(z̄) εk̄+1 ·��(1 − h
√
x̄�) · (1 − h�)2 ·��(1 − h

√
x̄�/δ)

≈pk̄ck̄σk̄(z̄) εk̄+1 ·
(

1 − h

(
k̄�=1

√
x̄� + 2� + 1

δ
k̄�=1

√
x̄�

))
.

(7)

Summing Eqs. (4)–(7), we obtain (3) provided

2�βpk̄−1ck̄−1 = pk̄ck̄ and 2�pk̄ck̄ = pk̄+1ck̄+1T .

Note that these two equations represent the same relation for different k. We write this
relation as

ckpk

ck+1pk+1
= T

2�
, (8)

and verify that it is compatible with assertion (1): Since

ck
1

k!

(
�k�=1

∫
1√
x�
e−βx�dx�

) ∫
e−βydy = 1 ,

and
∫ ∞

0 x−1/2e−βxdx = √
πT , we have

pk+1 = 2�

T

ck

ck+1
pk = 2�

T

(
1

k + 1

∫ ∞

0

1√
x
e−βxdx

)
pk = 1

k + 1

2
√
π�√
T

pk .

To complete the proof, we estimate the probability of two or more tracers exiting
before time h. For n = 2, 3, . . . , let E2,n be the event that the initial state is in

Cn={({x1, . . . , xk̄, x
(1), . . . , x(n)}, y) : x� ∈ [x̄�, x̄�+ε], x(�′)∈ [0,∞), y∈ [ȳ, ȳ+ε]},



246 J.-P. Eckmann, L.-S. Young

and during the time interval (0, h), all n of the tracers carrying energies x(�
′), �′ =

1, 2, . . . , n, exit the system. The probability of ∪n≥2E2,n is
∑

n≥2

pk̄+nck̄+nσk̄(z̄)ε
k̄+1 (O(h))n ,

which, from Eq. (8), is bounded by

pk̄ck̄σk̄(z̄)ε
k̄+1

∑

n≥2

(
2�

T

)n
(O(h))n = pk̄ck̄σk̄(z̄)ε

k̄+1 o(h) . ��

Remark 3.6. In the setting of Proposition 3.5, since the cell is in equilibrium with the
two heat baths, it is obvious that it ejects, on average, 2� tracers per unit time, and the
energies of the tracers ejected have mean T . We observe that the cell in fact reciprocates
the action of the bath more strongly than this: the distribution of the energies of the
ejected tracers is also exponential. To see this, fix k and consider one tracer at a time.
The probability of the tracer exiting with energy > u is

∼
∫ ∞

u

√
x · 1√

x
e−βxdx = β−1e−βu .

3.2.2. Chain ofN cells in equilibrium with 2 identical heat baths. We treat next the case
of arbitraryN . That is to say, the system is as defined in Sect. 3.1, but with TL = TR = T

and �L = �R = �. Let µ be as in Proposition 3.5.

Proposition 3.7. The N -fold product µ× · · · × µ is invariant.

Remark 3.8. That the invariant measure is a product tells us that at steady state, there are
no spatial correlations. We do not find this to be entirely obvious on the intuitive level:
one might think that above-average energy levels on the left half of the chain may cause
the right half to be below average; that is evidently not the case. This result should not
be confused with the absence of space-time correlations.

Proof. Proceeding as before, we consider a small time interval (0, h), and treat sepa-
rately the individual events that may occur during this period. One of the new events
(not relevant in the case of a single cell) is the jumping of a tracer from site i ± 1 to site
i. We fix a phase point

z̄ = (z̄(1), . . . , z̄(N)) = ({x̄(1)1 , . . . , x̄
(1)
k1

}, y(1); . . . ; {x̄(N)1 , . . . , x̄
(N)
kN

}, y(N)) ,

and let A = �Ni=1A
(i) ⊂ �N , where A(i) = Aε(z̄

(i)) is as in Proposition 3.5. Let
σ (i) = σki (z̄

(i)). For definiteness, we fix also an integer n, 1 < n < N , and assume that
at time 0, the state of the chain is as follows:

(i) at site n+1, there are kn+1 +1 tracers the energies of which lie in disjoint intervals

[x̄(n+1)
1 , x̄

(n+1)
1 + ε], . . . , [x̄(n+1)

kn+1
, x̄
(n+1)
kn+1

+ ε] and [x̄(n)1 , x̄
(n)
1 + ε] ,

(ii) at site n, there are kn − 1 tracers whose energies lie in

[x̄(n)2 , x̄
(n)
2 + ε], . . . , [x̄(n)kn , x̄

(n)
kn

+ ε] .
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The probability of this event occurring and the tracer with energy ≈ x̄
(n)
1 jumping from

site n+ 1 into site n is then given by 1
2I · II · III, where

I = �i �=n,n+1 (pki cki σ
(i)εki+1),

I I = pkn−1ckn−1σ
(n)

√
x̄
(n)
1 eβx̄

(n)
1 εkn,

I II = pkn+1+1ckn+1+1σ
(n+1)εkn+1+1

∫ x̄
(n)
1 +ε

x̄
(n)
1

h
√
x

1√
x
e−βxdx .

This product can be written as

h

2

(
�Ni=1pki cki σ

(i)εki+1
)

· pkn−1

pkn

ckn−1

ckn
· pkn+1+1

pkn+1

ckn+1+1

ckn+1

·
√
x̄
(n)
1 ,

which, by Eq. (8), is equal to

h

2

(
�Ni=1pki cki σ

(i)εki+1
)

·
√
x̄
(n)
1 . (9)

There are many terms of this kind that contribute to
∫
IA(z

′)P h(dz′|z)µ(dz), two

for x̄(n)� for each pair (n, �). We claim that the system has detailed balance, i.e., the term
associated with the scenario above is balanced by the probability of starting from a state
in A and having the tracer at site n carrying energy ≈ x̄

(n)
1 jump to site n + 1. The

probability of the latter is

1

2
(�Ni=1pki cki σ

(i)εki+1) ·
√
x̄
(n)
1 eβx̄

(n)
1

1

ε
·
∫ x̄

(n)
1 +ε

x̄
(n)
1

h
√
x

1√
x
e−βxdx ,

which balances exactly (9) as claimed.
An argument combining the one above with that in Proposition 3.5 regarding the

injection of new tracers holds at sites 1 and N . ��
Propositions 3.5 and 3.7 are steps (i) and (ii) in the proposed scheme in Sect. 2.2.

3.3. Derivation of equations of macroscopic profiles. Having found a candidate family
of equilibrium measures {µT,�}, we now complete the rest of the program outlined in
Sect. 2.2. The next step, according to this program, is to assume that for N � 1, the
marginals of the invariant measureµN at site i are approximately equal toµT,� for some
T = Ti and � = �i . We identify those parts of our proposed theory that are not proved
in this paper and state them precisely as “Assumptions”.

Assumption 1. Given TL, TR > 0, �L, �R ≥ 0, and N ∈ Z
+, the N -chain defined in

Sect. 3.1 with these parameters has an invariant probability measure µN .

We do not believe this existence result is hard to prove but prefer not to depart from
the main line of reasoning in this paper. Once existence is established, uniqueness (or
ergodicity) follows easily since any invariant measure clearly has strictly positive density
everywhere. A proof of the statement in Assumption 2 below is more challenging. For
ξ ∈ (0, 1), let µN,[ξN ] denote the marginal of µN at the site [ξN ].
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Assumption 2. For every ξ ∈ (0, 1), every limit point as N → ∞ of µN,[ξN ] is a
member of the family {µT,�, T > 0, � ≥ 0}.1

In Sect. 2.1, we introduced four quantities of interest. There is one that was somewhat
ambiguously defined, namely ei . Its precise meaning is as follows: ei := ∑∞

k=1 pi,kei,k,

where pi,k is the probability that the number of tracers at site i is equal to k and ei,k is 1
k

of the mean total tracer energy conditioned on the number of tracers present being equal
to k.

Theorem 3.9 is about the profiles of certain observables as N → ∞. We refer the
reader to the end of Sect. 2.1 for the precise meaning of the word “profile” in the theorem.

Theorem 3.9. The following hold for the “random-halves” model defined in Sect. 3.1
with arbitrary TL, TR, �L, �R. Under Assumptions 1 and 2 above:

• the profile for the mean number of jumps out of a site per unit time is

j (ξ) = 2
(
�L + (�R − �L)ξ

)
.

• the profile for the mean total energy transported out of a site per unit time is

Q(ξ) = 2
(
�LTL + (�RTR − �LTL)ξ

) ;
• the profile for the mean stored energy at a site is

s(ξ) = Q(ξ)

j (ξ)
= �LTL + (�RTR − �LTL)ξ

�L + (�R − �L)ξ
;

in the case �L = �R, this simplifies to s(ξ) = TL + (TR − TL)ξ ;
• the profile for mean tracer energy is e(ξ) = 1

2 s(ξ) ;
• the profile for mean number of tracers is

κ(ξ) =
√

π

s(ξ)
j (ξ) ;

• the profile for mean total-cell energy is

E(ξ) = s(ξ)+ κ(ξ)e(ξ) = s(ξ)+ 1

2

√
πs(ξ) j (ξ) .

Proof of Theorem 3.9. We divide the proof into the following three steps:
I. Information on single cells. Items (i)–(iv) are strictly in the domain of internal cell
dynamics. The setting is that of Proposition 3.5, and the results below are deduced (in
straightforward computations) from the invariant density given by that proposition. The
parameters are, as usual, T and �. (Note that this means the rate at which tracers enter
the site is 2�.)

(i) stored energy has density βe−βy and mean T ;

(ii) tracer energy has density
√
β√
πx
e−βx and mean T

2 ;

(iii) mean number of tracers, κ = 2
√
π
T
� ;

(iv) mean total-cell energy, E = T · (1 + κ

2 ) .
1 As stated in Sect. 2, we assume all marginals µN,[ξN ], N ≥ 1, have uniform tail bounds in energy

and in number of tracers of the type suggested in the single-cell analysis.
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Items (v) and (vi) are in preparation for the analysis of cell-to-cell traffic:

(v) mean number of jumps out of the cell per unit time, j = 2� ;
(vi) mean total energy transported out of the cell per unit time, Q = Tj .

II. Global phenomenological equations. Consider now a chain withN cells with settings
TL, TR, �L and �R at the two ends. The following results use only standard conservation
laws together with the local rule that when a tracer exits a cell, it has equal probability
of going left and right.
(A) Balancing tracer fluxes. Let ji denote the number of jumps per unit time out of site
i. Then

ji = 2

(
�L + i

N + 1
(�R − �L)

)
. (10)

Proof. Consider an (imaginary) partition between site i and site i + 1. We let −�ji
denote the flux across this partition. Then �ji = 1

2 (ji+1 − ji) for i = 0, 1, . . . , N ,
where j0 and jN+1 are defined to be 2�L and 2�R respectively. For i �= 0, N , the 1

2 is
there because only half of the tracers out of site i + 1 jump left, and half of those out of
site i jump right. The fluxes across partitions between all consecutive sites must be equal,
or there would be a pile-up of tracers somewhere. This together with

∑
i �ji = �R −�L

gives the asserted formula.
(B) Balancing energy fluxes. LetQi denote the mean total energy transported out of site
i per unit time. Then

Qi = 2

(
�LTL + i

N + 1
(�RTR − �LTL)

)
.

Proof. The argument is identical to that in (A), with�Qi = 1
2 (Qi+1 −Qi) andQ0 and

QN+1 defined to be 2�LTL and 2�RTR respectively.
III. Combining the results from I and II. Fix ξ ∈ (0, 1). Passing to a subsequence if
necessary, we have, by Assumption 2, µN,[ξN ] → µT (ξ),�(ξ) for some T (ξ) and �(ξ).
We identify the two numbers T (ξ) and �(ξ) as follows:

Let jN(ξ) denote the mean number of jumps out of site [ξN ] per unit time in the
N -chain. Then by (A) in Part II, j (ξ) := limN→∞ jN(ξ) = 2

(
�L + (�R − �L)ξ

)
. This

is, therefore, the mean number of jumps out of a cell with invariant measure µT (ξ),�(ξ).
Similarly, we deduce that the mean total energy transported out of a cell with the same
invariant measure isQ(ξ) := limN→∞QN(ξ) = 2

(
�LTL + (�RTR −�LTL)ξ

)
. Appeal-

ing now to the information in Part I, we deduce from (v) and (vi) that �(ξ) = 1
2j (ξ) and

T (ξ) = Q(ξ)/j (ξ).
The rest of the profiles follow readily: we read off s = T from (i), and deduce the

relation between s and e by comparing (i) and (ii). The profiles for κ and E follow
from (iii) and (iv) together with our knowledge of � and T . The proof of Theorem 3.9
is complete. ��

We remark that in the terminology of [7] our random halves model is of gradient
type.

Remark 3.10. It is instructive to see what Theorem 3.9 says in the special case when
�L = 0. Since no particles are injected at the left end, clearly, TL cannot matter. But
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since tracers do exit from the left, one expects an energy flux across the system. Upon
substituting �L = 0 into the formulas above, one gets

j (ξ) = 2�Rξ , e(ξ) = 1
2 s(ξ) = 1

2TR , κ(ξ) = 2�Rξ
√
π/TR ,

and an energy flux of − 1
2Q

′(ξ) = −�RTR.

3.4. Simulations. Numerical simulations are used to validate Assumptions 1 and 2 in
Theorem 3.9.

We mention here only those details of the simulations that differ from the theoretical
study. Needless to say, we work with a finite number of sites, usually 20. Simulations
start in a random initial state, and are first run for a period of time to let the system
reach its steady state. All times are in number of events (E1, E2, and E3). Up to half
the simulation time is used to reach stationarity; statistics are then gathered during the
remaining simulation time. Since total simulation time is finite, we find it necessary to
take measures to deal with tracers of exceptionally low energy: these tracers appear to
remain in a cell indefinitely, skewing the statistics on the number of tracers. We opted
to terminate events involving a single tracer at a single site after about 0.001 of total
simulation time. This was done about 10 times in the course of 109 events.

Simulations are performed both to verify directly the properties of the marginals at
individual sites and to plot empirically the various profiles of interest. Excellent agree-
ment with predicted values is observed in all runs. A sample of the results is shown in
Fig. 1.

3.5. Interpretation of results. We gather here our main observations, discuss their phys-
ical implications, and provide explanations for the reasons behind the derived formulas.
1. Linearity of profiles. We distinguish between the following 3 types of profiles:

a. Transport of energy and tracers: j (ξ) and Q(ξ) are always linear by simple conser-
vation laws and by the imposed left-right symmetry in outflow of tracers and energy
from each site.

b. Mean stored and (individual) tracer energies: s(ξ) and e(ξ) are linear if and only if
there is no tracer flux across the system. (See item 4 below.)

c. Tracer densities and total-cell energy: κ(ξ) is never linear (unless TL = TR and
�L = �R); in addition to the obvious bias brought about by different injection rates,
tracers have a tendency to accumulate at the cold end (see item 3 for elaboration). As
a result, E(ξ) is also never linear.

2. Heat flux and the Fourier Law. Heat flux from left to right is given by � = TL�L −
TR�R. Thinking of the temperature of the system as given by T (ξ), Theorem 3.9 says
that thermal conductivity is constant and proportional to TR − TL if and only if there is
no tracer flux across the system, i.e., if and only if �L = �R.
3. Distribution of tracers along the chain. In the case �L = �R, more tracers are con-
gregated at the cold end than at the hot. This is because the only way to balance the
tracer equation is to have the number of jumps out of a site be constant along the chain.
Inside the cells, however, tracers move more slowly at the cold end, hence they jump less
frequently, and the only way to maintain the required number of jumps is to have more
tracers. When �L �= �R, the idea above continues to be valid, except that one needs also
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Fig. 1. Random-halves model with 20 sites, temperatures TL = 10, TR = 100 and injection rates
�L = 10, �R = 5. Top left: Mean tank energies si . Top right: Mean number of tracers κi . Bottom: Mean
total energy Ei . Simulations in perfect agreement with predictions from theory

to take into consideration the bias in favor of more tracers at the end where the injection
rate is higher.
4. Tracer flux and concavity of stored energy. One of the interesting facts that have
emerged is that s(ξ) is linear if and only if �L = �R, and when �L �= �R, their rel-
ative strength is reflected in the concavity of s(ξ). This may be a little perplexing at
first because no mechanism is built into the microscopic rules for the tanks to recognize
the directions of travel of the tracers with which they come into contact. The reason
behind this phenomenon is, in fact, quite simple: If there is a tracer flux across the
system, say from right to left, then the tank at site i hears from site i + 1 more fre-
quently than it hears from site i − 1 (because ji+1 > ji−1). It therefore has a greater
tendency to equilibrate with the energy level on the right than on the left, causing si to
be > 1

2 (si+1 + si−1). Since this happens at every site, a curvature for the profile of si
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is created. The reader should further note that tracer flux and heat flux go in opposite
directions if (�L − �R) · (�LTL − �RTR) < 0.
5. Individual cells mimicking heat baths. The cells in our models are clearly not infinite
heat reservoirs, yet for large N , they acquire some of the characteristics of the heat
baths with which they are in contact. More precisely, the ith cell injects each of its two
neighbors with �i tracers per unit time. These tracers, which have mean energy Ti , are
distributed according to a law of the same type as that with which tracers are emitted
from the baths (exponential in the case of the random halves model); see Remark 3.6.
Unlike the conditions at the two ends, however, the numbers �i and Ti are self-selected.

3.6. A second example. We consider here a model of the same type as the “random-
halves” model but with different microscopic rules. The purpose of this exercise is to
highlight the role played by these rules and to make transparent which part of our scheme
is generic.

The rules for energy exchange in this model simulate a Hamiltonian model in which
both tracers and tanks have one degree of freedom. Write x = v2 and y = ω2, v, ω ∈
(−∞,∞), and think of energy as uniformly distributed on the circle {(v, ω) : v2 +ω2 =
c}, so that when the tracer interacts with stored energy, the redistribution is such that a
random point on this circle is chosen with weight |v| (this is the measure induced on
a cross-section by the invariant measure of the flow). That is to say, if (x, y) are the
stored energy and tracer energy before an interaction, and (x′, y′) afterwards, then for
a ∈ [0, x + y],

P {y′ > a} = P {|ω′| > √
a} = 1−

∫ √
a

0 v

√
1 + (

dv
dω

)2
dω

∫ √
x+y

0 v

√
1 + (

dv
dω

)2
dω

= 1 −
√
a√

x + y
(11)

or, equivalently, the density of y′ is

1

2

1√
y′

1√
x + y

for y′ ∈ [0, x + y] .

Assume now that all is as in Sect. 3.1, except that when Clock 1 of a tracer rings, it
exchanges energy with the tank according to the rule in (11) and not the random-halves
rule. Following the computation in Sect. 3.2 (details of which are left to the reader), we
see that Propositions 3.5 and 3.7 hold for the present model provided σk is replaced by

σk({x1, . . . , xk}, y) = I{x1,... ,xk,y≥0}
1√

x1 · . . . · xky e
−β(x1+...+xk+y) .

This defines a new family of {µ̂T ,�} for this model. With µ̂T ,� in hand, we make the
assumption as before that for N � 1, the marginals of individual sites have the same
form. Proceeding as in Sect. 3.3, we read off the following information on single cells:

(i) stored energy has density const.e−βy/√y and mean T/2 ;
(ii) tracer energy has density const.e−βx/

√
x and mean T/2 ;

(iii) mean number of tracers, κ = 2
√
π
T
� ;

(iv) mean total-cell energy, E = T
2 (1 + κ) .



Nonequilibrium Energy Profiles for a Class of 1-D Models 253

The rest of the analysis, including (iv), (v), (A) and (B), do not depend on the local rules
(aside from the fact that tracers exiting a cell have equal chance of going left and right).
Thus they remain unchanged. Reasoning as in Theorem 3.9, we obtain the following:

Proposition 3.11. Under Assumptions 1 and 2, the profiles for the model with energy
exchange rule (11) are

• j (ξ) = 2(�L + (�R − �L)ξ) ;
• Q(ξ) = 2(�LTL + (�RTR − �LTL)ξ) ;
• s(ξ) = e(ξ) = 1

2 Q(ξ)/j (ξ) ;
• κ(ξ) = √

2π/s(ξ) j (ξ)/2 ;
• E(ξ) = s(ξ)+ κ(ξ)e(ξ) = s(ξ)+ √

2πs(ξ) j (ξ)/2 .

Numerical simulations give results in excellent agreement with these theoretical pre-
dictions.

4. Hamiltonian Models

In Sect. 4.1, we introduce a family of Hamiltonian models generalizing those studied
numerically in [17, 12]. A single-cell analysis similar to that in Sect. 3 is carried out for
this family in Sect. 4.2, and predictions of energy and tracer density profiles are made
in Sect. 4.3. We again use the Assumptions in Sect. 3, but the predictions here are made
under an additional ergodicity assumption, ergodicity being a property that is easy to
arrange in stochastic models but not in Hamiltonian ones. Results of simulations for a
specific model are shown in Sect. 4.5. A brief discussion of related models is given in
Sect. 4.6.

4.1. Rotating disks models. We describe in this subsection a family of models quite
close to those studied numerically in [17, 12]. The rules of interaction (though not the
coupling to heat baths) are, in fact, used earlier in [20].

4.1.1. Dynamics in a closed cell. We treat first the dynamics within individual cells
assuming the cell or box is sealed, i.e., it is not connected to its neighbors or to external
heat sources.

Let �0 ⊂ R
2 be a bounded domain with piecewise C3 boundary. In the interior of �0

lies a (circular) diskD, which we think of as nailed down at its center. This disk rotates
freely, carrying with it a finite amount of kinetic energy derived from its angular velocity;
it will play the role of the “energy tank” in Sect. 2.1. The system below describes the
free motion of k point particles (i.e., tracers) in� = �0 \D. When a tracer runs into ∂�0,
the boundary of �0, the reflection is specular. When it hits the rotating disk, the energy
exchange is according to the rules introduced in [20, 17, 12]. A more precise description
of the system follows.

The phase space of this dynamical system is

�̄k = (�k × ∂D × R
2k+1)/ ∼ ,

where x = (x1, . . . , xk) ∈ �k denotes the positions of the k tracers, ϑ ∈ ∂D denotes
the angular position of a (marked) point on the boundary of the turning disk, v =
(v1, . . . , vk) ∈ R

2k denotes the velocities of the k tracers, ω ∈ R denotes the angular
velocity of the turning disk, and ∼ is a relation that identifies pairs of points in the
collision manifold Mk = {(x, ϑ, v, ω) : x� ∈ ∂� for some �}. The rule of identification
is given below.
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The flow on �̄k is denoted by �̄s . As long as no collisions are involved, we have

�̄s (x, ϑ, v, ω) = (x + sv, ϑ + sω, v, ω) .

We assume at most one tracer collides with ∂� at any one point in time. (�̄s is not
defined at multiple collisions, which occur on a set of measure zero.) At the point of
impact, i.e., when x� ∈ ∂� for one of the �, let v� = (vt

�, v
n
� ) be the tangential and normal

components of v�. What happens subsequent to impact depends on whether x� ∈ ∂�0
or ∂D. In the case of a collision with ∂�0, the tracer bounces off ∂�0 with angle of
reflection equal to angle of incidence, i.e.,

(vn
� )

′ = −vn
� , (vt

�)
′ = vt

� , (12)

and the other variables are unchanged. In the case of a collision with the disk, the
following energy exchange takes place between the disk and the tracer:

(vn
� )

′ = −vn
� , (vt

�)
′ = ω , ω′ = vt

� . (13)

Here we have, for simplicity, taken the radius of the disk, the moment of inertia of the
disk, and the mass of tracer in such a way that the coefficients in Eq. (13) are equal to 1.
The identification in the definition of �̄k is z ∼ z′ where z, z′ ∈ Mk are such that all of
their coordinates are equal except that v� and ω in z are replaced by the corresponding
quantities with primes in Eqs. (12) and (13) for z′. We also write F(z) = z′.

Note that in both (12) and (13), total energy is conserved, i.e., |v|2+ω2 = |v′|2+(ω′)2.
The energy surfaces in this model are therefore

�̄k,E = (�k × ∂D × S2k
E )/ ∼,

where

S2k
E = {(v1, . . . , vk, ω) ∈ R

2k+1 :
∑

|v�|2 + ω2 = E} .

We claim that the natural invariant measure, or Liouville measure, of the (discontin-
uous) flow �̄s on �̄k is

m̄k = (λ2|�)k × (ν1|∂D)× λ2k+1,

where λd is d-dimensional Lebesgue measure and νd is surface area on the relevant
d-sphere. Once the invariance of m̄k is checked, it will follow immediately that the
induced measures m̄k,E = (λ2|�)k × (ν1|∂D)× ν2k on �̄k,E are �̄s-invariant, as are all
measures on �̄k of the form ψ(E)m̄k,E for some ψ : [0,∞) → [0,∞).

The invariance of m̄k is obvious away from collisions and at collisions with ∂�0.
Because collisions occur one at a time, it suffices to consider a single collision between
a single tracer and the disk. The problem, therefore, is reduced to the following: Consider
�̄s on �̄1, and letM1,D denote the part of the collision manifold involvingD. To prove
that m̄1 is preserved in a collision with D, it suffices to check that for A ⊂ M1,D and
ε > 0 arbitrarily small,

m̄1
( ∪−ε<s<0 �s(A)

) = m̄1
( ∪0<s<ε �s(F (A))

)
.

We leave this as a calculus exercise.
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4.1.2. Coupling to neighbors and heat baths. We now consider a chain of N identical
copies of the dynamical system described in Sect. 4.1.1, and define couplings between
nearest neighbors and between end cells and heat baths.

Let γL and γR be two marked subsegments of ∂�0 of equal length; these segments will
serve as openings to allow tracers to pass between cells. For now it is best to think of �0
as having a left-right symmetry, and to think of γL and γR as vertical and symmetrically
placed (as in Fig. 2), although as we will see, these geometric details are not relevant
for the derivation of mean energy and tracer profiles. We call the segments γL and γR

in the ith cell γ (i)L and γ (i)R . For i = 1, . . . , N − 1, we identify γ (i)R with γ (i+1)
L , that is

to say, we think of the domains of the ith cell and the (i + 1)st cell as having a wall in
common, namely γ (i)R and γ (i+1)

L , and remove this wall, so that tracers that would have
collided with it simply continue in a straight line into the adjacent cell. (See Fig. 2.)

Tracers are injected into the system as follows. Consider, for example, the bath on
the left. We say the injection rate is � if at the ring of an exponential clock of rate �,
a single tracer enters cell 1 via γ (1)L . (Note that the rate � is not the injection rate per

unit length of the opening γ (1)L but per unit time.) The points of entry and velocities of
entering tracers are iid, the law being the one governing the collisions of tracers with
γ
(1)
L . That is to say, the point of entry is uniformly distributed on γ (1)L , and the velocity
v has density

c e−β|v|2 |v|| sin(ϕ)| dv , c = 2β3/2

√
π

, (14)

where v ∈ R
2 points into γ (1)L and ϕ ∈ (0, π) is the angle v makes with γ (1)L at the point

of entry. (This is the distribution of v at collisions for particles with velocity distribution
β
π

exp(−β|v|2)dv.) Here β = 1/T , where T is said to be the temperature of the bath.
Observe that the mean energy of the tracers injected into the system by a bath at tem-
perature T is not T but 3T/2. Injection from the right is done similarly, via the opening
γ
(N)
R . When a tracer in the chain reaches γ (1)L or γ (N)R , it vanishes into the baths.

This completes the description of our models. We remark that the process above is a
Markov process in which the only randomness comes from the action of the baths. Once
a tracer is in the system, its motion is governed by rules that are entirely deterministic.

Fig. 2. A row of diamond-shaped boxes with small lateral holes (made by removing vertical walls corre-

sponding to γ (i)R = γ
(i+1)
L ) to allow the tracers to go from one box to the next. The shapes of the “boxes”

can be quite general for much of our theory. The configuration shown is the one used in the simulations
discussed in Sect. 4.5, but with larger holes for better visibility
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4.2. Single-cell analysis. In analogy with Sect. 3.2, we investigate in this subsection the
invariant measure for a single cell coupled to two heat baths with parameters T and �.

Let �̄k and �̄k,E be as in Sect. 4.1.1. As before, a state of this system is represented
by a point in

� = ∪∞
k=0�k = ∪∞

k=0 ∪E≥0 �k,E,

where �k and �k,E are quotients of �̄k and �̄k,E respectively obtained by identifying
permutations of the k tracers. With {· · · } representing unordered sets as before, points
in� are denoted by z = ({x1, . . . , xk}, ϑ; {v1, . . . , vk}, ω) or simply ({x�}, ϑ; {v�}, ω),
with v� understood to be attached to x�. The quotient measures of m̄k and m̄k,E are
respectively mk and mk,E .

Abusing notation slightly, we continue to use �̄s to denote the semi-flow on �̄, and
let �s denote the induced semi-flow on �. Then �s is as in Sect. 4.1.1 except where
tracers exit or enter the system. More precisely, if �s(z) ∈ �k for all 0 ≤ s < s0, and
a tracer exits the system at time s0, then �s0(z) jumps to �k−1. Similarly, if a tracer is
injected from one of the baths at time s0, then instantaneously �s0(z) jumps to �k+1,
the destination being given by a probability distribution.

Let |γ | denote the length of the segment γL or γR.

Proposition 4.1. There is an invariant probability measure µ with the following prop-
erties:
(a) the number of tracers present is a Poisson random variable with mean κ where

κ = 2
√
π
λ2(�)

|γ |
�√
T

;

(b) the conditional density of µ on �k is ckσkdmk , where

σk({x�}, ϑ; {v�}, ω) = e−β(ω
2+∑k

�=1 |v�|2)

and ck is the normalizing constant.

We observe as before that the Poisson parameter κ is proportional to � (the higher
the injection rate, the more tracers in the cell) and inversely proportional to

√
T , i.e.,

the speed of the tracers (the faster the tracers, the sooner they leave). Unlike the models
considered in Sect. 3, where the tracers are assumed to leave the cell at a rate equal to
their speed, here the ratio λ2(�)/|γ | appears, as it should: the smaller the passage way,
the longer it takes for the tracers to leave.

Notice that we have not claimed that µ is unique.
We introduce some notation in preparation for the proof. For A ⊂ �k and h > 0,

we let �−h(A) denote the set of all initial states in � that in time h evolve into A
assuming no new tracers are injected into the system between times 0 and h.2 Then
�−h(A) = ∪n≥0�

(n)
−h(A), where �(n)−h(A) = �−h(A) ∩ �k+n, i.e., �(n)−h(A) is the set

of states where initially k + n tracers are present, and by the end of time h exactly n of
these tracers have exited and the remaining k are described by a state in A.

Lemma 4.2. Let µ be as in Proposition 4.1, and let Aε be a cube of sides ε in �k , ε
small enough that µ(Aε) ≈ pkckσk(z̄)ε

4k+2 for some z̄. We assume the following holds
for all small h > 0:

2 Notice that (1) {�h, h ≥ 0} is a semi-flow, and �−h is not defined; (2) �−h(A) as defined is
�= (�h)

−1(A).
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(i) no tracers are injected into the system on the time interval (0, h] ;
(ii) �h(�

(0)
−h(Aε)) = Aε.

Then

µ(�−h(Aε)) = σk(z̄)ε
4k+2

(
pkck + 2h

|γ |
c
pk+1ck+1 + o(h)

)
, (15)

where pk = µ(�k) and c = 2√
π
β3/2.

Proof. The idea is that for a particle to exit in the very short time h, it must be close to
the exit γL or γR and move towards it without colliding with the disk or the boundary,
or it must have very large speed (and that is improbable).

By assumption (i), we have µ(�−h(Aε)) = ∑
n≥0 µ(�

(n)
−h(Aε)). The n = 0 term is

handled easily: By virtue of (i) and (ii), the situation is equivalent to that in Sect. 4.1.1.
Since µ|�k is invariant for the closed dynamical system with k tracers, we have µ(�(0)−h
(Aε)) = µ(Aε).

Consider next n = 1. We give the estimate for µ(�(1)−h(Aε)) assuming γL and γR are
straight-line segments, leaving the general case (where these segments may be curved)
to the reader. First some notation: For v ∈ R

2 and a > 0, let E(v, a,L) be the parallel-
ogram on the same side of γL as � and with the property that one of its sides is γL while
the other is parallel to v and has length a; E(v, a,R) is defined similarly. To simplify
the discussion, we assume that for a > 0 sufficiently small, E(v, a,L) and E(v, a,R)
are contained in �, and leave to the reader the verification that “corners” at the end of
γL or γR lead to higher order terms (in the variable h used below).

Starting from a state in �(1)−h(Aε), we let x and v denote the initial position and
velocity of the tracer that exits before time h, and treat separately the cases (1) |v| ≤ a

h
and (2) |v| > a

h
. In Case (1), in order for the tracer to exit before time h, we must

have x ∈ E(v, h|v|,L) ∪ E(v, h|v|,R), and v must point toward the exits. Since
λ2(E(v, h|v|,L)) = λ2(E(v, h|v|,R)) = h|v|| sin(ϕ)||γ |, where ϕ is the angle vmakes
with γL or γR, we obtain

µ(�
(1)
−h(Aε) ∩ {|v| ≤ a

h
})

= σk(z̄)ε
4k+2pk+1ck+1 · 2h|γ |

∫ π

0
dϕ| sin(ϕ)|

∫

|v|≤ a
h

dv|v|e−β|v|2

= σk(z̄)ε
4k+2pk+1ck+1 · 2h|γ |1

c
(1 + o(h))

with c = 2β3/2/
√
π . For Case (2), we have the trivial estimate σk(z̄)ε4k+2pk+1ck+1 ·

o(h).
To see that the terms corresponding to n > 1 are negligible, we first derive the bound

µ(�
(n)
−h(A)) ≤ σk(z̄)ε

4k+2pk+nck+n (2h|γ |1

c
+ o(h))n . (16)

Then we compute the growth rate of pk+nck+n. By the definitions of these numbers, we
have

ck+1

ck
· pk+1

pk
=

(
λ2(�)

k + 1

∫

R
2
e−β|v|2dv

)−1 (
1

k + 1
2
√
π
λ2(�)

|γ |
�√
T

)
,
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giving

pk+nck+n =
(
c�

|γ |
)n

pkck, n ≥ 1 . (17)

From (16) and (17) it follows that µ(�(n)−h(A)) ≤ σk(z̄)ε
4k+2(const. · h)n.

The asserted bound (15) for µ(�−h(A)) is proved. ��
The main difference between the proofs of Propositions 3.5 and 4.1 is that Hamil-

tonian models have both geometry and memory. In preparation for the proof, we intro-
duce the following language. Let Aε be as in Lemma 4.2. For � = 1, . . . , k, we let X�
denote the projection of Aε onto the plane of its x�-coordinate, and V� the projection
of Aε onto the plane of its v�-coordinate (so that X� and V� are ε-squares in � and R

2

respectively). We assume for simplicity that for each �, either X� is a strictly positive
distance from γL and γR, in which case we say X� is in the interior, or one of its sides
is contained in γL or γR. In the latter case, we say X� is adjacent to an exit. We further
assume that if X� is adjacent to an exit, then either all v� ∈ V� point toward the exit or
away from it.

Proof of Proposition 4.1. The invariance of µ is already noted in Sect. 4.1.1 except
where it pertains to entrances and exits of tracers. We focus therefore on these events,
noting that the probability of more than one tracer entering on the time interval (0, h)
is o(h), as is the probability of a tracer entering and leaving (immediately) on this time
interval. These scenarios will be ignored.

LetAε be as above. We seek to show as before that d
dh

∫
IAε (z

′)P h(dz′|z)µ(dz)|h=0
=0. Here it is necessary to treat separately the following configurations for Aε:
Case 1. The following holds for all �:X� can be in the interior or adjacent to an exit, and
if it is adjacent to an exit, then all v� in V� must point toward the exit. Notice that this
configuration is relatively inaccessible, meaning the probability of a new tracer entering
on (0, h) leading to a state in Aε is o(h)µ(Aε). Notice also that this configuration has
the property �h(�

(0)
−h(Aε)) = Aε, so that the contribution of the no-new-tracers event

to
∫
IAε (z

′)P h(dz′|z)µ(dz) is, by Lemma 4.2,

(1 − h�)2σk(z̄)ε
4k+2 (

pkck + 2h|γ |1

c
pk+1ck+1 + o(h)

)

= σk(z̄)ε
4k+2

(
pkck(1 − 2h�)+ 2h|γ |1

c
pk+1ck+1 + o(h)

)

= σk(z̄)ε
4k+2 (pkck + o(h)) , (18)

the last equality being valid on account of Eq. (17).
Case 2. X1 is adjacent to an exit and v1 points away from it; X� and V� for � > 1 are
as in Case 1. In this configuration, there is a part of X1 that can only be reached in
time h if one starts from outside. This region is a parallelogram similar to that in the
proof of Lemma 4.2 but with one of its sides equal to X1 ∩ γL or X1 ∩ γR. Following
the estimates in Case 1, we obtain that the contribution of the no-new-tracers event to∫
IAε (z

′)P h(dz′|z)µ(dz) in this case is

σk(z̄)ε
4k+2 pkck

(
1 − h

ε
|v̄1|| sin(ϕ̄1)| + o(h)

)
, (19)
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where v̄1 is the v1 coordinate of z̄ and ϕ̄1 is the angle v̄1 makes with γL (or γR).
We now argue that the negative term above is balanced by the contribution of the

event in which a new tracer enters on the time interval (0, h). This new tracer must have
v1 ∈ V1 and must enter through the ε-segment X1 ∩ γL or X1 ∩ γR. We claim that the
probability of this event is

pk−1ck−1σk(z̄)e
β|v̄1|2ε4k−2 · �h ε|γ | · c| sin(ϕ̄1)||v̄1|e−β|v̄1|2ε2 . (20)

The first factor in (20) is the µ-measure of the states corresponding to those in Aε but
without the tracer with position and velocity (x1, v1); the second factor is the probability
of a tracer entering through the designated segment, and the third is the fraction of tracers
entering with velocity ∈ V1 (see (14)). That (19) and (20) add up to µ(Aε)(1 + o(h))
again follows from (17).
Case 3. X1 and X2 are adjacent to exits, v1 and v2 point away from the exits in ques-
tion, and X� and V� are as in Case 1 for � > 2. We assume for simplicity that either
(X1 × V1) ∩ (X2 × V2) = ∅ or X1 × V1 = X2 × V2.

In the case (X1 ×V1)∩ (X2 ×V2) = ∅, the contribution of the no-new-tracers event
is

σk(z̄)ε
4k+2 pkck

(
1 − h

ε
|v̄1|| sin(ϕ̄1)| − h

ε
|v̄2|| sin(ϕ̄2)| + o(h)

)
, (21)

and this is cancelled perfectly by the estimate corresponding to (20).
In the case X1 × V1 = X2 × V2, on �̄k , where tracer positions and velocities are

regarded as ordered k-tuples, the set of states where both (x1, v1) and (x2, v2) are not
reachable in time h is o(h), and the set where exactly one of these is not reachable is
the union of two sets that project to the same set under πk . Thus the estimates for both
cases are as in Case 2.

The remaining cases are handled similarly. ��
Proposition 4.3. For the N -chain defined in Sect. 4.1.2 with TL = TR = T and �L =
�R = �, the N -fold product µ× · · · × µ is invariant.

It suffices to check that the transfer of energy from one cell to the next leads to the
correct relation between pkck and pk+1ck+1. The proof is left to the reader.

4.3. Derivation of equations of macroscopic profiles. Having found the candidate fam-
ily of Gibbs measures {µT,�}, we now proceed as in Sect. 3.3, seeking to derive the
relevant macroscopic profiles under Assumptions 1 and 2; see Sect. 3.3. There are two
new problems, leading to two additional assumptions which we now discuss.

The first problem is that of uniqueness and ergodicity. Unlike their stochastic coun-
terparts, the Hamiltonian chains defined in Sect. 4.1 may not be ergodic; they are, in
fact, easily shown to be nonergodic for certain choices of �0. Without ergodicity, it
is not clear how to make sense of the notion of local temperature, which lies at the
heart of Assumption 2. Postponing a discussion to Section 4.4, we bypass this issue by
introducing

Assumption 1. We assume µN is the unique invariant probability measure for the
N -chain defined in Sect. 4.1. It follows that µN is ergodic.
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Another important departure from the stochastic case is that in Hamiltonian models,
local rules are purely dynamical: whether a tracer goes to the left or to the right when
it exits a cell is determined entirely by local conditions at the time. In the presence of
a nonzero temperature gradient, exit distributions are typically asymmetric in the finite
chain, and may depend on specific characteristics of the model in question (see below).
We first state a general result giving the relation among the various quantities of interest.

Let jN,i and QN,i denote respectively the mean number of exits and mean total
energy transported out of the ith cell per unit time in the N -chain.

Assumption 2. We assume that as N → ∞, the profiles jN,i and QN,i converge in the
C0 sense to functions j (ξ) and Q(ξ) on (0, 1).

Theorem 4.4. Under Assumptions 1, 1’, 2 and 3, the following hold for the models in
Sect. 4.1.

• mean stored energy at a site :

s(ξ) = 1

3

Q(ξ)

j (ξ)
;

• mean tracer energy : e(ξ) = 2s(ξ) ;
• mean number of tracers :

κ(ξ) = λ2(�)

|γ |
√

π

2s(ξ)
j (ξ),

where |γ | = |γL| = |γR| is the size of the passage between adjacent cells ;
• mean total-cell energy :

E(ξ) = s(ξ)+ κ(ξ)e(ξ) = s(ξ)+ λ2(�)

|γ |
√

2πs(ξ) j (ξ) .

Proof. The proof follows that of Theorem 3.9, except that all quantities here are ex-
pressed in terms of the two functions j and Q (which vary from model to model).

First we read off the pertinent information from Proposition 4.1 for a single cell
connected to two heat baths with parameters T and �:

(i) stored energy has density
√
β√
πy
e−βy and mean s = T

2 ;
(ii) tracer energy has density βe−βx and mean T ;3

(iii) mean number of tracers, κ = λ2(�)
|γ |

√
π

2�√
T

;
(iv) mean total-cell energy, E = T (κ + 1

2 ) ;
(v) mean number of jumps out of cell per unit time, j = 2� ;

(vi) mean total energy transported out of cell per unit time, Q = 3T
2 · j = 3T � .

To prove (i), for example, we condition on the event that exactly k tracers are present.
Integrating out all other variables, we obtain that the distribution of ω is const.e−βω2

.
Thus the distribution of s = ω2 is as claimed. Items (ii) – (iv) are proved similarly, and
(v) and (vi) are deduced from the fact that the cell is in equilibrium with the two baths.

To deduce the asserted profiles, fix ξ ∈ (0, 1), and consider the [ξN ]th cell in the
N -chain. By Assumption 2, µN,[ξN ] → µT (ξ),�(ξ) for some T (ξ) and �(ξ). Moreover,

3 Note that this is the energy density when the tracers are in the box, to be distinguished from (vi).
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with respect to this limiting distribution, the number of jumps per unit time out of the
cell is j (ξ), and the total energy transported out of the cell is Q(ξ). We then use the
single-cell information above combined with these values of j (ξ) and Q(ξ) to identify
T (ξ) and �(ξ). The formula for s is obtained as follows: T = 2

3Q/j is from (v) and (vi),
and s = 1

2T is from (i). ��
Of particular interest to us are models in which there is good mixing within individ-

ual cells. In an idealized model in which mixing within individual cells is perfect and
instantaneous, exits to the left and the right would be equally likely, as would be the
case for mean energy flow. With such a perfect left-right symmetry at each site, j and
Q would be linear as explained in the proof of Theorem 3.9. For the class of models
described in Sect. 4.1, this idealized state is never attained, but we have found that exit
distributions come very close to being symmetric under certain conditions: The most
important of these conditions are (i) a geometry of �0 that gives rise to fast mixing for
the closed dynamical system (such as concave walls and the absence of “traps”), and
(ii) small passageways between adjacent cells (so most tracers stay in the cell for a long
time). The presence of large numbers of tracers is also conducive to good mixing. 4

Corollary 4.5. In the setting of Theorem 4.4, if j andQ have approximately linear pro-
files with j (0) = �L, j (1) = �R,Q(0) = TL�L and Q(1) = TR�R, then the profile for
mean stored energy is given by

s(ξ) ≈ 1

2

�LTL + (�RTR − �LTL)ξ

�L + (�R − �L)ξ
.

Other approximate profiles are obtained similarly by substituting

j (ξ) ≈ 2 (�L + (�R − �L)ξ)

into the formulas in Theorem 4.4.

Numerical simulations validate these predictions for Hamiltonian chains with small
passageways between cells. See Sect. 4.5. Our findings suggest, in fact, C2 convergences
to j and Q. More precisely, let jN,i = jN,i,L + jN,i,R where jN,i,L and jN,i,R are the
numbers of exits per unit time that go to the (i − 1)st and (i + 1)st cells respectively.
Analogously, let QN,i = QN,i,L +QN,i,R. Then for each compact set of cell configu-
rations (�0, γL, γR) and parameters TL, TR, �L, �R > 0, there exists an α ≥ 0 such that
for all large N , the following hold for all i:

|jN,i,R − 1

2
jN,i | ≤ α

N
; |QN,i,R − 1

2QN,i | ≤ α
N

;

|(jN,i,R − 1

2
jN,i) −(jN,i+1,R − 1

2jN,i+1)| ≤ α
N2 ;

|(QN,i,R − 1

2
QN,i) −(QN,i+1,R − 1

2QN,i+1)| ≤ α
N2 .

The situation in Corollary 4.5 corresponds to the case α � 1.

4 It is important to distinguish between the following two levels of mixing: mixing within cells, and
mixing in the chain. For example, small passageways between cells enhance mixing of the first kind but
are obstructions to the latter.
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Remark 4.6. The bounds above are consistent with the following observations: For a cell
in the N -chain, the temperature difference between the cell on its left and the one on its
right is of order |TL − TR|/N , so one expects the marginal of µN at this site to deviate
from the equilibrium measure in Sect 4.2 by the same order of magnitude. This deviation
is in turn reflected in the differences |jN,i,R − jN,i,L| and |QN,i,R −QN,i,L|. Similarly,
if the second differences are well behaved as we assume, their orders of magnitude as
indicated above are dimensionally correct. Detailed dependencies of this asymmetry on
the physical parameters are beyond the scope of this paper.5

The discussion of results in Sect. 3.5 (with “linearity” replaced by “approximate
linearity”) applies to models satisfying the hypotheses in Corollary 4.5. Statements not
involving linearity of j and Q apply to the broader setting of Theorem 4.4.

4.3.1. Comparisons of models. 1. Predicted profiles for Hamiltonian and stochastic
models. We observe that the predicted formulas in Theorem 4.4 are of the same type as
their counterparts in Theorem 3.9 but the constants are different. The similarity stems
from the fact that they are derived from the same general principles. The differences in
constants reflect the differences in µT,�, which in turn reflect the differences in local
rules (see below).
2. Relation between s and e. To highlight the role of the local rules in the profiles studied
in this paper, we recall the relation between stored energy s and individual tracer energy
in the various models encountered:

(a) Random halves (Sects. 3.1–3.3): s = 2e. (At collisions, energy is split evenly on
average, but the expected time for the next clock is longer for slower tracers.)

(b) Stochastic models simulating Hamiltonian systems where both disk and tracer have
a single degree of freedom (Sect. 3.6): s = e.

(c) Hamiltonian models in which the disk has one degree of freedom and tracers have
two (Sect. 4.1): e = 2s.

To this list, we now add one more example, namely

(d) Hamiltonian models in which the disk has one degree of freedom and tracers have 3:
Consider the model described in Sect. 4.1, but with �0 ⊂ R

3 and the disk replaced
by a cylinder that rotates along a fixed axis. Here, Liouville measure for a closed
system with k tracers is m̄k = (λ3|�)k × (ν1|∂D) × λ3k+1 (cf. Sect. 4.1.1). From a
single-cell analysis similar to that in Sect. 4.2,µT,� is easily computed. One notes in
particular that the distribution of tracer energy is const.

√
xe−βx , while disk energy

is as before. A simple computation then gives e = 3s.

These examples demonstrate clearly that the relation between s and e is entirely a func-
tion of the local structure. In the case of Hamiltonian systems, we see that it is also
dimension-dependent.

4.4. Ergodicity issues. Questions of ergodicity for the chains in Theorem 4.4 are beyond
the scope of this paper. We include only brief discussions of the following three aspects
of the problem:
1. Randomness in the injection process. Among the various features of our models, the
one the most responsible for promoting ergodicity is the randomness with which new

5 We thank H. Spohn for interesting correspondence on this point.
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tracers are injected into the system. We observe, however, that this genuinely stochastic
behavior occurs only at the two ends of the chain, and even there, the transition prob-
abilities do not have densities with respect to the underlying Lebesgue measure. The
problem is thus one of controllability involving the deterministic part of the dynamics.
2. Hyperbolicity of billiard dynamics: a necessary condition. Let �N ⊂ R

2 denote the
playground for the tracers in the N -chain. That is to say, it is the union of N copies of
� arranged in the configuration shown in Fig. 2 with open passages between adjacent
copies of �. The presence of one of more tracers being trapped in �N without contact
with any of the turning disks or the openings at the two ends (i.e., γ (1)L and γ (N)R ) is clearly
an obstruction to ergodicity. This scenario is easily ruled out by choosing �0 to have
concave (or scattering) walls. Such a choice of �0 implies that ∂�N also has concave
boundaries, and the free motion of a particle in a domain with concave boundaries is
well known to be hyperbolic and ergodic [21, 16].

We do not know if the absence of trapped tracers in the sense above implies ergodicity.
3. Enhancing ergodicity. Without (formally) guaranteeing ergodicity, various measures
can be taken to “enhance” it, meaning to make the system appear for practical purposes
as close to being ergodic as one wishes. For example, one can introduce more scattering
within each cell by increasing the curvature of the walls of �0, or alternately, one could
add convex bodies inside �0 that play the role of Lorentz scatterers. Another possibility
is to add a small amount of noise, and a third is to increase the injection rates: physical
intuition says that the larger the number of tracers in the system, the more likely stored
energy will behave ergodically.

4.5. Results of simulations. To check the applicability of the theory proposed in
Sects. 4.1–4.3 to real and finite systems, we have done extensive simulations some
of which we describe in this subsection. The domain �0 used in our simulations is as
shown in Fig. 2. Actual specifications of �0 are as follows: We start with a square of
sides 2, subtracting from it first 4 disks of radius 1.15 centered at the 4 corners of the
square. Two openings corresponding to γL and γR are then created on the left and right;
each has length 0.02. This completes the definition of �0. The disk D is located at the
center of the square; it has radius r = 0.0793.

Our choice of domain was influenced by the following factors: First, ∂�0 is taken to
be piecewise concave to promote ergodicity. Second is the size of the disk: A disk that
is too small is hit by a tracer only rarely; many tracers may pass through the cell without
interacting with the disk (this is analogous to having a large δ in Sect. 3.1). A disk that is
too large (relative to the domain in which it can fit) may cause an unduly large fraction
of tracers entering the box to exit immediately from the same side. Both scenarios lead
to large time-correlations, which are well known to impede the speed of convergence to
µN in a finite chain. They may also affect the infinite-volume limit.

We have found the geometry and specifications above to work quite well, with a
tracer making, on average, about 71 collisions while in a cell. Of these collisions, about
12.5 are with the disk.

For the single cell (with the geometry above) plugged to two identical heat baths, we
have tested the system extensively for ergodicity. To the degree that one can ascertain
from simulations, there is an ergodic component covering nearly 100% of the phase
space. The various energy distributions as well as the Poisson distribution of the number
of tracers present agree perfectly with those predicted by Proposition 4.1.

Simulations for chains of 20 to 60 cells with the choice of r and |γ | above showed
very good agreement with the theory. A sample of the fits for Q(ξ), s(ξ) and E(ξ) for
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Fig. 3. Rotating disks model with chain of 30 cells, temperatures TL = 100, TR = 10, and injection
rates �L = 1, �R = 2. Top left: Qi , energy transported out of site i per unit time as a function of i. Top
right: Mean disk energy si . Bottom: Mean total energy Ei

9 · 109 events and 30 sites is shown in Fig. 3. Here the ejection rates to the left and
right are very close to 50/50. We have also investigated the quantity α toward the end
of Sect. 4.3 for various values of r and |γ |, up to r = 0.23 (which is quite close to the
maximum-size disk that can be fitted into the domain �0) and |γ | = 0.06. Our findings
are consistent with the discussion in Sect. 4.3.

In addition to these profiles, we have also verified directly Assumption 2, which
asserts that the distributions of energy and tracers within each cell are in accordance
with those given by µT,� for some T , � depending on the cell. A sample of these results
is shown in Fig. 4.

4.6. Related models. In this subsection we recall from the literature a few models that
in their original or slightly modified form can be regarded as approximate realizations
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Fig. 4. Same parameters as in Fig. 3. Top 2 figures show semi-log plots of tracer energy distributions
at various sites. Top left: Densities of tracer energies inside boxes (theory predicts βe−βx ). Top right:
Densities of tracer energies upon exiting the various boxes (theory predicts 2β3/2√

x/πe−βx ). Bottom:
Distribution of numbers of tracers at several sites (theory predicts Poisson distribution)

of the class described in Sect. 2.1 of this paper. For more complete accounts, see the
review papers [2, 13, 15].

The models which come closest to ours, and which to some degree inspired this
work, are those in [17, 12]. In these papers, the authors carried out a numerical study
of a system comprised of an array of disks similar to those in Sect. 4.1 but arranged in
two rows with periodic boundaries (in the vertical direction). These disks interact via
tracers following the rules first used in [20]. We have adopted the same local rules, but
have elected to arrange our disks in a single row to simplify the analysis.

There is a number of papers dealing with mechanical gadgets that on some level
appear similar to ours. For example, in [14, 9], vertical plates are pushed back and forth
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by particles trapped between them. The main difference between these models and ours
is that they have exactly one “tracer” in each “cell”. In this respect, these models are
closer to our earlier work [6] in which locked-in tracers were considered. Ding-a-ling
and ding-dong models belong essentially to the same class [3, 19, 8, 18].

We mention that nonlinearities of profiles are difficult to see when the temperature
differences at the two ends are relatively small (in fact, what counts in many cases,
including the models studied in this paper, is the ratio of temperatures at the two ends).
This may explain why some authors have reported linear profiles when our analysis
suggests that may not be the case.

We mention also a very well-studied situation, namely that of the Fermi-Pasta-Ulam
chain. In this model, and in many others, there is a potential of the form

U(xi − xi+1)+ V (xi) ,

with U and V functions that grow to ∞ and xi the coordinates of a chain of anharmonic
oscillators. The pinning potential V plays the role of the “tank” in our models, while
the interparticle potential is more akin to the role of the tracers. This class of models is
difficult to handle because in contrast to the basic setup in our study, there is no clear
separation of the pinning and interaction energies.

Finally, we mention that Hamiltonian systems with noise have been studied in the
context of the Fourier Law. See e.g. [1].
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